Properties

Label 529.2.c.n.255.2
Level $529$
Weight $2$
Character 529.255
Analytic conductor $4.224$
Analytic rank $0$
Dimension $20$
Inner twists $10$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [529,2,Mod(118,529)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(529, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("529.118");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 529.c (of order \(11\), degree \(10\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.22408626693\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: 20.0.54296067514572573056640625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{19} + 2 x^{18} - 3 x^{17} + 5 x^{16} - 8 x^{15} + 13 x^{14} - 21 x^{13} + 34 x^{12} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 23)
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 255.2
Root \(-0.404726 - 0.467079i\) of defining polynomial
Character \(\chi\) \(=\) 529.255
Dual form 529.2.c.n.334.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.519923 + 0.334134i) q^{2} +(0.318226 + 2.21331i) q^{3} +(-0.672156 - 1.47182i) q^{4} +(1.18600 + 0.348241i) q^{5} +(-0.574089 + 1.25708i) q^{6} +(2.11917 - 2.44566i) q^{7} +(0.318226 - 2.21331i) q^{8} +(-1.91899 + 0.563465i) q^{9} +(0.500269 + 0.577341i) q^{10} +(4.40486 - 2.83083i) q^{11} +(3.04368 - 1.95606i) q^{12} +(-1.96458 - 2.26725i) q^{13} +(1.91899 - 0.563465i) q^{14} +(-0.393349 + 2.73580i) q^{15} +(-1.21418 + 1.40124i) q^{16} +(-0.317349 + 0.694897i) q^{17} +(-1.18600 - 0.348241i) q^{18} +(0.830830 + 1.81926i) q^{19} +(-0.284630 - 1.97964i) q^{20} +(6.08737 + 3.91211i) q^{21} +3.23607 q^{22} +5.00000 q^{24} +(-2.92095 - 1.87718i) q^{25} +(-0.263866 - 1.83523i) q^{26} +(0.928896 + 2.03400i) q^{27} +(-5.02397 - 1.47517i) q^{28} +(-1.24625 + 2.72890i) q^{29} +(-1.11864 + 1.29097i) q^{30} +(-0.954677 + 6.63992i) q^{31} +(-5.39046 + 1.58278i) q^{32} +(7.66724 + 8.84847i) q^{33} +(-0.397186 + 0.255256i) q^{34} +(3.36501 - 2.16256i) q^{35} +(2.11917 + 2.44566i) q^{36} +(-1.18600 + 0.348241i) q^{37} +(-0.175911 + 1.22349i) q^{38} +(4.39294 - 5.06972i) q^{39} +(1.14818 - 2.51416i) q^{40} +(3.33149 + 0.978214i) q^{41} +(1.85779 + 4.06800i) q^{42} +(-7.12721 - 4.58038i) q^{44} -2.47214 q^{45} -2.23607 q^{47} +(-3.48775 - 2.24144i) q^{48} +(-0.494136 - 3.43679i) q^{49} +(-0.891438 - 1.95198i) q^{50} +(-1.63901 - 0.481257i) q^{51} +(-2.01647 + 4.41545i) q^{52} +(0.309183 - 0.356817i) q^{53} +(-0.196674 + 1.36790i) q^{54} +(6.20997 - 1.82341i) q^{55} +(-4.73862 - 5.46866i) q^{56} +(-3.76220 + 2.41782i) q^{57} +(-1.55977 + 1.00240i) q^{58} +(-4.23835 - 4.89131i) q^{59} +(4.29098 - 1.25995i) q^{60} +(-0.988273 + 6.87359i) q^{61} +(-2.71499 + 3.13326i) q^{62} +(-2.68862 + 5.88726i) q^{63} +(0.226506 + 0.0665080i) q^{64} +(-1.54044 - 3.37310i) q^{65} +(1.02980 + 7.16242i) q^{66} +(2.32517 + 1.49429i) q^{67} +1.23607 q^{68} +2.47214 q^{70} +(10.2936 + 6.61532i) q^{71} +(0.636451 + 4.42662i) q^{72} +(2.71177 + 5.93795i) q^{73} +(-0.732987 - 0.215225i) q^{74} +(3.22525 - 7.06232i) q^{75} +(2.11917 - 2.44566i) q^{76} +(2.41142 - 16.7718i) q^{77} +(3.97796 - 1.16803i) q^{78} +(-7.16697 - 8.27113i) q^{79} +(-1.92798 + 1.23904i) q^{80} +(-9.25379 + 5.94705i) q^{81} +(1.40526 + 1.62176i) q^{82} +(-8.40893 + 2.46908i) q^{83} +(1.66625 - 11.5890i) q^{84} +(-0.618367 + 0.713633i) q^{85} +(-6.43647 - 1.88992i) q^{87} +(-4.86376 - 10.6502i) q^{88} +(-1.49034 - 10.3655i) q^{89} +(-1.28532 - 0.826026i) q^{90} -9.70820 q^{91} -15.0000 q^{93} +(-1.16258 - 0.747147i) q^{94} +(0.351822 + 2.44697i) q^{95} +(-5.21857 - 11.4271i) q^{96} +(16.9909 + 4.98898i) q^{97} +(0.891438 - 1.95198i) q^{98} +(-6.85779 + 7.91431i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + q^{2} + q^{4} - 2 q^{5} + 5 q^{6} + 2 q^{7} - 4 q^{9} + 6 q^{10} - 6 q^{11} - 5 q^{12} - 6 q^{13} + 4 q^{14} - 10 q^{15} + 3 q^{16} + 6 q^{17} + 2 q^{18} - 4 q^{19} - 4 q^{20} - 10 q^{21} + 20 q^{22}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/529\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(e\left(\frac{1}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.519923 + 0.334134i 0.367641 + 0.236269i 0.711397 0.702790i \(-0.248063\pi\)
−0.343756 + 0.939059i \(0.611699\pi\)
\(3\) 0.318226 + 2.21331i 0.183728 + 1.27785i 0.847852 + 0.530232i \(0.177895\pi\)
−0.664125 + 0.747622i \(0.731196\pi\)
\(4\) −0.672156 1.47182i −0.336078 0.735908i
\(5\) 1.18600 + 0.348241i 0.530395 + 0.155738i 0.535955 0.844247i \(-0.319952\pi\)
−0.00556023 + 0.999985i \(0.501770\pi\)
\(6\) −0.574089 + 1.25708i −0.234371 + 0.513201i
\(7\) 2.11917 2.44566i 0.800972 0.924371i −0.197462 0.980311i \(-0.563270\pi\)
0.998434 + 0.0559391i \(0.0178153\pi\)
\(8\) 0.318226 2.21331i 0.112510 0.782523i
\(9\) −1.91899 + 0.563465i −0.639662 + 0.187822i
\(10\) 0.500269 + 0.577341i 0.158199 + 0.182571i
\(11\) 4.40486 2.83083i 1.32812 0.853528i 0.332147 0.943228i \(-0.392227\pi\)
0.995969 + 0.0896998i \(0.0285908\pi\)
\(12\) 3.04368 1.95606i 0.878636 0.564665i
\(13\) −1.96458 2.26725i −0.544877 0.628822i 0.414805 0.909910i \(-0.363850\pi\)
−0.959682 + 0.281089i \(0.909304\pi\)
\(14\) 1.91899 0.563465i 0.512871 0.150592i
\(15\) −0.393349 + 2.73580i −0.101562 + 0.706380i
\(16\) −1.21418 + 1.40124i −0.303545 + 0.350309i
\(17\) −0.317349 + 0.694897i −0.0769684 + 0.168537i −0.944204 0.329360i \(-0.893167\pi\)
0.867236 + 0.497897i \(0.165894\pi\)
\(18\) −1.18600 0.348241i −0.279543 0.0820811i
\(19\) 0.830830 + 1.81926i 0.190605 + 0.417368i 0.980674 0.195651i \(-0.0626821\pi\)
−0.790068 + 0.613019i \(0.789955\pi\)
\(20\) −0.284630 1.97964i −0.0636451 0.442662i
\(21\) 6.08737 + 3.91211i 1.32837 + 0.853693i
\(22\) 3.23607 0.689932
\(23\) 0 0
\(24\) 5.00000 1.02062
\(25\) −2.92095 1.87718i −0.584189 0.375436i
\(26\) −0.263866 1.83523i −0.0517484 0.359918i
\(27\) 0.928896 + 2.03400i 0.178766 + 0.391443i
\(28\) −5.02397 1.47517i −0.949441 0.278781i
\(29\) −1.24625 + 2.72890i −0.231422 + 0.506743i −0.989343 0.145603i \(-0.953488\pi\)
0.757921 + 0.652346i \(0.226215\pi\)
\(30\) −1.11864 + 1.29097i −0.204234 + 0.235699i
\(31\) −0.954677 + 6.63992i −0.171465 + 1.19257i 0.704327 + 0.709876i \(0.251249\pi\)
−0.875792 + 0.482689i \(0.839660\pi\)
\(32\) −5.39046 + 1.58278i −0.952908 + 0.279799i
\(33\) 7.66724 + 8.84847i 1.33470 + 1.54032i
\(34\) −0.397186 + 0.255256i −0.0681168 + 0.0437760i
\(35\) 3.36501 2.16256i 0.568791 0.365540i
\(36\) 2.11917 + 2.44566i 0.353196 + 0.407609i
\(37\) −1.18600 + 0.348241i −0.194977 + 0.0572504i −0.377763 0.925902i \(-0.623307\pi\)
0.182786 + 0.983153i \(0.441488\pi\)
\(38\) −0.175911 + 1.22349i −0.0285365 + 0.198476i
\(39\) 4.39294 5.06972i 0.703433 0.811805i
\(40\) 1.14818 2.51416i 0.181543 0.397524i
\(41\) 3.33149 + 0.978214i 0.520291 + 0.152771i 0.531325 0.847168i \(-0.321694\pi\)
−0.0110341 + 0.999939i \(0.503512\pi\)
\(42\) 1.85779 + 4.06800i 0.286664 + 0.627706i
\(43\) 0 0 0.989821 0.142315i \(-0.0454545\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(44\) −7.12721 4.58038i −1.07447 0.690519i
\(45\) −2.47214 −0.368524
\(46\) 0 0
\(47\) −2.23607 −0.326164 −0.163082 0.986613i \(-0.552144\pi\)
−0.163082 + 0.986613i \(0.552144\pi\)
\(48\) −3.48775 2.24144i −0.503414 0.323524i
\(49\) −0.494136 3.43679i −0.0705909 0.490971i
\(50\) −0.891438 1.95198i −0.126068 0.276051i
\(51\) −1.63901 0.481257i −0.229507 0.0673894i
\(52\) −2.01647 + 4.41545i −0.279634 + 0.612312i
\(53\) 0.309183 0.356817i 0.0424696 0.0490125i −0.734117 0.679023i \(-0.762404\pi\)
0.776587 + 0.630010i \(0.216949\pi\)
\(54\) −0.196674 + 1.36790i −0.0267640 + 0.186148i
\(55\) 6.20997 1.82341i 0.837352 0.245869i
\(56\) −4.73862 5.46866i −0.633224 0.730780i
\(57\) −3.76220 + 2.41782i −0.498316 + 0.320248i
\(58\) −1.55977 + 1.00240i −0.204808 + 0.131622i
\(59\) −4.23835 4.89131i −0.551786 0.636795i 0.409512 0.912305i \(-0.365699\pi\)
−0.961298 + 0.275510i \(0.911153\pi\)
\(60\) 4.29098 1.25995i 0.553964 0.162658i
\(61\) −0.988273 + 6.87359i −0.126535 + 0.880073i 0.823363 + 0.567515i \(0.192095\pi\)
−0.949899 + 0.312558i \(0.898814\pi\)
\(62\) −2.71499 + 3.13326i −0.344804 + 0.397925i
\(63\) −2.68862 + 5.88726i −0.338735 + 0.741725i
\(64\) 0.226506 + 0.0665080i 0.0283132 + 0.00831350i
\(65\) −1.54044 3.37310i −0.191069 0.418382i
\(66\) 1.02980 + 7.16242i 0.126760 + 0.881632i
\(67\) 2.32517 + 1.49429i 0.284064 + 0.182557i 0.674912 0.737898i \(-0.264182\pi\)
−0.390847 + 0.920455i \(0.627818\pi\)
\(68\) 1.23607 0.149895
\(69\) 0 0
\(70\) 2.47214 0.295477
\(71\) 10.2936 + 6.61532i 1.22163 + 0.785094i 0.982567 0.185910i \(-0.0595234\pi\)
0.239063 + 0.971004i \(0.423160\pi\)
\(72\) 0.636451 + 4.42662i 0.0750065 + 0.521682i
\(73\) 2.71177 + 5.93795i 0.317389 + 0.694985i 0.999337 0.0364160i \(-0.0115941\pi\)
−0.681948 + 0.731401i \(0.738867\pi\)
\(74\) −0.732987 0.215225i −0.0852081 0.0250193i
\(75\) 3.22525 7.06232i 0.372420 0.815487i
\(76\) 2.11917 2.44566i 0.243086 0.280536i
\(77\) 2.41142 16.7718i 0.274807 1.91132i
\(78\) 3.97796 1.16803i 0.450415 0.132254i
\(79\) −7.16697 8.27113i −0.806348 0.930575i 0.192364 0.981324i \(-0.438385\pi\)
−0.998711 + 0.0507490i \(0.983839\pi\)
\(80\) −1.92798 + 1.23904i −0.215555 + 0.138529i
\(81\) −9.25379 + 5.94705i −1.02820 + 0.660783i
\(82\) 1.40526 + 1.62176i 0.155185 + 0.179094i
\(83\) −8.40893 + 2.46908i −0.923000 + 0.271017i −0.708503 0.705707i \(-0.750629\pi\)
−0.214497 + 0.976725i \(0.568811\pi\)
\(84\) 1.66625 11.5890i 0.181803 1.26447i
\(85\) −0.618367 + 0.713633i −0.0670713 + 0.0774044i
\(86\) 0 0
\(87\) −6.43647 1.88992i −0.690063 0.202621i
\(88\) −4.86376 10.6502i −0.518479 1.13531i
\(89\) −1.49034 10.3655i −0.157976 1.09875i −0.902357 0.430990i \(-0.858164\pi\)
0.744381 0.667755i \(-0.232745\pi\)
\(90\) −1.28532 0.826026i −0.135485 0.0870708i
\(91\) −9.70820 −1.01770
\(92\) 0 0
\(93\) −15.0000 −1.55543
\(94\) −1.16258 0.747147i −0.119911 0.0770624i
\(95\) 0.351822 + 2.44697i 0.0360961 + 0.251054i
\(96\) −5.21857 11.4271i −0.532618 1.16627i
\(97\) 16.9909 + 4.98898i 1.72516 + 0.506554i 0.985968 0.166936i \(-0.0533873\pi\)
0.739196 + 0.673490i \(0.235205\pi\)
\(98\) 0.891438 1.95198i 0.0900489 0.197180i
\(99\) −6.85779 + 7.91431i −0.689234 + 0.795418i
\(100\) −0.799530 + 5.56085i −0.0799530 + 0.556085i
\(101\) −4.29098 + 1.25995i −0.426969 + 0.125369i −0.488155 0.872757i \(-0.662330\pi\)
0.0611861 + 0.998126i \(0.480512\pi\)
\(102\) −0.691355 0.797866i −0.0684543 0.0790005i
\(103\) 3.51673 2.26006i 0.346513 0.222691i −0.355794 0.934564i \(-0.615790\pi\)
0.702307 + 0.711874i \(0.252153\pi\)
\(104\) −5.64330 + 3.62673i −0.553371 + 0.355630i
\(105\) 5.85725 + 6.75963i 0.571609 + 0.659672i
\(106\) 0.279976 0.0822085i 0.0271937 0.00798479i
\(107\) 1.90935 13.2798i 0.184584 1.28381i −0.661169 0.750237i \(-0.729939\pi\)
0.845753 0.533574i \(-0.179152\pi\)
\(108\) 2.36931 2.73433i 0.227987 0.263111i
\(109\) 0 0 −0.909632 0.415415i \(-0.863636\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(110\) 3.83797 + 1.12693i 0.365936 + 0.107449i
\(111\) −1.14818 2.51416i −0.108980 0.238634i
\(112\) 0.853889 + 5.93893i 0.0806849 + 0.561176i
\(113\) −7.37269 4.73814i −0.693564 0.445727i 0.145787 0.989316i \(-0.453429\pi\)
−0.839351 + 0.543589i \(0.817065\pi\)
\(114\) −2.76393 −0.258866
\(115\) 0 0
\(116\) 4.85410 0.450692
\(117\) 5.04752 + 3.24384i 0.466643 + 0.299894i
\(118\) −0.569259 3.95929i −0.0524046 0.364482i
\(119\) 1.02696 + 2.24873i 0.0941415 + 0.206141i
\(120\) 5.92999 + 1.74120i 0.541332 + 0.158949i
\(121\) 6.81962 14.9329i 0.619966 1.35754i
\(122\) −2.81053 + 3.24352i −0.254453 + 0.293655i
\(123\) −1.10492 + 7.68491i −0.0996275 + 0.692925i
\(124\) 10.4144 3.05795i 0.935244 0.274612i
\(125\) −6.85779 7.91431i −0.613379 0.707878i
\(126\) −3.36501 + 2.16256i −0.299779 + 0.192656i
\(127\) −6.13425 + 3.94224i −0.544327 + 0.349817i −0.783729 0.621103i \(-0.786685\pi\)
0.239402 + 0.970920i \(0.423048\pi\)
\(128\) 7.45360 + 8.60192i 0.658812 + 0.760309i
\(129\) 0 0
\(130\) 0.326157 2.26847i 0.0286058 0.198958i
\(131\) −12.2513 + 14.1387i −1.07040 + 1.23531i −0.0996965 + 0.995018i \(0.531787\pi\)
−0.970702 + 0.240288i \(0.922758\pi\)
\(132\) 7.86973 17.2323i 0.684973 1.49988i
\(133\) 6.20997 + 1.82341i 0.538473 + 0.158110i
\(134\) 0.709614 + 1.55384i 0.0613013 + 0.134231i
\(135\) 0.393349 + 2.73580i 0.0338541 + 0.235460i
\(136\) 1.43703 + 0.923525i 0.123225 + 0.0791916i
\(137\) 21.8885 1.87006 0.935032 0.354563i \(-0.115370\pi\)
0.935032 + 0.354563i \(0.115370\pi\)
\(138\) 0 0
\(139\) −10.7082 −0.908258 −0.454129 0.890936i \(-0.650049\pi\)
−0.454129 + 0.890936i \(0.650049\pi\)
\(140\) −5.44471 3.49910i −0.460162 0.295728i
\(141\) −0.711574 4.94911i −0.0599254 0.416790i
\(142\) 3.14150 + 6.87892i 0.263628 + 0.577266i
\(143\) −15.0719 4.42551i −1.26038 0.370080i
\(144\) 1.54044 3.37310i 0.128370 0.281092i
\(145\) −2.42836 + 2.80247i −0.201664 + 0.232733i
\(146\) −0.574161 + 3.99338i −0.0475179 + 0.330494i
\(147\) 7.44944 2.18735i 0.614419 0.180410i
\(148\) 1.30972 + 1.51150i 0.107658 + 0.124244i
\(149\) −20.0963 + 12.9151i −1.64635 + 1.05805i −0.711705 + 0.702478i \(0.752077\pi\)
−0.934650 + 0.355570i \(0.884287\pi\)
\(150\) 4.03665 2.59420i 0.329591 0.211815i
\(151\) −2.77403 3.20141i −0.225748 0.260527i 0.631565 0.775323i \(-0.282413\pi\)
−0.857312 + 0.514796i \(0.827868\pi\)
\(152\) 4.29098 1.25995i 0.348045 0.102195i
\(153\) 0.217438 1.51231i 0.0175788 0.122263i
\(154\) 6.85779 7.91431i 0.552617 0.637753i
\(155\) −3.44454 + 7.54248i −0.276672 + 0.605827i
\(156\) −10.4144 3.05795i −0.833822 0.244832i
\(157\) 4.74255 + 10.3847i 0.378496 + 0.828792i 0.999005 + 0.0445922i \(0.0141988\pi\)
−0.620509 + 0.784199i \(0.713074\pi\)
\(158\) −0.962608 6.69508i −0.0765810 0.532632i
\(159\) 0.888135 + 0.570770i 0.0704337 + 0.0452650i
\(160\) −6.94427 −0.548993
\(161\) 0 0
\(162\) −6.79837 −0.534131
\(163\) −4.84893 3.11622i −0.379797 0.244081i 0.336788 0.941581i \(-0.390660\pi\)
−0.716585 + 0.697500i \(0.754296\pi\)
\(164\) −0.799530 5.56085i −0.0624328 0.434229i
\(165\) 6.01194 + 13.1643i 0.468029 + 1.02484i
\(166\) −5.19701 1.52598i −0.403366 0.118439i
\(167\) 0.634698 1.38979i 0.0491144 0.107545i −0.883484 0.468461i \(-0.844809\pi\)
0.932598 + 0.360916i \(0.117536\pi\)
\(168\) 10.5959 12.2283i 0.817489 0.943433i
\(169\) 0.569259 3.95929i 0.0437892 0.304560i
\(170\) −0.559953 + 0.164417i −0.0429464 + 0.0126102i
\(171\) −2.61944 3.02300i −0.200314 0.231174i
\(172\) 0 0
\(173\) 19.3019 12.4046i 1.46750 0.943105i 0.469306 0.883036i \(-0.344504\pi\)
0.998194 0.0600694i \(-0.0191322\pi\)
\(174\) −2.71499 3.13326i −0.205823 0.237532i
\(175\) −10.7809 + 3.16557i −0.814962 + 0.239294i
\(176\) −1.38162 + 9.60939i −0.104144 + 0.724335i
\(177\) 9.47723 10.9373i 0.712352 0.822099i
\(178\) 2.68862 5.88726i 0.201521 0.441269i
\(179\) −0.679517 0.199524i −0.0507895 0.0149131i 0.256239 0.966613i \(-0.417517\pi\)
−0.307029 + 0.951700i \(0.599335\pi\)
\(180\) 1.66166 + 3.63853i 0.123853 + 0.271200i
\(181\) 2.36989 + 16.4830i 0.176153 + 1.22517i 0.865563 + 0.500799i \(0.166961\pi\)
−0.689411 + 0.724371i \(0.742130\pi\)
\(182\) −5.04752 3.24384i −0.374147 0.240450i
\(183\) −15.5279 −1.14785
\(184\) 0 0
\(185\) −1.52786 −0.112331
\(186\) −7.79885 5.01202i −0.571839 0.367499i
\(187\) 0.569259 + 3.95929i 0.0416284 + 0.289532i
\(188\) 1.50299 + 3.29108i 0.109616 + 0.240027i
\(189\) 6.94296 + 2.03864i 0.505026 + 0.148289i
\(190\) −0.634698 + 1.38979i −0.0460458 + 0.100826i
\(191\) −17.1445 + 19.7858i −1.24053 + 1.43165i −0.377876 + 0.925856i \(0.623345\pi\)
−0.862655 + 0.505792i \(0.831200\pi\)
\(192\) −0.0751229 + 0.522491i −0.00542153 + 0.0377076i
\(193\) −9.54146 + 2.80163i −0.686809 + 0.201665i −0.606475 0.795103i \(-0.707417\pi\)
−0.0803343 + 0.996768i \(0.525599\pi\)
\(194\) 7.16697 + 8.27113i 0.514559 + 0.593832i
\(195\) 6.97550 4.48288i 0.499526 0.321026i
\(196\) −4.72619 + 3.03734i −0.337585 + 0.216953i
\(197\) 0.964044 + 1.11257i 0.0686853 + 0.0792671i 0.789052 0.614326i \(-0.210572\pi\)
−0.720367 + 0.693593i \(0.756027\pi\)
\(198\) −6.20997 + 1.82341i −0.441323 + 0.129584i
\(199\) −1.74930 + 12.1667i −0.124005 + 0.862473i 0.828942 + 0.559335i \(0.188943\pi\)
−0.952947 + 0.303138i \(0.901966\pi\)
\(200\) −5.08429 + 5.86759i −0.359514 + 0.414901i
\(201\) −2.56741 + 5.62183i −0.181091 + 0.396534i
\(202\) −2.65197 0.778690i −0.186592 0.0547884i
\(203\) 4.03293 + 8.83089i 0.283056 + 0.619807i
\(204\) 0.393349 + 2.73580i 0.0275399 + 0.191544i
\(205\) 3.61049 + 2.32032i 0.252167 + 0.162058i
\(206\) 2.58359 0.180007
\(207\) 0 0
\(208\) 5.56231 0.385677
\(209\) 8.80972 + 5.66166i 0.609381 + 0.391625i
\(210\) 0.786697 + 5.47160i 0.0542873 + 0.377576i
\(211\) −9.72753 21.3003i −0.669671 1.46637i −0.873228 0.487311i \(-0.837978\pi\)
0.203558 0.979063i \(-0.434750\pi\)
\(212\) −0.732987 0.215225i −0.0503418 0.0147817i
\(213\) −11.3660 + 24.8881i −0.778788 + 1.70531i
\(214\) 5.42997 6.26652i 0.371185 0.428371i
\(215\) 0 0
\(216\) 4.79746 1.40866i 0.326426 0.0958474i
\(217\) 14.2159 + 16.4060i 0.965035 + 1.11371i
\(218\) 0 0
\(219\) −12.2796 + 7.89160i −0.829776 + 0.533265i
\(220\) −6.85779 7.91431i −0.462352 0.533583i
\(221\) 2.19896 0.645674i 0.147918 0.0434327i
\(222\) 0.243103 1.69082i 0.0163160 0.113480i
\(223\) −2.61944 + 3.02300i −0.175411 + 0.202435i −0.836646 0.547743i \(-0.815487\pi\)
0.661235 + 0.750178i \(0.270032\pi\)
\(224\) −7.55239 + 16.5374i −0.504615 + 1.10495i
\(225\) 6.66298 + 1.95643i 0.444199 + 0.130428i
\(226\) −2.25006 4.92694i −0.149672 0.327735i
\(227\) −1.73344 12.0564i −0.115053 0.800209i −0.962879 0.269934i \(-0.912998\pi\)
0.847826 0.530274i \(-0.177911\pi\)
\(228\) 6.08737 + 3.91211i 0.403146 + 0.259086i
\(229\) 12.0000 0.792982 0.396491 0.918039i \(-0.370228\pi\)
0.396491 + 0.918039i \(0.370228\pi\)
\(230\) 0 0
\(231\) 37.8885 2.49288
\(232\) 5.64330 + 3.62673i 0.370501 + 0.238106i
\(233\) 0.929012 + 6.46142i 0.0608616 + 0.423302i 0.997359 + 0.0726275i \(0.0231384\pi\)
−0.936498 + 0.350674i \(0.885952\pi\)
\(234\) 1.54044 + 3.37310i 0.100702 + 0.220507i
\(235\) −2.65197 0.778690i −0.172996 0.0507961i
\(236\) −4.35028 + 9.52579i −0.283179 + 0.620076i
\(237\) 16.0258 18.4948i 1.04099 1.20137i
\(238\) −0.217438 + 1.51231i −0.0140944 + 0.0980287i
\(239\) −13.2064 + 3.87775i −0.854251 + 0.250831i −0.679403 0.733765i \(-0.737761\pi\)
−0.174847 + 0.984596i \(0.555943\pi\)
\(240\) −3.35591 3.87292i −0.216623 0.249996i
\(241\) 19.4537 12.5021i 1.25312 0.805332i 0.265793 0.964030i \(-0.414366\pi\)
0.987327 + 0.158698i \(0.0507297\pi\)
\(242\) 8.53527 5.48529i 0.548668 0.352608i
\(243\) −11.7145 13.5193i −0.751486 0.867261i
\(244\) 10.7809 3.16557i 0.690178 0.202655i
\(245\) 0.610786 4.24811i 0.0390217 0.271402i
\(246\) −3.14227 + 3.62637i −0.200344 + 0.231209i
\(247\) 2.49249 5.45779i 0.158593 0.347271i
\(248\) 14.3924 + 4.22599i 0.913918 + 0.268351i
\(249\) −8.14078 17.8258i −0.515901 1.12967i
\(250\) −0.921081 6.40626i −0.0582543 0.405167i
\(251\) −1.92798 1.23904i −0.121693 0.0782074i 0.478378 0.878154i \(-0.341225\pi\)
−0.600071 + 0.799946i \(0.704861\pi\)
\(252\) 10.4721 0.659683
\(253\) 0 0
\(254\) −4.50658 −0.282768
\(255\) −1.77627 1.14154i −0.111234 0.0714860i
\(256\) 0.933914 + 6.49551i 0.0583696 + 0.405969i
\(257\) −3.10404 6.79689i −0.193625 0.423979i 0.787773 0.615966i \(-0.211234\pi\)
−0.981397 + 0.191987i \(0.938507\pi\)
\(258\) 0 0
\(259\) −1.66166 + 3.63853i −0.103251 + 0.226087i
\(260\) −3.92916 + 4.53450i −0.243676 + 0.281218i
\(261\) 0.853889 5.93893i 0.0528544 0.367610i
\(262\) −11.0940 + 3.25748i −0.685387 + 0.201248i
\(263\) 1.92809 + 2.22513i 0.118891 + 0.137208i 0.812075 0.583553i \(-0.198338\pi\)
−0.693184 + 0.720761i \(0.743793\pi\)
\(264\) 22.0243 14.1542i 1.35550 0.871128i
\(265\) 0.490949 0.315514i 0.0301588 0.0193819i
\(266\) 2.61944 + 3.02300i 0.160608 + 0.185352i
\(267\) 22.4679 6.59716i 1.37501 0.403740i
\(268\) 0.636451 4.42662i 0.0388775 0.270399i
\(269\) 5.20239 6.00388i 0.317195 0.366063i −0.574653 0.818397i \(-0.694863\pi\)
0.891849 + 0.452334i \(0.149409\pi\)
\(270\) −0.709614 + 1.55384i −0.0431857 + 0.0945635i
\(271\) −7.67594 2.25386i −0.466280 0.136912i 0.0401490 0.999194i \(-0.487217\pi\)
−0.506429 + 0.862281i \(0.669035\pi\)
\(272\) −0.588397 1.28841i −0.0356768 0.0781213i
\(273\) −3.08940 21.4872i −0.186979 1.30047i
\(274\) 11.3804 + 7.31372i 0.687513 + 0.441838i
\(275\) −18.1803 −1.09632
\(276\) 0 0
\(277\) 15.4721 0.929631 0.464815 0.885408i \(-0.346121\pi\)
0.464815 + 0.885408i \(0.346121\pi\)
\(278\) −5.56744 3.57798i −0.333913 0.214593i
\(279\) −1.90935 13.2798i −0.114310 0.795044i
\(280\) −3.71558 8.13600i −0.222049 0.486219i
\(281\) −8.40893 2.46908i −0.501635 0.147293i 0.0211190 0.999777i \(-0.493277\pi\)
−0.522754 + 0.852484i \(0.675095\pi\)
\(282\) 1.28370 2.81092i 0.0764434 0.167388i
\(283\) 18.1450 20.9405i 1.07861 1.24478i 0.110600 0.993865i \(-0.464723\pi\)
0.968009 0.250916i \(-0.0807319\pi\)
\(284\) 2.81760 19.5969i 0.167194 1.16286i
\(285\) −5.30395 + 1.55738i −0.314179 + 0.0922512i
\(286\) −6.35752 7.33697i −0.375928 0.433844i
\(287\) 9.45238 6.07468i 0.557956 0.358577i
\(288\) 9.45238 6.07468i 0.556987 0.357954i
\(289\) 10.7505 + 12.4067i 0.632380 + 0.729805i
\(290\) −2.19896 + 0.645674i −0.129128 + 0.0379153i
\(291\) −5.63520 + 39.1937i −0.330342 + 2.29758i
\(292\) 6.91684 7.98246i 0.404777 0.467138i
\(293\) 0.634698 1.38979i 0.0370794 0.0811926i −0.890186 0.455597i \(-0.849426\pi\)
0.927265 + 0.374405i \(0.122153\pi\)
\(294\) 4.60401 + 1.35186i 0.268511 + 0.0788420i
\(295\) −3.32332 7.27706i −0.193491 0.423687i
\(296\) 0.393349 + 2.73580i 0.0228629 + 0.159015i
\(297\) 9.84957 + 6.32993i 0.571530 + 0.367300i
\(298\) −14.7639 −0.855252
\(299\) 0 0
\(300\) −12.5623 −0.725285
\(301\) 0 0
\(302\) −0.372585 2.59139i −0.0214399 0.149118i
\(303\) −4.15415 9.09632i −0.238650 0.522570i
\(304\) −3.55800 1.04472i −0.204065 0.0599189i
\(305\) −3.56575 + 7.80791i −0.204174 + 0.447080i
\(306\) 0.618367 0.713633i 0.0353497 0.0407957i
\(307\) −1.35596 + 9.43088i −0.0773885 + 0.538249i 0.913838 + 0.406078i \(0.133104\pi\)
−0.991227 + 0.132171i \(0.957805\pi\)
\(308\) −26.3059 + 7.72409i −1.49891 + 0.440121i
\(309\) 6.12133 + 7.06439i 0.348230 + 0.401879i
\(310\) −4.31110 + 2.77057i −0.244854 + 0.157358i
\(311\) 11.0880 7.12583i 0.628743 0.404069i −0.187101 0.982341i \(-0.559909\pi\)
0.815844 + 0.578272i \(0.196273\pi\)
\(312\) −9.82291 11.3362i −0.556113 0.641788i
\(313\) 23.3739 6.86320i 1.32117 0.387931i 0.456256 0.889849i \(-0.349190\pi\)
0.864915 + 0.501918i \(0.167372\pi\)
\(314\) −1.00413 + 6.98391i −0.0566666 + 0.394125i
\(315\) −5.23889 + 6.04600i −0.295178 + 0.340653i
\(316\) −7.35625 + 16.1079i −0.413822 + 0.906143i
\(317\) −24.3869 7.16063i −1.36970 0.402181i −0.487530 0.873106i \(-0.662102\pi\)
−0.882173 + 0.470925i \(0.843920\pi\)
\(318\) 0.271048 + 0.593513i 0.0151996 + 0.0332826i
\(319\) 2.23551 + 15.5483i 0.125165 + 0.870539i
\(320\) 0.245474 + 0.157757i 0.0137224 + 0.00881888i
\(321\) 30.0000 1.67444
\(322\) 0 0
\(323\) −1.52786 −0.0850126
\(324\) 14.9729 + 9.62253i 0.831830 + 0.534585i
\(325\) 1.48241 + 10.3104i 0.0822293 + 0.571917i
\(326\) −1.47984 3.24039i −0.0819605 0.179468i
\(327\) 0 0
\(328\) 3.22525 7.06232i 0.178085 0.389951i
\(329\) −4.73862 + 5.46866i −0.261248 + 0.301497i
\(330\) −1.27290 + 8.85323i −0.0700710 + 0.487354i
\(331\) 18.8564 5.53674i 1.03644 0.304327i 0.281115 0.959674i \(-0.409296\pi\)
0.755328 + 0.655347i \(0.227478\pi\)
\(332\) 9.28615 + 10.7168i 0.509644 + 0.588160i
\(333\) 2.07969 1.33654i 0.113966 0.0732418i
\(334\) 0.794372 0.510512i 0.0434661 0.0279340i
\(335\) 2.23727 + 2.58195i 0.122235 + 0.141067i
\(336\) −12.8729 + 3.77984i −0.702277 + 0.206207i
\(337\) 3.33250 23.1781i 0.181533 1.26259i −0.671607 0.740908i \(-0.734396\pi\)
0.853140 0.521682i \(-0.174695\pi\)
\(338\) 1.61890 1.86832i 0.0880568 0.101623i
\(339\) 8.14078 17.8258i 0.442147 0.968166i
\(340\) 1.46597 + 0.430449i 0.0795036 + 0.0233444i
\(341\) 14.5913 + 31.9505i 0.790163 + 1.73021i
\(342\) −0.351822 2.44697i −0.0190243 0.132317i
\(343\) 9.60409 + 6.17218i 0.518572 + 0.333266i
\(344\) 0 0
\(345\) 0 0
\(346\) 14.1803 0.762340
\(347\) −8.31877 5.34615i −0.446575 0.286996i 0.297962 0.954578i \(-0.403693\pi\)
−0.744537 + 0.667581i \(0.767330\pi\)
\(348\) 1.54470 + 10.7436i 0.0828046 + 0.575919i
\(349\) 10.1429 + 22.2099i 0.542939 + 1.18887i 0.960002 + 0.279993i \(0.0903323\pi\)
−0.417063 + 0.908878i \(0.636940\pi\)
\(350\) −6.66298 1.95643i −0.356151 0.104575i
\(351\) 2.78669 6.10200i 0.148742 0.325701i
\(352\) −19.2637 + 22.2314i −1.02676 + 1.18494i
\(353\) −1.33216 + 9.26540i −0.0709039 + 0.493148i 0.923166 + 0.384402i \(0.125592\pi\)
−0.994070 + 0.108745i \(0.965317\pi\)
\(354\) 8.58197 2.51989i 0.456126 0.133931i
\(355\) 9.90451 + 11.4304i 0.525677 + 0.606664i
\(356\) −14.2544 + 9.16077i −0.755483 + 0.485520i
\(357\) −4.65034 + 2.98859i −0.246122 + 0.158173i
\(358\) −0.286629 0.330787i −0.0151488 0.0174826i
\(359\) −19.0829 + 5.60325i −1.00716 + 0.295728i −0.743390 0.668858i \(-0.766783\pi\)
−0.263768 + 0.964586i \(0.584965\pi\)
\(360\) −0.786697 + 5.47160i −0.0414626 + 0.288379i
\(361\) 9.82291 11.3362i 0.516995 0.596644i
\(362\) −4.27537 + 9.36175i −0.224708 + 0.492042i
\(363\) 35.2213 + 10.3419i 1.84864 + 0.542809i
\(364\) 6.52542 + 14.2887i 0.342025 + 0.748931i
\(365\) 1.14832 + 7.98675i 0.0601059 + 0.418046i
\(366\) −8.07330 5.18839i −0.421998 0.271202i
\(367\) 4.18034 0.218212 0.109106 0.994030i \(-0.465201\pi\)
0.109106 + 0.994030i \(0.465201\pi\)
\(368\) 0 0
\(369\) −6.94427 −0.361504
\(370\) −0.794372 0.510512i −0.0412974 0.0265403i
\(371\) −0.217438 1.51231i −0.0112888 0.0785154i
\(372\) 10.0823 + 22.0772i 0.522745 + 1.14465i
\(373\) 7.39597 + 2.17165i 0.382949 + 0.112444i 0.467540 0.883972i \(-0.345140\pi\)
−0.0845915 + 0.996416i \(0.526959\pi\)
\(374\) −1.02696 + 2.24873i −0.0531030 + 0.116279i
\(375\) 15.3345 17.6969i 0.791869 0.913866i
\(376\) −0.711574 + 4.94911i −0.0366966 + 0.255231i
\(377\) 8.63544 2.53559i 0.444748 0.130590i
\(378\) 2.92863 + 3.37981i 0.150632 + 0.173839i
\(379\) −20.4935 + 13.1704i −1.05268 + 0.676517i −0.948091 0.317999i \(-0.896989\pi\)
−0.104590 + 0.994515i \(0.533353\pi\)
\(380\) 3.36501 2.16256i 0.172622 0.110937i
\(381\) −10.6775 12.3225i −0.547023 0.631299i
\(382\) −15.5249 + 4.55853i −0.794324 + 0.233235i
\(383\) 1.00413 6.98391i 0.0513089 0.356861i −0.947952 0.318414i \(-0.896850\pi\)
0.999261 0.0384472i \(-0.0122411\pi\)
\(384\) −16.6668 + 19.2345i −0.850522 + 0.981555i
\(385\) 8.70056 19.0516i 0.443422 0.970958i
\(386\) −5.89695 1.73150i −0.300147 0.0881310i
\(387\) 0 0
\(388\) −4.07767 28.3608i −0.207012 1.43980i
\(389\) −21.4754 13.8014i −1.08885 0.699759i −0.132262 0.991215i \(-0.542224\pi\)
−0.956584 + 0.291456i \(0.905860\pi\)
\(390\) 5.12461 0.259495
\(391\) 0 0
\(392\) −7.76393 −0.392138
\(393\) −35.1920 22.6165i −1.77520 1.14085i
\(394\) 0.129482 + 0.900569i 0.00652322 + 0.0453700i
\(395\) −5.61968 12.3054i −0.282757 0.619151i
\(396\) 16.2579 + 4.77375i 0.816991 + 0.239890i
\(397\) −10.1429 + 22.2099i −0.509060 + 1.11469i 0.464358 + 0.885648i \(0.346285\pi\)
−0.973418 + 0.229038i \(0.926442\pi\)
\(398\) −4.97481 + 5.74124i −0.249365 + 0.287782i
\(399\) −2.05960 + 14.3248i −0.103109 + 0.717139i
\(400\) 6.17692 1.81371i 0.308846 0.0906854i
\(401\) −9.28615 10.7168i −0.463728 0.535171i 0.474928 0.880024i \(-0.342474\pi\)
−0.938656 + 0.344854i \(0.887929\pi\)
\(402\) −3.21330 + 2.06506i −0.160265 + 0.102996i
\(403\) 16.9299 10.8802i 0.843338 0.541981i
\(404\) 4.73862 + 5.46866i 0.235755 + 0.272076i
\(405\) −13.0460 + 3.83065i −0.648260 + 0.190346i
\(406\) −0.853889 + 5.93893i −0.0423778 + 0.294744i
\(407\) −4.23835 + 4.89131i −0.210087 + 0.242453i
\(408\) −1.58674 + 3.47449i −0.0785555 + 0.172013i
\(409\) −20.4954 6.01800i −1.01343 0.297571i −0.267476 0.963565i \(-0.586190\pi\)
−0.745957 + 0.665994i \(0.768008\pi\)
\(410\) 1.10188 + 2.41278i 0.0544179 + 0.119159i
\(411\) 6.96550 + 48.4461i 0.343583 + 2.38967i
\(412\) −5.69018 3.65686i −0.280335 0.180160i
\(413\) −20.9443 −1.03060
\(414\) 0 0
\(415\) −10.8328 −0.531762
\(416\) 14.1786 + 9.11202i 0.695162 + 0.446753i
\(417\) −3.40763 23.7006i −0.166872 1.16062i
\(418\) 2.68862 + 5.88726i 0.131505 + 0.287955i
\(419\) −4.39792 1.29135i −0.214853 0.0630864i 0.172535 0.985003i \(-0.444804\pi\)
−0.387388 + 0.921917i \(0.626622\pi\)
\(420\) 6.01194 13.1643i 0.293353 0.642353i
\(421\) −6.73969 + 7.77802i −0.328473 + 0.379078i −0.895832 0.444393i \(-0.853420\pi\)
0.567360 + 0.823470i \(0.307965\pi\)
\(422\) 2.05960 14.3248i 0.100260 0.697322i
\(423\) 4.29098 1.25995i 0.208635 0.0612607i
\(424\) −0.691355 0.797866i −0.0335752 0.0387478i
\(425\) 2.23140 1.43404i 0.108239 0.0695610i
\(426\) −14.2255 + 9.14214i −0.689226 + 0.442938i
\(427\) 14.7161 + 16.9833i 0.712163 + 0.821880i
\(428\) −20.8289 + 6.11591i −1.00680 + 0.295624i
\(429\) 4.99875 34.7671i 0.241342 1.67857i
\(430\) 0 0
\(431\) 7.28134 15.9439i 0.350730 0.767991i −0.649243 0.760581i \(-0.724914\pi\)
0.999973 0.00740975i \(-0.00235862\pi\)
\(432\) −3.97796 1.16803i −0.191390 0.0561971i
\(433\) −7.40255 16.2093i −0.355744 0.778971i −0.999901 0.0140774i \(-0.995519\pi\)
0.644157 0.764893i \(-0.277208\pi\)
\(434\) 1.90935 + 13.2798i 0.0916519 + 0.637453i
\(435\) −6.97550 4.48288i −0.334450 0.214938i
\(436\) 0 0
\(437\) 0 0
\(438\) −9.02129 −0.431054
\(439\) −15.7383 10.1144i −0.751150 0.482735i 0.108196 0.994130i \(-0.465493\pi\)
−0.859346 + 0.511395i \(0.829129\pi\)
\(440\) −2.05960 14.3248i −0.0981876 0.682909i
\(441\) 2.88475 + 6.31673i 0.137369 + 0.300797i
\(442\) 1.35903 + 0.399048i 0.0646426 + 0.0189808i
\(443\) 15.8375 34.6794i 0.752464 1.64767i −0.00942222 0.999956i \(-0.502999\pi\)
0.761886 0.647711i \(-0.224273\pi\)
\(444\) −2.92863 + 3.37981i −0.138986 + 0.160399i
\(445\) 1.84216 12.8125i 0.0873269 0.607372i
\(446\) −2.37200 + 0.696481i −0.112317 + 0.0329793i
\(447\) −34.9803 40.3694i −1.65451 1.90941i
\(448\) 0.642661 0.413013i 0.0303629 0.0195130i
\(449\) −12.5719 + 8.07948i −0.593306 + 0.381294i −0.802564 0.596566i \(-0.796531\pi\)
0.209258 + 0.977860i \(0.432895\pi\)
\(450\) 2.81053 + 3.24352i 0.132490 + 0.152901i
\(451\) 17.4439 5.12199i 0.821402 0.241185i
\(452\) −2.01807 + 14.0360i −0.0949222 + 0.660198i
\(453\) 6.20293 7.15856i 0.291439 0.336339i
\(454\) 3.12719 6.84759i 0.146766 0.321373i
\(455\) −11.5139 3.38079i −0.539781 0.158494i
\(456\) 4.15415 + 9.09632i 0.194536 + 0.425974i
\(457\) −0.729308 5.07245i −0.0341156 0.237279i 0.965628 0.259928i \(-0.0836990\pi\)
−0.999743 + 0.0226493i \(0.992790\pi\)
\(458\) 6.23908 + 4.00961i 0.291533 + 0.187357i
\(459\) −1.70820 −0.0797321
\(460\) 0 0
\(461\) −1.47214 −0.0685642 −0.0342821 0.999412i \(-0.510914\pi\)
−0.0342821 + 0.999412i \(0.510914\pi\)
\(462\) 19.6991 + 12.6599i 0.916487 + 0.588990i
\(463\) 2.84630 + 19.7964i 0.132279 + 0.920018i 0.942574 + 0.333997i \(0.108397\pi\)
−0.810296 + 0.586021i \(0.800693\pi\)
\(464\) −2.31067 5.05965i −0.107270 0.234888i
\(465\) −17.7900 5.22361i −0.824990 0.242239i
\(466\) −1.67597 + 3.66986i −0.0776377 + 0.170003i
\(467\) −8.54968 + 9.86686i −0.395632 + 0.456584i −0.918261 0.395977i \(-0.870406\pi\)
0.522628 + 0.852561i \(0.324952\pi\)
\(468\) 1.38162 9.60939i 0.0638655 0.444194i
\(469\) 8.58197 2.51989i 0.396278 0.116358i
\(470\) −1.11864 1.29097i −0.0515988 0.0595482i
\(471\) −21.4754 + 13.8014i −0.989534 + 0.635935i
\(472\) −12.1747 + 7.82423i −0.560388 + 0.360139i
\(473\) 0 0
\(474\) 14.5120 4.26110i 0.666556 0.195719i
\(475\) 0.988273 6.87359i 0.0453451 0.315382i
\(476\) 2.61944 3.02300i 0.120062 0.138559i
\(477\) −0.392265 + 0.858940i −0.0179606 + 0.0393282i
\(478\) −8.16200 2.39658i −0.373321 0.109617i
\(479\) −13.1258 28.7414i −0.599731 1.31323i −0.929380 0.369125i \(-0.879657\pi\)
0.329648 0.944104i \(-0.393070\pi\)
\(480\) −2.20985 15.3698i −0.100865 0.701533i
\(481\) 3.11954 + 2.00481i 0.142239 + 0.0914113i
\(482\) 14.2918 0.650973
\(483\) 0 0
\(484\) −26.5623 −1.20738
\(485\) 18.4138 + 11.8338i 0.836128 + 0.537347i
\(486\) −1.57339 10.9432i −0.0713706 0.496393i
\(487\) −6.11001 13.3791i −0.276871 0.606263i 0.719202 0.694801i \(-0.244508\pi\)
−0.996073 + 0.0885385i \(0.971780\pi\)
\(488\) 14.8989 + 4.37470i 0.674440 + 0.198034i
\(489\) 5.35409 11.7238i 0.242121 0.530170i
\(490\) 1.73700 2.00461i 0.0784698 0.0905589i
\(491\) −1.18798 + 8.26256i −0.0536126 + 0.372884i 0.945298 + 0.326209i \(0.105771\pi\)
−0.998910 + 0.0466746i \(0.985138\pi\)
\(492\) 12.0534 3.53921i 0.543411 0.159560i
\(493\) −1.50081 1.73202i −0.0675930 0.0780064i
\(494\) 3.11954 2.00481i 0.140355 0.0902005i
\(495\) −10.8894 + 6.99820i −0.489443 + 0.314546i
\(496\) −8.14496 9.39978i −0.365719 0.422063i
\(497\) 37.9928 11.1557i 1.70421 0.500401i
\(498\) 1.72364 11.9882i 0.0772382 0.537203i
\(499\) −12.6334 + 14.5798i −0.565550 + 0.652680i −0.964435 0.264321i \(-0.914852\pi\)
0.398884 + 0.917001i \(0.369398\pi\)
\(500\) −7.03890 + 15.4131i −0.314789 + 0.689293i
\(501\) 3.27802 + 0.962513i 0.146451 + 0.0430019i
\(502\) −0.588397 1.28841i −0.0262614 0.0575045i
\(503\) −3.83457 26.6700i −0.170975 1.18916i −0.876830 0.480801i \(-0.840346\pi\)
0.705855 0.708357i \(-0.250563\pi\)
\(504\) 12.1747 + 7.82423i 0.542306 + 0.348519i
\(505\) −5.52786 −0.245987
\(506\) 0 0
\(507\) 8.94427 0.397229
\(508\) 9.92542 + 6.37868i 0.440369 + 0.283008i
\(509\) 4.02821 + 28.0168i 0.178547 + 1.24182i 0.860127 + 0.510081i \(0.170384\pi\)
−0.681579 + 0.731744i \(0.738706\pi\)
\(510\) −0.542097 1.18703i −0.0240044 0.0525624i
\(511\) 20.2689 + 5.95149i 0.896644 + 0.263278i
\(512\) 7.77167 17.0176i 0.343462 0.752078i
\(513\) −2.92863 + 3.37981i −0.129302 + 0.149222i
\(514\) 0.657215 4.57103i 0.0289885 0.201619i
\(515\) 4.95788 1.45576i 0.218470 0.0641486i
\(516\) 0 0
\(517\) −9.84957 + 6.32993i −0.433184 + 0.278390i
\(518\) −2.07969 + 1.33654i −0.0913765 + 0.0587241i
\(519\) 33.5976 + 38.7737i 1.47477 + 1.70198i
\(520\) −7.95592 + 2.33607i −0.348890 + 0.102443i
\(521\) 4.47102 31.0966i 0.195879 1.36237i −0.620207 0.784438i \(-0.712951\pi\)
0.816086 0.577930i \(-0.196139\pi\)
\(522\) 2.42836 2.80247i 0.106286 0.122661i
\(523\) −17.0838 + 37.4083i −0.747022 + 1.63575i 0.0246243 + 0.999697i \(0.492161\pi\)
−0.771646 + 0.636052i \(0.780566\pi\)
\(524\) 29.0443 + 8.52819i 1.26881 + 0.372556i
\(525\) −10.4371 22.8542i −0.455514 0.997437i
\(526\) 0.258965 + 1.80114i 0.0112914 + 0.0785334i
\(527\) −4.31110 2.77057i −0.187794 0.120688i
\(528\) −21.7082 −0.944728
\(529\) 0 0
\(530\) 0.360680 0.0156669
\(531\) 10.8894 + 6.99820i 0.472560 + 0.303696i
\(532\) −1.49034 10.3655i −0.0646144 0.449403i
\(533\) −4.32713 9.47510i −0.187429 0.410412i
\(534\) 13.8859 + 4.07727i 0.600902 + 0.176441i
\(535\) 6.88907 15.0850i 0.297841 0.652180i
\(536\) 4.04726 4.67079i 0.174815 0.201747i
\(537\) 0.225369 1.56747i 0.00972538 0.0676415i
\(538\) 4.71095 1.38326i 0.203103 0.0596365i
\(539\) −11.9056 13.7398i −0.512810 0.591814i
\(540\) 3.76220 2.41782i 0.161899 0.104046i
\(541\) −28.9529 + 18.6069i −1.24478 + 0.799974i −0.986127 0.165995i \(-0.946916\pi\)
−0.258657 + 0.965969i \(0.583280\pi\)
\(542\) −3.23781 3.73663i −0.139076 0.160502i
\(543\) −35.7277 + 10.4906i −1.53322 + 0.450195i
\(544\) 0.610786 4.24811i 0.0261872 0.182136i
\(545\) 0 0
\(546\) 5.57338 12.2040i 0.238519 0.522283i
\(547\) 28.3444 + 8.32267i 1.21192 + 0.355852i 0.824399 0.566010i \(-0.191513\pi\)
0.387520 + 0.921861i \(0.373332\pi\)
\(548\) −14.7125 32.2159i −0.628487 1.37619i
\(549\) −1.97655 13.7472i −0.0843569 0.586715i
\(550\) −9.45238 6.07468i −0.403051 0.259025i
\(551\) −6.00000 −0.255609
\(552\) 0 0
\(553\) −35.4164 −1.50606
\(554\) 8.04432 + 5.16977i 0.341771 + 0.219643i
\(555\) −0.486206 3.38163i −0.0206383 0.143542i
\(556\) 7.19758 + 15.7605i 0.305245 + 0.668394i
\(557\) −7.11599 2.08944i −0.301514 0.0885326i 0.127476 0.991842i \(-0.459312\pi\)
−0.428990 + 0.903309i \(0.641131\pi\)
\(558\) 3.44454 7.54248i 0.145819 0.319299i
\(559\) 0 0
\(560\) −1.05546 + 7.34092i −0.0446015 + 0.310210i
\(561\) −8.58197 + 2.51989i −0.362331 + 0.106390i
\(562\) −3.54699 4.09345i −0.149621 0.172672i
\(563\) 27.7145 17.8110i 1.16803 0.750645i 0.194879 0.980827i \(-0.437569\pi\)
0.973147 + 0.230182i \(0.0739323\pi\)
\(564\) −6.80588 + 4.37388i −0.286579 + 0.184173i
\(565\) −7.09399 8.18690i −0.298446 0.344425i
\(566\) 16.4309 4.82456i 0.690644 0.202791i
\(567\) −5.06595 + 35.2344i −0.212750 + 1.47971i
\(568\) 17.9174 20.6778i 0.751799 0.867622i
\(569\) 9.21405 20.1759i 0.386273 0.845820i −0.612207 0.790698i \(-0.709718\pi\)
0.998480 0.0551219i \(-0.0175548\pi\)
\(570\) −3.27802 0.962513i −0.137301 0.0403152i
\(571\) 5.93703 + 13.0003i 0.248457 + 0.544045i 0.992234 0.124383i \(-0.0396951\pi\)
−0.743777 + 0.668427i \(0.766968\pi\)
\(572\) 3.61713 + 25.1577i 0.151240 + 1.05190i
\(573\) −49.2478 31.6497i −2.05736 1.32218i
\(574\) 6.94427 0.289848
\(575\) 0 0
\(576\) −0.472136 −0.0196723
\(577\) 19.2551 + 12.3745i 0.801599 + 0.515156i 0.876137 0.482062i \(-0.160112\pi\)
−0.0745382 + 0.997218i \(0.523748\pi\)
\(578\) 1.44391 + 10.0426i 0.0600588 + 0.417718i
\(579\) −9.23720 20.2266i −0.383885 0.840590i
\(580\) 5.75696 + 1.69040i 0.239045 + 0.0701898i
\(581\) −11.7815 + 25.7978i −0.488777 + 1.07027i
\(582\) −16.0258 + 18.4948i −0.664292 + 0.766634i
\(583\) 0.351822 2.44697i 0.0145710 0.101343i
\(584\) 14.0055 4.11238i 0.579551 0.170171i
\(585\) 4.85671 + 5.60495i 0.200800 + 0.231736i
\(586\) 0.794372 0.510512i 0.0328152 0.0210891i
\(587\) −20.7859 + 13.3583i −0.857924 + 0.551355i −0.894037 0.447993i \(-0.852139\pi\)
0.0361126 + 0.999348i \(0.488503\pi\)
\(588\) −8.22656 9.49396i −0.339258 0.391524i
\(589\) −12.8729 + 3.77984i −0.530421 + 0.155746i
\(590\) 0.703643 4.89395i 0.0289685 0.201481i
\(591\) −2.15567 + 2.48777i −0.0886723 + 0.102333i
\(592\) 0.952046 2.08469i 0.0391289 0.0856803i
\(593\) 2.82501 + 0.829497i 0.116009 + 0.0340634i 0.339222 0.940706i \(-0.389836\pi\)
−0.223213 + 0.974770i \(0.571654\pi\)
\(594\) 3.00597 + 6.58216i 0.123336 + 0.270069i
\(595\) 0.434875 + 3.02463i 0.0178282 + 0.123998i
\(596\) 32.5165 + 20.8971i 1.33193 + 0.855979i
\(597\) −27.4853 −1.12490
\(598\) 0 0
\(599\) 33.8885 1.38465 0.692324 0.721587i \(-0.256587\pi\)
0.692324 + 0.721587i \(0.256587\pi\)
\(600\) −14.6047 9.38589i −0.596236 0.383177i
\(601\) −6.67294 46.4113i −0.272195 1.89316i −0.425470 0.904972i \(-0.639891\pi\)
0.153276 0.988183i \(-0.451018\pi\)
\(602\) 0 0
\(603\) −5.30395 1.55738i −0.215993 0.0634214i
\(604\) −2.84730 + 6.23471i −0.115855 + 0.253687i
\(605\) 13.2883 15.3355i 0.540246 0.623477i
\(606\) 0.879554 6.11743i 0.0357294 0.248504i
\(607\) −25.3998 + 7.45806i −1.03095 + 0.302713i −0.753096 0.657911i \(-0.771440\pi\)
−0.277851 + 0.960624i \(0.589622\pi\)
\(608\) −7.35806 8.49165i −0.298409 0.344382i
\(609\) −18.2621 + 11.7363i −0.740018 + 0.475581i
\(610\) −4.46281 + 2.86807i −0.180694 + 0.116125i
\(611\) 4.39294 + 5.06972i 0.177719 + 0.205099i
\(612\) −2.37200 + 0.696481i −0.0958823 + 0.0281536i
\(613\) 0.812362 5.65010i 0.0328110 0.228205i −0.966817 0.255469i \(-0.917770\pi\)
0.999628 + 0.0272633i \(0.00867927\pi\)
\(614\) −3.85618 + 4.45026i −0.155623 + 0.179598i
\(615\) −3.98663 + 8.72951i −0.160757 + 0.352008i
\(616\) −36.3538 10.6744i −1.46474 0.430085i
\(617\) 3.12719 + 6.84759i 0.125896 + 0.275673i 0.962076 0.272781i \(-0.0879436\pi\)
−0.836180 + 0.548455i \(0.815216\pi\)
\(618\) 0.822165 + 5.71829i 0.0330723 + 0.230023i
\(619\) −16.3341 10.4973i −0.656524 0.421922i 0.169521 0.985527i \(-0.445778\pi\)
−0.826045 + 0.563604i \(0.809414\pi\)
\(620\) 13.4164 0.538816
\(621\) 0 0
\(622\) 8.14590 0.326621
\(623\) −28.5089 18.3215i −1.14218 0.734037i
\(624\) 1.77007 + 12.3111i 0.0708594 + 0.492838i
\(625\) 1.83464 + 4.01731i 0.0733857 + 0.160692i
\(626\) 14.4459 + 4.24169i 0.577373 + 0.169532i
\(627\) −9.72753 + 21.3003i −0.388480 + 0.850653i
\(628\) 12.0967 13.9603i 0.482710 0.557077i
\(629\) 0.134384 0.934661i 0.00535824 0.0372674i
\(630\) −4.74399 + 1.39296i −0.189005 + 0.0554969i
\(631\) 8.09452 + 9.34158i 0.322238 + 0.371882i 0.893637 0.448790i \(-0.148145\pi\)
−0.571400 + 0.820672i \(0.693599\pi\)
\(632\) −20.5873 + 13.2306i −0.818918 + 0.526286i
\(633\) 44.0486 28.3083i 1.75077 1.12515i
\(634\) −10.2867 11.8715i −0.408536 0.471476i
\(635\) −8.64806 + 2.53930i −0.343188 + 0.100769i
\(636\) 0.243103 1.69082i 0.00963965 0.0670453i
\(637\) −6.82130 + 7.87220i −0.270270 + 0.311908i
\(638\) −4.03293 + 8.83089i −0.159665 + 0.349618i
\(639\) −23.4808 6.89460i −0.928888 0.272746i
\(640\) 5.84443 + 12.7975i 0.231021 + 0.505866i
\(641\) −2.46275 17.1288i −0.0972728 0.676547i −0.978861 0.204528i \(-0.934434\pi\)
0.881588 0.472020i \(-0.156475\pi\)
\(642\) 15.5977 + 10.0240i 0.615592 + 0.395617i
\(643\) 29.5967 1.16718 0.583591 0.812048i \(-0.301647\pi\)
0.583591 + 0.812048i \(0.301647\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −0.794372 0.510512i −0.0312542 0.0200858i
\(647\) −0.954677 6.63992i −0.0375322 0.261042i 0.962412 0.271593i \(-0.0875506\pi\)
−0.999944 + 0.0105510i \(0.996641\pi\)
\(648\) 10.2179 + 22.3740i 0.401395 + 0.878933i
\(649\) −32.5158 9.54751i −1.27636 0.374772i
\(650\) −2.67431 + 5.85593i −0.104895 + 0.229689i
\(651\) −31.7876 + 36.6849i −1.24585 + 1.43779i
\(652\) −1.32726 + 9.23131i −0.0519796 + 0.361526i
\(653\) 36.7533 10.7918i 1.43827 0.422314i 0.532625 0.846352i \(-0.321206\pi\)
0.905645 + 0.424038i \(0.139388\pi\)
\(654\) 0 0
\(655\) −19.4537 + 12.5021i −0.760117 + 0.488498i
\(656\) −5.41573 + 3.48048i −0.211449 + 0.135890i
\(657\) −8.54968 9.86686i −0.333555 0.384943i
\(658\) −4.29098 + 1.25995i −0.167280 + 0.0491178i
\(659\) −1.51601 + 10.5440i −0.0590552 + 0.410738i 0.938754 + 0.344587i \(0.111981\pi\)
−0.997810 + 0.0661510i \(0.978928\pi\)
\(660\) 15.3345 17.6969i 0.596894 0.688852i
\(661\) 9.53140 20.8708i 0.370728 0.811782i −0.628689 0.777657i \(-0.716408\pi\)
0.999418 0.0341251i \(-0.0108645\pi\)
\(662\) 11.6539 + 3.42189i 0.452942 + 0.132996i
\(663\) 2.12884 + 4.66151i 0.0826773 + 0.181038i
\(664\) 2.78891 + 19.3973i 0.108231 + 0.752760i
\(665\) 6.73003 + 4.32513i 0.260979 + 0.167721i
\(666\) 1.52786 0.0592035
\(667\) 0 0
\(668\) −2.47214 −0.0956498
\(669\) −7.52440 4.83564i −0.290910 0.186957i
\(670\) 0.300492 + 2.08996i 0.0116090 + 0.0807424i
\(671\) 15.1048 + 33.0748i 0.583113 + 1.27684i
\(672\) −39.0058 11.4531i −1.50468 0.441814i
\(673\) 1.24625 2.72890i 0.0480392 0.105191i −0.884091 0.467316i \(-0.845221\pi\)
0.932130 + 0.362124i \(0.117948\pi\)
\(674\) 9.47723 10.9373i 0.365049 0.421289i
\(675\) 1.10492 7.68491i 0.0425285 0.295792i
\(676\) −6.20997 + 1.82341i −0.238845 + 0.0701312i
\(677\) 11.7875 + 13.6035i 0.453030 + 0.522825i 0.935614 0.353025i \(-0.114847\pi\)
−0.482584 + 0.875850i \(0.660302\pi\)
\(678\) 10.1888 6.54795i 0.391299 0.251472i
\(679\) 48.2080 30.9814i 1.85005 1.18896i
\(680\) 1.38271 + 1.59573i 0.0530245 + 0.0611935i
\(681\) 26.1328 7.67329i 1.00141 0.294041i
\(682\) −3.08940 + 21.4872i −0.118299 + 0.822789i
\(683\) −17.4172 + 20.1005i −0.666449 + 0.769124i −0.983816 0.179179i \(-0.942656\pi\)
0.317367 + 0.948303i \(0.397201\pi\)
\(684\) −2.68862 + 5.88726i −0.102802 + 0.225105i
\(685\) 25.9598 + 7.62248i 0.991872 + 0.291240i
\(686\) 2.93106 + 6.41812i 0.111908 + 0.245045i
\(687\) 3.81871 + 26.5597i 0.145693 + 1.01332i
\(688\) 0 0
\(689\) −1.41641 −0.0539608
\(690\) 0 0
\(691\) 7.05573 0.268413 0.134206 0.990953i \(-0.457152\pi\)
0.134206 + 0.990953i \(0.457152\pi\)
\(692\) −31.2312 20.0711i −1.18723 0.762988i
\(693\) 4.82284 + 33.5436i 0.183205 + 1.27422i
\(694\) −2.53879 5.55918i −0.0963712 0.211023i
\(695\) −12.6999 3.72903i −0.481735 0.141450i
\(696\) −6.23123 + 13.6445i −0.236194 + 0.517193i
\(697\) −1.73700 + 2.00461i −0.0657937 + 0.0759299i
\(698\) −2.14756 + 14.9366i −0.0812862 + 0.565358i
\(699\) −14.0055 + 4.11238i −0.529736 + 0.155544i
\(700\) 11.9056 + 13.7398i 0.449989 + 0.519315i
\(701\) 3.21330 2.06506i 0.121365 0.0779964i −0.478550 0.878060i \(-0.658837\pi\)
0.599915 + 0.800064i \(0.295201\pi\)
\(702\) 3.48775 2.24144i 0.131637 0.0845978i
\(703\) −1.61890 1.86832i −0.0610581 0.0704649i
\(704\) 1.18600 0.348241i 0.0446990 0.0131248i
\(705\) 0.879554 6.11743i 0.0331259 0.230396i
\(706\) −3.78851 + 4.37218i −0.142583 + 0.164549i
\(707\) −6.01194 + 13.1643i −0.226102 + 0.495095i
\(708\) −22.4679 6.59716i −0.844395 0.247937i
\(709\) 17.4760 + 38.2672i 0.656327 + 1.43715i 0.885906 + 0.463865i \(0.153538\pi\)
−0.229579 + 0.973290i \(0.573735\pi\)
\(710\) 1.33029 + 9.25238i 0.0499249 + 0.347236i
\(711\) 18.4138 + 11.8338i 0.690572 + 0.443804i
\(712\) −23.4164 −0.877567
\(713\) 0 0
\(714\) −3.41641 −0.127856
\(715\) −16.3341 10.4973i −0.610862 0.392577i
\(716\) 0.163078 + 1.13423i 0.00609452 + 0.0423883i
\(717\) −12.7853 27.9958i −0.477474 1.04552i
\(718\) −11.7939 3.46300i −0.440144 0.129238i
\(719\) −1.26940 + 2.77959i −0.0473405 + 0.103661i −0.931824 0.362910i \(-0.881783\pi\)
0.884484 + 0.466571i \(0.154511\pi\)
\(720\) 3.00161 3.46405i 0.111864 0.129097i
\(721\) 1.92522 13.3902i 0.0716988 0.498676i
\(722\) 8.89499 2.61180i 0.331037 0.0972013i
\(723\) 33.8617 + 39.0785i 1.25933 + 1.45334i
\(724\) 22.6670 14.5672i 0.842411 0.541385i
\(725\) 8.76284 5.63154i 0.325444 0.209150i
\(726\) 14.8568 + 17.1456i 0.551387 + 0.636334i
\(727\) −26.5858 + 7.80630i −0.986014 + 0.289520i −0.734705 0.678387i \(-0.762679\pi\)
−0.251309 + 0.967907i \(0.580861\pi\)
\(728\) −3.08940 + 21.4872i −0.114501 + 0.796370i
\(729\) 4.58403 5.29025i 0.169779 0.195935i
\(730\) −2.07161 + 4.53619i −0.0766737 + 0.167892i
\(731\) 0 0
\(732\) 10.4371 + 22.8542i 0.385768 + 0.844714i
\(733\) −4.44536 30.9181i −0.164193 1.14199i −0.890622 0.454745i \(-0.849730\pi\)
0.726429 0.687242i \(-0.241179\pi\)
\(734\) 2.17346 + 1.39680i 0.0802237 + 0.0515567i
\(735\) 9.59675 0.353981
\(736\) 0 0
\(737\) 14.4721 0.533088
\(738\) −3.61049 2.32032i −0.132904 0.0854122i
\(739\) −3.81684 26.5467i −0.140405 0.976535i −0.931214 0.364473i \(-0.881249\pi\)
0.790809 0.612062i \(-0.209660\pi\)
\(740\) 1.02696 + 2.24873i 0.0377519 + 0.0826651i
\(741\) 12.8729 + 3.77984i 0.472900 + 0.138856i
\(742\) 0.392265 0.858940i 0.0144005 0.0315327i
\(743\) 26.9309 31.0799i 0.987999 1.14021i −0.00212264 0.999998i \(-0.500676\pi\)
0.990121 0.140213i \(-0.0447789\pi\)
\(744\) −4.77338 + 33.1996i −0.175001 + 1.21716i
\(745\) −28.3318 + 8.31896i −1.03800 + 0.304783i
\(746\) 3.11971 + 3.60034i 0.114221 + 0.131818i
\(747\) 14.7454 9.47628i 0.539505 0.346719i
\(748\) 5.44471 3.49910i 0.199078 0.127940i
\(749\) −28.4317 32.8119i −1.03887 1.19892i
\(750\) 13.8859 4.07727i 0.507042 0.148881i
\(751\) 0.0513301 0.357009i 0.00187306 0.0130274i −0.988863 0.148825i \(-0.952451\pi\)
0.990737 + 0.135798i \(0.0433598\pi\)
\(752\) 2.71499 3.13326i 0.0990053 0.114258i
\(753\) 2.12884 4.66151i 0.0775793 0.169875i
\(754\) 5.33699 + 1.56708i 0.194362 + 0.0570698i
\(755\) −2.17514 4.76289i −0.0791615 0.173339i
\(756\) −1.66625 11.5890i −0.0606010 0.421489i
\(757\) −1.34327 0.863267i −0.0488220 0.0313760i 0.516002 0.856587i \(-0.327420\pi\)
−0.564824 + 0.825211i \(0.691056\pi\)
\(758\) −15.0557 −0.546849
\(759\) 0 0
\(760\) 5.52786 0.200517
\(761\) 38.9542 + 25.0343i 1.41209 + 0.907494i 0.999993 0.00364631i \(-0.00116066\pi\)
0.412095 + 0.911141i \(0.364797\pi\)
\(762\) −1.43411 9.97444i −0.0519523 0.361336i
\(763\) 0 0
\(764\) 40.6448 + 11.9344i 1.47048 + 0.431771i
\(765\) 0.784529 1.71788i 0.0283647 0.0621101i
\(766\) 2.85564 3.29558i 0.103178 0.119074i
\(767\) −2.76324 + 19.2188i −0.0997749 + 0.693950i
\(768\) −14.0794 + 4.13408i −0.508046 + 0.149176i
\(769\) −15.1434 17.4764i −0.546085 0.630216i 0.413881 0.910331i \(-0.364173\pi\)
−0.959966 + 0.280115i \(0.909627\pi\)
\(770\) 10.8894 6.99820i 0.392427 0.252198i
\(771\) 14.0558 9.03314i 0.506209 0.325320i
\(772\) 10.5368 + 12.1601i 0.379228 + 0.437653i
\(773\) −5.30395 + 1.55738i −0.190770 + 0.0560150i −0.375722 0.926732i \(-0.622605\pi\)
0.184952 + 0.982748i \(0.440787\pi\)
\(774\) 0 0
\(775\) 15.2529 17.6028i 0.547900 0.632310i
\(776\) 16.4491 36.0185i 0.590488 1.29299i
\(777\) −8.58197 2.51989i −0.307876 0.0904006i
\(778\) −6.55404 14.3513i −0.234974 0.514521i
\(779\) 0.988273 + 6.87359i 0.0354086 + 0.246272i
\(780\) −11.2866 7.25346i −0.404125 0.259715i
\(781\) 64.0689 2.29256
\(782\) 0 0
\(783\) −6.70820 −0.239732
\(784\) 5.41573 + 3.48048i 0.193419 + 0.124303i
\(785\) 2.00827 + 13.9678i 0.0716782 + 0.498533i
\(786\) −10.7402 23.5177i −0.383090 0.838849i
\(787\) 23.5878 + 6.92600i 0.840814 + 0.246885i 0.673656 0.739045i \(-0.264723\pi\)
0.167158 + 0.985930i \(0.446541\pi\)
\(788\) 0.989504 2.16671i 0.0352496 0.0771859i
\(789\) −4.31134 + 4.97555i −0.153488 + 0.177134i
\(790\) 1.18985 8.27558i 0.0423329 0.294432i
\(791\) −27.2119 + 7.99013i −0.967543 + 0.284096i
\(792\) 15.3345 + 17.6969i 0.544887 + 0.628833i
\(793\) 17.5257 11.2631i 0.622355 0.399963i
\(794\) −12.6947 + 8.15836i −0.450517 + 0.289529i
\(795\) 0.854562 + 0.986217i 0.0303082 + 0.0349775i
\(796\) 19.0829 5.60325i 0.676376 0.198602i
\(797\) −4.89003 + 34.0109i −0.173214 + 1.20473i 0.698825 + 0.715293i \(0.253707\pi\)
−0.872039 + 0.489437i \(0.837202\pi\)
\(798\) −5.85725 + 6.75963i −0.207344 + 0.239288i
\(799\) 0.709614 1.55384i 0.0251043 0.0549708i
\(800\) 18.7164 + 5.49564i 0.661726 + 0.194300i
\(801\) 8.70056 + 19.0516i 0.307419 + 0.673154i
\(802\) −1.24724 8.67473i −0.0440415 0.306315i
\(803\) 28.7543 + 18.4793i 1.01472 + 0.652120i
\(804\) 10.0000 0.352673
\(805\) 0 0
\(806\) 12.4377 0.438099
\(807\) 14.9440 + 9.60391i 0.526053 + 0.338074i
\(808\) 1.42315 + 9.89821i 0.0500662 + 0.348218i
\(809\) 5.03128 + 11.0170i 0.176890 + 0.387336i 0.977221 0.212222i \(-0.0680702\pi\)
−0.800331 + 0.599558i \(0.795343\pi\)
\(810\) −8.06286 2.36747i −0.283300 0.0831844i
\(811\) −10.1143 + 22.1473i −0.355162 + 0.777696i 0.644749 + 0.764394i \(0.276962\pi\)
−0.999912 + 0.0133025i \(0.995766\pi\)
\(812\) 10.2867 11.8715i 0.360992 0.416607i
\(813\) 2.54581 17.7065i 0.0892853 0.620993i
\(814\) −3.83797 + 1.12693i −0.134521 + 0.0394989i
\(815\) −4.66563 5.38442i −0.163430 0.188608i
\(816\) 2.66440 1.71231i 0.0932728 0.0599428i
\(817\) 0 0
\(818\) −8.64523 9.97712i −0.302273 0.348842i
\(819\) 18.6299 5.47023i 0.650982 0.191145i
\(820\) 0.988273 6.87359i 0.0345120 0.240036i
\(821\) 25.5031 29.4321i 0.890063 1.02719i −0.109386 0.993999i \(-0.534888\pi\)
0.999449 0.0331886i \(-0.0105662\pi\)
\(822\) −12.5660 + 27.5157i −0.438289 + 0.959719i
\(823\) 37.9393 + 11.1400i 1.32248 + 0.388316i 0.865388 0.501103i \(-0.167072\pi\)
0.457094 + 0.889418i \(0.348890\pi\)
\(824\) −3.88310 8.50281i −0.135274 0.296209i
\(825\) −5.78545 40.2387i −0.201424 1.40093i
\(826\) −10.8894 6.99820i −0.378891 0.243499i
\(827\) −1.52786 −0.0531290 −0.0265645 0.999647i \(-0.508457\pi\)
−0.0265645 + 0.999647i \(0.508457\pi\)
\(828\) 0 0
\(829\) 40.2492 1.39791 0.698957 0.715164i \(-0.253648\pi\)
0.698957 + 0.715164i \(0.253648\pi\)
\(830\) −5.63223 3.61962i −0.195498 0.125639i
\(831\) 4.92363 + 34.2446i 0.170799 + 1.18793i
\(832\) −0.294199 0.644205i −0.0101995 0.0223338i
\(833\) 2.54503 + 0.747289i 0.0881801 + 0.0258920i
\(834\) 6.14747 13.4611i 0.212869 0.466119i
\(835\) 1.23673 1.42727i 0.0427989 0.0493926i
\(836\) 2.41142 16.7718i 0.0834008 0.580065i
\(837\) −14.3924 + 4.22599i −0.497474 + 0.146072i
\(838\) −1.85510 2.14090i −0.0640834 0.0739561i
\(839\) 34.5962 22.2336i 1.19439 0.767591i 0.216417 0.976301i \(-0.430563\pi\)
0.977977 + 0.208710i \(0.0669266\pi\)
\(840\) 16.8251 10.8128i 0.580520 0.373078i
\(841\) 13.0972 + 15.1150i 0.451628 + 0.521207i
\(842\) −6.10303 + 1.79201i −0.210324 + 0.0617568i
\(843\) 2.78891 19.3973i 0.0960551 0.668078i
\(844\) −24.8117 + 28.6343i −0.854055 + 0.985632i
\(845\) 2.05392 4.49747i 0.0706572 0.154718i
\(846\) 2.65197 + 0.778690i 0.0911767 + 0.0267719i
\(847\) −22.0688 48.3238i −0.758292 1.66043i
\(848\) 0.124581 + 0.866478i 0.00427812 + 0.0297550i
\(849\) 52.1219 + 33.4967i 1.78882 + 1.14960i
\(850\) 1.63932 0.0562282
\(851\) 0 0
\(852\) 44.2705 1.51668
\(853\) −8.90348 5.72192i −0.304849 0.195915i 0.379268 0.925287i \(-0.376176\pi\)
−0.684117 + 0.729372i \(0.739812\pi\)
\(854\) 1.97655 + 13.7472i 0.0676360 + 0.470419i
\(855\) −2.05392 4.49747i −0.0702427 0.153810i
\(856\) −28.7848 8.45198i −0.983844 0.288883i
\(857\) 0.611547 1.33910i 0.0208901 0.0457429i −0.898899 0.438155i \(-0.855632\pi\)
0.919789 + 0.392412i \(0.128359\pi\)
\(858\) 14.2159 16.4060i 0.485321 0.560090i
\(859\) 2.37783 16.5381i 0.0811304 0.564274i −0.908195 0.418548i \(-0.862539\pi\)
0.989325 0.145726i \(-0.0465518\pi\)
\(860\) 0 0
\(861\) 16.4531 + 18.9879i 0.560721 + 0.647106i
\(862\) 9.11314 5.85666i 0.310395 0.199479i
\(863\) −18.1215 + 11.6460i −0.616862 + 0.396433i −0.811425 0.584457i \(-0.801308\pi\)
0.194563 + 0.980890i \(0.437671\pi\)
\(864\) −8.22656 9.49396i −0.279873 0.322991i
\(865\) 27.2119 7.99013i 0.925231 0.271672i
\(866\) 1.56734 10.9011i 0.0532602 0.370433i
\(867\) −24.0388 + 27.7422i −0.816399 + 0.942175i
\(868\) 14.5913 31.9505i 0.495261 1.08447i
\(869\) −54.9837 16.1447i −1.86519 0.547670i
\(870\) −2.12884 4.66151i −0.0721745 0.158040i
\(871\) −1.18005 8.20740i −0.0399843 0.278097i
\(872\) 0 0
\(873\) −35.4164 −1.19866
\(874\) 0 0
\(875\) −33.8885 −1.14564
\(876\) 19.8688 + 12.7689i 0.671303 + 0.431420i
\(877\) 5.19053 + 36.1009i 0.175272 + 1.21904i 0.867528 + 0.497389i \(0.165708\pi\)
−0.692256 + 0.721652i \(0.743383\pi\)
\(878\) −4.80316 10.5174i −0.162099 0.354947i
\(879\) 3.27802 + 0.962513i 0.110565 + 0.0324648i
\(880\) −4.98498 + 10.9156i −0.168044 + 0.367964i
\(881\) 28.9320 33.3893i 0.974743 1.12491i −0.0174058 0.999849i \(-0.505541\pi\)
0.992149 0.125065i \(-0.0399138\pi\)
\(882\) −0.610786 + 4.24811i −0.0205662 + 0.143041i
\(883\) −3.83797 + 1.12693i −0.129158 + 0.0379242i −0.345673 0.938355i \(-0.612349\pi\)
0.216515 + 0.976279i \(0.430531\pi\)
\(884\) −2.42836 2.80247i −0.0816745 0.0942574i
\(885\) 15.0488 9.67128i 0.505860 0.325096i
\(886\) 19.8219 12.7387i 0.665929 0.427966i
\(887\) −15.1069 17.4343i −0.507240 0.585386i 0.443150 0.896448i \(-0.353861\pi\)
−0.950390 + 0.311061i \(0.899316\pi\)
\(888\) −5.92999 + 1.74120i −0.198998 + 0.0584309i
\(889\) −3.35817 + 23.3566i −0.112629 + 0.783354i
\(890\) 5.23889 6.04600i 0.175608 0.202662i
\(891\) −23.9266 + 52.3918i −0.801570 + 1.75519i
\(892\) 6.20997 + 1.82341i 0.207925 + 0.0610523i
\(893\) −1.85779 4.06800i −0.0621687 0.136130i
\(894\) −4.69826 32.6771i −0.157133 1.09289i
\(895\) −0.736423 0.473271i −0.0246159 0.0158197i
\(896\) 36.8328 1.23050
\(897\) 0 0
\(898\) −9.23607 −0.308212
\(899\) −16.9299 10.8802i −0.564644 0.362875i
\(900\) −1.59906 11.1217i −0.0533020 0.370723i
\(901\) 0.149832 + 0.328086i 0.00499162 + 0.0109301i
\(902\) 10.7809 + 3.16557i 0.358966 + 0.105402i
\(903\) 0 0
\(904\) −12.8331 + 14.8102i −0.426824 + 0.492581i
\(905\) −2.92935 + 20.3741i −0.0973749 + 0.677257i
\(906\) 5.61697 1.64929i 0.186611 0.0547940i
\(907\) −26.3576 30.4183i −0.875191 1.01002i −0.999841 0.0178234i \(-0.994326\pi\)
0.124650 0.992201i \(-0.460219\pi\)
\(908\) −16.5796 + 10.6551i −0.550213 + 0.353601i
\(909\) 7.52440 4.83564i 0.249569 0.160388i
\(910\) −4.85671 5.60495i −0.160999 0.185802i
\(911\) 30.0369 8.81962i 0.995166 0.292207i 0.256695 0.966492i \(-0.417366\pi\)
0.738471 + 0.674285i \(0.235548\pi\)
\(912\) 1.18005 8.20740i 0.0390752 0.271774i
\(913\) −30.0506 + 34.6802i −0.994530 + 1.14775i
\(914\) 1.31570 2.88097i 0.0435194 0.0952941i
\(915\) −18.4160 5.40743i −0.608815 0.178764i
\(916\) −8.06587 17.6618i −0.266504 0.583562i
\(917\) 8.61589 + 59.9248i 0.284522 + 1.97889i
\(918\) −0.888135 0.570770i −0.0293128 0.0188382i
\(919\) −41.1246 −1.35658 −0.678288 0.734796i \(-0.737278\pi\)
−0.678288 + 0.734796i \(0.737278\pi\)
\(920\) 0 0
\(921\) −21.3050 −0.702022
\(922\) −0.765398 0.491891i −0.0252070 0.0161996i
\(923\) −5.22412 36.3346i −0.171954 1.19597i
\(924\) −25.4670 55.7649i −0.837803 1.83453i
\(925\) 4.11795 + 1.20914i 0.135397 + 0.0397562i
\(926\) −5.13481 + 11.2437i −0.168740 + 0.369490i
\(927\) −5.47508 + 6.31858i −0.179825 + 0.207529i
\(928\) 2.39859 16.6826i 0.0787375 0.547632i
\(929\) 23.0813 6.77728i 0.757273 0.222355i 0.119768 0.992802i \(-0.461785\pi\)
0.637505 + 0.770446i \(0.279967\pi\)
\(930\) −7.50404 8.66012i −0.246067 0.283977i
\(931\) 5.84189 3.75436i 0.191460 0.123044i
\(932\) 8.88558 5.71041i 0.291057 0.187051i
\(933\) 19.3001 + 22.2736i 0.631858 + 0.729203i
\(934\) −7.74204 + 2.27327i −0.253327 + 0.0743836i
\(935\) −0.703643 + 4.89395i −0.0230116 + 0.160049i
\(936\) 8.78588 10.1394i 0.287175 0.331418i
\(937\) −14.1990 + 31.0915i −0.463862 + 1.01572i 0.522728 + 0.852499i \(0.324914\pi\)
−0.986590 + 0.163217i \(0.947813\pi\)
\(938\) 5.30395 + 1.55738i 0.173180 + 0.0508502i
\(939\) 22.6285 + 49.5496i 0.738455 + 1.61699i
\(940\) 0.636451 + 4.42662i 0.0207588 + 0.144380i
\(941\) −5.59642 3.59660i −0.182438 0.117246i 0.446234 0.894916i \(-0.352765\pi\)
−0.628672 + 0.777670i \(0.716401\pi\)
\(942\) −15.7771 −0.514045
\(943\) 0 0
\(944\) 12.0000 0.390567
\(945\) 7.52440 + 4.83564i 0.244769 + 0.157303i
\(946\) 0 0
\(947\) −4.49465 9.84191i −0.146056 0.319819i 0.822438 0.568855i \(-0.192613\pi\)
−0.968494 + 0.249036i \(0.919886\pi\)
\(948\) −37.9928 11.1557i −1.23395 0.362320i
\(949\) 8.13532 17.8139i 0.264084 0.578262i
\(950\) 2.81053 3.24352i 0.0911856 0.105234i
\(951\) 8.08815 56.2543i 0.262276 1.82417i
\(952\) 5.30395 1.55738i 0.171902 0.0504750i
\(953\) 13.4064 + 15.4718i 0.434276 + 0.501181i 0.930133 0.367223i \(-0.119691\pi\)
−0.495857 + 0.868404i \(0.665146\pi\)
\(954\) −0.490949 + 0.315514i −0.0158951 + 0.0102151i
\(955\) −27.2235 + 17.4955i −0.880933 + 0.566141i
\(956\) 14.5841 + 16.8309i 0.471683 + 0.544351i
\(957\) −33.7018 + 9.89575i −1.08943 + 0.319884i
\(958\) 2.77910 19.3291i 0.0897888 0.624495i
\(959\) 46.3856 53.5319i 1.49787 1.72863i
\(960\) −0.271048 + 0.593513i −0.00874804 + 0.0191555i
\(961\) −13.4329 3.94426i −0.433319 0.127234i
\(962\) 0.952046 + 2.08469i 0.0306952 + 0.0672131i
\(963\) 3.81871 + 26.5597i 0.123056 + 0.855874i
\(964\) −31.4767 20.2288i −1.01380 0.651527i
\(965\) −12.2918 −0.395687
\(966\) 0 0
\(967\) 27.5410 0.885659 0.442830 0.896606i \(-0.353975\pi\)
0.442830 + 0.896606i \(0.353975\pi\)
\(968\) −30.8809 19.8460i −0.992550 0.637873i
\(969\) −0.486206 3.38163i −0.0156192 0.108634i
\(970\) 5.61968 + 12.3054i 0.180437 + 0.395102i
\(971\) 15.8049 + 4.64074i 0.507203 + 0.148928i 0.525315 0.850908i \(-0.323947\pi\)
−0.0181120 + 0.999836i \(0.505766\pi\)
\(972\) −12.0239 + 26.3286i −0.385666 + 0.844491i
\(973\) −22.6925 + 26.1886i −0.727490 + 0.839568i
\(974\) 1.29367 8.99765i 0.0414517 0.288303i
\(975\) −22.3483 + 6.56206i −0.715719 + 0.210154i
\(976\) −8.43159 9.73057i −0.269888 0.311468i
\(977\) 19.6412 12.6226i 0.628377 0.403834i −0.187331 0.982297i \(-0.559984\pi\)
0.815708 + 0.578463i \(0.196347\pi\)
\(978\) 6.70105 4.30651i 0.214276 0.137707i
\(979\) −35.9079 41.4399i −1.14762 1.32442i
\(980\) −6.66298 + 1.95643i −0.212841 + 0.0624958i
\(981\) 0 0
\(982\) −3.37846 + 3.89895i −0.107811 + 0.124421i
\(983\) 16.8127 36.8147i 0.536243 1.17421i −0.426673 0.904406i \(-0.640314\pi\)
0.962916 0.269802i \(-0.0869583\pi\)
\(984\) 16.6575 + 4.89107i 0.531020 + 0.155922i
\(985\) 0.755914 + 1.65522i 0.0240854 + 0.0527397i
\(986\) −0.201576 1.40199i −0.00641948 0.0446485i
\(987\) −13.6118 8.74775i −0.433267 0.278444i
\(988\) −9.70820 −0.308859
\(989\) 0 0
\(990\) −8.00000 −0.254257
\(991\) 20.1901 + 12.9754i 0.641359 + 0.412177i 0.820500 0.571647i \(-0.193695\pi\)
−0.179141 + 0.983824i \(0.557332\pi\)
\(992\) −5.36341 37.3033i −0.170288 1.18438i
\(993\) 18.2551 + 39.9731i 0.579308 + 1.26851i
\(994\) 23.4808 + 6.89460i 0.744767 + 0.218683i
\(995\) −6.31161 + 13.8205i −0.200091 + 0.438139i
\(996\) −20.7645 + 23.9635i −0.657947 + 0.759311i
\(997\) −2.39556 + 16.6615i −0.0758681 + 0.527674i 0.916077 + 0.401003i \(0.131338\pi\)
−0.991945 + 0.126671i \(0.959571\pi\)
\(998\) −11.4400 + 3.35909i −0.362128 + 0.106330i
\(999\) −1.80999 2.08884i −0.0572656 0.0660880i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 529.2.c.n.255.2 20
23.2 even 11 inner 529.2.c.n.399.1 20
23.3 even 11 inner 529.2.c.n.501.1 20
23.4 even 11 inner 529.2.c.n.170.1 20
23.5 odd 22 529.2.c.o.487.2 20
23.6 even 11 inner 529.2.c.n.118.1 20
23.7 odd 22 529.2.c.o.466.2 20
23.8 even 11 inner 529.2.c.n.266.1 20
23.9 even 11 529.2.a.a.1.2 2
23.10 odd 22 529.2.c.o.177.1 20
23.11 odd 22 529.2.c.o.334.2 20
23.12 even 11 inner 529.2.c.n.334.2 20
23.13 even 11 inner 529.2.c.n.177.1 20
23.14 odd 22 23.2.a.a.1.2 2
23.15 odd 22 529.2.c.o.266.1 20
23.16 even 11 inner 529.2.c.n.466.2 20
23.17 odd 22 529.2.c.o.118.1 20
23.18 even 11 inner 529.2.c.n.487.2 20
23.19 odd 22 529.2.c.o.170.1 20
23.20 odd 22 529.2.c.o.501.1 20
23.21 odd 22 529.2.c.o.399.1 20
23.22 odd 2 529.2.c.o.255.2 20
69.14 even 22 207.2.a.d.1.1 2
69.32 odd 22 4761.2.a.w.1.1 2
92.55 odd 22 8464.2.a.bb.1.2 2
92.83 even 22 368.2.a.h.1.2 2
115.14 odd 22 575.2.a.f.1.1 2
115.37 even 44 575.2.b.d.24.3 4
115.83 even 44 575.2.b.d.24.2 4
161.83 even 22 1127.2.a.c.1.2 2
184.37 odd 22 1472.2.a.t.1.2 2
184.83 even 22 1472.2.a.s.1.1 2
253.175 even 22 2783.2.a.c.1.1 2
276.83 odd 22 3312.2.a.ba.1.1 2
299.129 odd 22 3887.2.a.i.1.1 2
345.14 even 22 5175.2.a.be.1.2 2
391.152 odd 22 6647.2.a.b.1.2 2
437.37 even 22 8303.2.a.e.1.1 2
460.359 even 22 9200.2.a.bt.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.2.a.a.1.2 2 23.14 odd 22
207.2.a.d.1.1 2 69.14 even 22
368.2.a.h.1.2 2 92.83 even 22
529.2.a.a.1.2 2 23.9 even 11
529.2.c.n.118.1 20 23.6 even 11 inner
529.2.c.n.170.1 20 23.4 even 11 inner
529.2.c.n.177.1 20 23.13 even 11 inner
529.2.c.n.255.2 20 1.1 even 1 trivial
529.2.c.n.266.1 20 23.8 even 11 inner
529.2.c.n.334.2 20 23.12 even 11 inner
529.2.c.n.399.1 20 23.2 even 11 inner
529.2.c.n.466.2 20 23.16 even 11 inner
529.2.c.n.487.2 20 23.18 even 11 inner
529.2.c.n.501.1 20 23.3 even 11 inner
529.2.c.o.118.1 20 23.17 odd 22
529.2.c.o.170.1 20 23.19 odd 22
529.2.c.o.177.1 20 23.10 odd 22
529.2.c.o.255.2 20 23.22 odd 2
529.2.c.o.266.1 20 23.15 odd 22
529.2.c.o.334.2 20 23.11 odd 22
529.2.c.o.399.1 20 23.21 odd 22
529.2.c.o.466.2 20 23.7 odd 22
529.2.c.o.487.2 20 23.5 odd 22
529.2.c.o.501.1 20 23.20 odd 22
575.2.a.f.1.1 2 115.14 odd 22
575.2.b.d.24.2 4 115.83 even 44
575.2.b.d.24.3 4 115.37 even 44
1127.2.a.c.1.2 2 161.83 even 22
1472.2.a.s.1.1 2 184.83 even 22
1472.2.a.t.1.2 2 184.37 odd 22
2783.2.a.c.1.1 2 253.175 even 22
3312.2.a.ba.1.1 2 276.83 odd 22
3887.2.a.i.1.1 2 299.129 odd 22
4761.2.a.w.1.1 2 69.32 odd 22
5175.2.a.be.1.2 2 345.14 even 22
6647.2.a.b.1.2 2 391.152 odd 22
8303.2.a.e.1.1 2 437.37 even 22
8464.2.a.bb.1.2 2 92.55 odd 22
9200.2.a.bt.1.1 2 460.359 even 22