Properties

Label 1472.2.a.t.1.2
Level 14721472
Weight 22
Character 1472.1
Self dual yes
Analytic conductor 11.75411.754
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1472,2,Mod(1,1472)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1472, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1472.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1472=2623 1472 = 2^{6} \cdot 23
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1472.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 11.753979177511.7539791775
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ10)+\Q(\zeta_{10})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x1 x^{2} - x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 23)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.2
Root 0.618034-0.618034 of defining polynomial
Character χ\chi == 1472.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2.23607q31.23607q5+3.23607q7+2.00000q9+5.23607q113.00000q132.76393q15+0.763932q17+2.00000q19+7.23607q21+1.00000q233.47214q252.23607q27+3.00000q29+6.70820q31+11.7082q334.00000q35+1.23607q376.70820q393.47214q412.47214q452.23607q47+3.47214q49+1.70820q510.472136q536.47214q55+4.47214q576.47214q59+6.94427q61+6.47214q63+3.70820q65+2.76393q67+2.23607q69+12.2361q71+6.52786q737.76393q75+16.9443q7710.9443q7911.0000q81+8.76393q830.944272q85+6.70820q8710.4721q899.70820q91+15.0000q932.47214q95+17.7082q97+10.4721q99+O(q100)q+2.23607 q^{3} -1.23607 q^{5} +3.23607 q^{7} +2.00000 q^{9} +5.23607 q^{11} -3.00000 q^{13} -2.76393 q^{15} +0.763932 q^{17} +2.00000 q^{19} +7.23607 q^{21} +1.00000 q^{23} -3.47214 q^{25} -2.23607 q^{27} +3.00000 q^{29} +6.70820 q^{31} +11.7082 q^{33} -4.00000 q^{35} +1.23607 q^{37} -6.70820 q^{39} -3.47214 q^{41} -2.47214 q^{45} -2.23607 q^{47} +3.47214 q^{49} +1.70820 q^{51} -0.472136 q^{53} -6.47214 q^{55} +4.47214 q^{57} -6.47214 q^{59} +6.94427 q^{61} +6.47214 q^{63} +3.70820 q^{65} +2.76393 q^{67} +2.23607 q^{69} +12.2361 q^{71} +6.52786 q^{73} -7.76393 q^{75} +16.9443 q^{77} -10.9443 q^{79} -11.0000 q^{81} +8.76393 q^{83} -0.944272 q^{85} +6.70820 q^{87} -10.4721 q^{89} -9.70820 q^{91} +15.0000 q^{93} -2.47214 q^{95} +17.7082 q^{97} +10.4721 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q5+2q7+4q9+6q116q1310q15+6q17+4q19+10q21+2q23+2q25+6q29+10q338q352q37+2q41+4q452q49++12q99+O(q100) 2 q + 2 q^{5} + 2 q^{7} + 4 q^{9} + 6 q^{11} - 6 q^{13} - 10 q^{15} + 6 q^{17} + 4 q^{19} + 10 q^{21} + 2 q^{23} + 2 q^{25} + 6 q^{29} + 10 q^{33} - 8 q^{35} - 2 q^{37} + 2 q^{41} + 4 q^{45} - 2 q^{49}+ \cdots + 12 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 2.23607 1.29099 0.645497 0.763763i 0.276650π-0.276650\pi
0.645497 + 0.763763i 0.276650π0.276650\pi
44 0 0
55 −1.23607 −0.552786 −0.276393 0.961045i 0.589139π-0.589139\pi
−0.276393 + 0.961045i 0.589139π0.589139\pi
66 0 0
77 3.23607 1.22312 0.611559 0.791199i 0.290543π-0.290543\pi
0.611559 + 0.791199i 0.290543π0.290543\pi
88 0 0
99 2.00000 0.666667
1010 0 0
1111 5.23607 1.57873 0.789367 0.613922i 0.210409π-0.210409\pi
0.789367 + 0.613922i 0.210409π0.210409\pi
1212 0 0
1313 −3.00000 −0.832050 −0.416025 0.909353i 0.636577π-0.636577\pi
−0.416025 + 0.909353i 0.636577π0.636577\pi
1414 0 0
1515 −2.76393 −0.713644
1616 0 0
1717 0.763932 0.185281 0.0926404 0.995700i 0.470469π-0.470469\pi
0.0926404 + 0.995700i 0.470469π0.470469\pi
1818 0 0
1919 2.00000 0.458831 0.229416 0.973329i 0.426318π-0.426318\pi
0.229416 + 0.973329i 0.426318π0.426318\pi
2020 0 0
2121 7.23607 1.57904
2222 0 0
2323 1.00000 0.208514
2424 0 0
2525 −3.47214 −0.694427
2626 0 0
2727 −2.23607 −0.430331
2828 0 0
2929 3.00000 0.557086 0.278543 0.960424i 0.410149π-0.410149\pi
0.278543 + 0.960424i 0.410149π0.410149\pi
3030 0 0
3131 6.70820 1.20483 0.602414 0.798183i 0.294205π-0.294205\pi
0.602414 + 0.798183i 0.294205π0.294205\pi
3232 0 0
3333 11.7082 2.03814
3434 0 0
3535 −4.00000 −0.676123
3636 0 0
3737 1.23607 0.203208 0.101604 0.994825i 0.467602π-0.467602\pi
0.101604 + 0.994825i 0.467602π0.467602\pi
3838 0 0
3939 −6.70820 −1.07417
4040 0 0
4141 −3.47214 −0.542257 −0.271128 0.962543i 0.587397π-0.587397\pi
−0.271128 + 0.962543i 0.587397π0.587397\pi
4242 0 0
4343 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4444 0 0
4545 −2.47214 −0.368524
4646 0 0
4747 −2.23607 −0.326164 −0.163082 0.986613i 0.552144π-0.552144\pi
−0.163082 + 0.986613i 0.552144π0.552144\pi
4848 0 0
4949 3.47214 0.496019
5050 0 0
5151 1.70820 0.239196
5252 0 0
5353 −0.472136 −0.0648529 −0.0324264 0.999474i 0.510323π-0.510323\pi
−0.0324264 + 0.999474i 0.510323π0.510323\pi
5454 0 0
5555 −6.47214 −0.872703
5656 0 0
5757 4.47214 0.592349
5858 0 0
5959 −6.47214 −0.842600 −0.421300 0.906921i 0.638426π-0.638426\pi
−0.421300 + 0.906921i 0.638426π0.638426\pi
6060 0 0
6161 6.94427 0.889123 0.444561 0.895748i 0.353360π-0.353360\pi
0.444561 + 0.895748i 0.353360π0.353360\pi
6262 0 0
6363 6.47214 0.815412
6464 0 0
6565 3.70820 0.459946
6666 0 0
6767 2.76393 0.337668 0.168834 0.985644i 0.446000π-0.446000\pi
0.168834 + 0.985644i 0.446000π0.446000\pi
6868 0 0
6969 2.23607 0.269191
7070 0 0
7171 12.2361 1.45215 0.726077 0.687613i 0.241342π-0.241342\pi
0.726077 + 0.687613i 0.241342π0.241342\pi
7272 0 0
7373 6.52786 0.764029 0.382014 0.924156i 0.375230π-0.375230\pi
0.382014 + 0.924156i 0.375230π0.375230\pi
7474 0 0
7575 −7.76393 −0.896502
7676 0 0
7777 16.9443 1.93098
7878 0 0
7979 −10.9443 −1.23133 −0.615663 0.788009i 0.711112π-0.711112\pi
−0.615663 + 0.788009i 0.711112π0.711112\pi
8080 0 0
8181 −11.0000 −1.22222
8282 0 0
8383 8.76393 0.961967 0.480983 0.876730i 0.340280π-0.340280\pi
0.480983 + 0.876730i 0.340280π0.340280\pi
8484 0 0
8585 −0.944272 −0.102421
8686 0 0
8787 6.70820 0.719195
8888 0 0
8989 −10.4721 −1.11004 −0.555022 0.831836i 0.687290π-0.687290\pi
−0.555022 + 0.831836i 0.687290π0.687290\pi
9090 0 0
9191 −9.70820 −1.01770
9292 0 0
9393 15.0000 1.55543
9494 0 0
9595 −2.47214 −0.253636
9696 0 0
9797 17.7082 1.79800 0.898998 0.437953i 0.144296π-0.144296\pi
0.898998 + 0.437953i 0.144296π0.144296\pi
9898 0 0
9999 10.4721 1.05249
100100 0 0
101101 −4.47214 −0.444994 −0.222497 0.974933i 0.571421π-0.571421\pi
−0.222497 + 0.974933i 0.571421π0.571421\pi
102102 0 0
103103 −4.18034 −0.411901 −0.205951 0.978562i 0.566029π-0.566029\pi
−0.205951 + 0.978562i 0.566029π0.566029\pi
104104 0 0
105105 −8.94427 −0.872872
106106 0 0
107107 −13.4164 −1.29701 −0.648507 0.761209i 0.724606π-0.724606\pi
−0.648507 + 0.761209i 0.724606π0.724606\pi
108108 0 0
109109 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
110110 0 0
111111 2.76393 0.262341
112112 0 0
113113 8.76393 0.824441 0.412221 0.911084i 0.364753π-0.364753\pi
0.412221 + 0.911084i 0.364753π0.364753\pi
114114 0 0
115115 −1.23607 −0.115264
116116 0 0
117117 −6.00000 −0.554700
118118 0 0
119119 2.47214 0.226620
120120 0 0
121121 16.4164 1.49240
122122 0 0
123123 −7.76393 −0.700050
124124 0 0
125125 10.4721 0.936656
126126 0 0
127127 −7.29180 −0.647042 −0.323521 0.946221i 0.604867π-0.604867\pi
−0.323521 + 0.946221i 0.604867π0.604867\pi
128128 0 0
129129 0 0
130130 0 0
131131 −18.7082 −1.63454 −0.817272 0.576253i 0.804514π-0.804514\pi
−0.817272 + 0.576253i 0.804514π0.804514\pi
132132 0 0
133133 6.47214 0.561205
134134 0 0
135135 2.76393 0.237881
136136 0 0
137137 −21.8885 −1.87006 −0.935032 0.354563i 0.884630π-0.884630\pi
−0.935032 + 0.354563i 0.884630π0.884630\pi
138138 0 0
139139 10.7082 0.908258 0.454129 0.890936i 0.349951π-0.349951\pi
0.454129 + 0.890936i 0.349951π0.349951\pi
140140 0 0
141141 −5.00000 −0.421076
142142 0 0
143143 −15.7082 −1.31359
144144 0 0
145145 −3.70820 −0.307950
146146 0 0
147147 7.76393 0.640358
148148 0 0
149149 −23.8885 −1.95703 −0.978513 0.206186i 0.933895π-0.933895\pi
−0.978513 + 0.206186i 0.933895π0.933895\pi
150150 0 0
151151 4.23607 0.344726 0.172363 0.985033i 0.444860π-0.444860\pi
0.172363 + 0.985033i 0.444860π0.444860\pi
152152 0 0
153153 1.52786 0.123520
154154 0 0
155155 −8.29180 −0.666013
156156 0 0
157157 11.4164 0.911129 0.455564 0.890203i 0.349438π-0.349438\pi
0.455564 + 0.890203i 0.349438π0.349438\pi
158158 0 0
159159 −1.05573 −0.0837247
160160 0 0
161161 3.23607 0.255038
162162 0 0
163163 5.76393 0.451466 0.225733 0.974189i 0.427522π-0.427522\pi
0.225733 + 0.974189i 0.427522π0.427522\pi
164164 0 0
165165 −14.4721 −1.12665
166166 0 0
167167 1.52786 0.118230 0.0591148 0.998251i 0.481172π-0.481172\pi
0.0591148 + 0.998251i 0.481172π0.481172\pi
168168 0 0
169169 −4.00000 −0.307692
170170 0 0
171171 4.00000 0.305888
172172 0 0
173173 −22.9443 −1.74442 −0.872210 0.489131i 0.837314π-0.837314\pi
−0.872210 + 0.489131i 0.837314π0.837314\pi
174174 0 0
175175 −11.2361 −0.849367
176176 0 0
177177 −14.4721 −1.08779
178178 0 0
179179 −0.708204 −0.0529336 −0.0264668 0.999650i 0.508426π-0.508426\pi
−0.0264668 + 0.999650i 0.508426π0.508426\pi
180180 0 0
181181 −16.6525 −1.23777 −0.618884 0.785482i 0.712415π-0.712415\pi
−0.618884 + 0.785482i 0.712415π0.712415\pi
182182 0 0
183183 15.5279 1.14785
184184 0 0
185185 −1.52786 −0.112331
186186 0 0
187187 4.00000 0.292509
188188 0 0
189189 −7.23607 −0.526346
190190 0 0
191191 −26.1803 −1.89434 −0.947171 0.320728i 0.896073π-0.896073\pi
−0.947171 + 0.320728i 0.896073π0.896073\pi
192192 0 0
193193 9.94427 0.715804 0.357902 0.933759i 0.383492π-0.383492\pi
0.357902 + 0.933759i 0.383492π0.383492\pi
194194 0 0
195195 8.29180 0.593788
196196 0 0
197197 1.47214 0.104885 0.0524427 0.998624i 0.483299π-0.483299\pi
0.0524427 + 0.998624i 0.483299π0.483299\pi
198198 0 0
199199 −12.2918 −0.871342 −0.435671 0.900106i 0.643489π-0.643489\pi
−0.435671 + 0.900106i 0.643489π0.643489\pi
200200 0 0
201201 6.18034 0.435928
202202 0 0
203203 9.70820 0.681382
204204 0 0
205205 4.29180 0.299752
206206 0 0
207207 2.00000 0.139010
208208 0 0
209209 10.4721 0.724373
210210 0 0
211211 23.4164 1.61205 0.806026 0.591880i 0.201614π-0.201614\pi
0.806026 + 0.591880i 0.201614π0.201614\pi
212212 0 0
213213 27.3607 1.87472
214214 0 0
215215 0 0
216216 0 0
217217 21.7082 1.47365
218218 0 0
219219 14.5967 0.986357
220220 0 0
221221 −2.29180 −0.154163
222222 0 0
223223 4.00000 0.267860 0.133930 0.990991i 0.457240π-0.457240\pi
0.133930 + 0.990991i 0.457240π0.457240\pi
224224 0 0
225225 −6.94427 −0.462951
226226 0 0
227227 12.1803 0.808438 0.404219 0.914662i 0.367543π-0.367543\pi
0.404219 + 0.914662i 0.367543π0.367543\pi
228228 0 0
229229 12.0000 0.792982 0.396491 0.918039i 0.370228π-0.370228\pi
0.396491 + 0.918039i 0.370228π0.370228\pi
230230 0 0
231231 37.8885 2.49288
232232 0 0
233233 −6.52786 −0.427655 −0.213827 0.976871i 0.568593π-0.568593\pi
−0.213827 + 0.976871i 0.568593π0.568593\pi
234234 0 0
235235 2.76393 0.180299
236236 0 0
237237 −24.4721 −1.58964
238238 0 0
239239 13.7639 0.890315 0.445157 0.895452i 0.353148π-0.353148\pi
0.445157 + 0.895452i 0.353148π0.353148\pi
240240 0 0
241241 −23.1246 −1.48959 −0.744794 0.667295i 0.767452π-0.767452\pi
−0.744794 + 0.667295i 0.767452π0.767452\pi
242242 0 0
243243 −17.8885 −1.14755
244244 0 0
245245 −4.29180 −0.274193
246246 0 0
247247 −6.00000 −0.381771
248248 0 0
249249 19.5967 1.24189
250250 0 0
251251 −2.29180 −0.144657 −0.0723284 0.997381i 0.523043π-0.523043\pi
−0.0723284 + 0.997381i 0.523043π0.523043\pi
252252 0 0
253253 5.23607 0.329189
254254 0 0
255255 −2.11146 −0.132225
256256 0 0
257257 −7.47214 −0.466099 −0.233050 0.972465i 0.574870π-0.574870\pi
−0.233050 + 0.972465i 0.574870π0.574870\pi
258258 0 0
259259 4.00000 0.248548
260260 0 0
261261 6.00000 0.371391
262262 0 0
263263 2.94427 0.181552 0.0907758 0.995871i 0.471065π-0.471065\pi
0.0907758 + 0.995871i 0.471065π0.471065\pi
264264 0 0
265265 0.583592 0.0358498
266266 0 0
267267 −23.4164 −1.43306
268268 0 0
269269 7.94427 0.484371 0.242185 0.970230i 0.422136π-0.422136\pi
0.242185 + 0.970230i 0.422136π0.422136\pi
270270 0 0
271271 8.00000 0.485965 0.242983 0.970031i 0.421874π-0.421874\pi
0.242983 + 0.970031i 0.421874π0.421874\pi
272272 0 0
273273 −21.7082 −1.31384
274274 0 0
275275 −18.1803 −1.09632
276276 0 0
277277 −15.4721 −0.929631 −0.464815 0.885408i 0.653879π-0.653879\pi
−0.464815 + 0.885408i 0.653879π0.653879\pi
278278 0 0
279279 13.4164 0.803219
280280 0 0
281281 −8.76393 −0.522812 −0.261406 0.965229i 0.584186π-0.584186\pi
−0.261406 + 0.965229i 0.584186π0.584186\pi
282282 0 0
283283 −27.7082 −1.64708 −0.823541 0.567257i 0.808005π-0.808005\pi
−0.823541 + 0.567257i 0.808005π0.808005\pi
284284 0 0
285285 −5.52786 −0.327442
286286 0 0
287287 −11.2361 −0.663244
288288 0 0
289289 −16.4164 −0.965671
290290 0 0
291291 39.5967 2.32120
292292 0 0
293293 1.52786 0.0892588 0.0446294 0.999004i 0.485789π-0.485789\pi
0.0446294 + 0.999004i 0.485789π0.485789\pi
294294 0 0
295295 8.00000 0.465778
296296 0 0
297297 −11.7082 −0.679379
298298 0 0
299299 −3.00000 −0.173494
300300 0 0
301301 0 0
302302 0 0
303303 −10.0000 −0.574485
304304 0 0
305305 −8.58359 −0.491495
306306 0 0
307307 −9.52786 −0.543784 −0.271892 0.962328i 0.587649π-0.587649\pi
−0.271892 + 0.962328i 0.587649π0.587649\pi
308308 0 0
309309 −9.34752 −0.531762
310310 0 0
311311 13.1803 0.747389 0.373694 0.927552i 0.378091π-0.378091\pi
0.373694 + 0.927552i 0.378091π0.378091\pi
312312 0 0
313313 24.3607 1.37695 0.688474 0.725261i 0.258281π-0.258281\pi
0.688474 + 0.725261i 0.258281π0.258281\pi
314314 0 0
315315 −8.00000 −0.450749
316316 0 0
317317 −25.4164 −1.42753 −0.713764 0.700386i 0.753011π-0.753011\pi
−0.713764 + 0.700386i 0.753011π0.753011\pi
318318 0 0
319319 15.7082 0.879491
320320 0 0
321321 −30.0000 −1.67444
322322 0 0
323323 1.52786 0.0850126
324324 0 0
325325 10.4164 0.577798
326326 0 0
327327 0 0
328328 0 0
329329 −7.23607 −0.398937
330330 0 0
331331 19.6525 1.08020 0.540099 0.841602i 0.318387π-0.318387\pi
0.540099 + 0.841602i 0.318387π0.318387\pi
332332 0 0
333333 2.47214 0.135472
334334 0 0
335335 −3.41641 −0.186658
336336 0 0
337337 23.4164 1.27557 0.637787 0.770213i 0.279850π-0.279850\pi
0.637787 + 0.770213i 0.279850π0.279850\pi
338338 0 0
339339 19.5967 1.06435
340340 0 0
341341 35.1246 1.90210
342342 0 0
343343 −11.4164 −0.616428
344344 0 0
345345 −2.76393 −0.148805
346346 0 0
347347 9.88854 0.530845 0.265422 0.964132i 0.414489π-0.414489\pi
0.265422 + 0.964132i 0.414489π0.414489\pi
348348 0 0
349349 −24.4164 −1.30698 −0.653490 0.756935i 0.726696π-0.726696\pi
−0.653490 + 0.756935i 0.726696π0.726696\pi
350350 0 0
351351 6.70820 0.358057
352352 0 0
353353 9.36068 0.498219 0.249109 0.968475i 0.419862π-0.419862\pi
0.249109 + 0.968475i 0.419862π0.419862\pi
354354 0 0
355355 −15.1246 −0.802731
356356 0 0
357357 5.52786 0.292566
358358 0 0
359359 −19.8885 −1.04968 −0.524839 0.851202i 0.675874π-0.675874\pi
−0.524839 + 0.851202i 0.675874π0.675874\pi
360360 0 0
361361 −15.0000 −0.789474
362362 0 0
363363 36.7082 1.92668
364364 0 0
365365 −8.06888 −0.422345
366366 0 0
367367 −4.18034 −0.218212 −0.109106 0.994030i 0.534799π-0.534799\pi
−0.109106 + 0.994030i 0.534799π0.534799\pi
368368 0 0
369369 −6.94427 −0.361504
370370 0 0
371371 −1.52786 −0.0793227
372372 0 0
373373 −7.70820 −0.399116 −0.199558 0.979886i 0.563951π-0.563951\pi
−0.199558 + 0.979886i 0.563951π0.563951\pi
374374 0 0
375375 23.4164 1.20922
376376 0 0
377377 −9.00000 −0.463524
378378 0 0
379379 −24.3607 −1.25132 −0.625662 0.780094i 0.715171π-0.715171\pi
−0.625662 + 0.780094i 0.715171π0.715171\pi
380380 0 0
381381 −16.3050 −0.835328
382382 0 0
383383 7.05573 0.360531 0.180265 0.983618i 0.442304π-0.442304\pi
0.180265 + 0.983618i 0.442304π0.442304\pi
384384 0 0
385385 −20.9443 −1.06742
386386 0 0
387387 0 0
388388 0 0
389389 −25.5279 −1.29431 −0.647157 0.762357i 0.724042π-0.724042\pi
−0.647157 + 0.762357i 0.724042π0.724042\pi
390390 0 0
391391 0.763932 0.0386337
392392 0 0
393393 −41.8328 −2.11019
394394 0 0
395395 13.5279 0.680661
396396 0 0
397397 24.4164 1.22542 0.612712 0.790306i 0.290078π-0.290078\pi
0.612712 + 0.790306i 0.290078π0.290078\pi
398398 0 0
399399 14.4721 0.724513
400400 0 0
401401 −14.1803 −0.708132 −0.354066 0.935220i 0.615201π-0.615201\pi
−0.354066 + 0.935220i 0.615201π0.615201\pi
402402 0 0
403403 −20.1246 −1.00248
404404 0 0
405405 13.5967 0.675628
406406 0 0
407407 6.47214 0.320812
408408 0 0
409409 21.3607 1.05622 0.528109 0.849177i 0.322901π-0.322901\pi
0.528109 + 0.849177i 0.322901π0.322901\pi
410410 0 0
411411 −48.9443 −2.41424
412412 0 0
413413 −20.9443 −1.03060
414414 0 0
415415 −10.8328 −0.531762
416416 0 0
417417 23.9443 1.17256
418418 0 0
419419 4.58359 0.223923 0.111962 0.993713i 0.464287π-0.464287\pi
0.111962 + 0.993713i 0.464287π0.464287\pi
420420 0 0
421421 10.2918 0.501591 0.250796 0.968040i 0.419308π-0.419308\pi
0.250796 + 0.968040i 0.419308π0.419308\pi
422422 0 0
423423 −4.47214 −0.217443
424424 0 0
425425 −2.65248 −0.128664
426426 0 0
427427 22.4721 1.08750
428428 0 0
429429 −35.1246 −1.69583
430430 0 0
431431 −17.5279 −0.844288 −0.422144 0.906529i 0.638722π-0.638722\pi
−0.422144 + 0.906529i 0.638722π0.638722\pi
432432 0 0
433433 17.8197 0.856358 0.428179 0.903694i 0.359155π-0.359155\pi
0.428179 + 0.903694i 0.359155π0.359155\pi
434434 0 0
435435 −8.29180 −0.397561
436436 0 0
437437 2.00000 0.0956730
438438 0 0
439439 −18.7082 −0.892894 −0.446447 0.894810i 0.647311π-0.647311\pi
−0.446447 + 0.894810i 0.647311π0.647311\pi
440440 0 0
441441 6.94427 0.330680
442442 0 0
443443 −38.1246 −1.81135 −0.905677 0.423967i 0.860637π-0.860637\pi
−0.905677 + 0.423967i 0.860637π0.860637\pi
444444 0 0
445445 12.9443 0.613617
446446 0 0
447447 −53.4164 −2.52651
448448 0 0
449449 −14.9443 −0.705264 −0.352632 0.935762i 0.614713π-0.614713\pi
−0.352632 + 0.935762i 0.614713π0.614713\pi
450450 0 0
451451 −18.1803 −0.856079
452452 0 0
453453 9.47214 0.445040
454454 0 0
455455 12.0000 0.562569
456456 0 0
457457 −5.12461 −0.239719 −0.119860 0.992791i 0.538244π-0.538244\pi
−0.119860 + 0.992791i 0.538244π0.538244\pi
458458 0 0
459459 −1.70820 −0.0797321
460460 0 0
461461 1.47214 0.0685642 0.0342821 0.999412i 0.489086π-0.489086\pi
0.0342821 + 0.999412i 0.489086π0.489086\pi
462462 0 0
463463 −20.0000 −0.929479 −0.464739 0.885448i 0.653852π-0.653852\pi
−0.464739 + 0.885448i 0.653852π0.653852\pi
464464 0 0
465465 −18.5410 −0.859819
466466 0 0
467467 13.0557 0.604147 0.302074 0.953285i 0.402321π-0.402321\pi
0.302074 + 0.953285i 0.402321π0.402321\pi
468468 0 0
469469 8.94427 0.413008
470470 0 0
471471 25.5279 1.17626
472472 0 0
473473 0 0
474474 0 0
475475 −6.94427 −0.318625
476476 0 0
477477 −0.944272 −0.0432352
478478 0 0
479479 31.5967 1.44369 0.721846 0.692054i 0.243294π-0.243294\pi
0.721846 + 0.692054i 0.243294π0.243294\pi
480480 0 0
481481 −3.70820 −0.169080
482482 0 0
483483 7.23607 0.329252
484484 0 0
485485 −21.8885 −0.993908
486486 0 0
487487 −14.7082 −0.666492 −0.333246 0.942840i 0.608144π-0.608144\pi
−0.333246 + 0.942840i 0.608144π0.608144\pi
488488 0 0
489489 12.8885 0.582840
490490 0 0
491491 −8.34752 −0.376718 −0.188359 0.982100i 0.560317π-0.560317\pi
−0.188359 + 0.982100i 0.560317π0.560317\pi
492492 0 0
493493 2.29180 0.103217
494494 0 0
495495 −12.9443 −0.581802
496496 0 0
497497 39.5967 1.77616
498498 0 0
499499 −19.2918 −0.863619 −0.431810 0.901965i 0.642125π-0.642125\pi
−0.431810 + 0.901965i 0.642125π0.642125\pi
500500 0 0
501501 3.41641 0.152634
502502 0 0
503503 −26.9443 −1.20139 −0.600693 0.799480i 0.705109π-0.705109\pi
−0.600693 + 0.799480i 0.705109π0.705109\pi
504504 0 0
505505 5.52786 0.245987
506506 0 0
507507 −8.94427 −0.397229
508508 0 0
509509 28.3050 1.25459 0.627297 0.778780i 0.284161π-0.284161\pi
0.627297 + 0.778780i 0.284161π0.284161\pi
510510 0 0
511511 21.1246 0.934498
512512 0 0
513513 −4.47214 −0.197450
514514 0 0
515515 5.16718 0.227693
516516 0 0
517517 −11.7082 −0.514926
518518 0 0
519519 −51.3050 −2.25204
520520 0 0
521521 31.4164 1.37638 0.688189 0.725532i 0.258406π-0.258406\pi
0.688189 + 0.725532i 0.258406π0.258406\pi
522522 0 0
523523 −41.1246 −1.79825 −0.899127 0.437688i 0.855797π-0.855797\pi
−0.899127 + 0.437688i 0.855797π0.855797\pi
524524 0 0
525525 −25.1246 −1.09653
526526 0 0
527527 5.12461 0.223232
528528 0 0
529529 1.00000 0.0434783
530530 0 0
531531 −12.9443 −0.561734
532532 0 0
533533 10.4164 0.451185
534534 0 0
535535 16.5836 0.716971
536536 0 0
537537 −1.58359 −0.0683370
538538 0 0
539539 18.1803 0.783083
540540 0 0
541541 34.4164 1.47968 0.739838 0.672785i 0.234902π-0.234902\pi
0.739838 + 0.672785i 0.234902π0.234902\pi
542542 0 0
543543 −37.2361 −1.59795
544544 0 0
545545 0 0
546546 0 0
547547 29.5410 1.26308 0.631541 0.775342i 0.282423π-0.282423\pi
0.631541 + 0.775342i 0.282423π0.282423\pi
548548 0 0
549549 13.8885 0.592749
550550 0 0
551551 6.00000 0.255609
552552 0 0
553553 −35.4164 −1.50606
554554 0 0
555555 −3.41641 −0.145018
556556 0 0
557557 7.41641 0.314243 0.157122 0.987579i 0.449779π-0.449779\pi
0.157122 + 0.987579i 0.449779π0.449779\pi
558558 0 0
559559 0 0
560560 0 0
561561 8.94427 0.377627
562562 0 0
563563 32.9443 1.38844 0.694218 0.719765i 0.255750π-0.255750\pi
0.694218 + 0.719765i 0.255750π0.255750\pi
564564 0 0
565565 −10.8328 −0.455740
566566 0 0
567567 −35.5967 −1.49492
568568 0 0
569569 −22.1803 −0.929848 −0.464924 0.885351i 0.653918π-0.653918\pi
−0.464924 + 0.885351i 0.653918π0.653918\pi
570570 0 0
571571 14.2918 0.598093 0.299047 0.954239i 0.403331π-0.403331\pi
0.299047 + 0.954239i 0.403331π0.403331\pi
572572 0 0
573573 −58.5410 −2.44559
574574 0 0
575575 −3.47214 −0.144798
576576 0 0
577577 22.8885 0.952863 0.476431 0.879212i 0.341930π-0.341930\pi
0.476431 + 0.879212i 0.341930π0.341930\pi
578578 0 0
579579 22.2361 0.924099
580580 0 0
581581 28.3607 1.17660
582582 0 0
583583 −2.47214 −0.102385
584584 0 0
585585 7.41641 0.306631
586586 0 0
587587 24.7082 1.01982 0.509908 0.860229i 0.329679π-0.329679\pi
0.509908 + 0.860229i 0.329679π0.329679\pi
588588 0 0
589589 13.4164 0.552813
590590 0 0
591591 3.29180 0.135406
592592 0 0
593593 −2.94427 −0.120907 −0.0604534 0.998171i 0.519255π-0.519255\pi
−0.0604534 + 0.998171i 0.519255π0.519255\pi
594594 0 0
595595 −3.05573 −0.125273
596596 0 0
597597 −27.4853 −1.12490
598598 0 0
599599 33.8885 1.38465 0.692324 0.721587i 0.256587π-0.256587\pi
0.692324 + 0.721587i 0.256587π0.256587\pi
600600 0 0
601601 46.8885 1.91262 0.956312 0.292349i 0.0944368π-0.0944368\pi
0.956312 + 0.292349i 0.0944368π0.0944368\pi
602602 0 0
603603 5.52786 0.225112
604604 0 0
605605 −20.2918 −0.824979
606606 0 0
607607 26.4721 1.07447 0.537235 0.843432i 0.319469π-0.319469\pi
0.537235 + 0.843432i 0.319469π0.319469\pi
608608 0 0
609609 21.7082 0.879661
610610 0 0
611611 6.70820 0.271385
612612 0 0
613613 −5.70820 −0.230552 −0.115276 0.993333i 0.536775π-0.536775\pi
−0.115276 + 0.993333i 0.536775π0.536775\pi
614614 0 0
615615 9.59675 0.386978
616616 0 0
617617 −7.52786 −0.303060 −0.151530 0.988453i 0.548420π-0.548420\pi
−0.151530 + 0.988453i 0.548420π0.548420\pi
618618 0 0
619619 −19.4164 −0.780411 −0.390206 0.920728i 0.627596π-0.627596\pi
−0.390206 + 0.920728i 0.627596π0.627596\pi
620620 0 0
621621 −2.23607 −0.0897303
622622 0 0
623623 −33.8885 −1.35772
624624 0 0
625625 4.41641 0.176656
626626 0 0
627627 23.4164 0.935161
628628 0 0
629629 0.944272 0.0376506
630630 0 0
631631 12.3607 0.492071 0.246035 0.969261i 0.420872π-0.420872\pi
0.246035 + 0.969261i 0.420872π0.420872\pi
632632 0 0
633633 52.3607 2.08115
634634 0 0
635635 9.01316 0.357676
636636 0 0
637637 −10.4164 −0.412713
638638 0 0
639639 24.4721 0.968103
640640 0 0
641641 −17.3050 −0.683504 −0.341752 0.939790i 0.611020π-0.611020\pi
−0.341752 + 0.939790i 0.611020π0.611020\pi
642642 0 0
643643 29.5967 1.16718 0.583591 0.812048i 0.301647π-0.301647\pi
0.583591 + 0.812048i 0.301647π0.301647\pi
644644 0 0
645645 0 0
646646 0 0
647647 6.70820 0.263727 0.131863 0.991268i 0.457904π-0.457904\pi
0.131863 + 0.991268i 0.457904π0.457904\pi
648648 0 0
649649 −33.8885 −1.33024
650650 0 0
651651 48.5410 1.90247
652652 0 0
653653 38.3050 1.49899 0.749494 0.662011i 0.230297π-0.230297\pi
0.749494 + 0.662011i 0.230297π0.230297\pi
654654 0 0
655655 23.1246 0.903553
656656 0 0
657657 13.0557 0.509352
658658 0 0
659659 10.6525 0.414962 0.207481 0.978239i 0.433474π-0.433474\pi
0.207481 + 0.978239i 0.433474π0.433474\pi
660660 0 0
661661 22.9443 0.892429 0.446214 0.894926i 0.352772π-0.352772\pi
0.446214 + 0.894926i 0.352772π0.352772\pi
662662 0 0
663663 −5.12461 −0.199023
664664 0 0
665665 −8.00000 −0.310227
666666 0 0
667667 3.00000 0.116160
668668 0 0
669669 8.94427 0.345806
670670 0 0
671671 36.3607 1.40369
672672 0 0
673673 3.00000 0.115642 0.0578208 0.998327i 0.481585π-0.481585\pi
0.0578208 + 0.998327i 0.481585π0.481585\pi
674674 0 0
675675 7.76393 0.298834
676676 0 0
677677 −18.0000 −0.691796 −0.345898 0.938272i 0.612426π-0.612426\pi
−0.345898 + 0.938272i 0.612426π0.612426\pi
678678 0 0
679679 57.3050 2.19916
680680 0 0
681681 27.2361 1.04369
682682 0 0
683683 −26.5967 −1.01770 −0.508848 0.860856i 0.669929π-0.669929\pi
−0.508848 + 0.860856i 0.669929π0.669929\pi
684684 0 0
685685 27.0557 1.03375
686686 0 0
687687 26.8328 1.02374
688688 0 0
689689 1.41641 0.0539608
690690 0 0
691691 −7.05573 −0.268413 −0.134206 0.990953i 0.542848π-0.542848\pi
−0.134206 + 0.990953i 0.542848π0.542848\pi
692692 0 0
693693 33.8885 1.28732
694694 0 0
695695 −13.2361 −0.502073
696696 0 0
697697 −2.65248 −0.100470
698698 0 0
699699 −14.5967 −0.552100
700700 0 0
701701 3.81966 0.144267 0.0721333 0.997395i 0.477019π-0.477019\pi
0.0721333 + 0.997395i 0.477019π0.477019\pi
702702 0 0
703703 2.47214 0.0932384
704704 0 0
705705 6.18034 0.232765
706706 0 0
707707 −14.4721 −0.544281
708708 0 0
709709 42.0689 1.57993 0.789965 0.613152i 0.210099π-0.210099\pi
0.789965 + 0.613152i 0.210099π0.210099\pi
710710 0 0
711711 −21.8885 −0.820885
712712 0 0
713713 6.70820 0.251224
714714 0 0
715715 19.4164 0.726132
716716 0 0
717717 30.7771 1.14939
718718 0 0
719719 −3.05573 −0.113959 −0.0569797 0.998375i 0.518147π-0.518147\pi
−0.0569797 + 0.998375i 0.518147π0.518147\pi
720720 0 0
721721 −13.5279 −0.503804
722722 0 0
723723 −51.7082 −1.92305
724724 0 0
725725 −10.4164 −0.386856
726726 0 0
727727 −27.7082 −1.02764 −0.513820 0.857898i 0.671770π-0.671770\pi
−0.513820 + 0.857898i 0.671770π0.671770\pi
728728 0 0
729729 −7.00000 −0.259259
730730 0 0
731731 0 0
732732 0 0
733733 31.2361 1.15373 0.576865 0.816839i 0.304276π-0.304276\pi
0.576865 + 0.816839i 0.304276π0.304276\pi
734734 0 0
735735 −9.59675 −0.353981
736736 0 0
737737 14.4721 0.533088
738738 0 0
739739 −26.8197 −0.986577 −0.493289 0.869866i 0.664205π-0.664205\pi
−0.493289 + 0.869866i 0.664205π0.664205\pi
740740 0 0
741741 −13.4164 −0.492864
742742 0 0
743743 41.1246 1.50872 0.754358 0.656463i 0.227948π-0.227948\pi
0.754358 + 0.656463i 0.227948π0.227948\pi
744744 0 0
745745 29.5279 1.08182
746746 0 0
747747 17.5279 0.641311
748748 0 0
749749 −43.4164 −1.58640
750750 0 0
751751 0.360680 0.0131614 0.00658070 0.999978i 0.497905π-0.497905\pi
0.00658070 + 0.999978i 0.497905π0.497905\pi
752752 0 0
753753 −5.12461 −0.186751
754754 0 0
755755 −5.23607 −0.190560
756756 0 0
757757 −1.59675 −0.0580348 −0.0290174 0.999579i 0.509238π-0.509238\pi
−0.0290174 + 0.999579i 0.509238π0.509238\pi
758758 0 0
759759 11.7082 0.424981
760760 0 0
761761 46.3050 1.67855 0.839277 0.543705i 0.182979π-0.182979\pi
0.839277 + 0.543705i 0.182979π0.182979\pi
762762 0 0
763763 0 0
764764 0 0
765765 −1.88854 −0.0682804
766766 0 0
767767 19.4164 0.701086
768768 0 0
769769 −23.1246 −0.833895 −0.416947 0.908931i 0.636900π-0.636900\pi
−0.416947 + 0.908931i 0.636900π0.636900\pi
770770 0 0
771771 −16.7082 −0.601731
772772 0 0
773773 5.52786 0.198823 0.0994117 0.995046i 0.468304π-0.468304\pi
0.0994117 + 0.995046i 0.468304π0.468304\pi
774774 0 0
775775 −23.2918 −0.836666
776776 0 0
777777 8.94427 0.320874
778778 0 0
779779 −6.94427 −0.248804
780780 0 0
781781 64.0689 2.29256
782782 0 0
783783 −6.70820 −0.239732
784784 0 0
785785 −14.1115 −0.503659
786786 0 0
787787 −24.5836 −0.876310 −0.438155 0.898899i 0.644368π-0.644368\pi
−0.438155 + 0.898899i 0.644368π0.644368\pi
788788 0 0
789789 6.58359 0.234382
790790 0 0
791791 28.3607 1.00839
792792 0 0
793793 −20.8328 −0.739795
794794 0 0
795795 1.30495 0.0462819
796796 0 0
797797 34.3607 1.21712 0.608559 0.793509i 0.291748π-0.291748\pi
0.608559 + 0.793509i 0.291748π0.291748\pi
798798 0 0
799799 −1.70820 −0.0604319
800800 0 0
801801 −20.9443 −0.740029
802802 0 0
803803 34.1803 1.20620
804804 0 0
805805 −4.00000 −0.140981
806806 0 0
807807 17.7639 0.625320
808808 0 0
809809 12.1115 0.425816 0.212908 0.977072i 0.431707π-0.431707\pi
0.212908 + 0.977072i 0.431707π0.431707\pi
810810 0 0
811811 24.3475 0.854957 0.427479 0.904025i 0.359402π-0.359402\pi
0.427479 + 0.904025i 0.359402π0.359402\pi
812812 0 0
813813 17.8885 0.627379
814814 0 0
815815 −7.12461 −0.249564
816816 0 0
817817 0 0
818818 0 0
819819 −19.4164 −0.678464
820820 0 0
821821 38.9443 1.35916 0.679582 0.733599i 0.262161π-0.262161\pi
0.679582 + 0.733599i 0.262161π0.262161\pi
822822 0 0
823823 −39.5410 −1.37831 −0.689157 0.724612i 0.742019π-0.742019\pi
−0.689157 + 0.724612i 0.742019π0.742019\pi
824824 0 0
825825 −40.6525 −1.41534
826826 0 0
827827 −1.52786 −0.0531290 −0.0265645 0.999647i 0.508457π-0.508457\pi
−0.0265645 + 0.999647i 0.508457π0.508457\pi
828828 0 0
829829 −40.2492 −1.39791 −0.698957 0.715164i 0.746352π-0.746352\pi
−0.698957 + 0.715164i 0.746352π0.746352\pi
830830 0 0
831831 −34.5967 −1.20015
832832 0 0
833833 2.65248 0.0919028
834834 0 0
835835 −1.88854 −0.0653558
836836 0 0
837837 −15.0000 −0.518476
838838 0 0
839839 −41.1246 −1.41978 −0.709890 0.704313i 0.751255π-0.751255\pi
−0.709890 + 0.704313i 0.751255π0.751255\pi
840840 0 0
841841 −20.0000 −0.689655
842842 0 0
843843 −19.5967 −0.674948
844844 0 0
845845 4.94427 0.170088
846846 0 0
847847 53.1246 1.82538
848848 0 0
849849 −61.9574 −2.12637
850850 0 0
851851 1.23607 0.0423719
852852 0 0
853853 10.5836 0.362375 0.181188 0.983449i 0.442006π-0.442006\pi
0.181188 + 0.983449i 0.442006π0.442006\pi
854854 0 0
855855 −4.94427 −0.169091
856856 0 0
857857 1.47214 0.0502872 0.0251436 0.999684i 0.491996π-0.491996\pi
0.0251436 + 0.999684i 0.491996π0.491996\pi
858858 0 0
859859 16.7082 0.570077 0.285038 0.958516i 0.407994π-0.407994\pi
0.285038 + 0.958516i 0.407994π0.407994\pi
860860 0 0
861861 −25.1246 −0.856244
862862 0 0
863863 −21.5410 −0.733265 −0.366632 0.930366i 0.619489π-0.619489\pi
−0.366632 + 0.930366i 0.619489π0.619489\pi
864864 0 0
865865 28.3607 0.964292
866866 0 0
867867 −36.7082 −1.24668
868868 0 0
869869 −57.3050 −1.94394
870870 0 0
871871 −8.29180 −0.280957
872872 0 0
873873 35.4164 1.19866
874874 0 0
875875 33.8885 1.14564
876876 0 0
877877 36.4721 1.23158 0.615788 0.787912i 0.288838π-0.288838\pi
0.615788 + 0.787912i 0.288838π0.288838\pi
878878 0 0
879879 3.41641 0.115233
880880 0 0
881881 44.1803 1.48847 0.744237 0.667916i 0.232813π-0.232813\pi
0.744237 + 0.667916i 0.232813π0.232813\pi
882882 0 0
883883 −4.00000 −0.134611 −0.0673054 0.997732i 0.521440π-0.521440\pi
−0.0673054 + 0.997732i 0.521440π0.521440\pi
884884 0 0
885885 17.8885 0.601317
886886 0 0
887887 23.0689 0.774577 0.387289 0.921959i 0.373412π-0.373412\pi
0.387289 + 0.921959i 0.373412π0.373412\pi
888888 0 0
889889 −23.5967 −0.791410
890890 0 0
891891 −57.5967 −1.92956
892892 0 0
893893 −4.47214 −0.149654
894894 0 0
895895 0.875388 0.0292610
896896 0 0
897897 −6.70820 −0.223980
898898 0 0
899899 20.1246 0.671193
900900 0 0
901901 −0.360680 −0.0120160
902902 0 0
903903 0 0
904904 0 0
905905 20.5836 0.684222
906906 0 0
907907 40.2492 1.33645 0.668227 0.743958i 0.267054π-0.267054\pi
0.668227 + 0.743958i 0.267054π0.267054\pi
908908 0 0
909909 −8.94427 −0.296663
910910 0 0
911911 31.3050 1.03718 0.518590 0.855023i 0.326457π-0.326457\pi
0.518590 + 0.855023i 0.326457π0.326457\pi
912912 0 0
913913 45.8885 1.51869
914914 0 0
915915 −19.1935 −0.634517
916916 0 0
917917 −60.5410 −1.99924
918918 0 0
919919 41.1246 1.35658 0.678288 0.734796i 0.262722π-0.262722\pi
0.678288 + 0.734796i 0.262722π0.262722\pi
920920 0 0
921921 −21.3050 −0.702022
922922 0 0
923923 −36.7082 −1.20827
924924 0 0
925925 −4.29180 −0.141113
926926 0 0
927927 −8.36068 −0.274601
928928 0 0
929929 −24.0557 −0.789243 −0.394621 0.918844i 0.629124π-0.629124\pi
−0.394621 + 0.918844i 0.629124π0.629124\pi
930930 0 0
931931 6.94427 0.227589
932932 0 0
933933 29.4721 0.964874
934934 0 0
935935 −4.94427 −0.161695
936936 0 0
937937 34.1803 1.11662 0.558312 0.829631i 0.311449π-0.311449\pi
0.558312 + 0.829631i 0.311449π0.311449\pi
938938 0 0
939939 54.4721 1.77763
940940 0 0
941941 −6.65248 −0.216865 −0.108432 0.994104i 0.534583π-0.534583\pi
−0.108432 + 0.994104i 0.534583π0.534583\pi
942942 0 0
943943 −3.47214 −0.113068
944944 0 0
945945 8.94427 0.290957
946946 0 0
947947 10.8197 0.351592 0.175796 0.984427i 0.443750π-0.443750\pi
0.175796 + 0.984427i 0.443750π0.443750\pi
948948 0 0
949949 −19.5836 −0.635710
950950 0 0
951951 −56.8328 −1.84293
952952 0 0
953953 20.4721 0.663158 0.331579 0.943428i 0.392419π-0.392419\pi
0.331579 + 0.943428i 0.392419π0.392419\pi
954954 0 0
955955 32.3607 1.04717
956956 0 0
957957 35.1246 1.13542
958958 0 0
959959 −70.8328 −2.28731
960960 0 0
961961 14.0000 0.451613
962962 0 0
963963 −26.8328 −0.864675
964964 0 0
965965 −12.2918 −0.395687
966966 0 0
967967 27.5410 0.885659 0.442830 0.896606i 0.353975π-0.353975\pi
0.442830 + 0.896606i 0.353975π0.353975\pi
968968 0 0
969969 3.41641 0.109751
970970 0 0
971971 −16.4721 −0.528616 −0.264308 0.964438i 0.585144π-0.585144\pi
−0.264308 + 0.964438i 0.585144π0.585144\pi
972972 0 0
973973 34.6525 1.11091
974974 0 0
975975 23.2918 0.745934
976976 0 0
977977 −23.3475 −0.746953 −0.373477 0.927640i 0.621834π-0.621834\pi
−0.373477 + 0.927640i 0.621834π0.621834\pi
978978 0 0
979979 −54.8328 −1.75246
980980 0 0
981981 0 0
982982 0 0
983983 −40.4721 −1.29086 −0.645430 0.763819i 0.723322π-0.723322\pi
−0.645430 + 0.763819i 0.723322π0.723322\pi
984984 0 0
985985 −1.81966 −0.0579792
986986 0 0
987987 −16.1803 −0.515026
988988 0 0
989989 0 0
990990 0 0
991991 24.0000 0.762385 0.381193 0.924496i 0.375513π-0.375513\pi
0.381193 + 0.924496i 0.375513π0.375513\pi
992992 0 0
993993 43.9443 1.39453
994994 0 0
995995 15.1935 0.481666
996996 0 0
997997 −16.8328 −0.533101 −0.266550 0.963821i 0.585884π-0.585884\pi
−0.266550 + 0.963821i 0.585884π0.585884\pi
998998 0 0
999999 −2.76393 −0.0874469
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1472.2.a.t.1.2 2
4.3 odd 2 1472.2.a.s.1.1 2
8.3 odd 2 368.2.a.h.1.2 2
8.5 even 2 23.2.a.a.1.2 2
24.5 odd 2 207.2.a.d.1.1 2
24.11 even 2 3312.2.a.ba.1.1 2
40.13 odd 4 575.2.b.d.24.2 4
40.19 odd 2 9200.2.a.bt.1.1 2
40.29 even 2 575.2.a.f.1.1 2
40.37 odd 4 575.2.b.d.24.3 4
56.13 odd 2 1127.2.a.c.1.2 2
88.21 odd 2 2783.2.a.c.1.1 2
104.77 even 2 3887.2.a.i.1.1 2
120.29 odd 2 5175.2.a.be.1.2 2
136.101 even 2 6647.2.a.b.1.2 2
152.37 odd 2 8303.2.a.e.1.1 2
184.5 odd 22 529.2.c.n.255.2 20
184.13 even 22 529.2.c.o.399.1 20
184.21 odd 22 529.2.c.n.487.2 20
184.29 even 22 529.2.c.o.266.1 20
184.37 odd 22 529.2.c.n.334.2 20
184.45 odd 2 529.2.a.a.1.2 2
184.53 odd 22 529.2.c.n.118.1 20
184.61 odd 22 529.2.c.n.501.1 20
184.77 even 22 529.2.c.o.501.1 20
184.85 even 22 529.2.c.o.118.1 20
184.91 even 2 8464.2.a.bb.1.2 2
184.101 even 22 529.2.c.o.334.2 20
184.109 odd 22 529.2.c.n.266.1 20
184.117 even 22 529.2.c.o.487.2 20
184.125 odd 22 529.2.c.n.399.1 20
184.133 even 22 529.2.c.o.255.2 20
184.141 even 22 529.2.c.o.170.1 20
184.149 odd 22 529.2.c.n.466.2 20
184.157 odd 22 529.2.c.n.177.1 20
184.165 even 22 529.2.c.o.177.1 20
184.173 even 22 529.2.c.o.466.2 20
184.181 odd 22 529.2.c.n.170.1 20
552.413 even 2 4761.2.a.w.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.2.a.a.1.2 2 8.5 even 2
207.2.a.d.1.1 2 24.5 odd 2
368.2.a.h.1.2 2 8.3 odd 2
529.2.a.a.1.2 2 184.45 odd 2
529.2.c.n.118.1 20 184.53 odd 22
529.2.c.n.170.1 20 184.181 odd 22
529.2.c.n.177.1 20 184.157 odd 22
529.2.c.n.255.2 20 184.5 odd 22
529.2.c.n.266.1 20 184.109 odd 22
529.2.c.n.334.2 20 184.37 odd 22
529.2.c.n.399.1 20 184.125 odd 22
529.2.c.n.466.2 20 184.149 odd 22
529.2.c.n.487.2 20 184.21 odd 22
529.2.c.n.501.1 20 184.61 odd 22
529.2.c.o.118.1 20 184.85 even 22
529.2.c.o.170.1 20 184.141 even 22
529.2.c.o.177.1 20 184.165 even 22
529.2.c.o.255.2 20 184.133 even 22
529.2.c.o.266.1 20 184.29 even 22
529.2.c.o.334.2 20 184.101 even 22
529.2.c.o.399.1 20 184.13 even 22
529.2.c.o.466.2 20 184.173 even 22
529.2.c.o.487.2 20 184.117 even 22
529.2.c.o.501.1 20 184.77 even 22
575.2.a.f.1.1 2 40.29 even 2
575.2.b.d.24.2 4 40.13 odd 4
575.2.b.d.24.3 4 40.37 odd 4
1127.2.a.c.1.2 2 56.13 odd 2
1472.2.a.s.1.1 2 4.3 odd 2
1472.2.a.t.1.2 2 1.1 even 1 trivial
2783.2.a.c.1.1 2 88.21 odd 2
3312.2.a.ba.1.1 2 24.11 even 2
3887.2.a.i.1.1 2 104.77 even 2
4761.2.a.w.1.1 2 552.413 even 2
5175.2.a.be.1.2 2 120.29 odd 2
6647.2.a.b.1.2 2 136.101 even 2
8303.2.a.e.1.1 2 152.37 odd 2
8464.2.a.bb.1.2 2 184.91 even 2
9200.2.a.bt.1.1 2 40.19 odd 2