Properties

Label 529.2.c.n.170.1
Level $529$
Weight $2$
Character 529.170
Analytic conductor $4.224$
Analytic rank $0$
Dimension $20$
Inner twists $10$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [529,2,Mod(118,529)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(529, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("529.118");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 529.c (of order \(11\), degree \(10\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.22408626693\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: 20.0.54296067514572573056640625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{19} + 2 x^{18} - 3 x^{17} + 5 x^{16} - 8 x^{15} + 13 x^{14} - 21 x^{13} + 34 x^{12} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 23)
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 170.1
Root \(0.256741 + 0.562183i\) of defining polynomial
Character \(\chi\) \(=\) 529.170
Dual form 529.2.c.n.501.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.592999 + 0.174120i) q^{2} +(1.46431 + 1.68991i) q^{3} +(-1.36118 + 0.874775i) q^{4} +(0.175911 + 1.22349i) q^{5} +(-1.16258 - 0.747147i) q^{6} +(-1.34431 + 2.94363i) q^{7} +(1.46431 - 1.68991i) q^{8} +(-0.284630 + 1.97964i) q^{9} +(-0.317349 - 0.694897i) q^{10} +(-5.02397 - 1.47517i) q^{11} +(-3.47148 - 1.01932i) q^{12} +(1.24625 + 2.72890i) q^{13} +(0.284630 - 1.97964i) q^{14} +(-1.80999 + 2.08884i) q^{15} +(0.770222 - 1.68655i) q^{16} +(-0.642661 - 0.413013i) q^{17} +(-0.175911 - 1.22349i) q^{18} +(1.68251 - 1.08128i) q^{19} +(-1.30972 - 1.51150i) q^{20} +(-6.94296 + 2.03864i) q^{21} +3.23607 q^{22} +5.00000 q^{24} +(3.33149 - 0.978214i) q^{25} +(-1.21418 - 1.40124i) q^{26} +(1.88110 - 1.20891i) q^{27} +(-0.745170 - 5.18277i) q^{28} +(-2.52376 - 1.62192i) q^{29} +(0.709614 - 1.55384i) q^{30} +(-4.39294 + 5.06972i) q^{31} +(-0.799530 + 5.56085i) q^{32} +(-4.86376 - 10.6502i) q^{33} +(0.453011 + 0.133016i) q^{34} +(-3.83797 - 1.12693i) q^{35} +(-1.34431 - 2.94363i) q^{36} +(-0.175911 + 1.22349i) q^{37} +(-0.809452 + 0.934158i) q^{38} +(-2.78669 + 6.10200i) q^{39} +(2.32517 + 1.49429i) q^{40} +(0.494136 + 3.43679i) q^{41} +(3.76220 - 2.41782i) q^{42} +(8.12895 - 2.38688i) q^{44} -2.47214 q^{45} -2.23607 q^{47} +(3.97796 - 1.16803i) q^{48} +(-2.27377 - 2.62407i) q^{49} +(-1.80524 + 1.16016i) q^{50} +(-0.243103 - 1.69082i) q^{51} +(-4.08353 - 2.62433i) q^{52} +(-0.196132 + 0.429470i) q^{53} +(-0.904995 + 1.04442i) q^{54} +(0.921081 - 6.40626i) q^{55} +(3.00597 + 6.58216i) q^{56} +(4.29098 + 1.25995i) q^{57} +(1.77900 + 0.522361i) q^{58} +(2.68862 + 5.88726i) q^{59} +(0.636451 - 4.42662i) q^{60} +(-4.54753 + 5.24813i) q^{61} +(1.72227 - 3.77124i) q^{62} +(-5.44471 - 3.49910i) q^{63} +(0.0335960 + 0.233665i) q^{64} +(-3.11954 + 2.00481i) q^{65} +(4.73862 + 5.46866i) q^{66} +(-2.65197 + 0.778690i) q^{67} +1.23607 q^{68} +2.47214 q^{70} +(-11.7404 + 3.44730i) q^{71} +(2.92863 + 3.37981i) q^{72} +(5.49159 - 3.52923i) q^{73} +(-0.108719 - 0.756156i) q^{74} +(6.53144 + 4.19750i) q^{75} +(-1.34431 + 2.94363i) q^{76} +(11.0961 - 12.8056i) q^{77} +(0.590023 - 4.10370i) q^{78} +(4.54641 + 9.95526i) q^{79} +(2.19896 + 0.645674i) q^{80} +(10.5544 + 3.09906i) q^{81} +(-0.891438 - 1.95198i) q^{82} +(-1.24724 + 8.67473i) q^{83} +(7.66724 - 8.84847i) q^{84} +(0.392265 - 0.858940i) q^{85} +(-0.954677 - 6.63992i) q^{87} +(-9.84957 + 6.32993i) q^{88} +(-6.85779 - 7.91431i) q^{89} +(1.46597 - 0.430449i) q^{90} -9.70820 q^{91} -15.0000 q^{93} +(1.32599 - 0.389345i) q^{94} +(1.61890 + 1.86832i) q^{95} +(-10.5681 + 6.79170i) q^{96} +(2.52014 + 17.5280i) q^{97} +(1.80524 + 1.16016i) q^{98} +(4.35028 - 9.52579i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + q^{2} + q^{4} - 2 q^{5} + 5 q^{6} + 2 q^{7} - 4 q^{9} + 6 q^{10} - 6 q^{11} - 5 q^{12} - 6 q^{13} + 4 q^{14} - 10 q^{15} + 3 q^{16} + 6 q^{17} + 2 q^{18} - 4 q^{19} - 4 q^{20} - 10 q^{21} + 20 q^{22}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/529\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(e\left(\frac{5}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.592999 + 0.174120i −0.419314 + 0.123122i −0.484581 0.874746i \(-0.661028\pi\)
0.0652676 + 0.997868i \(0.479210\pi\)
\(3\) 1.46431 + 1.68991i 0.845422 + 0.975669i 0.999924 0.0123239i \(-0.00392292\pi\)
−0.154502 + 0.987992i \(0.549377\pi\)
\(4\) −1.36118 + 0.874775i −0.680588 + 0.437388i
\(5\) 0.175911 + 1.22349i 0.0786697 + 0.547160i 0.990597 + 0.136809i \(0.0436847\pi\)
−0.911928 + 0.410351i \(0.865406\pi\)
\(6\) −1.16258 0.747147i −0.474623 0.305022i
\(7\) −1.34431 + 2.94363i −0.508102 + 1.11259i 0.465649 + 0.884970i \(0.345821\pi\)
−0.973750 + 0.227618i \(0.926906\pi\)
\(8\) 1.46431 1.68991i 0.517713 0.597472i
\(9\) −0.284630 + 1.97964i −0.0948766 + 0.659881i
\(10\) −0.317349 0.694897i −0.100355 0.219746i
\(11\) −5.02397 1.47517i −1.51478 0.444781i −0.584430 0.811444i \(-0.698682\pi\)
−0.930354 + 0.366663i \(0.880500\pi\)
\(12\) −3.47148 1.01932i −1.00213 0.294252i
\(13\) 1.24625 + 2.72890i 0.345646 + 0.756860i 1.00000 0.000670851i \(0.000213539\pi\)
−0.654354 + 0.756189i \(0.727059\pi\)
\(14\) 0.284630 1.97964i 0.0760705 0.529082i
\(15\) −1.80999 + 2.08884i −0.467338 + 0.539336i
\(16\) 0.770222 1.68655i 0.192555 0.421638i
\(17\) −0.642661 0.413013i −0.155868 0.100170i 0.460382 0.887721i \(-0.347713\pi\)
−0.616250 + 0.787551i \(0.711349\pi\)
\(18\) −0.175911 1.22349i −0.0414626 0.288379i
\(19\) 1.68251 1.08128i 0.385994 0.248063i −0.333224 0.942848i \(-0.608137\pi\)
0.719218 + 0.694785i \(0.244500\pi\)
\(20\) −1.30972 1.51150i −0.292863 0.337981i
\(21\) −6.94296 + 2.03864i −1.51508 + 0.444867i
\(22\) 3.23607 0.689932
\(23\) 0 0
\(24\) 5.00000 1.02062
\(25\) 3.33149 0.978214i 0.666298 0.195643i
\(26\) −1.21418 1.40124i −0.238120 0.274805i
\(27\) 1.88110 1.20891i 0.362018 0.232655i
\(28\) −0.745170 5.18277i −0.140824 0.979452i
\(29\) −2.52376 1.62192i −0.468651 0.301183i 0.284919 0.958552i \(-0.408033\pi\)
−0.753570 + 0.657368i \(0.771670\pi\)
\(30\) 0.709614 1.55384i 0.129557 0.283691i
\(31\) −4.39294 + 5.06972i −0.788995 + 0.910549i −0.997724 0.0674245i \(-0.978522\pi\)
0.208729 + 0.977973i \(0.433067\pi\)
\(32\) −0.799530 + 5.56085i −0.141338 + 0.983029i
\(33\) −4.86376 10.6502i −0.846673 1.85395i
\(34\) 0.453011 + 0.133016i 0.0776908 + 0.0228121i
\(35\) −3.83797 1.12693i −0.648736 0.190486i
\(36\) −1.34431 2.94363i −0.224052 0.490605i
\(37\) −0.175911 + 1.22349i −0.0289196 + 0.201140i −0.999159 0.0410084i \(-0.986943\pi\)
0.970239 + 0.242148i \(0.0778521\pi\)
\(38\) −0.809452 + 0.934158i −0.131311 + 0.151540i
\(39\) −2.78669 + 6.10200i −0.446227 + 0.977102i
\(40\) 2.32517 + 1.49429i 0.367641 + 0.236269i
\(41\) 0.494136 + 3.43679i 0.0771712 + 0.536737i 0.991331 + 0.131384i \(0.0419422\pi\)
−0.914160 + 0.405353i \(0.867149\pi\)
\(42\) 3.76220 2.41782i 0.580520 0.373078i
\(43\) 0 0 0.755750 0.654861i \(-0.227273\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(44\) 8.12895 2.38688i 1.22549 0.359835i
\(45\) −2.47214 −0.368524
\(46\) 0 0
\(47\) −2.23607 −0.326164 −0.163082 0.986613i \(-0.552144\pi\)
−0.163082 + 0.986613i \(0.552144\pi\)
\(48\) 3.97796 1.16803i 0.574169 0.168591i
\(49\) −2.27377 2.62407i −0.324824 0.374866i
\(50\) −1.80524 + 1.16016i −0.255300 + 0.164071i
\(51\) −0.243103 1.69082i −0.0340412 0.236762i
\(52\) −4.08353 2.62433i −0.566284 0.363928i
\(53\) −0.196132 + 0.429470i −0.0269409 + 0.0589922i −0.922624 0.385700i \(-0.873960\pi\)
0.895683 + 0.444693i \(0.146687\pi\)
\(54\) −0.904995 + 1.04442i −0.123154 + 0.142128i
\(55\) 0.921081 6.40626i 0.124199 0.863820i
\(56\) 3.00597 + 6.58216i 0.401690 + 0.879578i
\(57\) 4.29098 + 1.25995i 0.568355 + 0.166884i
\(58\) 1.77900 + 0.522361i 0.233594 + 0.0685893i
\(59\) 2.68862 + 5.88726i 0.350029 + 0.766456i 0.999979 + 0.00647940i \(0.00206247\pi\)
−0.649950 + 0.759977i \(0.725210\pi\)
\(60\) 0.636451 4.42662i 0.0821655 0.571474i
\(61\) −4.54753 + 5.24813i −0.582252 + 0.671954i −0.968087 0.250613i \(-0.919368\pi\)
0.385836 + 0.922568i \(0.373913\pi\)
\(62\) 1.72227 3.77124i 0.218728 0.478948i
\(63\) −5.44471 3.49910i −0.685969 0.440845i
\(64\) 0.0335960 + 0.233665i 0.00419950 + 0.0292081i
\(65\) −3.11954 + 2.00481i −0.386931 + 0.248666i
\(66\) 4.73862 + 5.46866i 0.583283 + 0.673145i
\(67\) −2.65197 + 0.778690i −0.323990 + 0.0951321i −0.439683 0.898153i \(-0.644909\pi\)
0.115693 + 0.993285i \(0.463091\pi\)
\(68\) 1.23607 0.149895
\(69\) 0 0
\(70\) 2.47214 0.295477
\(71\) −11.7404 + 3.44730i −1.39333 + 0.409119i −0.890389 0.455201i \(-0.849568\pi\)
−0.502943 + 0.864320i \(0.667749\pi\)
\(72\) 2.92863 + 3.37981i 0.345142 + 0.398315i
\(73\) 5.49159 3.52923i 0.642742 0.413065i −0.178266 0.983982i \(-0.557049\pi\)
0.821008 + 0.570917i \(0.193412\pi\)
\(74\) −0.108719 0.756156i −0.0126383 0.0879014i
\(75\) 6.53144 + 4.19750i 0.754185 + 0.484685i
\(76\) −1.34431 + 2.94363i −0.154203 + 0.337658i
\(77\) 11.0961 12.8056i 1.26452 1.45934i
\(78\) 0.590023 4.10370i 0.0668069 0.464652i
\(79\) 4.54641 + 9.95526i 0.511512 + 1.12005i 0.972554 + 0.232676i \(0.0747483\pi\)
−0.461043 + 0.887378i \(0.652524\pi\)
\(80\) 2.19896 + 0.645674i 0.245851 + 0.0721885i
\(81\) 10.5544 + 3.09906i 1.17271 + 0.344340i
\(82\) −0.891438 1.95198i −0.0984429 0.215560i
\(83\) −1.24724 + 8.67473i −0.136902 + 0.952175i 0.799355 + 0.600859i \(0.205175\pi\)
−0.936257 + 0.351316i \(0.885734\pi\)
\(84\) 7.66724 8.84847i 0.836565 0.965447i
\(85\) 0.392265 0.858940i 0.0425471 0.0931651i
\(86\) 0 0
\(87\) −0.954677 6.63992i −0.102352 0.711875i
\(88\) −9.84957 + 6.32993i −1.04997 + 0.674773i
\(89\) −6.85779 7.91431i −0.726924 0.838915i 0.265197 0.964194i \(-0.414563\pi\)
−0.992122 + 0.125279i \(0.960017\pi\)
\(90\) 1.46597 0.430449i 0.154527 0.0453733i
\(91\) −9.70820 −1.01770
\(92\) 0 0
\(93\) −15.0000 −1.55543
\(94\) 1.32599 0.389345i 0.136765 0.0401579i
\(95\) 1.61890 + 1.86832i 0.166096 + 0.191685i
\(96\) −10.5681 + 6.79170i −1.07860 + 0.693175i
\(97\) 2.52014 + 17.5280i 0.255881 + 1.77969i 0.561436 + 0.827520i \(0.310249\pi\)
−0.305555 + 0.952175i \(0.598842\pi\)
\(98\) 1.80524 + 1.16016i 0.182357 + 0.117194i
\(99\) 4.35028 9.52579i 0.437220 0.957378i
\(100\) −3.67903 + 4.24583i −0.367903 + 0.424583i
\(101\) −0.636451 + 4.42662i −0.0633293 + 0.440465i 0.933345 + 0.358980i \(0.116875\pi\)
−0.996675 + 0.0814849i \(0.974034\pi\)
\(102\) 0.438565 + 0.960324i 0.0434244 + 0.0950862i
\(103\) −4.01101 1.17774i −0.395216 0.116046i 0.0780848 0.996947i \(-0.475120\pi\)
−0.473301 + 0.880901i \(0.656938\pi\)
\(104\) 6.43647 + 1.88992i 0.631148 + 0.185322i
\(105\) −3.71558 8.13600i −0.362604 0.793992i
\(106\) 0.0415269 0.288826i 0.00403345 0.0280533i
\(107\) 8.78588 10.1394i 0.849363 0.980217i −0.150602 0.988594i \(-0.548121\pi\)
0.999965 + 0.00837738i \(0.00266663\pi\)
\(108\) −1.50299 + 3.29108i −0.144625 + 0.316684i
\(109\) 0 0 0.540641 0.841254i \(-0.318182\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(110\) 0.569259 + 3.95929i 0.0542767 + 0.377503i
\(111\) −2.32517 + 1.49429i −0.220695 + 0.141832i
\(112\) 3.92916 + 4.53450i 0.371271 + 0.428470i
\(113\) 8.40893 2.46908i 0.791046 0.232272i 0.138841 0.990315i \(-0.455662\pi\)
0.652205 + 0.758043i \(0.273844\pi\)
\(114\) −2.76393 −0.258866
\(115\) 0 0
\(116\) 4.85410 0.450692
\(117\) −5.75696 + 1.69040i −0.532231 + 0.156277i
\(118\) −2.61944 3.02300i −0.241139 0.278290i
\(119\) 2.07969 1.33654i 0.190645 0.122520i
\(120\) 0.879554 + 6.11743i 0.0802919 + 0.558443i
\(121\) 13.8104 + 8.87538i 1.25549 + 0.806853i
\(122\) 1.78288 3.90396i 0.161414 0.353447i
\(123\) −5.08429 + 5.86759i −0.458435 + 0.529063i
\(124\) 1.54470 10.7436i 0.138718 0.964806i
\(125\) 4.35028 + 9.52579i 0.389101 + 0.852013i
\(126\) 3.83797 + 1.12693i 0.341914 + 0.100395i
\(127\) 6.99643 + 2.05434i 0.620833 + 0.182293i 0.576998 0.816746i \(-0.304224\pi\)
0.0438350 + 0.999039i \(0.486042\pi\)
\(128\) −4.72824 10.3534i −0.417921 0.915120i
\(129\) 0 0
\(130\) 1.50081 1.73202i 0.131630 0.151909i
\(131\) 7.77167 17.0176i 0.679014 1.48683i −0.184671 0.982800i \(-0.559122\pi\)
0.863685 0.504033i \(-0.168151\pi\)
\(132\) 15.9369 + 10.2420i 1.38713 + 0.891456i
\(133\) 0.921081 + 6.40626i 0.0798679 + 0.555493i
\(134\) 1.43703 0.923525i 0.124141 0.0797804i
\(135\) 1.80999 + 2.08884i 0.155779 + 0.179779i
\(136\) −1.63901 + 0.481257i −0.140544 + 0.0412674i
\(137\) 21.8885 1.87006 0.935032 0.354563i \(-0.115370\pi\)
0.935032 + 0.354563i \(0.115370\pi\)
\(138\) 0 0
\(139\) −10.7082 −0.908258 −0.454129 0.890936i \(-0.650049\pi\)
−0.454129 + 0.890936i \(0.650049\pi\)
\(140\) 6.20997 1.82341i 0.524838 0.154106i
\(141\) −3.27430 3.77875i −0.275746 0.318228i
\(142\) 6.36182 4.08849i 0.533872 0.343099i
\(143\) −2.23551 15.5483i −0.186943 1.30022i
\(144\) 3.11954 + 2.00481i 0.259962 + 0.167067i
\(145\) 1.54044 3.37310i 0.127927 0.280121i
\(146\) −2.64200 + 3.04903i −0.218653 + 0.252339i
\(147\) 1.10492 7.68491i 0.0911325 0.633840i
\(148\) −0.830830 1.81926i −0.0682938 0.149543i
\(149\) 22.9209 + 6.73018i 1.87775 + 0.551358i 0.996965 + 0.0778452i \(0.0248040\pi\)
0.880787 + 0.473513i \(0.157014\pi\)
\(150\) −4.60401 1.35186i −0.375916 0.110379i
\(151\) 1.75973 + 3.85326i 0.143204 + 0.313574i 0.967620 0.252411i \(-0.0812234\pi\)
−0.824416 + 0.565985i \(0.808496\pi\)
\(152\) 0.636451 4.42662i 0.0516230 0.359046i
\(153\) 1.00054 1.15468i 0.0808887 0.0933506i
\(154\) −4.35028 + 9.52579i −0.350556 + 0.767610i
\(155\) −6.97550 4.48288i −0.560286 0.360074i
\(156\) −1.54470 10.7436i −0.123675 0.860178i
\(157\) 9.60409 6.17218i 0.766490 0.492593i −0.0980350 0.995183i \(-0.531256\pi\)
0.864525 + 0.502590i \(0.167619\pi\)
\(158\) −4.42943 5.11184i −0.352387 0.406676i
\(159\) −1.01296 + 0.297433i −0.0803332 + 0.0235880i
\(160\) −6.94427 −0.548993
\(161\) 0 0
\(162\) −6.79837 −0.534131
\(163\) 5.53045 1.62389i 0.433178 0.127193i −0.0578716 0.998324i \(-0.518431\pi\)
0.491050 + 0.871131i \(0.336613\pi\)
\(164\) −3.67903 4.24583i −0.287284 0.331543i
\(165\) 12.1747 7.82423i 0.947802 0.609115i
\(166\) −0.770835 5.36128i −0.0598284 0.416116i
\(167\) 1.28532 + 0.826026i 0.0994611 + 0.0639198i 0.589426 0.807822i \(-0.299354\pi\)
−0.489965 + 0.871742i \(0.662990\pi\)
\(168\) −6.72156 + 14.7182i −0.518579 + 1.13553i
\(169\) 2.61944 3.02300i 0.201496 0.232538i
\(170\) −0.0830538 + 0.577652i −0.00636994 + 0.0443039i
\(171\) 1.66166 + 3.63853i 0.127070 + 0.278245i
\(172\) 0 0
\(173\) −22.0149 6.46415i −1.67376 0.491460i −0.699076 0.715048i \(-0.746405\pi\)
−0.974684 + 0.223588i \(0.928223\pi\)
\(174\) 1.72227 + 3.77124i 0.130565 + 0.285897i
\(175\) −1.59906 + 11.1217i −0.120878 + 0.840722i
\(176\) −6.35752 + 7.33697i −0.479216 + 0.553045i
\(177\) −6.01194 + 13.1643i −0.451885 + 0.989491i
\(178\) 5.44471 + 3.49910i 0.408098 + 0.262269i
\(179\) −0.100788 0.700995i −0.00753324 0.0523949i 0.985708 0.168462i \(-0.0538802\pi\)
−0.993241 + 0.116068i \(0.962971\pi\)
\(180\) 3.36501 2.16256i 0.250813 0.161188i
\(181\) 10.9051 + 12.5851i 0.810566 + 0.935443i 0.998911 0.0466598i \(-0.0148577\pi\)
−0.188345 + 0.982103i \(0.560312\pi\)
\(182\) 5.75696 1.69040i 0.426734 0.125300i
\(183\) −15.5279 −1.14785
\(184\) 0 0
\(185\) −1.52786 −0.112331
\(186\) 8.89499 2.61180i 0.652212 0.191507i
\(187\) 2.61944 + 3.02300i 0.191553 + 0.221064i
\(188\) 3.04368 1.95606i 0.221983 0.142660i
\(189\) 1.02980 + 7.16242i 0.0749069 + 0.520989i
\(190\) −1.28532 0.826026i −0.0932470 0.0599262i
\(191\) 10.8757 23.8145i 0.786938 1.72315i 0.101725 0.994813i \(-0.467564\pi\)
0.685213 0.728342i \(-0.259709\pi\)
\(192\) −0.345677 + 0.398933i −0.0249471 + 0.0287905i
\(193\) −1.41522 + 9.84305i −0.101870 + 0.708518i 0.873320 + 0.487147i \(0.161962\pi\)
−0.975190 + 0.221371i \(0.928947\pi\)
\(194\) −4.54641 9.95526i −0.326414 0.714746i
\(195\) −7.95592 2.33607i −0.569735 0.167289i
\(196\) 5.39046 + 1.58278i 0.385033 + 0.113056i
\(197\) −0.611547 1.33910i −0.0435709 0.0954071i 0.886595 0.462547i \(-0.153064\pi\)
−0.930166 + 0.367140i \(0.880337\pi\)
\(198\) −0.921081 + 6.40626i −0.0654584 + 0.455273i
\(199\) −8.04941 + 9.28952i −0.570608 + 0.658517i −0.965559 0.260186i \(-0.916216\pi\)
0.394951 + 0.918702i \(0.370762\pi\)
\(200\) 3.22525 7.06232i 0.228060 0.499382i
\(201\) −5.19923 3.34134i −0.366726 0.235680i
\(202\) −0.393349 2.73580i −0.0276759 0.192490i
\(203\) 8.16706 5.24865i 0.573215 0.368383i
\(204\) 1.80999 + 2.08884i 0.126725 + 0.146248i
\(205\) −4.11795 + 1.20914i −0.287610 + 0.0844499i
\(206\) 2.58359 0.180007
\(207\) 0 0
\(208\) 5.56231 0.385677
\(209\) −10.0479 + 2.95034i −0.695031 + 0.204079i
\(210\) 3.61998 + 4.17768i 0.249802 + 0.288287i
\(211\) −19.6991 + 12.6599i −1.35614 + 0.871541i −0.998067 0.0621507i \(-0.980204\pi\)
−0.358078 + 0.933692i \(0.616568\pi\)
\(212\) −0.108719 0.756156i −0.00746684 0.0519330i
\(213\) −23.0173 14.7923i −1.57712 1.01355i
\(214\) −3.44454 + 7.54248i −0.235464 + 0.515594i
\(215\) 0 0
\(216\) 0.711574 4.94911i 0.0484165 0.336744i
\(217\) −9.01791 19.7465i −0.612176 1.34048i
\(218\) 0 0
\(219\) 14.0055 + 4.11238i 0.946402 + 0.277889i
\(220\) 4.35028 + 9.52579i 0.293296 + 0.642229i
\(221\) 0.326157 2.26847i 0.0219397 0.152594i
\(222\) 1.11864 1.29097i 0.0750779 0.0866445i
\(223\) 1.66166 3.63853i 0.111273 0.243654i −0.845800 0.533499i \(-0.820877\pi\)
0.957073 + 0.289846i \(0.0936039\pi\)
\(224\) −15.2943 9.82903i −1.02189 0.656730i
\(225\) 0.988273 + 6.87359i 0.0658849 + 0.458239i
\(226\) −4.55657 + 2.92833i −0.303099 + 0.194790i
\(227\) −7.97643 9.20529i −0.529414 0.610976i 0.426549 0.904465i \(-0.359729\pi\)
−0.955963 + 0.293488i \(0.905184\pi\)
\(228\) −6.94296 + 2.03864i −0.459809 + 0.135012i
\(229\) 12.0000 0.792982 0.396491 0.918039i \(-0.370228\pi\)
0.396491 + 0.918039i \(0.370228\pi\)
\(230\) 0 0
\(231\) 37.8885 2.49288
\(232\) −6.43647 + 1.88992i −0.422575 + 0.124079i
\(233\) 4.27484 + 4.93343i 0.280054 + 0.323200i 0.878297 0.478115i \(-0.158680\pi\)
−0.598243 + 0.801315i \(0.704134\pi\)
\(234\) 3.11954 2.00481i 0.203931 0.131058i
\(235\) −0.393349 2.73580i −0.0256592 0.178464i
\(236\) −8.80972 5.66166i −0.573464 0.368543i
\(237\) −10.1661 + 22.2606i −0.660359 + 1.44598i
\(238\) −1.00054 + 1.15468i −0.0648553 + 0.0748470i
\(239\) −1.95881 + 13.6238i −0.126705 + 0.881253i 0.822985 + 0.568062i \(0.192307\pi\)
−0.949690 + 0.313190i \(0.898602\pi\)
\(240\) 2.12884 + 4.66151i 0.137416 + 0.300899i
\(241\) −22.1879 6.51496i −1.42925 0.419665i −0.526626 0.850097i \(-0.676543\pi\)
−0.902623 + 0.430432i \(0.858361\pi\)
\(242\) −9.73492 2.85843i −0.625784 0.183747i
\(243\) 7.43117 + 16.2720i 0.476710 + 1.04385i
\(244\) 1.59906 11.1217i 0.102369 0.711994i
\(245\) 2.81053 3.24352i 0.179558 0.207221i
\(246\) 1.99332 4.36475i 0.127089 0.278287i
\(247\) 5.04752 + 3.24384i 0.321166 + 0.206401i
\(248\) 2.13472 + 14.8473i 0.135555 + 0.942806i
\(249\) −16.4858 + 10.5948i −1.04475 + 0.671418i
\(250\) −4.23835 4.89131i −0.268057 0.309354i
\(251\) 2.19896 0.645674i 0.138797 0.0407546i −0.211596 0.977357i \(-0.567866\pi\)
0.350393 + 0.936603i \(0.386048\pi\)
\(252\) 10.4721 0.659683
\(253\) 0 0
\(254\) −4.50658 −0.282768
\(255\) 2.02593 0.594866i 0.126868 0.0372520i
\(256\) 4.29740 + 4.95946i 0.268587 + 0.309966i
\(257\) −6.28596 + 4.03974i −0.392107 + 0.251992i −0.721808 0.692093i \(-0.756689\pi\)
0.329700 + 0.944086i \(0.393052\pi\)
\(258\) 0 0
\(259\) −3.36501 2.16256i −0.209092 0.134375i
\(260\) 2.49249 5.45779i 0.154578 0.338478i
\(261\) 3.92916 4.53450i 0.243209 0.280678i
\(262\) −1.64549 + 11.4446i −0.101659 + 0.707051i
\(263\) −1.22309 2.67820i −0.0754193 0.165145i 0.868167 0.496272i \(-0.165298\pi\)
−0.943586 + 0.331127i \(0.892571\pi\)
\(264\) −25.1199 7.37585i −1.54602 0.453952i
\(265\) −0.559953 0.164417i −0.0343976 0.0101001i
\(266\) −1.66166 3.63853i −0.101883 0.223092i
\(267\) 3.33250 23.1781i 0.203946 1.41847i
\(268\) 2.92863 3.37981i 0.178894 0.206455i
\(269\) −3.30017 + 7.22636i −0.201215 + 0.440599i −0.983160 0.182749i \(-0.941501\pi\)
0.781945 + 0.623348i \(0.214228\pi\)
\(270\) −1.43703 0.923525i −0.0874550 0.0562039i
\(271\) −1.13852 7.91857i −0.0691601 0.481019i −0.994737 0.102460i \(-0.967329\pi\)
0.925577 0.378559i \(-0.123580\pi\)
\(272\) −1.19156 + 0.765768i −0.0722488 + 0.0464315i
\(273\) −14.2159 16.4060i −0.860382 0.992934i
\(274\) −12.9799 + 3.81124i −0.784144 + 0.230245i
\(275\) −18.1803 −1.09632
\(276\) 0 0
\(277\) 15.4721 0.929631 0.464815 0.885408i \(-0.346121\pi\)
0.464815 + 0.885408i \(0.346121\pi\)
\(278\) 6.34996 1.86452i 0.380845 0.111826i
\(279\) −8.78588 10.1394i −0.525997 0.607033i
\(280\) −7.52440 + 4.83564i −0.449669 + 0.288985i
\(281\) −1.24724 8.67473i −0.0744040 0.517491i −0.992606 0.121379i \(-0.961268\pi\)
0.918202 0.396112i \(-0.129641\pi\)
\(282\) 2.59962 + 1.67067i 0.154805 + 0.0994871i
\(283\) −11.5104 + 25.2043i −0.684222 + 1.49824i 0.173884 + 0.984766i \(0.444368\pi\)
−0.858106 + 0.513472i \(0.828359\pi\)
\(284\) 12.9652 14.9626i 0.769342 0.887868i
\(285\) −0.786697 + 5.47160i −0.0465999 + 0.324110i
\(286\) 4.03293 + 8.83089i 0.238472 + 0.522182i
\(287\) −10.7809 3.16557i −0.636378 0.186857i
\(288\) −10.7809 3.16557i −0.635272 0.186533i
\(289\) −6.81962 14.9329i −0.401154 0.878405i
\(290\) −0.326157 + 2.26847i −0.0191526 + 0.133209i
\(291\) −25.9304 + 29.9252i −1.52006 + 1.75425i
\(292\) −4.38774 + 9.60781i −0.256773 + 0.562255i
\(293\) 1.28532 + 0.826026i 0.0750893 + 0.0482569i 0.577647 0.816287i \(-0.303971\pi\)
−0.502558 + 0.864544i \(0.667607\pi\)
\(294\) 0.682880 + 4.74953i 0.0398264 + 0.276998i
\(295\) −6.73003 + 4.32513i −0.391837 + 0.251819i
\(296\) 1.80999 + 2.08884i 0.105204 + 0.121411i
\(297\) −11.2339 + 3.29858i −0.651859 + 0.191403i
\(298\) −14.7639 −0.855252
\(299\) 0 0
\(300\) −12.5623 −0.725285
\(301\) 0 0
\(302\) −1.71445 1.97858i −0.0986554 0.113854i
\(303\) −8.41254 + 5.40641i −0.483288 + 0.310590i
\(304\) −0.527732 3.67046i −0.0302675 0.210515i
\(305\) −7.22098 4.64064i −0.413472 0.265722i
\(306\) −0.392265 + 0.858940i −0.0224243 + 0.0491023i
\(307\) −6.23942 + 7.20068i −0.356103 + 0.410964i −0.905330 0.424708i \(-0.860377\pi\)
0.549227 + 0.835673i \(0.314922\pi\)
\(308\) −3.90176 + 27.1373i −0.222324 + 1.54629i
\(309\) −3.88310 8.50281i −0.220902 0.483708i
\(310\) 4.91703 + 1.44377i 0.279268 + 0.0820006i
\(311\) −12.6464 3.71333i −0.717114 0.210564i −0.0972354 0.995261i \(-0.531000\pi\)
−0.619879 + 0.784698i \(0.712818\pi\)
\(312\) 6.23123 + 13.6445i 0.352774 + 0.772467i
\(313\) 3.46689 24.1127i 0.195960 1.36293i −0.619899 0.784681i \(-0.712827\pi\)
0.815859 0.578250i \(-0.196264\pi\)
\(314\) −4.62052 + 5.33236i −0.260751 + 0.300923i
\(315\) 3.32332 7.27706i 0.187248 0.410016i
\(316\) −14.8971 9.57378i −0.838027 0.538567i
\(317\) −3.61713 25.1577i −0.203158 1.41300i −0.794837 0.606823i \(-0.792444\pi\)
0.591678 0.806174i \(-0.298466\pi\)
\(318\) 0.548898 0.352755i 0.0307806 0.0197815i
\(319\) 10.2867 + 11.8715i 0.575944 + 0.664675i
\(320\) −0.279976 + 0.0822085i −0.0156511 + 0.00459559i
\(321\) 30.0000 1.67444
\(322\) 0 0
\(323\) −1.52786 −0.0850126
\(324\) −17.0774 + 5.01438i −0.948745 + 0.278577i
\(325\) 6.82130 + 7.87220i 0.378377 + 0.436671i
\(326\) −2.99680 + 1.92593i −0.165978 + 0.106667i
\(327\) 0 0
\(328\) 6.53144 + 4.19750i 0.360638 + 0.231768i
\(329\) 3.00597 6.58216i 0.165725 0.362886i
\(330\) −5.85725 + 6.75963i −0.322431 + 0.372105i
\(331\) 2.79684 19.4524i 0.153728 1.06920i −0.756171 0.654374i \(-0.772932\pi\)
0.909899 0.414829i \(-0.136159\pi\)
\(332\) −5.89073 12.8989i −0.323296 0.707919i
\(333\) −2.37200 0.696481i −0.129985 0.0381669i
\(334\) −0.906022 0.266032i −0.0495753 0.0145566i
\(335\) −1.41923 3.10767i −0.0775407 0.169790i
\(336\) −1.90935 + 13.2798i −0.104164 + 0.724475i
\(337\) 15.3345 17.6969i 0.835323 0.964014i −0.164427 0.986389i \(-0.552577\pi\)
0.999750 + 0.0223755i \(0.00712294\pi\)
\(338\) −1.02696 + 2.24873i −0.0558594 + 0.122315i
\(339\) 16.4858 + 10.5948i 0.895388 + 0.575431i
\(340\) 0.217438 + 1.51231i 0.0117922 + 0.0820167i
\(341\) 29.5487 18.9898i 1.60015 1.02836i
\(342\) −1.61890 1.86832i −0.0875403 0.101027i
\(343\) −10.9540 + 3.21637i −0.591458 + 0.173668i
\(344\) 0 0
\(345\) 0 0
\(346\) 14.1803 0.762340
\(347\) 9.48799 2.78592i 0.509342 0.149556i −0.0169565 0.999856i \(-0.505398\pi\)
0.526298 + 0.850300i \(0.323579\pi\)
\(348\) 7.10793 + 8.20298i 0.381025 + 0.439726i
\(349\) 20.5404 13.2005i 1.09950 0.706607i 0.140521 0.990078i \(-0.455122\pi\)
0.958981 + 0.283471i \(0.0914859\pi\)
\(350\) −0.988273 6.87359i −0.0528254 0.367409i
\(351\) 5.64330 + 3.62673i 0.301217 + 0.193580i
\(352\) 12.2200 26.7581i 0.651329 1.42621i
\(353\) −6.12994 + 7.07433i −0.326264 + 0.376529i −0.895057 0.445952i \(-0.852865\pi\)
0.568793 + 0.822481i \(0.307411\pi\)
\(354\) 1.27290 8.85323i 0.0676540 0.470544i
\(355\) −6.28299 13.7578i −0.333467 0.730190i
\(356\) 16.2579 + 4.77375i 0.861667 + 0.253008i
\(357\) 5.30395 + 1.55738i 0.280715 + 0.0824253i
\(358\) 0.181825 + 0.398141i 0.00960973 + 0.0210424i
\(359\) −2.83043 + 19.6861i −0.149385 + 1.03899i 0.767845 + 0.640635i \(0.221329\pi\)
−0.917230 + 0.398358i \(0.869580\pi\)
\(360\) −3.61998 + 4.17768i −0.190790 + 0.220183i
\(361\) −6.23123 + 13.6445i −0.327959 + 0.718131i
\(362\) −8.65801 5.56417i −0.455055 0.292446i
\(363\) 5.22412 + 36.3346i 0.274195 + 1.90707i
\(364\) 13.2146 8.49250i 0.692632 0.445128i
\(365\) 5.28400 + 6.09806i 0.276577 + 0.319187i
\(366\) 9.20801 2.70372i 0.481310 0.141326i
\(367\) 4.18034 0.218212 0.109106 0.994030i \(-0.465201\pi\)
0.109106 + 0.994030i \(0.465201\pi\)
\(368\) 0 0
\(369\) −6.94427 −0.361504
\(370\) 0.906022 0.266032i 0.0471019 0.0138304i
\(371\) −1.00054 1.15468i −0.0519454 0.0599481i
\(372\) 20.4177 13.1216i 1.05861 0.680325i
\(373\) 1.09699 + 7.62975i 0.0568001 + 0.395053i 0.998312 + 0.0580743i \(0.0184960\pi\)
−0.941512 + 0.336979i \(0.890595\pi\)
\(374\) −2.07969 1.33654i −0.107538 0.0691107i
\(375\) −9.72753 + 21.3003i −0.502327 + 1.09994i
\(376\) −3.27430 + 3.77875i −0.168859 + 0.194874i
\(377\) 1.28083 8.90839i 0.0659663 0.458806i
\(378\) −1.85779 4.06800i −0.0955545 0.209235i
\(379\) 23.3739 + 6.86320i 1.20064 + 0.352539i 0.820096 0.572226i \(-0.193920\pi\)
0.380540 + 0.924764i \(0.375738\pi\)
\(380\) −3.83797 1.12693i −0.196884 0.0578103i
\(381\) 6.77332 + 14.8315i 0.347008 + 0.759841i
\(382\) −2.30270 + 16.0156i −0.117817 + 0.819432i
\(383\) 4.62052 5.33236i 0.236098 0.272471i −0.625320 0.780368i \(-0.715032\pi\)
0.861418 + 0.507897i \(0.169577\pi\)
\(384\) 10.5727 23.1509i 0.539534 1.18141i
\(385\) 17.6194 + 11.3233i 0.897970 + 0.577090i
\(386\) −0.874652 6.08334i −0.0445186 0.309634i
\(387\) 0 0
\(388\) −18.7634 21.6541i −0.952566 1.09932i
\(389\) 24.4938 7.19203i 1.24189 0.364650i 0.406162 0.913801i \(-0.366867\pi\)
0.835723 + 0.549151i \(0.185049\pi\)
\(390\) 5.12461 0.259495
\(391\) 0 0
\(392\) −7.76393 −0.392138
\(393\) 40.1383 11.7857i 2.02471 0.594508i
\(394\) 0.595812 + 0.687604i 0.0300166 + 0.0346410i
\(395\) −11.3804 + 7.31372i −0.572608 + 0.367993i
\(396\) 2.41142 + 16.7718i 0.121178 + 0.842815i
\(397\) −20.5404 13.2005i −1.03089 0.662514i −0.0881745 0.996105i \(-0.528103\pi\)
−0.942718 + 0.333591i \(0.891740\pi\)
\(398\) 3.15580 6.91024i 0.158186 0.346379i
\(399\) −9.47723 + 10.9373i −0.474455 + 0.547550i
\(400\) 0.916179 6.37217i 0.0458090 0.318608i
\(401\) 5.89073 + 12.8989i 0.294169 + 0.644140i 0.997791 0.0664346i \(-0.0211624\pi\)
−0.703622 + 0.710575i \(0.748435\pi\)
\(402\) 3.66494 + 1.07612i 0.182790 + 0.0536721i
\(403\) −19.3094 5.66976i −0.961871 0.282431i
\(404\) −3.00597 6.58216i −0.149553 0.327475i
\(405\) −1.93502 + 13.4584i −0.0961519 + 0.668751i
\(406\) −3.92916 + 4.53450i −0.195001 + 0.225043i
\(407\) 2.68862 5.88726i 0.133270 0.291821i
\(408\) −3.21330 2.06506i −0.159082 0.102236i
\(409\) −3.03994 21.1433i −0.150315 1.04547i −0.915691 0.401883i \(-0.868356\pi\)
0.765376 0.643584i \(-0.222553\pi\)
\(410\) 2.23140 1.43404i 0.110201 0.0708220i
\(411\) 32.0517 + 36.9896i 1.58099 + 1.82456i
\(412\) 6.48995 1.90562i 0.319737 0.0938832i
\(413\) −20.9443 −1.03060
\(414\) 0 0
\(415\) −10.8328 −0.531762
\(416\) −16.1714 + 4.74835i −0.792868 + 0.232807i
\(417\) −15.6802 18.0959i −0.767861 0.886159i
\(418\) 5.44471 3.49910i 0.266309 0.171147i
\(419\) −0.652313 4.53694i −0.0318676 0.221644i 0.967664 0.252242i \(-0.0811679\pi\)
−0.999532 + 0.0305981i \(0.990259\pi\)
\(420\) 12.1747 + 7.82423i 0.594066 + 0.381783i
\(421\) 4.27537 9.36175i 0.208369 0.456264i −0.776376 0.630270i \(-0.782944\pi\)
0.984744 + 0.174007i \(0.0556714\pi\)
\(422\) 9.47723 10.9373i 0.461345 0.532420i
\(423\) 0.636451 4.42662i 0.0309453 0.215229i
\(424\) 0.438565 + 0.960324i 0.0212986 + 0.0466375i
\(425\) −2.54503 0.747289i −0.123452 0.0362488i
\(426\) 16.2249 + 4.76405i 0.786097 + 0.230819i
\(427\) −9.33526 20.4414i −0.451765 0.989227i
\(428\) −3.08940 + 21.4872i −0.149332 + 1.03863i
\(429\) 23.0017 26.5454i 1.11053 1.28162i
\(430\) 0 0
\(431\) 14.7454 + 9.47628i 0.710260 + 0.456456i 0.845236 0.534392i \(-0.179460\pi\)
−0.134977 + 0.990849i \(0.543096\pi\)
\(432\) −0.590023 4.10370i −0.0283875 0.197439i
\(433\) −14.9909 + 9.63404i −0.720414 + 0.462982i −0.848781 0.528745i \(-0.822663\pi\)
0.128367 + 0.991727i \(0.459027\pi\)
\(434\) 8.78588 + 10.1394i 0.421736 + 0.486709i
\(435\) 7.95592 2.33607i 0.381457 0.112006i
\(436\) 0 0
\(437\) 0 0
\(438\) −9.02129 −0.431054
\(439\) 17.9504 5.27071i 0.856725 0.251557i 0.176266 0.984343i \(-0.443598\pi\)
0.680460 + 0.732785i \(0.261780\pi\)
\(440\) −9.47723 10.9373i −0.451809 0.521416i
\(441\) 5.84189 3.75436i 0.278185 0.178779i
\(442\) 0.201576 + 1.40199i 0.00958799 + 0.0666859i
\(443\) 32.0725 + 20.6117i 1.52381 + 0.979292i 0.991118 + 0.132982i \(0.0424553\pi\)
0.532690 + 0.846310i \(0.321181\pi\)
\(444\) 1.85779 4.06800i 0.0881669 0.193059i
\(445\) 8.47670 9.78263i 0.401834 0.463741i
\(446\) −0.351822 + 2.44697i −0.0166592 + 0.115868i
\(447\) 22.1900 + 48.5893i 1.04955 + 2.29819i
\(448\) −0.732987 0.215225i −0.0346304 0.0101684i
\(449\) 14.3389 + 4.21029i 0.676696 + 0.198696i 0.601982 0.798509i \(-0.294378\pi\)
0.0747132 + 0.997205i \(0.476196\pi\)
\(450\) −1.78288 3.90396i −0.0840456 0.184034i
\(451\) 2.58733 17.9953i 0.121833 0.847365i
\(452\) −9.28615 + 10.7168i −0.436784 + 0.504075i
\(453\) −3.93487 + 8.61616i −0.184876 + 0.404822i
\(454\) 6.33284 + 4.06987i 0.297215 + 0.191008i
\(455\) −1.70778 11.8779i −0.0800619 0.556843i
\(456\) 8.41254 5.40641i 0.393953 0.253178i
\(457\) −3.35591 3.87292i −0.156983 0.181168i 0.671810 0.740724i \(-0.265517\pi\)
−0.828793 + 0.559556i \(0.810972\pi\)
\(458\) −7.11599 + 2.08944i −0.332508 + 0.0976333i
\(459\) −1.70820 −0.0797321
\(460\) 0 0
\(461\) −1.47214 −0.0685642 −0.0342821 0.999412i \(-0.510914\pi\)
−0.0342821 + 0.999412i \(0.510914\pi\)
\(462\) −22.4679 + 6.59716i −1.04530 + 0.306928i
\(463\) 13.0972 + 15.1150i 0.608679 + 0.702453i 0.973516 0.228618i \(-0.0734207\pi\)
−0.364837 + 0.931071i \(0.618875\pi\)
\(464\) −4.67931 + 3.00721i −0.217231 + 0.139606i
\(465\) −2.63866 18.3523i −0.122365 0.851067i
\(466\) −3.39399 2.18118i −0.157223 0.101041i
\(467\) 5.42355 11.8759i 0.250972 0.549551i −0.741652 0.670784i \(-0.765958\pi\)
0.992624 + 0.121233i \(0.0386848\pi\)
\(468\) 6.35752 7.33697i 0.293877 0.339152i
\(469\) 1.27290 8.85323i 0.0587772 0.408804i
\(470\) 0.709614 + 1.55384i 0.0327320 + 0.0716732i
\(471\) 24.4938 + 7.19203i 1.12862 + 0.331391i
\(472\) 13.8859 + 4.07727i 0.639151 + 0.187672i
\(473\) 0 0
\(474\) 2.15246 14.9707i 0.0988656 0.687625i
\(475\) 4.54753 5.24813i 0.208655 0.240801i
\(476\) −1.66166 + 3.63853i −0.0761621 + 0.166772i
\(477\) −0.794372 0.510512i −0.0363718 0.0233747i
\(478\) −1.21061 8.41999i −0.0553721 0.385122i
\(479\) −26.5809 + 17.0825i −1.21451 + 0.780519i −0.981408 0.191933i \(-0.938524\pi\)
−0.233103 + 0.972452i \(0.574888\pi\)
\(480\) −10.1686 11.7352i −0.464130 0.535635i
\(481\) −3.55800 + 1.04472i −0.162231 + 0.0476352i
\(482\) 14.2918 0.650973
\(483\) 0 0
\(484\) −26.5623 −1.20738
\(485\) −21.0019 + 6.16672i −0.953647 + 0.280016i
\(486\) −7.23996 8.35536i −0.328411 0.379007i
\(487\) −12.3733 + 7.95186i −0.560689 + 0.360333i −0.790082 0.613001i \(-0.789962\pi\)
0.229393 + 0.973334i \(0.426326\pi\)
\(488\) 2.20985 + 15.3698i 0.100035 + 0.695759i
\(489\) 10.8425 + 6.96807i 0.490316 + 0.315107i
\(490\) −1.10188 + 2.41278i −0.0497778 + 0.108998i
\(491\) −5.46647 + 6.30864i −0.246698 + 0.284705i −0.865571 0.500786i \(-0.833044\pi\)
0.618873 + 0.785491i \(0.287590\pi\)
\(492\) 1.78780 12.4344i 0.0806004 0.560588i
\(493\) 0.952046 + 2.08469i 0.0428780 + 0.0938898i
\(494\) −3.55800 1.04472i −0.160082 0.0470043i
\(495\) 12.4199 + 3.64682i 0.558235 + 0.163912i
\(496\) 5.16680 + 11.3137i 0.231996 + 0.508001i
\(497\) 5.63520 39.1937i 0.252773 1.75808i
\(498\) 7.93132 9.15323i 0.355411 0.410166i
\(499\) 8.01410 17.5484i 0.358760 0.785576i −0.641076 0.767478i \(-0.721512\pi\)
0.999836 0.0180982i \(-0.00576116\pi\)
\(500\) −14.2544 9.16077i −0.637477 0.409682i
\(501\) 0.486206 + 3.38163i 0.0217221 + 0.151080i
\(502\) −1.19156 + 0.765768i −0.0531818 + 0.0341779i
\(503\) −17.6447 20.3631i −0.786740 0.907947i 0.210836 0.977521i \(-0.432381\pi\)
−0.997577 + 0.0695746i \(0.977836\pi\)
\(504\) −13.8859 + 4.07727i −0.618528 + 0.181616i
\(505\) −5.52786 −0.245987
\(506\) 0 0
\(507\) 8.94427 0.397229
\(508\) −11.3205 + 3.32399i −0.502264 + 0.147478i
\(509\) 18.5358 + 21.3915i 0.821585 + 0.948160i 0.999355 0.0359125i \(-0.0114338\pi\)
−0.177770 + 0.984072i \(0.556888\pi\)
\(510\) −1.09780 + 0.705510i −0.0486112 + 0.0312405i
\(511\) 3.00635 + 20.9096i 0.132993 + 0.924986i
\(512\) 15.7383 + 10.1144i 0.695543 + 0.446998i
\(513\) 1.85779 4.06800i 0.0820235 0.179606i
\(514\) 3.02417 3.49008i 0.133390 0.153941i
\(515\) 0.735367 5.11459i 0.0324041 0.225376i
\(516\) 0 0
\(517\) 11.2339 + 3.29858i 0.494068 + 0.145071i
\(518\) 2.37200 + 0.696481i 0.104220 + 0.0306016i
\(519\) −21.3128 46.6686i −0.935530 2.04853i
\(520\) −1.18005 + 8.20740i −0.0517484 + 0.359918i
\(521\) 20.5734 23.7429i 0.901336 1.04020i −0.0976523 0.995221i \(-0.531133\pi\)
0.998988 0.0449764i \(-0.0143212\pi\)
\(522\) −1.54044 + 3.37310i −0.0674234 + 0.147637i
\(523\) −34.5962 22.2336i −1.51279 0.972209i −0.993026 0.117898i \(-0.962384\pi\)
−0.519762 0.854311i \(-0.673979\pi\)
\(524\) 4.30794 + 29.9624i 0.188193 + 1.30891i
\(525\) −21.1362 + 13.5834i −0.922458 + 0.592828i
\(526\) 1.19162 + 1.37521i 0.0519573 + 0.0599619i
\(527\) 4.91703 1.44377i 0.214189 0.0628916i
\(528\) −21.7082 −0.944728
\(529\) 0 0
\(530\) 0.360680 0.0156669
\(531\) −12.4199 + 3.64682i −0.538979 + 0.158259i
\(532\) −6.85779 7.91431i −0.297323 0.343129i
\(533\) −8.76284 + 5.63154i −0.379561 + 0.243929i
\(534\) 2.05960 + 14.3248i 0.0891276 + 0.619896i
\(535\) 13.9510 + 8.96577i 0.603155 + 0.387624i
\(536\) −2.56741 + 5.62183i −0.110895 + 0.242826i
\(537\) 1.03703 1.19680i 0.0447512 0.0516457i
\(538\) 0.698742 4.85986i 0.0301249 0.209523i
\(539\) 7.55239 + 16.5374i 0.325304 + 0.712317i
\(540\) −4.29098 1.25995i −0.184655 0.0542195i
\(541\) 33.0223 + 9.69622i 1.41974 + 0.416873i 0.899415 0.437095i \(-0.143993\pi\)
0.520325 + 0.853969i \(0.325811\pi\)
\(542\) 2.05392 + 4.49747i 0.0882236 + 0.193183i
\(543\) −5.29924 + 36.8571i −0.227412 + 1.58169i
\(544\) 2.81053 3.24352i 0.120500 0.139065i
\(545\) 0 0
\(546\) 11.2866 + 7.25346i 0.483022 + 0.310419i
\(547\) 4.20413 + 29.2403i 0.179755 + 1.25023i 0.857328 + 0.514771i \(0.172123\pi\)
−0.677573 + 0.735456i \(0.736968\pi\)
\(548\) −29.7942 + 19.1476i −1.27274 + 0.817943i
\(549\) −9.09506 10.4963i −0.388168 0.447970i
\(550\) 10.7809 3.16557i 0.459700 0.134980i
\(551\) −6.00000 −0.255609
\(552\) 0 0
\(553\) −35.4164 −1.50606
\(554\) −9.17497 + 2.69401i −0.389807 + 0.114458i
\(555\) −2.23727 2.58195i −0.0949669 0.109598i
\(556\) 14.5758 9.36727i 0.618150 0.397261i
\(557\) −1.05546 7.34092i −0.0447215 0.311045i −0.999888 0.0149752i \(-0.995233\pi\)
0.955166 0.296070i \(-0.0956760\pi\)
\(558\) 6.97550 + 4.48288i 0.295297 + 0.189776i
\(559\) 0 0
\(560\) −4.85671 + 5.60495i −0.205234 + 0.236852i
\(561\) −1.27290 + 8.85323i −0.0537420 + 0.373784i
\(562\) 2.25006 + 4.92694i 0.0949129 + 0.207830i
\(563\) −31.6098 9.28147i −1.33219 0.391167i −0.463316 0.886193i \(-0.653340\pi\)
−0.868878 + 0.495026i \(0.835159\pi\)
\(564\) 7.76246 + 2.27926i 0.326859 + 0.0959743i
\(565\) 4.50011 + 9.85388i 0.189321 + 0.414556i
\(566\) 2.43709 16.9503i 0.102438 0.712475i
\(567\) −23.3109 + 26.9022i −0.978966 + 1.12979i
\(568\) −11.3660 + 24.8881i −0.476908 + 1.04428i
\(569\) 18.6593 + 11.9916i 0.782238 + 0.502714i 0.869776 0.493447i \(-0.164263\pi\)
−0.0875376 + 0.996161i \(0.527900\pi\)
\(570\) −0.486206 3.38163i −0.0203649 0.141641i
\(571\) 12.0230 7.72673i 0.503148 0.323354i −0.264326 0.964433i \(-0.585150\pi\)
0.767474 + 0.641080i \(0.221513\pi\)
\(572\) 16.6442 + 19.2084i 0.695929 + 0.803145i
\(573\) 56.1697 16.4929i 2.34652 0.689001i
\(574\) 6.94427 0.289848
\(575\) 0 0
\(576\) −0.472136 −0.0196723
\(577\) −21.9614 + 6.44845i −0.914265 + 0.268452i −0.704835 0.709371i \(-0.748979\pi\)
−0.209430 + 0.977824i \(0.567161\pi\)
\(578\) 6.64415 + 7.66776i 0.276360 + 0.318937i
\(579\) −18.7062 + 12.0217i −0.777402 + 0.499606i
\(580\) 0.853889 + 5.93893i 0.0354558 + 0.246601i
\(581\) −23.8585 15.3329i −0.989818 0.636118i
\(582\) 10.1661 22.2606i 0.421398 0.922733i
\(583\) 1.61890 1.86832i 0.0670482 0.0773777i
\(584\) 2.07733 14.4482i 0.0859607 0.597870i
\(585\) −3.08089 6.74620i −0.127379 0.278921i
\(586\) −0.906022 0.266032i −0.0374274 0.0109897i
\(587\) 23.7073 + 6.96111i 0.978507 + 0.287316i 0.731608 0.681726i \(-0.238770\pi\)
0.246899 + 0.969041i \(0.420588\pi\)
\(588\) 5.21857 + 11.4271i 0.215210 + 0.471245i
\(589\) −1.90935 + 13.2798i −0.0786736 + 0.547187i
\(590\) 3.23781 3.73663i 0.133299 0.153835i
\(591\) 1.36746 2.99432i 0.0562499 0.123170i
\(592\) 1.92798 + 1.23904i 0.0792396 + 0.0509242i
\(593\) 0.419014 + 2.91430i 0.0172068 + 0.119676i 0.996614 0.0822165i \(-0.0261999\pi\)
−0.979408 + 0.201893i \(0.935291\pi\)
\(594\) 6.08737 3.91211i 0.249768 0.160516i
\(595\) 2.00108 + 2.30937i 0.0820361 + 0.0946747i
\(596\) −37.0868 + 10.8897i −1.51913 + 0.446058i
\(597\) −27.4853 −1.12490
\(598\) 0 0
\(599\) 33.8885 1.38465 0.692324 0.721587i \(-0.256587\pi\)
0.692324 + 0.721587i \(0.256587\pi\)
\(600\) 16.6575 4.89107i 0.680038 0.199677i
\(601\) −30.7055 35.4360i −1.25250 1.44546i −0.847193 0.531285i \(-0.821710\pi\)
−0.405309 0.914180i \(-0.632836\pi\)
\(602\) 0 0
\(603\) −0.786697 5.47160i −0.0320368 0.222821i
\(604\) −5.76604 3.70561i −0.234617 0.150779i
\(605\) −8.42952 + 18.4581i −0.342709 + 0.750427i
\(606\) 4.04726 4.67079i 0.164409 0.189738i
\(607\) −3.76738 + 26.2027i −0.152913 + 1.06353i 0.758391 + 0.651800i \(0.225986\pi\)
−0.911304 + 0.411734i \(0.864923\pi\)
\(608\) 4.66763 + 10.2207i 0.189297 + 0.414504i
\(609\) 20.8289 + 6.11591i 0.844028 + 0.247829i
\(610\) 5.09006 + 1.49458i 0.206091 + 0.0605137i
\(611\) −2.78669 6.10200i −0.112737 0.246860i
\(612\) −0.351822 + 2.44697i −0.0142215 + 0.0989130i
\(613\) 3.73808 4.31397i 0.150980 0.174240i −0.675222 0.737615i \(-0.735952\pi\)
0.826201 + 0.563375i \(0.190497\pi\)
\(614\) 2.44619 5.35641i 0.0987202 0.216167i
\(615\) −8.07330 5.18839i −0.325547 0.209216i
\(616\) −5.39210 37.5029i −0.217254 1.51103i
\(617\) 6.33284 4.06987i 0.254951 0.163847i −0.406923 0.913463i \(-0.633398\pi\)
0.661873 + 0.749616i \(0.269762\pi\)
\(618\) 3.78319 + 4.36603i 0.152182 + 0.175628i
\(619\) 18.6299 5.47023i 0.748799 0.219867i 0.115001 0.993365i \(-0.463313\pi\)
0.633799 + 0.773498i \(0.281495\pi\)
\(620\) 13.4164 0.538816
\(621\) 0 0
\(622\) 8.14590 0.326621
\(623\) 32.5158 9.54751i 1.30272 0.382513i
\(624\) 8.14496 + 9.39978i 0.326059 + 0.376292i
\(625\) 3.71532 2.38769i 0.148613 0.0955076i
\(626\) 2.14265 + 14.9025i 0.0856377 + 0.595623i
\(627\) −19.6991 12.6599i −0.786708 0.505586i
\(628\) −7.67360 + 16.8028i −0.306210 + 0.670507i
\(629\) 0.618367 0.713633i 0.0246559 0.0284544i
\(630\) −0.703643 + 4.89395i −0.0280338 + 0.194979i
\(631\) −5.13481 11.2437i −0.204414 0.447603i 0.779464 0.626447i \(-0.215492\pi\)
−0.983877 + 0.178844i \(0.942764\pi\)
\(632\) 23.4808 + 6.89460i 0.934018 + 0.274252i
\(633\) −50.2397 14.7517i −1.99685 0.586328i
\(634\) 6.52542 + 14.2887i 0.259158 + 0.567476i
\(635\) −1.28271 + 8.92141i −0.0509026 + 0.354036i
\(636\) 1.11864 1.29097i 0.0443568 0.0511905i
\(637\) 4.32713 9.47510i 0.171447 0.375417i
\(638\) −8.16706 5.24865i −0.323337 0.207796i
\(639\) −3.48275 24.2230i −0.137775 0.958249i
\(640\) 11.8355 7.60621i 0.467839 0.300662i
\(641\) −11.3323 13.0782i −0.447600 0.516558i 0.486446 0.873711i \(-0.338293\pi\)
−0.934046 + 0.357153i \(0.883748\pi\)
\(642\) −17.7900 + 5.22361i −0.702114 + 0.206159i
\(643\) 29.5967 1.16718 0.583591 0.812048i \(-0.301647\pi\)
0.583591 + 0.812048i \(0.301647\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0.906022 0.266032i 0.0356470 0.0104669i
\(647\) −4.39294 5.06972i −0.172704 0.199311i 0.662798 0.748798i \(-0.269369\pi\)
−0.835502 + 0.549487i \(0.814823\pi\)
\(648\) 20.6921 13.2980i 0.812862 0.522395i
\(649\) −4.82284 33.5436i −0.189313 1.31670i
\(650\) −5.41573 3.48048i −0.212423 0.136516i
\(651\) 20.1647 44.1545i 0.790316 1.73055i
\(652\) −6.10739 + 7.04830i −0.239184 + 0.276033i
\(653\) 5.45136 37.9151i 0.213328 1.48373i −0.548608 0.836079i \(-0.684842\pi\)
0.761937 0.647652i \(-0.224249\pi\)
\(654\) 0 0
\(655\) 22.1879 + 6.51496i 0.866953 + 0.254560i
\(656\) 6.17692 + 1.81371i 0.241168 + 0.0708134i
\(657\) 5.42355 + 11.8759i 0.211593 + 0.463323i
\(658\) −0.636451 + 4.42662i −0.0248115 + 0.172567i
\(659\) −6.97589 + 8.05060i −0.271742 + 0.313607i −0.875175 0.483807i \(-0.839254\pi\)
0.603433 + 0.797414i \(0.293799\pi\)
\(660\) −9.72753 + 21.3003i −0.378643 + 0.829114i
\(661\) 19.3019 + 12.4046i 0.750759 + 0.482483i 0.859213 0.511618i \(-0.170954\pi\)
−0.108454 + 0.994101i \(0.534590\pi\)
\(662\) 1.72854 + 12.0223i 0.0671817 + 0.467259i
\(663\) 4.31110 2.77057i 0.167429 0.107600i
\(664\) 12.8331 + 14.8102i 0.498022 + 0.574749i
\(665\) −7.67594 + 2.25386i −0.297660 + 0.0874010i
\(666\) 1.52786 0.0592035
\(667\) 0 0
\(668\) −2.47214 −0.0956498
\(669\) 8.58197 2.51989i 0.331798 0.0974247i
\(670\) 1.38271 + 1.59573i 0.0534187 + 0.0616485i
\(671\) 30.5886 19.6581i 1.18086 0.758891i
\(672\) −5.78545 40.2387i −0.223179 1.55224i
\(673\) 2.52376 + 1.62192i 0.0972838 + 0.0625205i 0.588378 0.808586i \(-0.299767\pi\)
−0.491094 + 0.871106i \(0.663403\pi\)
\(674\) −6.01194 + 13.1643i −0.231571 + 0.507071i
\(675\) 5.08429 5.86759i 0.195695 0.225844i
\(676\) −0.921081 + 6.40626i −0.0354262 + 0.246395i
\(677\) −7.47747 16.3734i −0.287383 0.629280i 0.709791 0.704412i \(-0.248789\pi\)
−0.997174 + 0.0751323i \(0.976062\pi\)
\(678\) −11.6209 3.41219i −0.446296 0.131044i
\(679\) −54.9837 16.1447i −2.11008 0.619576i
\(680\) −0.877131 1.92065i −0.0336364 0.0736535i
\(681\) 3.87610 26.9588i 0.148532 1.03307i
\(682\) −14.2159 + 16.4060i −0.544353 + 0.628217i
\(683\) 11.0487 24.1933i 0.422766 0.925729i −0.571679 0.820477i \(-0.693708\pi\)
0.994446 0.105252i \(-0.0335649\pi\)
\(684\) −5.44471 3.49910i −0.208184 0.133791i
\(685\) 3.85043 + 26.7803i 0.147117 + 1.02322i
\(686\) 5.93566 3.81461i 0.226624 0.145643i
\(687\) 17.5718 + 20.2789i 0.670404 + 0.773688i
\(688\) 0 0
\(689\) −1.41641 −0.0539608
\(690\) 0 0
\(691\) 7.05573 0.268413 0.134206 0.990953i \(-0.457152\pi\)
0.134206 + 0.990953i \(0.457152\pi\)
\(692\) 35.6208 10.4592i 1.35410 0.397600i
\(693\) 22.1923 + 25.6113i 0.843015 + 0.972891i
\(694\) −5.14128 + 3.30410i −0.195160 + 0.125422i
\(695\) −1.88369 13.1013i −0.0714524 0.496962i
\(696\) −12.6188 8.10961i −0.478314 0.307394i
\(697\) 1.10188 2.41278i 0.0417366 0.0913904i
\(698\) −9.88196 + 11.4044i −0.374038 + 0.431663i
\(699\) −2.07733 + 14.4482i −0.0785720 + 0.546480i
\(700\) −7.55239 16.5374i −0.285453 0.625056i
\(701\) −3.66494 1.07612i −0.138423 0.0406446i 0.211787 0.977316i \(-0.432072\pi\)
−0.350210 + 0.936671i \(0.613890\pi\)
\(702\) −3.97796 1.16803i −0.150138 0.0440846i
\(703\) 1.02696 + 2.24873i 0.0387326 + 0.0848126i
\(704\) 0.175911 1.22349i 0.00662989 0.0461119i
\(705\) 4.04726 4.67079i 0.152429 0.175912i
\(706\) 2.40327 5.26242i 0.0904481 0.198054i
\(707\) −12.1747 7.82423i −0.457878 0.294260i
\(708\) −3.33250 23.1781i −0.125243 0.871085i
\(709\) 35.3906 22.7442i 1.32912 0.854175i 0.333066 0.942904i \(-0.391917\pi\)
0.996056 + 0.0887288i \(0.0282805\pi\)
\(710\) 6.12133 + 7.06439i 0.229729 + 0.265122i
\(711\) −21.0019 + 6.16672i −0.787633 + 0.231270i
\(712\) −23.4164 −0.877567
\(713\) 0 0
\(714\) −3.41641 −0.127856
\(715\) 18.6299 5.47023i 0.696719 0.204575i
\(716\) 0.750404 + 0.866012i 0.0280439 + 0.0323644i
\(717\) −25.8913 + 16.6393i −0.966930 + 0.621408i
\(718\) −1.74930 12.1667i −0.0652835 0.454057i
\(719\) −2.57064 1.65205i −0.0958688 0.0616111i 0.491828 0.870692i \(-0.336329\pi\)
−0.587697 + 0.809081i \(0.699965\pi\)
\(720\) −1.90409 + 4.16938i −0.0709614 + 0.155384i
\(721\) 8.85887 10.2237i 0.329921 0.380750i
\(722\) 1.31933 9.17615i 0.0491004 0.341501i
\(723\) −21.4804 47.0354i −0.798863 1.74927i
\(724\) −25.8528 7.59108i −0.960813 0.282120i
\(725\) −9.99447 2.93464i −0.371185 0.108990i
\(726\) −9.42449 20.6367i −0.349775 0.765901i
\(727\) −3.94329 + 27.4262i −0.146248 + 1.01718i 0.776041 + 0.630682i \(0.217225\pi\)
−0.922290 + 0.386499i \(0.873684\pi\)
\(728\) −14.2159 + 16.4060i −0.526874 + 0.608046i
\(729\) −2.90791 + 6.36742i −0.107700 + 0.235831i
\(730\) −4.19520 2.69609i −0.155271 0.0997868i
\(731\) 0 0
\(732\) 21.1362 13.5834i 0.781215 0.502057i
\(733\) −20.4553 23.6066i −0.755533 0.871931i 0.239560 0.970882i \(-0.422997\pi\)
−0.995092 + 0.0989503i \(0.968452\pi\)
\(734\) −2.47894 + 0.727882i −0.0914993 + 0.0268666i
\(735\) 9.59675 0.353981
\(736\) 0 0
\(737\) 14.4721 0.533088
\(738\) 4.11795 1.20914i 0.151584 0.0445090i
\(739\) −17.5631 20.2689i −0.646071 0.745605i 0.334365 0.942444i \(-0.391478\pi\)
−0.980436 + 0.196838i \(0.936933\pi\)
\(740\) 2.07969 1.33654i 0.0764510 0.0491321i
\(741\) 1.90935 + 13.2798i 0.0701419 + 0.487847i
\(742\) 0.794372 + 0.510512i 0.0291623 + 0.0187415i
\(743\) −17.0838 + 37.4083i −0.626743 + 1.37238i 0.283769 + 0.958893i \(0.408415\pi\)
−0.910512 + 0.413483i \(0.864312\pi\)
\(744\) −21.9647 + 25.3486i −0.805265 + 0.929325i
\(745\) −4.20225 + 29.2273i −0.153959 + 1.07081i
\(746\) −1.97901 4.33342i −0.0724567 0.158658i
\(747\) −16.8179 4.93817i −0.615333 0.180678i
\(748\) −6.20997 1.82341i −0.227059 0.0666705i
\(749\) 18.0358 + 39.4930i 0.659015 + 1.44304i
\(750\) 2.05960 14.3248i 0.0752059 0.523069i
\(751\) 0.236195 0.272584i 0.00861888 0.00994672i −0.751424 0.659820i \(-0.770633\pi\)
0.760043 + 0.649873i \(0.225178\pi\)
\(752\) −1.72227 + 3.77124i −0.0628047 + 0.137523i
\(753\) 4.31110 + 2.77057i 0.157105 + 0.100965i
\(754\) 0.791599 + 5.50569i 0.0288283 + 0.200505i
\(755\) −4.40486 + 2.83083i −0.160309 + 0.103025i
\(756\) −7.66724 8.84847i −0.278855 0.321816i
\(757\) 1.53207 0.449856i 0.0556840 0.0163503i −0.253772 0.967264i \(-0.581671\pi\)
0.309456 + 0.950914i \(0.399853\pi\)
\(758\) −15.0557 −0.546849
\(759\) 0 0
\(760\) 5.52786 0.200517
\(761\) −44.4293 + 13.0456i −1.61056 + 0.472903i −0.958459 0.285229i \(-0.907930\pi\)
−0.652101 + 0.758132i \(0.726112\pi\)
\(762\) −6.59904 7.61570i −0.239058 0.275888i
\(763\) 0 0
\(764\) 6.02855 + 41.9295i 0.218105 + 1.51696i
\(765\) 1.58874 + 1.02102i 0.0574412 + 0.0369152i
\(766\) −1.81149 + 3.96661i −0.0654519 + 0.143320i
\(767\) −12.7150 + 14.6739i −0.459114 + 0.529845i
\(768\) −2.08829 + 14.5244i −0.0753548 + 0.524104i
\(769\) 9.60631 + 21.0349i 0.346412 + 0.758537i 0.999999 + 0.00168529i \(0.000536444\pi\)
−0.653586 + 0.756852i \(0.726736\pi\)
\(770\) −12.4199 3.64682i −0.447583 0.131422i
\(771\) −16.0314 4.70725i −0.577357 0.169527i
\(772\) −6.68410 14.6361i −0.240566 0.526766i
\(773\) −0.786697 + 5.47160i −0.0282955 + 0.196800i −0.999066 0.0432100i \(-0.986242\pi\)
0.970770 + 0.240010i \(0.0771506\pi\)
\(774\) 0 0
\(775\) −9.67576 + 21.1870i −0.347564 + 0.761058i
\(776\) 33.3109 + 21.4076i 1.19579 + 0.768489i
\(777\) −1.27290 8.85323i −0.0456651 0.317608i
\(778\) −13.2725 + 8.52974i −0.475843 + 0.305806i
\(779\) 4.54753 + 5.24813i 0.162932 + 0.188034i
\(780\) 12.8729 3.77984i 0.460926 0.135340i
\(781\) 64.0689 2.29256
\(782\) 0 0
\(783\) −6.70820 −0.239732
\(784\) −6.17692 + 1.81371i −0.220604 + 0.0647753i
\(785\) 9.24104 + 10.6647i 0.329827 + 0.380640i
\(786\) −21.7499 + 13.9778i −0.775792 + 0.498571i
\(787\) 3.49861 + 24.3334i 0.124712 + 0.867391i 0.952106 + 0.305769i \(0.0989134\pi\)
−0.827394 + 0.561622i \(0.810177\pi\)
\(788\) 2.00384 + 1.28779i 0.0713837 + 0.0458755i
\(789\) 2.73492 5.98865i 0.0973658 0.213201i
\(790\) 5.47508 6.31858i 0.194795 0.224805i
\(791\) −4.03615 + 28.0720i −0.143509 + 0.998126i
\(792\) −9.72753 21.3003i −0.345653 0.756874i
\(793\) −19.9889 5.86928i −0.709828 0.208424i
\(794\) 14.4789 + 4.25139i 0.513837 + 0.150876i
\(795\) −0.542097 1.18703i −0.0192262 0.0420995i
\(796\) 2.83043 19.6861i 0.100322 0.697756i
\(797\) −22.5015 + 25.9681i −0.797043 + 0.919836i −0.998215 0.0597196i \(-0.980979\pi\)
0.201173 + 0.979556i \(0.435525\pi\)
\(798\) 3.71558 8.13600i 0.131530 0.288011i
\(799\) 1.43703 + 0.923525i 0.0508386 + 0.0326720i
\(800\) 2.77608 + 19.3080i 0.0981491 + 0.682642i
\(801\) 17.6194 11.3233i 0.622552 0.400090i
\(802\) −5.73915 6.62334i −0.202657 0.233878i
\(803\) −32.7958 + 9.62971i −1.15734 + 0.339825i
\(804\) 10.0000 0.352673
\(805\) 0 0
\(806\) 12.4377 0.438099
\(807\) −17.0444 + 5.00468i −0.599990 + 0.176173i
\(808\) 6.54861 + 7.55750i 0.230379 + 0.265872i
\(809\) 10.1888 6.54795i 0.358219 0.230214i −0.349135 0.937072i \(-0.613525\pi\)
0.707355 + 0.706859i \(0.249888\pi\)
\(810\) −1.19591 8.31772i −0.0420199 0.292255i
\(811\) −20.4824 13.1633i −0.719236 0.462225i 0.129135 0.991627i \(-0.458780\pi\)
−0.848371 + 0.529402i \(0.822416\pi\)
\(812\) −6.52542 + 14.2887i −0.228997 + 0.501435i
\(813\) 11.7145 13.5193i 0.410846 0.474141i
\(814\) −0.569259 + 3.95929i −0.0199525 + 0.138773i
\(815\) 2.95967 + 6.48077i 0.103673 + 0.227012i
\(816\) −3.03889 0.892299i −0.106382 0.0312367i
\(817\) 0 0
\(818\) 5.48415 + 12.0086i 0.191749 + 0.419872i
\(819\) 2.76324 19.2188i 0.0965555 0.671558i
\(820\) 4.54753 5.24813i 0.158807 0.183273i
\(821\) −16.1780 + 35.4250i −0.564617 + 1.23634i 0.384997 + 0.922918i \(0.374203\pi\)
−0.949614 + 0.313422i \(0.898525\pi\)
\(822\) −25.4473 16.3540i −0.887575 0.570410i
\(823\) 5.62727 + 39.1385i 0.196154 + 1.36428i 0.815314 + 0.579019i \(0.196564\pi\)
−0.619160 + 0.785265i \(0.712527\pi\)
\(824\) −7.86364 + 5.05365i −0.273943 + 0.176052i
\(825\) −26.6217 30.7231i −0.926849 1.06964i
\(826\) 12.4199 3.64682i 0.432145 0.126889i
\(827\) −1.52786 −0.0531290 −0.0265645 0.999647i \(-0.508457\pi\)
−0.0265645 + 0.999647i \(0.508457\pi\)
\(828\) 0 0
\(829\) 40.2492 1.39791 0.698957 0.715164i \(-0.253648\pi\)
0.698957 + 0.715164i \(0.253648\pi\)
\(830\) 6.42385 1.88621i 0.222975 0.0654714i
\(831\) 22.6561 + 26.1465i 0.785930 + 0.907011i
\(832\) −0.595779 + 0.382884i −0.0206549 + 0.0132741i
\(833\) 0.377487 + 2.62548i 0.0130791 + 0.0909674i
\(834\) 12.4492 + 8.00060i 0.431080 + 0.277038i
\(835\) −0.784529 + 1.71788i −0.0271498 + 0.0594497i
\(836\) 11.0961 12.8056i 0.383768 0.442892i
\(837\) −2.13472 + 14.8473i −0.0737868 + 0.513199i
\(838\) 1.17679 + 2.57682i 0.0406517 + 0.0890148i
\(839\) −39.4588 11.5861i −1.36227 0.399998i −0.482706 0.875782i \(-0.660346\pi\)
−0.879562 + 0.475784i \(0.842164\pi\)
\(840\) −19.1899 5.63465i −0.662113 0.194414i
\(841\) −8.30830 18.1926i −0.286493 0.627332i
\(842\) −0.905219 + 6.29594i −0.0311959 + 0.216972i
\(843\) 12.8331 14.8102i 0.441997 0.510092i
\(844\) 15.7395 34.4646i 0.541775 1.18632i
\(845\) 4.15939 + 2.67308i 0.143087 + 0.0919566i
\(846\) 0.393349 + 2.73580i 0.0135236 + 0.0940587i
\(847\) −44.6913 + 28.7213i −1.53561 + 0.986877i
\(848\) 0.573257 + 0.661574i 0.0196857 + 0.0227186i
\(849\) −59.4477 + 17.4554i −2.04024 + 0.599069i
\(850\) 1.63932 0.0562282
\(851\) 0 0
\(852\) 44.2705 1.51668
\(853\) 10.1549 2.98174i 0.347697 0.102093i −0.103221 0.994658i \(-0.532915\pi\)
0.450918 + 0.892566i \(0.351097\pi\)
\(854\) 9.09506 + 10.4963i 0.311227 + 0.359175i
\(855\) −4.15939 + 2.67308i −0.142248 + 0.0914172i
\(856\) −4.26945 29.6946i −0.145927 1.01494i
\(857\) 1.23844 + 0.795897i 0.0423043 + 0.0271873i 0.561622 0.827394i \(-0.310178\pi\)
−0.519318 + 0.854581i \(0.673814\pi\)
\(858\) −9.01791 + 19.7465i −0.307867 + 0.674134i
\(859\) 10.9415 12.6272i 0.373321 0.430835i −0.537738 0.843112i \(-0.680721\pi\)
0.911059 + 0.412277i \(0.135266\pi\)
\(860\) 0 0
\(861\) −10.4371 22.8542i −0.355697 0.778867i
\(862\) −10.3940 3.05196i −0.354021 0.103950i
\(863\) 20.6685 + 6.06881i 0.703562 + 0.206585i 0.613896 0.789387i \(-0.289602\pi\)
0.0896669 + 0.995972i \(0.471420\pi\)
\(864\) 5.21857 + 11.4271i 0.177539 + 0.388757i
\(865\) 4.03615 28.0720i 0.137233 0.954477i
\(866\) 7.21208 8.32319i 0.245077 0.282833i
\(867\) 15.2491 33.3910i 0.517888 1.13402i
\(868\) 29.5487 + 18.9898i 1.00295 + 0.644556i
\(869\) −8.15534 56.7217i −0.276651 1.92415i
\(870\) −4.31110 + 2.77057i −0.146160 + 0.0939313i
\(871\) −5.42997 6.26652i −0.183988 0.212333i
\(872\) 0 0
\(873\) −35.4164 −1.19866
\(874\) 0 0
\(875\) −33.8885 −1.14564
\(876\) −22.6613 + 6.65397i −0.765656 + 0.224817i
\(877\) 23.8842 + 27.5638i 0.806511 + 0.930763i 0.998719 0.0505907i \(-0.0161104\pi\)
−0.192208 + 0.981354i \(0.561565\pi\)
\(878\) −9.72683 + 6.25105i −0.328265 + 0.210963i
\(879\) 0.486206 + 3.38163i 0.0163993 + 0.114060i
\(880\) −10.0950 6.48769i −0.340304 0.218700i
\(881\) −18.3532 + 40.1879i −0.618334 + 1.35396i 0.298391 + 0.954444i \(0.403550\pi\)
−0.916725 + 0.399519i \(0.869177\pi\)
\(882\) −2.81053 + 3.24352i −0.0946354 + 0.109215i
\(883\) −0.569259 + 3.95929i −0.0191571 + 0.133241i −0.997155 0.0753718i \(-0.975986\pi\)
0.977998 + 0.208612i \(0.0668947\pi\)
\(884\) 1.54044 + 3.37310i 0.0518107 + 0.113450i
\(885\) −17.1639 5.03979i −0.576959 0.169411i
\(886\) −22.6079 6.63827i −0.759526 0.223017i
\(887\) 9.58316 + 20.9842i 0.321771 + 0.704580i 0.999528 0.0307053i \(-0.00977532\pi\)
−0.677757 + 0.735286i \(0.737048\pi\)
\(888\) −0.879554 + 6.11743i −0.0295159 + 0.205288i
\(889\) −15.4526 + 17.8332i −0.518263 + 0.598107i
\(890\) −3.32332 + 7.27706i −0.111398 + 0.243927i
\(891\) −48.4535 31.1392i −1.62325 1.04320i
\(892\) 0.921081 + 6.40626i 0.0308401 + 0.214497i
\(893\) −3.76220 + 2.41782i −0.125897 + 0.0809092i
\(894\) −21.6190 24.9497i −0.723048 0.834442i
\(895\) 0.839929 0.246625i 0.0280757 0.00824378i
\(896\) 36.8328 1.23050
\(897\) 0 0
\(898\) −9.23607 −0.308212
\(899\) 19.3094 5.66976i 0.644005 0.189097i
\(900\) −7.35806 8.49165i −0.245269 0.283055i
\(901\) 0.303423 0.194998i 0.0101085 0.00649633i
\(902\) 1.59906 + 11.1217i 0.0532428 + 0.370312i
\(903\) 0 0
\(904\) 8.14078 17.8258i 0.270758 0.592878i
\(905\) −13.4794 + 15.5560i −0.448070 + 0.517100i
\(906\) 0.833126 5.79452i 0.0276787 0.192510i
\(907\) 16.7201 + 36.6120i 0.555183 + 1.21568i 0.954319 + 0.298789i \(0.0965828\pi\)
−0.399136 + 0.916892i \(0.630690\pi\)
\(908\) 18.9099 + 5.55244i 0.627547 + 0.184264i
\(909\) −8.58197 2.51989i −0.284646 0.0835796i
\(910\) 3.08089 + 6.74620i 0.102130 + 0.223634i
\(911\) 4.45516 30.9863i 0.147606 1.02662i −0.772517 0.634994i \(-0.781003\pi\)
0.920123 0.391629i \(-0.128088\pi\)
\(912\) 5.42997 6.26652i 0.179804 0.207505i
\(913\) 19.0628 41.7417i 0.630886 1.38145i
\(914\) 2.66440 + 1.71231i 0.0881307 + 0.0566382i
\(915\) −2.73152 18.9981i −0.0903012 0.628059i
\(916\) −16.3341 + 10.4973i −0.539695 + 0.346841i
\(917\) 39.6459 + 45.7538i 1.30922 + 1.51093i
\(918\) 1.01296 0.297433i 0.0334328 0.00981675i
\(919\) −41.1246 −1.35658 −0.678288 0.734796i \(-0.737278\pi\)
−0.678288 + 0.734796i \(0.737278\pi\)
\(920\) 0 0
\(921\) −21.3050 −0.702022
\(922\) 0.872976 0.256329i 0.0287499 0.00844174i
\(923\) −24.0388 27.7422i −0.791245 0.913146i
\(924\) −51.5730 + 33.1440i −1.69663 + 1.09036i
\(925\) 0.610786 + 4.24811i 0.0200825 + 0.139677i
\(926\) −10.3985 6.68269i −0.341715 0.219607i
\(927\) 3.47315 7.60514i 0.114073 0.249786i
\(928\) 11.0371 12.7375i 0.362310 0.418128i
\(929\) 3.42349 23.8109i 0.112321 0.781209i −0.853331 0.521370i \(-0.825421\pi\)
0.965652 0.259840i \(-0.0836697\pi\)
\(930\) 4.76023 + 10.4235i 0.156094 + 0.341799i
\(931\) −6.66298 1.95643i −0.218370 0.0641193i
\(932\) −10.1345 2.97575i −0.331965 0.0974738i
\(933\) −12.2432 26.8088i −0.400823 0.877681i
\(934\) −1.14832 + 7.98675i −0.0375742 + 0.261335i
\(935\) −3.23781 + 3.73663i −0.105888 + 0.122201i
\(936\) −5.57338 + 12.2040i −0.182172 + 0.398900i
\(937\) −28.7543 18.4793i −0.939363 0.603692i −0.0211489 0.999776i \(-0.506732\pi\)
−0.918214 + 0.396084i \(0.870369\pi\)
\(938\) 0.786697 + 5.47160i 0.0256866 + 0.178654i
\(939\) 45.8249 29.4499i 1.49544 0.961060i
\(940\) 2.92863 + 3.37981i 0.0955213 + 0.110237i
\(941\) 6.38300 1.87422i 0.208080 0.0610978i −0.176031 0.984385i \(-0.556326\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(942\) −15.7771 −0.514045
\(943\) 0 0
\(944\) 12.0000 0.390567
\(945\) −8.58197 + 2.51989i −0.279171 + 0.0819721i
\(946\) 0 0
\(947\) −9.10208 + 5.84955i −0.295778 + 0.190085i −0.680110 0.733110i \(-0.738068\pi\)
0.384332 + 0.923195i \(0.374432\pi\)
\(948\) −5.63520 39.1937i −0.183023 1.27295i
\(949\) 16.4748 + 10.5877i 0.534794 + 0.343691i
\(950\) −1.78288 + 3.90396i −0.0578442 + 0.126661i
\(951\) 37.2176 42.9514i 1.20686 1.39279i
\(952\) 0.786697 5.47160i 0.0254970 0.177336i
\(953\) −8.50443 18.6221i −0.275486 0.603229i 0.720429 0.693529i \(-0.243945\pi\)
−0.995915 + 0.0902993i \(0.971218\pi\)
\(954\) 0.559953 + 0.164417i 0.0181291 + 0.00532319i
\(955\) 31.0498 + 9.11706i 1.00475 + 0.295021i
\(956\) −9.25150 20.2580i −0.299215 0.655190i
\(957\) −4.99875 + 34.7671i −0.161587 + 1.12386i
\(958\) 12.7880 14.7582i 0.413163 0.476815i
\(959\) −29.4250 + 64.4318i −0.950183 + 2.08061i
\(960\) −0.548898 0.352755i −0.0177156 0.0113851i
\(961\) −1.99241 13.8575i −0.0642712 0.447016i
\(962\) 1.92798 1.23904i 0.0621606 0.0399482i
\(963\) 17.5718 + 20.2789i 0.566242 + 0.653478i
\(964\) 35.9008 10.5414i 1.15629 0.339516i
\(965\) −12.2918 −0.395687
\(966\) 0 0
\(967\) 27.5410 0.885659 0.442830 0.896606i \(-0.353975\pi\)
0.442830 + 0.896606i \(0.353975\pi\)
\(968\) 35.2213 10.3419i 1.13205 0.332401i
\(969\) −2.23727 2.58195i −0.0718715 0.0829441i
\(970\) 11.3804 7.31372i 0.365401 0.234829i
\(971\) 2.34423 + 16.3045i 0.0752299 + 0.523235i 0.992237 + 0.124364i \(0.0396890\pi\)
−0.917007 + 0.398872i \(0.869402\pi\)
\(972\) −24.3495 15.6485i −0.781010 0.501924i
\(973\) 14.3952 31.5210i 0.461488 1.01052i
\(974\) 5.95280 6.86989i 0.190740 0.220126i
\(975\) −3.31477 + 23.0547i −0.106158 + 0.738342i
\(976\) 5.34863 + 11.7119i 0.171205 + 0.374888i
\(977\) −22.4018 6.57776i −0.716697 0.210441i −0.0970020 0.995284i \(-0.530925\pi\)
−0.619695 + 0.784843i \(0.712744\pi\)
\(978\) −7.64290 2.24416i −0.244393 0.0717602i
\(979\) 22.7784 + 49.8777i 0.728000 + 1.59410i
\(980\) −0.988273 + 6.87359i −0.0315692 + 0.219569i
\(981\) 0 0
\(982\) 2.14315 4.69284i 0.0683906 0.149755i
\(983\) 34.0473 + 21.8809i 1.08594 + 0.697892i 0.955922 0.293620i \(-0.0948599\pi\)
0.130019 + 0.991512i \(0.458496\pi\)
\(984\) 2.47068 + 17.1840i 0.0787625 + 0.547805i
\(985\) 1.53080 0.983783i 0.0487752 0.0313459i
\(986\) −0.927550 1.07045i −0.0295392 0.0340901i
\(987\) 15.5249 4.55853i 0.494164 0.145100i
\(988\) −9.70820 −0.308859
\(989\) 0 0
\(990\) −8.00000 −0.254257
\(991\) −23.0278 + 6.76158i −0.731503 + 0.214789i −0.626212 0.779653i \(-0.715396\pi\)
−0.105291 + 0.994441i \(0.533577\pi\)
\(992\) −24.6797 28.4819i −0.783581 0.904300i
\(993\) 36.9683 23.7581i 1.17315 0.753939i
\(994\) 3.48275 + 24.2230i 0.110466 + 0.768308i
\(995\) −12.7816 8.21422i −0.405203 0.260408i
\(996\) 13.1721 28.8428i 0.417373 0.913919i
\(997\) −11.0232 + 12.7214i −0.349107 + 0.402891i −0.902961 0.429723i \(-0.858611\pi\)
0.553854 + 0.832614i \(0.313157\pi\)
\(998\) −1.69682 + 11.8016i −0.0537118 + 0.373574i
\(999\) 1.14818 + 2.51416i 0.0363268 + 0.0795445i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 529.2.c.n.170.1 20
23.2 even 11 inner 529.2.c.n.266.1 20
23.3 even 11 inner 529.2.c.n.334.2 20
23.4 even 11 inner 529.2.c.n.466.2 20
23.5 odd 22 529.2.c.o.501.1 20
23.6 even 11 inner 529.2.c.n.255.2 20
23.7 odd 22 529.2.c.o.487.2 20
23.8 even 11 529.2.a.a.1.2 2
23.9 even 11 inner 529.2.c.n.177.1 20
23.10 odd 22 529.2.c.o.118.1 20
23.11 odd 22 529.2.c.o.399.1 20
23.12 even 11 inner 529.2.c.n.399.1 20
23.13 even 11 inner 529.2.c.n.118.1 20
23.14 odd 22 529.2.c.o.177.1 20
23.15 odd 22 23.2.a.a.1.2 2
23.16 even 11 inner 529.2.c.n.487.2 20
23.17 odd 22 529.2.c.o.255.2 20
23.18 even 11 inner 529.2.c.n.501.1 20
23.19 odd 22 529.2.c.o.466.2 20
23.20 odd 22 529.2.c.o.334.2 20
23.21 odd 22 529.2.c.o.266.1 20
23.22 odd 2 529.2.c.o.170.1 20
69.8 odd 22 4761.2.a.w.1.1 2
69.38 even 22 207.2.a.d.1.1 2
92.15 even 22 368.2.a.h.1.2 2
92.31 odd 22 8464.2.a.bb.1.2 2
115.38 even 44 575.2.b.d.24.2 4
115.84 odd 22 575.2.a.f.1.1 2
115.107 even 44 575.2.b.d.24.3 4
161.153 even 22 1127.2.a.c.1.2 2
184.61 odd 22 1472.2.a.t.1.2 2
184.107 even 22 1472.2.a.s.1.1 2
253.153 even 22 2783.2.a.c.1.1 2
276.107 odd 22 3312.2.a.ba.1.1 2
299.38 odd 22 3887.2.a.i.1.1 2
345.314 even 22 5175.2.a.be.1.2 2
391.84 odd 22 6647.2.a.b.1.2 2
437.360 even 22 8303.2.a.e.1.1 2
460.199 even 22 9200.2.a.bt.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.2.a.a.1.2 2 23.15 odd 22
207.2.a.d.1.1 2 69.38 even 22
368.2.a.h.1.2 2 92.15 even 22
529.2.a.a.1.2 2 23.8 even 11
529.2.c.n.118.1 20 23.13 even 11 inner
529.2.c.n.170.1 20 1.1 even 1 trivial
529.2.c.n.177.1 20 23.9 even 11 inner
529.2.c.n.255.2 20 23.6 even 11 inner
529.2.c.n.266.1 20 23.2 even 11 inner
529.2.c.n.334.2 20 23.3 even 11 inner
529.2.c.n.399.1 20 23.12 even 11 inner
529.2.c.n.466.2 20 23.4 even 11 inner
529.2.c.n.487.2 20 23.16 even 11 inner
529.2.c.n.501.1 20 23.18 even 11 inner
529.2.c.o.118.1 20 23.10 odd 22
529.2.c.o.170.1 20 23.22 odd 2
529.2.c.o.177.1 20 23.14 odd 22
529.2.c.o.255.2 20 23.17 odd 22
529.2.c.o.266.1 20 23.21 odd 22
529.2.c.o.334.2 20 23.20 odd 22
529.2.c.o.399.1 20 23.11 odd 22
529.2.c.o.466.2 20 23.19 odd 22
529.2.c.o.487.2 20 23.7 odd 22
529.2.c.o.501.1 20 23.5 odd 22
575.2.a.f.1.1 2 115.84 odd 22
575.2.b.d.24.2 4 115.38 even 44
575.2.b.d.24.3 4 115.107 even 44
1127.2.a.c.1.2 2 161.153 even 22
1472.2.a.s.1.1 2 184.107 even 22
1472.2.a.t.1.2 2 184.61 odd 22
2783.2.a.c.1.1 2 253.153 even 22
3312.2.a.ba.1.1 2 276.107 odd 22
3887.2.a.i.1.1 2 299.38 odd 22
4761.2.a.w.1.1 2 69.8 odd 22
5175.2.a.be.1.2 2 345.314 even 22
6647.2.a.b.1.2 2 391.84 odd 22
8303.2.a.e.1.1 2 437.360 even 22
8464.2.a.bb.1.2 2 92.31 odd 22
9200.2.a.bt.1.1 2 460.199 even 22