Properties

Label 150.3.b.a.149.4
Level $150$
Weight $3$
Character 150.149
Analytic conductor $4.087$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,3,Mod(149,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.149");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 150.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.08720396540\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 149.4
Root \(-0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 150.149
Dual form 150.3.b.a.149.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421 q^{2} +(2.82843 + 1.00000i) q^{3} +2.00000 q^{4} +(4.00000 + 1.41421i) q^{6} -7.00000i q^{7} +2.82843 q^{8} +(7.00000 + 5.65685i) q^{9} -8.48528i q^{11} +(5.65685 + 2.00000i) q^{12} +25.0000i q^{13} -9.89949i q^{14} +4.00000 q^{16} -25.4558 q^{17} +(9.89949 + 8.00000i) q^{18} +7.00000 q^{19} +(7.00000 - 19.7990i) q^{21} -12.0000i q^{22} -25.4558 q^{23} +(8.00000 + 2.82843i) q^{24} +35.3553i q^{26} +(14.1421 + 23.0000i) q^{27} -14.0000i q^{28} -42.4264i q^{29} -7.00000 q^{31} +5.65685 q^{32} +(8.48528 - 24.0000i) q^{33} -36.0000 q^{34} +(14.0000 + 11.3137i) q^{36} +2.00000i q^{37} +9.89949 q^{38} +(-25.0000 + 70.7107i) q^{39} +8.48528i q^{41} +(9.89949 - 28.0000i) q^{42} -41.0000i q^{43} -16.9706i q^{44} -36.0000 q^{46} +(11.3137 + 4.00000i) q^{48} +(-72.0000 - 25.4558i) q^{51} +50.0000i q^{52} -59.3970 q^{53} +(20.0000 + 32.5269i) q^{54} -19.7990i q^{56} +(19.7990 + 7.00000i) q^{57} -60.0000i q^{58} +33.9411i q^{59} -1.00000 q^{61} -9.89949 q^{62} +(39.5980 - 49.0000i) q^{63} +8.00000 q^{64} +(12.0000 - 33.9411i) q^{66} +17.0000i q^{67} -50.9117 q^{68} +(-72.0000 - 25.4558i) q^{69} +42.4264i q^{71} +(19.7990 + 16.0000i) q^{72} +70.0000i q^{73} +2.82843i q^{74} +14.0000 q^{76} -59.3970 q^{77} +(-35.3553 + 100.000i) q^{78} +58.0000 q^{79} +(17.0000 + 79.1960i) q^{81} +12.0000i q^{82} +118.794 q^{83} +(14.0000 - 39.5980i) q^{84} -57.9828i q^{86} +(42.4264 - 120.000i) q^{87} -24.0000i q^{88} -135.765i q^{89} +175.000 q^{91} -50.9117 q^{92} +(-19.7990 - 7.00000i) q^{93} +(16.0000 + 5.65685i) q^{96} -49.0000i q^{97} +(48.0000 - 59.3970i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{4} + 16 q^{6} + 28 q^{9} + 16 q^{16} + 28 q^{19} + 28 q^{21} + 32 q^{24} - 28 q^{31} - 144 q^{34} + 56 q^{36} - 100 q^{39} - 144 q^{46} - 288 q^{51} + 80 q^{54} - 4 q^{61} + 32 q^{64} + 48 q^{66}+ \cdots + 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421 0.707107
\(3\) 2.82843 + 1.00000i 0.942809 + 0.333333i
\(4\) 2.00000 0.500000
\(5\) 0 0
\(6\) 4.00000 + 1.41421i 0.666667 + 0.235702i
\(7\) 7.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(8\) 2.82843 0.353553
\(9\) 7.00000 + 5.65685i 0.777778 + 0.628539i
\(10\) 0 0
\(11\) 8.48528i 0.771389i −0.922627 0.385695i \(-0.873962\pi\)
0.922627 0.385695i \(-0.126038\pi\)
\(12\) 5.65685 + 2.00000i 0.471405 + 0.166667i
\(13\) 25.0000i 1.92308i 0.274670 + 0.961538i \(0.411431\pi\)
−0.274670 + 0.961538i \(0.588569\pi\)
\(14\) 9.89949i 0.707107i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) −25.4558 −1.49740 −0.748701 0.662908i \(-0.769322\pi\)
−0.748701 + 0.662908i \(0.769322\pi\)
\(18\) 9.89949 + 8.00000i 0.549972 + 0.444444i
\(19\) 7.00000 0.368421 0.184211 0.982887i \(-0.441027\pi\)
0.184211 + 0.982887i \(0.441027\pi\)
\(20\) 0 0
\(21\) 7.00000 19.7990i 0.333333 0.942809i
\(22\) 12.0000i 0.545455i
\(23\) −25.4558 −1.10678 −0.553388 0.832924i \(-0.686665\pi\)
−0.553388 + 0.832924i \(0.686665\pi\)
\(24\) 8.00000 + 2.82843i 0.333333 + 0.117851i
\(25\) 0 0
\(26\) 35.3553i 1.35982i
\(27\) 14.1421 + 23.0000i 0.523783 + 0.851852i
\(28\) 14.0000i 0.500000i
\(29\) 42.4264i 1.46298i −0.681852 0.731490i \(-0.738825\pi\)
0.681852 0.731490i \(-0.261175\pi\)
\(30\) 0 0
\(31\) −7.00000 −0.225806 −0.112903 0.993606i \(-0.536015\pi\)
−0.112903 + 0.993606i \(0.536015\pi\)
\(32\) 5.65685 0.176777
\(33\) 8.48528 24.0000i 0.257130 0.727273i
\(34\) −36.0000 −1.05882
\(35\) 0 0
\(36\) 14.0000 + 11.3137i 0.388889 + 0.314270i
\(37\) 2.00000i 0.0540541i 0.999635 + 0.0270270i \(0.00860402\pi\)
−0.999635 + 0.0270270i \(0.991396\pi\)
\(38\) 9.89949 0.260513
\(39\) −25.0000 + 70.7107i −0.641026 + 1.81309i
\(40\) 0 0
\(41\) 8.48528i 0.206958i 0.994632 + 0.103479i \(0.0329975\pi\)
−0.994632 + 0.103479i \(0.967003\pi\)
\(42\) 9.89949 28.0000i 0.235702 0.666667i
\(43\) 41.0000i 0.953488i −0.879042 0.476744i \(-0.841817\pi\)
0.879042 0.476744i \(-0.158183\pi\)
\(44\) 16.9706i 0.385695i
\(45\) 0 0
\(46\) −36.0000 −0.782609
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 11.3137 + 4.00000i 0.235702 + 0.0833333i
\(49\) 0 0
\(50\) 0 0
\(51\) −72.0000 25.4558i −1.41176 0.499134i
\(52\) 50.0000i 0.961538i
\(53\) −59.3970 −1.12070 −0.560349 0.828257i \(-0.689333\pi\)
−0.560349 + 0.828257i \(0.689333\pi\)
\(54\) 20.0000 + 32.5269i 0.370370 + 0.602350i
\(55\) 0 0
\(56\) 19.7990i 0.353553i
\(57\) 19.7990 + 7.00000i 0.347351 + 0.122807i
\(58\) 60.0000i 1.03448i
\(59\) 33.9411i 0.575273i 0.957740 + 0.287637i \(0.0928695\pi\)
−0.957740 + 0.287637i \(0.907130\pi\)
\(60\) 0 0
\(61\) −1.00000 −0.0163934 −0.00819672 0.999966i \(-0.502609\pi\)
−0.00819672 + 0.999966i \(0.502609\pi\)
\(62\) −9.89949 −0.159669
\(63\) 39.5980 49.0000i 0.628539 0.777778i
\(64\) 8.00000 0.125000
\(65\) 0 0
\(66\) 12.0000 33.9411i 0.181818 0.514259i
\(67\) 17.0000i 0.253731i 0.991920 + 0.126866i \(0.0404917\pi\)
−0.991920 + 0.126866i \(0.959508\pi\)
\(68\) −50.9117 −0.748701
\(69\) −72.0000 25.4558i −1.04348 0.368925i
\(70\) 0 0
\(71\) 42.4264i 0.597555i 0.954323 + 0.298778i \(0.0965788\pi\)
−0.954323 + 0.298778i \(0.903421\pi\)
\(72\) 19.7990 + 16.0000i 0.274986 + 0.222222i
\(73\) 70.0000i 0.958904i 0.877568 + 0.479452i \(0.159165\pi\)
−0.877568 + 0.479452i \(0.840835\pi\)
\(74\) 2.82843i 0.0382220i
\(75\) 0 0
\(76\) 14.0000 0.184211
\(77\) −59.3970 −0.771389
\(78\) −35.3553 + 100.000i −0.453274 + 1.28205i
\(79\) 58.0000 0.734177 0.367089 0.930186i \(-0.380355\pi\)
0.367089 + 0.930186i \(0.380355\pi\)
\(80\) 0 0
\(81\) 17.0000 + 79.1960i 0.209877 + 0.977728i
\(82\) 12.0000i 0.146341i
\(83\) 118.794 1.43125 0.715626 0.698484i \(-0.246141\pi\)
0.715626 + 0.698484i \(0.246141\pi\)
\(84\) 14.0000 39.5980i 0.166667 0.471405i
\(85\) 0 0
\(86\) 57.9828i 0.674218i
\(87\) 42.4264 120.000i 0.487660 1.37931i
\(88\) 24.0000i 0.272727i
\(89\) 135.765i 1.52544i −0.646727 0.762722i \(-0.723863\pi\)
0.646727 0.762722i \(-0.276137\pi\)
\(90\) 0 0
\(91\) 175.000 1.92308
\(92\) −50.9117 −0.553388
\(93\) −19.7990 7.00000i −0.212892 0.0752688i
\(94\) 0 0
\(95\) 0 0
\(96\) 16.0000 + 5.65685i 0.166667 + 0.0589256i
\(97\) 49.0000i 0.505155i −0.967577 0.252577i \(-0.918722\pi\)
0.967577 0.252577i \(-0.0812782\pi\)
\(98\) 0 0
\(99\) 48.0000 59.3970i 0.484848 0.599969i
\(100\) 0 0
\(101\) 59.3970i 0.588089i 0.955792 + 0.294044i \(0.0950014\pi\)
−0.955792 + 0.294044i \(0.904999\pi\)
\(102\) −101.823 36.0000i −0.998268 0.352941i
\(103\) 154.000i 1.49515i 0.664180 + 0.747573i \(0.268781\pi\)
−0.664180 + 0.747573i \(0.731219\pi\)
\(104\) 70.7107i 0.679910i
\(105\) 0 0
\(106\) −84.0000 −0.792453
\(107\) 178.191 1.66534 0.832668 0.553773i \(-0.186812\pi\)
0.832668 + 0.553773i \(0.186812\pi\)
\(108\) 28.2843 + 46.0000i 0.261891 + 0.425926i
\(109\) 25.0000 0.229358 0.114679 0.993403i \(-0.463416\pi\)
0.114679 + 0.993403i \(0.463416\pi\)
\(110\) 0 0
\(111\) −2.00000 + 5.65685i −0.0180180 + 0.0509627i
\(112\) 28.0000i 0.250000i
\(113\) 16.9706 0.150182 0.0750910 0.997177i \(-0.476075\pi\)
0.0750910 + 0.997177i \(0.476075\pi\)
\(114\) 28.0000 + 9.89949i 0.245614 + 0.0868377i
\(115\) 0 0
\(116\) 84.8528i 0.731490i
\(117\) −141.421 + 175.000i −1.20873 + 1.49573i
\(118\) 48.0000i 0.406780i
\(119\) 178.191i 1.49740i
\(120\) 0 0
\(121\) 49.0000 0.404959
\(122\) −1.41421 −0.0115919
\(123\) −8.48528 + 24.0000i −0.0689860 + 0.195122i
\(124\) −14.0000 −0.112903
\(125\) 0 0
\(126\) 56.0000 69.2965i 0.444444 0.549972i
\(127\) 34.0000i 0.267717i −0.991000 0.133858i \(-0.957263\pi\)
0.991000 0.133858i \(-0.0427367\pi\)
\(128\) 11.3137 0.0883883
\(129\) 41.0000 115.966i 0.317829 0.898957i
\(130\) 0 0
\(131\) 195.161i 1.48978i −0.667186 0.744891i \(-0.732501\pi\)
0.667186 0.744891i \(-0.267499\pi\)
\(132\) 16.9706 48.0000i 0.128565 0.363636i
\(133\) 49.0000i 0.368421i
\(134\) 24.0416i 0.179415i
\(135\) 0 0
\(136\) −72.0000 −0.529412
\(137\) 118.794 0.867109 0.433555 0.901127i \(-0.357259\pi\)
0.433555 + 0.901127i \(0.357259\pi\)
\(138\) −101.823 36.0000i −0.737851 0.260870i
\(139\) 154.000 1.10791 0.553957 0.832545i \(-0.313117\pi\)
0.553957 + 0.832545i \(0.313117\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 60.0000i 0.422535i
\(143\) 212.132 1.48344
\(144\) 28.0000 + 22.6274i 0.194444 + 0.157135i
\(145\) 0 0
\(146\) 98.9949i 0.678048i
\(147\) 0 0
\(148\) 4.00000i 0.0270270i
\(149\) 152.735i 1.02507i 0.858667 + 0.512534i \(0.171293\pi\)
−0.858667 + 0.512534i \(0.828707\pi\)
\(150\) 0 0
\(151\) −199.000 −1.31788 −0.658940 0.752195i \(-0.728995\pi\)
−0.658940 + 0.752195i \(0.728995\pi\)
\(152\) 19.7990 0.130257
\(153\) −178.191 144.000i −1.16465 0.941176i
\(154\) −84.0000 −0.545455
\(155\) 0 0
\(156\) −50.0000 + 141.421i −0.320513 + 0.906547i
\(157\) 145.000i 0.923567i −0.886993 0.461783i \(-0.847210\pi\)
0.886993 0.461783i \(-0.152790\pi\)
\(158\) 82.0244 0.519142
\(159\) −168.000 59.3970i −1.05660 0.373566i
\(160\) 0 0
\(161\) 178.191i 1.10678i
\(162\) 24.0416 + 112.000i 0.148405 + 0.691358i
\(163\) 161.000i 0.987730i −0.869539 0.493865i \(-0.835584\pi\)
0.869539 0.493865i \(-0.164416\pi\)
\(164\) 16.9706i 0.103479i
\(165\) 0 0
\(166\) 168.000 1.01205
\(167\) −110.309 −0.660531 −0.330265 0.943888i \(-0.607138\pi\)
−0.330265 + 0.943888i \(0.607138\pi\)
\(168\) 19.7990 56.0000i 0.117851 0.333333i
\(169\) −456.000 −2.69822
\(170\) 0 0
\(171\) 49.0000 + 39.5980i 0.286550 + 0.231567i
\(172\) 82.0000i 0.476744i
\(173\) −178.191 −1.03001 −0.515003 0.857189i \(-0.672209\pi\)
−0.515003 + 0.857189i \(0.672209\pi\)
\(174\) 60.0000 169.706i 0.344828 0.975320i
\(175\) 0 0
\(176\) 33.9411i 0.192847i
\(177\) −33.9411 + 96.0000i −0.191758 + 0.542373i
\(178\) 192.000i 1.07865i
\(179\) 118.794i 0.663653i 0.943340 + 0.331827i \(0.107665\pi\)
−0.943340 + 0.331827i \(0.892335\pi\)
\(180\) 0 0
\(181\) −217.000 −1.19890 −0.599448 0.800414i \(-0.704613\pi\)
−0.599448 + 0.800414i \(0.704613\pi\)
\(182\) 247.487 1.35982
\(183\) −2.82843 1.00000i −0.0154559 0.00546448i
\(184\) −72.0000 −0.391304
\(185\) 0 0
\(186\) −28.0000 9.89949i −0.150538 0.0532231i
\(187\) 216.000i 1.15508i
\(188\) 0 0
\(189\) 161.000 98.9949i 0.851852 0.523783i
\(190\) 0 0
\(191\) 59.3970i 0.310979i −0.987838 0.155489i \(-0.950305\pi\)
0.987838 0.155489i \(-0.0496955\pi\)
\(192\) 22.6274 + 8.00000i 0.117851 + 0.0416667i
\(193\) 25.0000i 0.129534i 0.997900 + 0.0647668i \(0.0206304\pi\)
−0.997900 + 0.0647668i \(0.979370\pi\)
\(194\) 69.2965i 0.357198i
\(195\) 0 0
\(196\) 0 0
\(197\) −135.765 −0.689160 −0.344580 0.938757i \(-0.611979\pi\)
−0.344580 + 0.938757i \(0.611979\pi\)
\(198\) 67.8823 84.0000i 0.342840 0.424242i
\(199\) 103.000 0.517588 0.258794 0.965933i \(-0.416675\pi\)
0.258794 + 0.965933i \(0.416675\pi\)
\(200\) 0 0
\(201\) −17.0000 + 48.0833i −0.0845771 + 0.239220i
\(202\) 84.0000i 0.415842i
\(203\) −296.985 −1.46298
\(204\) −144.000 50.9117i −0.705882 0.249567i
\(205\) 0 0
\(206\) 217.789i 1.05723i
\(207\) −178.191 144.000i −0.860826 0.695652i
\(208\) 100.000i 0.480769i
\(209\) 59.3970i 0.284196i
\(210\) 0 0
\(211\) −7.00000 −0.0331754 −0.0165877 0.999862i \(-0.505280\pi\)
−0.0165877 + 0.999862i \(0.505280\pi\)
\(212\) −118.794 −0.560349
\(213\) −42.4264 + 120.000i −0.199185 + 0.563380i
\(214\) 252.000 1.17757
\(215\) 0 0
\(216\) 40.0000 + 65.0538i 0.185185 + 0.301175i
\(217\) 49.0000i 0.225806i
\(218\) 35.3553 0.162180
\(219\) −70.0000 + 197.990i −0.319635 + 0.904063i
\(220\) 0 0
\(221\) 636.396i 2.87962i
\(222\) −2.82843 + 8.00000i −0.0127407 + 0.0360360i
\(223\) 161.000i 0.721973i −0.932571 0.360987i \(-0.882440\pi\)
0.932571 0.360987i \(-0.117560\pi\)
\(224\) 39.5980i 0.176777i
\(225\) 0 0
\(226\) 24.0000 0.106195
\(227\) 59.3970 0.261661 0.130830 0.991405i \(-0.458236\pi\)
0.130830 + 0.991405i \(0.458236\pi\)
\(228\) 39.5980 + 14.0000i 0.173675 + 0.0614035i
\(229\) 97.0000 0.423581 0.211790 0.977315i \(-0.432071\pi\)
0.211790 + 0.977315i \(0.432071\pi\)
\(230\) 0 0
\(231\) −168.000 59.3970i −0.727273 0.257130i
\(232\) 120.000i 0.517241i
\(233\) 263.044 1.12894 0.564472 0.825453i \(-0.309080\pi\)
0.564472 + 0.825453i \(0.309080\pi\)
\(234\) −200.000 + 247.487i −0.854701 + 1.05764i
\(235\) 0 0
\(236\) 67.8823i 0.287637i
\(237\) 164.049 + 58.0000i 0.692189 + 0.244726i
\(238\) 252.000i 1.05882i
\(239\) 59.3970i 0.248523i −0.992250 0.124261i \(-0.960344\pi\)
0.992250 0.124261i \(-0.0396562\pi\)
\(240\) 0 0
\(241\) 119.000 0.493776 0.246888 0.969044i \(-0.420592\pi\)
0.246888 + 0.969044i \(0.420592\pi\)
\(242\) 69.2965 0.286349
\(243\) −31.1127 + 241.000i −0.128036 + 0.991770i
\(244\) −2.00000 −0.00819672
\(245\) 0 0
\(246\) −12.0000 + 33.9411i −0.0487805 + 0.137972i
\(247\) 175.000i 0.708502i
\(248\) −19.7990 −0.0798346
\(249\) 336.000 + 118.794i 1.34940 + 0.477084i
\(250\) 0 0
\(251\) 288.500i 1.14940i 0.818364 + 0.574700i \(0.194881\pi\)
−0.818364 + 0.574700i \(0.805119\pi\)
\(252\) 79.1960 98.0000i 0.314270 0.388889i
\(253\) 216.000i 0.853755i
\(254\) 48.0833i 0.189304i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) −118.794 −0.462233 −0.231117 0.972926i \(-0.574238\pi\)
−0.231117 + 0.972926i \(0.574238\pi\)
\(258\) 57.9828 164.000i 0.224739 0.635659i
\(259\) 14.0000 0.0540541
\(260\) 0 0
\(261\) 240.000 296.985i 0.919540 1.13787i
\(262\) 276.000i 1.05344i
\(263\) −8.48528 −0.0322634 −0.0161317 0.999870i \(-0.505135\pi\)
−0.0161317 + 0.999870i \(0.505135\pi\)
\(264\) 24.0000 67.8823i 0.0909091 0.257130i
\(265\) 0 0
\(266\) 69.2965i 0.260513i
\(267\) 135.765 384.000i 0.508481 1.43820i
\(268\) 34.0000i 0.126866i
\(269\) 59.3970i 0.220807i −0.993887 0.110403i \(-0.964786\pi\)
0.993887 0.110403i \(-0.0352142\pi\)
\(270\) 0 0
\(271\) 470.000 1.73432 0.867159 0.498032i \(-0.165944\pi\)
0.867159 + 0.498032i \(0.165944\pi\)
\(272\) −101.823 −0.374351
\(273\) 494.975 + 175.000i 1.81309 + 0.641026i
\(274\) 168.000 0.613139
\(275\) 0 0
\(276\) −144.000 50.9117i −0.521739 0.184463i
\(277\) 217.000i 0.783394i −0.920094 0.391697i \(-0.871888\pi\)
0.920094 0.391697i \(-0.128112\pi\)
\(278\) 217.789 0.783413
\(279\) −49.0000 39.5980i −0.175627 0.141928i
\(280\) 0 0
\(281\) 517.602i 1.84200i 0.389562 + 0.921000i \(0.372626\pi\)
−0.389562 + 0.921000i \(0.627374\pi\)
\(282\) 0 0
\(283\) 65.0000i 0.229682i −0.993384 0.114841i \(-0.963364\pi\)
0.993384 0.114841i \(-0.0366359\pi\)
\(284\) 84.8528i 0.298778i
\(285\) 0 0
\(286\) 300.000 1.04895
\(287\) 59.3970 0.206958
\(288\) 39.5980 + 32.0000i 0.137493 + 0.111111i
\(289\) 359.000 1.24221
\(290\) 0 0
\(291\) 49.0000 138.593i 0.168385 0.476264i
\(292\) 140.000i 0.479452i
\(293\) −169.706 −0.579200 −0.289600 0.957148i \(-0.593522\pi\)
−0.289600 + 0.957148i \(0.593522\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 5.65685i 0.0191110i
\(297\) 195.161 120.000i 0.657109 0.404040i
\(298\) 216.000i 0.724832i
\(299\) 636.396i 2.12842i
\(300\) 0 0
\(301\) −287.000 −0.953488
\(302\) −281.428 −0.931882
\(303\) −59.3970 + 168.000i −0.196030 + 0.554455i
\(304\) 28.0000 0.0921053
\(305\) 0 0
\(306\) −252.000 203.647i −0.823529 0.665512i
\(307\) 521.000i 1.69707i 0.529141 + 0.848534i \(0.322514\pi\)
−0.529141 + 0.848534i \(0.677486\pi\)
\(308\) −118.794 −0.385695
\(309\) −154.000 + 435.578i −0.498382 + 1.40964i
\(310\) 0 0
\(311\) 33.9411i 0.109135i −0.998510 0.0545677i \(-0.982622\pi\)
0.998510 0.0545677i \(-0.0173781\pi\)
\(312\) −70.7107 + 200.000i −0.226637 + 0.641026i
\(313\) 119.000i 0.380192i −0.981766 0.190096i \(-0.939120\pi\)
0.981766 0.190096i \(-0.0608799\pi\)
\(314\) 205.061i 0.653060i
\(315\) 0 0
\(316\) 116.000 0.367089
\(317\) −152.735 −0.481814 −0.240907 0.970548i \(-0.577445\pi\)
−0.240907 + 0.970548i \(0.577445\pi\)
\(318\) −237.588 84.0000i −0.747132 0.264151i
\(319\) −360.000 −1.12853
\(320\) 0 0
\(321\) 504.000 + 178.191i 1.57009 + 0.555112i
\(322\) 252.000i 0.782609i
\(323\) −178.191 −0.551675
\(324\) 34.0000 + 158.392i 0.104938 + 0.488864i
\(325\) 0 0
\(326\) 227.688i 0.698431i
\(327\) 70.7107 + 25.0000i 0.216241 + 0.0764526i
\(328\) 24.0000i 0.0731707i
\(329\) 0 0
\(330\) 0 0
\(331\) −418.000 −1.26284 −0.631420 0.775441i \(-0.717528\pi\)
−0.631420 + 0.775441i \(0.717528\pi\)
\(332\) 237.588 0.715626
\(333\) −11.3137 + 14.0000i −0.0339751 + 0.0420420i
\(334\) −156.000 −0.467066
\(335\) 0 0
\(336\) 28.0000 79.1960i 0.0833333 0.235702i
\(337\) 553.000i 1.64095i −0.571683 0.820475i \(-0.693709\pi\)
0.571683 0.820475i \(-0.306291\pi\)
\(338\) −644.881 −1.90793
\(339\) 48.0000 + 16.9706i 0.141593 + 0.0500607i
\(340\) 0 0
\(341\) 59.3970i 0.174185i
\(342\) 69.2965 + 56.0000i 0.202621 + 0.163743i
\(343\) 343.000i 1.00000i
\(344\) 115.966i 0.337109i
\(345\) 0 0
\(346\) −252.000 −0.728324
\(347\) −644.881 −1.85845 −0.929224 0.369517i \(-0.879523\pi\)
−0.929224 + 0.369517i \(0.879523\pi\)
\(348\) 84.8528 240.000i 0.243830 0.689655i
\(349\) −266.000 −0.762178 −0.381089 0.924538i \(-0.624451\pi\)
−0.381089 + 0.924538i \(0.624451\pi\)
\(350\) 0 0
\(351\) −575.000 + 353.553i −1.63818 + 1.00727i
\(352\) 48.0000i 0.136364i
\(353\) 415.779 1.17784 0.588922 0.808190i \(-0.299553\pi\)
0.588922 + 0.808190i \(0.299553\pi\)
\(354\) −48.0000 + 135.765i −0.135593 + 0.383516i
\(355\) 0 0
\(356\) 271.529i 0.762722i
\(357\) −178.191 + 504.000i −0.499134 + 1.41176i
\(358\) 168.000i 0.469274i
\(359\) 330.926i 0.921799i −0.887452 0.460900i \(-0.847527\pi\)
0.887452 0.460900i \(-0.152473\pi\)
\(360\) 0 0
\(361\) −312.000 −0.864266
\(362\) −306.884 −0.847747
\(363\) 138.593 + 49.0000i 0.381799 + 0.134986i
\(364\) 350.000 0.961538
\(365\) 0 0
\(366\) −4.00000 1.41421i −0.0109290 0.00386397i
\(367\) 103.000i 0.280654i −0.990105 0.140327i \(-0.955185\pi\)
0.990105 0.140327i \(-0.0448154\pi\)
\(368\) −101.823 −0.276694
\(369\) −48.0000 + 59.3970i −0.130081 + 0.160967i
\(370\) 0 0
\(371\) 415.779i 1.12070i
\(372\) −39.5980 14.0000i −0.106446 0.0376344i
\(373\) 359.000i 0.962466i −0.876593 0.481233i \(-0.840189\pi\)
0.876593 0.481233i \(-0.159811\pi\)
\(374\) 305.470i 0.816765i
\(375\) 0 0
\(376\) 0 0
\(377\) 1060.66 2.81342
\(378\) 227.688 140.000i 0.602350 0.370370i
\(379\) −377.000 −0.994723 −0.497361 0.867543i \(-0.665698\pi\)
−0.497361 + 0.867543i \(0.665698\pi\)
\(380\) 0 0
\(381\) 34.0000 96.1665i 0.0892388 0.252406i
\(382\) 84.0000i 0.219895i
\(383\) −610.940 −1.59514 −0.797572 0.603224i \(-0.793883\pi\)
−0.797572 + 0.603224i \(0.793883\pi\)
\(384\) 32.0000 + 11.3137i 0.0833333 + 0.0294628i
\(385\) 0 0
\(386\) 35.3553i 0.0915941i
\(387\) 231.931 287.000i 0.599305 0.741602i
\(388\) 98.0000i 0.252577i
\(389\) 347.897i 0.894336i 0.894450 + 0.447168i \(0.147567\pi\)
−0.894450 + 0.447168i \(0.852433\pi\)
\(390\) 0 0
\(391\) 648.000 1.65729
\(392\) 0 0
\(393\) 195.161 552.000i 0.496594 1.40458i
\(394\) −192.000 −0.487310
\(395\) 0 0
\(396\) 96.0000 118.794i 0.242424 0.299985i
\(397\) 239.000i 0.602015i 0.953622 + 0.301008i \(0.0973229\pi\)
−0.953622 + 0.301008i \(0.902677\pi\)
\(398\) 145.664 0.365990
\(399\) 49.0000 138.593i 0.122807 0.347351i
\(400\) 0 0
\(401\) 93.3381i 0.232763i −0.993205 0.116382i \(-0.962870\pi\)
0.993205 0.116382i \(-0.0371296\pi\)
\(402\) −24.0416 + 68.0000i −0.0598051 + 0.169154i
\(403\) 175.000i 0.434243i
\(404\) 118.794i 0.294044i
\(405\) 0 0
\(406\) −420.000 −1.03448
\(407\) 16.9706 0.0416967
\(408\) −203.647 72.0000i −0.499134 0.176471i
\(409\) −455.000 −1.11247 −0.556235 0.831025i \(-0.687754\pi\)
−0.556235 + 0.831025i \(0.687754\pi\)
\(410\) 0 0
\(411\) 336.000 + 118.794i 0.817518 + 0.289036i
\(412\) 308.000i 0.747573i
\(413\) 237.588 0.575273
\(414\) −252.000 203.647i −0.608696 0.491900i
\(415\) 0 0
\(416\) 141.421i 0.339955i
\(417\) 435.578 + 154.000i 1.04455 + 0.369305i
\(418\) 84.0000i 0.200957i
\(419\) 296.985i 0.708794i 0.935095 + 0.354397i \(0.115314\pi\)
−0.935095 + 0.354397i \(0.884686\pi\)
\(420\) 0 0
\(421\) −526.000 −1.24941 −0.624703 0.780862i \(-0.714780\pi\)
−0.624703 + 0.780862i \(0.714780\pi\)
\(422\) −9.89949 −0.0234585
\(423\) 0 0
\(424\) −168.000 −0.396226
\(425\) 0 0
\(426\) −60.0000 + 169.706i −0.140845 + 0.398370i
\(427\) 7.00000i 0.0163934i
\(428\) 356.382 0.832668
\(429\) 600.000 + 212.132i 1.39860 + 0.494480i
\(430\) 0 0
\(431\) 280.014i 0.649685i 0.945768 + 0.324843i \(0.105311\pi\)
−0.945768 + 0.324843i \(0.894689\pi\)
\(432\) 56.5685 + 92.0000i 0.130946 + 0.212963i
\(433\) 119.000i 0.274827i −0.990514 0.137413i \(-0.956121\pi\)
0.990514 0.137413i \(-0.0438789\pi\)
\(434\) 69.2965i 0.159669i
\(435\) 0 0
\(436\) 50.0000 0.114679
\(437\) −178.191 −0.407760
\(438\) −98.9949 + 280.000i −0.226016 + 0.639269i
\(439\) 727.000 1.65604 0.828018 0.560701i \(-0.189468\pi\)
0.828018 + 0.560701i \(0.189468\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 900.000i 2.03620i
\(443\) 526.087 1.18756 0.593778 0.804629i \(-0.297636\pi\)
0.593778 + 0.804629i \(0.297636\pi\)
\(444\) −4.00000 + 11.3137i −0.00900901 + 0.0254813i
\(445\) 0 0
\(446\) 227.688i 0.510512i
\(447\) −152.735 + 432.000i −0.341689 + 0.966443i
\(448\) 56.0000i 0.125000i
\(449\) 254.558i 0.566945i 0.958980 + 0.283473i \(0.0914865\pi\)
−0.958980 + 0.283473i \(0.908513\pi\)
\(450\) 0 0
\(451\) 72.0000 0.159645
\(452\) 33.9411 0.0750910
\(453\) −562.857 199.000i −1.24251 0.439294i
\(454\) 84.0000 0.185022
\(455\) 0 0
\(456\) 56.0000 + 19.7990i 0.122807 + 0.0434188i
\(457\) 310.000i 0.678337i −0.940726 0.339168i \(-0.889854\pi\)
0.940726 0.339168i \(-0.110146\pi\)
\(458\) 137.179 0.299517
\(459\) −360.000 585.484i −0.784314 1.27557i
\(460\) 0 0
\(461\) 721.249i 1.56453i −0.622945 0.782266i \(-0.714064\pi\)
0.622945 0.782266i \(-0.285936\pi\)
\(462\) −237.588 84.0000i −0.514259 0.181818i
\(463\) 730.000i 1.57667i 0.615244 + 0.788337i \(0.289058\pi\)
−0.615244 + 0.788337i \(0.710942\pi\)
\(464\) 169.706i 0.365745i
\(465\) 0 0
\(466\) 372.000 0.798283
\(467\) −195.161 −0.417905 −0.208952 0.977926i \(-0.567005\pi\)
−0.208952 + 0.977926i \(0.567005\pi\)
\(468\) −282.843 + 350.000i −0.604365 + 0.747863i
\(469\) 119.000 0.253731
\(470\) 0 0
\(471\) 145.000 410.122i 0.307856 0.870747i
\(472\) 96.0000i 0.203390i
\(473\) −347.897 −0.735511
\(474\) 232.000 + 82.0244i 0.489451 + 0.173047i
\(475\) 0 0
\(476\) 356.382i 0.748701i
\(477\) −415.779 336.000i −0.871654 0.704403i
\(478\) 84.0000i 0.175732i
\(479\) 390.323i 0.814870i −0.913234 0.407435i \(-0.866423\pi\)
0.913234 0.407435i \(-0.133577\pi\)
\(480\) 0 0
\(481\) −50.0000 −0.103950
\(482\) 168.291 0.349152
\(483\) −178.191 + 504.000i −0.368925 + 1.04348i
\(484\) 98.0000 0.202479
\(485\) 0 0
\(486\) −44.0000 + 340.825i −0.0905350 + 0.701287i
\(487\) 473.000i 0.971253i 0.874167 + 0.485626i \(0.161408\pi\)
−0.874167 + 0.485626i \(0.838592\pi\)
\(488\) −2.82843 −0.00579596
\(489\) 161.000 455.377i 0.329243 0.931241i
\(490\) 0 0
\(491\) 814.587i 1.65904i −0.558479 0.829518i \(-0.688615\pi\)
0.558479 0.829518i \(-0.311385\pi\)
\(492\) −16.9706 + 48.0000i −0.0344930 + 0.0975610i
\(493\) 1080.00i 2.19067i
\(494\) 247.487i 0.500987i
\(495\) 0 0
\(496\) −28.0000 −0.0564516
\(497\) 296.985 0.597555
\(498\) 475.176 + 168.000i 0.954168 + 0.337349i
\(499\) 175.000 0.350701 0.175351 0.984506i \(-0.443894\pi\)
0.175351 + 0.984506i \(0.443894\pi\)
\(500\) 0 0
\(501\) −312.000 110.309i −0.622754 0.220177i
\(502\) 408.000i 0.812749i
\(503\) 347.897 0.691643 0.345822 0.938300i \(-0.387600\pi\)
0.345822 + 0.938300i \(0.387600\pi\)
\(504\) 112.000 138.593i 0.222222 0.274986i
\(505\) 0 0
\(506\) 305.470i 0.603696i
\(507\) −1289.76 456.000i −2.54391 0.899408i
\(508\) 68.0000i 0.133858i
\(509\) 729.734i 1.43366i 0.697247 + 0.716831i \(0.254408\pi\)
−0.697247 + 0.716831i \(0.745592\pi\)
\(510\) 0 0
\(511\) 490.000 0.958904
\(512\) 22.6274 0.0441942
\(513\) 98.9949 + 161.000i 0.192973 + 0.313840i
\(514\) −168.000 −0.326848
\(515\) 0 0
\(516\) 82.0000 231.931i 0.158915 0.449479i
\(517\) 0 0
\(518\) 19.7990 0.0382220
\(519\) −504.000 178.191i −0.971098 0.343335i
\(520\) 0 0
\(521\) 568.514i 1.09120i 0.838047 + 0.545599i \(0.183698\pi\)
−0.838047 + 0.545599i \(0.816302\pi\)
\(522\) 339.411 420.000i 0.650213 0.804598i
\(523\) 175.000i 0.334608i 0.985905 + 0.167304i \(0.0535061\pi\)
−0.985905 + 0.167304i \(0.946494\pi\)
\(524\) 390.323i 0.744891i
\(525\) 0 0
\(526\) −12.0000 −0.0228137
\(527\) 178.191 0.338123
\(528\) 33.9411 96.0000i 0.0642824 0.181818i
\(529\) 119.000 0.224953
\(530\) 0 0
\(531\) −192.000 + 237.588i −0.361582 + 0.447435i
\(532\) 98.0000i 0.184211i
\(533\) −212.132 −0.397996
\(534\) 192.000 543.058i 0.359551 1.01696i
\(535\) 0 0
\(536\) 48.0833i 0.0897076i
\(537\) −118.794 + 336.000i −0.221218 + 0.625698i
\(538\) 84.0000i 0.156134i
\(539\) 0 0
\(540\) 0 0
\(541\) 863.000 1.59519 0.797597 0.603191i \(-0.206104\pi\)
0.797597 + 0.603191i \(0.206104\pi\)
\(542\) 664.680 1.22635
\(543\) −613.769 217.000i −1.13033 0.399632i
\(544\) −144.000 −0.264706
\(545\) 0 0
\(546\) 700.000 + 247.487i 1.28205 + 0.453274i
\(547\) 778.000i 1.42230i −0.703039 0.711152i \(-0.748174\pi\)
0.703039 0.711152i \(-0.251826\pi\)
\(548\) 237.588 0.433555
\(549\) −7.00000 5.65685i −0.0127505 0.0103039i
\(550\) 0 0
\(551\) 296.985i 0.538992i
\(552\) −203.647 72.0000i −0.368925 0.130435i
\(553\) 406.000i 0.734177i
\(554\) 306.884i 0.553943i
\(555\) 0 0
\(556\) 308.000 0.553957
\(557\) −424.264 −0.761695 −0.380847 0.924638i \(-0.624368\pi\)
−0.380847 + 0.924638i \(0.624368\pi\)
\(558\) −69.2965 56.0000i −0.124187 0.100358i
\(559\) 1025.00 1.83363
\(560\) 0 0
\(561\) −216.000 + 610.940i −0.385027 + 1.08902i
\(562\) 732.000i 1.30249i
\(563\) 381.838 0.678220 0.339110 0.940747i \(-0.389874\pi\)
0.339110 + 0.940747i \(0.389874\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 91.9239i 0.162410i
\(567\) 554.372 119.000i 0.977728 0.209877i
\(568\) 120.000i 0.211268i
\(569\) 381.838i 0.671068i 0.942028 + 0.335534i \(0.108917\pi\)
−0.942028 + 0.335534i \(0.891083\pi\)
\(570\) 0 0
\(571\) −535.000 −0.936953 −0.468476 0.883476i \(-0.655197\pi\)
−0.468476 + 0.883476i \(0.655197\pi\)
\(572\) 424.264 0.741720
\(573\) 59.3970 168.000i 0.103660 0.293194i
\(574\) 84.0000 0.146341
\(575\) 0 0
\(576\) 56.0000 + 45.2548i 0.0972222 + 0.0785674i
\(577\) 49.0000i 0.0849220i −0.999098 0.0424610i \(-0.986480\pi\)
0.999098 0.0424610i \(-0.0135198\pi\)
\(578\) 507.703 0.878378
\(579\) −25.0000 + 70.7107i −0.0431779 + 0.122126i
\(580\) 0 0
\(581\) 831.558i 1.43125i
\(582\) 69.2965 196.000i 0.119066 0.336770i
\(583\) 504.000i 0.864494i
\(584\) 197.990i 0.339024i
\(585\) 0 0
\(586\) −240.000 −0.409556
\(587\) 415.779 0.708311 0.354156 0.935186i \(-0.384768\pi\)
0.354156 + 0.935186i \(0.384768\pi\)
\(588\) 0 0
\(589\) −49.0000 −0.0831919
\(590\) 0 0
\(591\) −384.000 135.765i −0.649746 0.229720i
\(592\) 8.00000i 0.0135135i
\(593\) 772.161 1.30213 0.651063 0.759024i \(-0.274323\pi\)
0.651063 + 0.759024i \(0.274323\pi\)
\(594\) 276.000 169.706i 0.464646 0.285700i
\(595\) 0 0
\(596\) 305.470i 0.512534i
\(597\) 291.328 + 103.000i 0.487987 + 0.172529i
\(598\) 900.000i 1.50502i
\(599\) 644.881i 1.07660i 0.842754 + 0.538298i \(0.180933\pi\)
−0.842754 + 0.538298i \(0.819067\pi\)
\(600\) 0 0
\(601\) 455.000 0.757072 0.378536 0.925587i \(-0.376428\pi\)
0.378536 + 0.925587i \(0.376428\pi\)
\(602\) −405.879 −0.674218
\(603\) −96.1665 + 119.000i −0.159480 + 0.197347i
\(604\) −398.000 −0.658940
\(605\) 0 0
\(606\) −84.0000 + 237.588i −0.138614 + 0.392059i
\(607\) 566.000i 0.932455i 0.884665 + 0.466227i \(0.154387\pi\)
−0.884665 + 0.466227i \(0.845613\pi\)
\(608\) 39.5980 0.0651283
\(609\) −840.000 296.985i −1.37931 0.487660i
\(610\) 0 0
\(611\) 0 0
\(612\) −356.382 288.000i −0.582323 0.470588i
\(613\) 578.000i 0.942904i −0.881892 0.471452i \(-0.843730\pi\)
0.881892 0.471452i \(-0.156270\pi\)
\(614\) 736.805i 1.20001i
\(615\) 0 0
\(616\) −168.000 −0.272727
\(617\) −636.396 −1.03144 −0.515718 0.856758i \(-0.672475\pi\)
−0.515718 + 0.856758i \(0.672475\pi\)
\(618\) −217.789 + 616.000i −0.352409 + 0.996764i
\(619\) −593.000 −0.957997 −0.478998 0.877816i \(-0.659000\pi\)
−0.478998 + 0.877816i \(0.659000\pi\)
\(620\) 0 0
\(621\) −360.000 585.484i −0.579710 0.942809i
\(622\) 48.0000i 0.0771704i
\(623\) −950.352 −1.52544
\(624\) −100.000 + 282.843i −0.160256 + 0.453274i
\(625\) 0 0
\(626\) 168.291i 0.268836i
\(627\) 59.3970 168.000i 0.0947320 0.267943i
\(628\) 290.000i 0.461783i
\(629\) 50.9117i 0.0809407i
\(630\) 0 0
\(631\) −559.000 −0.885895 −0.442948 0.896547i \(-0.646067\pi\)
−0.442948 + 0.896547i \(0.646067\pi\)
\(632\) 164.049 0.259571
\(633\) −19.7990 7.00000i −0.0312780 0.0110585i
\(634\) −216.000 −0.340694
\(635\) 0 0
\(636\) −336.000 118.794i −0.528302 0.186783i
\(637\) 0 0
\(638\) −509.117 −0.797989
\(639\) −240.000 + 296.985i −0.375587 + 0.464765i
\(640\) 0 0
\(641\) 543.058i 0.847204i 0.905848 + 0.423602i \(0.139235\pi\)
−0.905848 + 0.423602i \(0.860765\pi\)
\(642\) 712.764 + 252.000i 1.11022 + 0.392523i
\(643\) 854.000i 1.32815i −0.747666 0.664075i \(-0.768826\pi\)
0.747666 0.664075i \(-0.231174\pi\)
\(644\) 356.382i 0.553388i
\(645\) 0 0
\(646\) −252.000 −0.390093
\(647\) 322.441 0.498363 0.249181 0.968457i \(-0.419838\pi\)
0.249181 + 0.968457i \(0.419838\pi\)
\(648\) 48.0833 + 224.000i 0.0742026 + 0.345679i
\(649\) 288.000 0.443760
\(650\) 0 0
\(651\) −49.0000 + 138.593i −0.0752688 + 0.212892i
\(652\) 322.000i 0.493865i
\(653\) −356.382 −0.545761 −0.272880 0.962048i \(-0.587976\pi\)
−0.272880 + 0.962048i \(0.587976\pi\)
\(654\) 100.000 + 35.3553i 0.152905 + 0.0540602i
\(655\) 0 0
\(656\) 33.9411i 0.0517395i
\(657\) −395.980 + 490.000i −0.602709 + 0.745814i
\(658\) 0 0
\(659\) 890.955i 1.35198i 0.736911 + 0.675990i \(0.236284\pi\)
−0.736911 + 0.675990i \(0.763716\pi\)
\(660\) 0 0
\(661\) −910.000 −1.37670 −0.688351 0.725378i \(-0.741665\pi\)
−0.688351 + 0.725378i \(0.741665\pi\)
\(662\) −591.141 −0.892963
\(663\) 636.396 1800.00i 0.959873 2.71493i
\(664\) 336.000 0.506024
\(665\) 0 0
\(666\) −16.0000 + 19.7990i −0.0240240 + 0.0297282i
\(667\) 1080.00i 1.61919i
\(668\) −220.617 −0.330265
\(669\) 161.000 455.377i 0.240658 0.680683i
\(670\) 0 0
\(671\) 8.48528i 0.0126457i
\(672\) 39.5980 112.000i 0.0589256 0.166667i
\(673\) 742.000i 1.10253i 0.834332 + 0.551263i \(0.185854\pi\)
−0.834332 + 0.551263i \(0.814146\pi\)
\(674\) 782.060i 1.16033i
\(675\) 0 0
\(676\) −912.000 −1.34911
\(677\) 432.749 0.639216 0.319608 0.947550i \(-0.396449\pi\)
0.319608 + 0.947550i \(0.396449\pi\)
\(678\) 67.8823 + 24.0000i 0.100121 + 0.0353982i
\(679\) −343.000 −0.505155
\(680\) 0 0
\(681\) 168.000 + 59.3970i 0.246696 + 0.0872202i
\(682\) 84.0000i 0.123167i
\(683\) −661.852 −0.969037 −0.484518 0.874781i \(-0.661005\pi\)
−0.484518 + 0.874781i \(0.661005\pi\)
\(684\) 98.0000 + 79.1960i 0.143275 + 0.115784i
\(685\) 0 0
\(686\) 485.075i 0.707107i
\(687\) 274.357 + 97.0000i 0.399356 + 0.141194i
\(688\) 164.000i 0.238372i
\(689\) 1484.92i 2.15519i
\(690\) 0 0
\(691\) 302.000 0.437048 0.218524 0.975832i \(-0.429876\pi\)
0.218524 + 0.975832i \(0.429876\pi\)
\(692\) −356.382 −0.515003
\(693\) −415.779 336.000i −0.599969 0.484848i
\(694\) −912.000 −1.31412
\(695\) 0 0
\(696\) 120.000 339.411i 0.172414 0.487660i
\(697\) 216.000i 0.309900i
\(698\) −376.181 −0.538941
\(699\) 744.000 + 263.044i 1.06438 + 0.376314i
\(700\) 0 0
\(701\) 178.191i 0.254195i 0.991890 + 0.127098i \(0.0405662\pi\)
−0.991890 + 0.127098i \(0.959434\pi\)
\(702\) −813.173 + 500.000i −1.15837 + 0.712251i
\(703\) 14.0000i 0.0199147i
\(704\) 67.8823i 0.0964237i
\(705\) 0 0
\(706\) 588.000 0.832861
\(707\) 415.779 0.588089
\(708\) −67.8823 + 192.000i −0.0958789 + 0.271186i
\(709\) −95.0000 −0.133992 −0.0669958 0.997753i \(-0.521341\pi\)
−0.0669958 + 0.997753i \(0.521341\pi\)
\(710\) 0 0
\(711\) 406.000 + 328.098i 0.571027 + 0.461459i
\(712\) 384.000i 0.539326i
\(713\) 178.191 0.249917
\(714\) −252.000 + 712.764i −0.352941 + 0.998268i
\(715\) 0 0
\(716\) 237.588i 0.331827i
\(717\) 59.3970 168.000i 0.0828410 0.234310i
\(718\) 468.000i 0.651811i
\(719\) 873.984i 1.21555i −0.794107 0.607777i \(-0.792061\pi\)
0.794107 0.607777i \(-0.207939\pi\)
\(720\) 0 0
\(721\) 1078.00 1.49515
\(722\) −441.235 −0.611128
\(723\) 336.583 + 119.000i 0.465536 + 0.164592i
\(724\) −434.000 −0.599448
\(725\) 0 0
\(726\) 196.000 + 69.2965i 0.269972 + 0.0954497i
\(727\) 871.000i 1.19807i −0.800721 0.599037i \(-0.795550\pi\)
0.800721 0.599037i \(-0.204450\pi\)
\(728\) 494.975 0.679910
\(729\) −329.000 + 650.538i −0.451303 + 0.892371i
\(730\) 0 0
\(731\) 1043.69i 1.42776i
\(732\) −5.65685 2.00000i −0.00772794 0.00273224i
\(733\) 406.000i 0.553888i 0.960886 + 0.276944i \(0.0893217\pi\)
−0.960886 + 0.276944i \(0.910678\pi\)
\(734\) 145.664i 0.198452i
\(735\) 0 0
\(736\) −144.000 −0.195652
\(737\) 144.250 0.195726
\(738\) −67.8823 + 84.0000i −0.0919814 + 0.113821i
\(739\) −830.000 −1.12314 −0.561570 0.827429i \(-0.689802\pi\)
−0.561570 + 0.827429i \(0.689802\pi\)
\(740\) 0 0
\(741\) −175.000 + 494.975i −0.236167 + 0.667982i
\(742\) 588.000i 0.792453i
\(743\) 1306.73 1.75873 0.879363 0.476152i \(-0.157969\pi\)
0.879363 + 0.476152i \(0.157969\pi\)
\(744\) −56.0000 19.7990i −0.0752688 0.0266115i
\(745\) 0 0
\(746\) 507.703i 0.680567i
\(747\) 831.558 + 672.000i 1.11320 + 0.899598i
\(748\) 432.000i 0.577540i
\(749\) 1247.34i 1.66534i
\(750\) 0 0
\(751\) 350.000 0.466045 0.233023 0.972471i \(-0.425138\pi\)
0.233023 + 0.972471i \(0.425138\pi\)
\(752\) 0 0
\(753\) −288.500 + 816.000i −0.383134 + 1.08367i
\(754\) 1500.00 1.98939
\(755\) 0 0
\(756\) 322.000 197.990i 0.425926 0.261891i
\(757\) 265.000i 0.350066i −0.984563 0.175033i \(-0.943997\pi\)
0.984563 0.175033i \(-0.0560032\pi\)
\(758\) −533.159 −0.703375
\(759\) −216.000 + 610.940i −0.284585 + 0.804928i
\(760\) 0 0
\(761\) 1069.15i 1.40492i 0.711722 + 0.702461i \(0.247915\pi\)
−0.711722 + 0.702461i \(0.752085\pi\)
\(762\) 48.0833 136.000i 0.0631014 0.178478i
\(763\) 175.000i 0.229358i
\(764\) 118.794i 0.155489i
\(765\) 0 0
\(766\) −864.000 −1.12794
\(767\) −848.528 −1.10629
\(768\) 45.2548 + 16.0000i 0.0589256 + 0.0208333i
\(769\) 529.000 0.687906 0.343953 0.938987i \(-0.388234\pi\)
0.343953 + 0.938987i \(0.388234\pi\)
\(770\) 0 0
\(771\) −336.000 118.794i −0.435798 0.154078i
\(772\) 50.0000i 0.0647668i
\(773\) −1009.75 −1.30627 −0.653136 0.757240i \(-0.726547\pi\)
−0.653136 + 0.757240i \(0.726547\pi\)
\(774\) 328.000 405.879i 0.423773 0.524392i
\(775\) 0 0
\(776\) 138.593i 0.178599i
\(777\) 39.5980 + 14.0000i 0.0509627 + 0.0180180i
\(778\) 492.000i 0.632391i
\(779\) 59.3970i 0.0762477i
\(780\) 0 0
\(781\) 360.000 0.460948
\(782\) 916.410 1.17188
\(783\) 975.807 600.000i 1.24624 0.766284i
\(784\) 0 0
\(785\) 0 0
\(786\) 276.000 780.646i 0.351145 0.993188i
\(787\) 1519.00i 1.93011i −0.262039 0.965057i \(-0.584395\pi\)
0.262039 0.965057i \(-0.415605\pi\)
\(788\) −271.529 −0.344580
\(789\) −24.0000 8.48528i −0.0304183 0.0107545i
\(790\) 0 0
\(791\) 118.794i 0.150182i
\(792\) 135.765 168.000i 0.171420 0.212121i
\(793\) 25.0000i 0.0315259i
\(794\) 337.997i 0.425689i
\(795\) 0 0
\(796\) 206.000 0.258794
\(797\) −526.087 −0.660085 −0.330042 0.943966i \(-0.607063\pi\)
−0.330042 + 0.943966i \(0.607063\pi\)
\(798\) 69.2965 196.000i 0.0868377 0.245614i
\(799\) 0 0
\(800\) 0 0
\(801\) 768.000 950.352i 0.958801 1.18646i
\(802\) 132.000i 0.164589i
\(803\) 593.970 0.739688
\(804\) −34.0000 + 96.1665i −0.0422886 + 0.119610i
\(805\) 0 0
\(806\) 247.487i 0.307056i
\(807\) 59.3970 168.000i 0.0736022 0.208178i
\(808\) 168.000i 0.207921i
\(809\) 823.072i 1.01739i −0.860945 0.508697i \(-0.830127\pi\)
0.860945 0.508697i \(-0.169873\pi\)
\(810\) 0 0
\(811\) −319.000 −0.393342 −0.196671 0.980470i \(-0.563013\pi\)
−0.196671 + 0.980470i \(0.563013\pi\)
\(812\) −593.970 −0.731490
\(813\) 1329.36 + 470.000i 1.63513 + 0.578106i
\(814\) 24.0000 0.0294840
\(815\) 0 0
\(816\) −288.000 101.823i −0.352941 0.124784i
\(817\) 287.000i 0.351285i
\(818\) −643.467 −0.786635
\(819\) 1225.00 + 989.949i 1.49573 + 1.20873i
\(820\) 0 0
\(821\) 118.794i 0.144694i 0.997380 + 0.0723471i \(0.0230489\pi\)
−0.997380 + 0.0723471i \(0.976951\pi\)
\(822\) 475.176 + 168.000i 0.578073 + 0.204380i
\(823\) 1375.00i 1.67072i 0.549706 + 0.835358i \(0.314740\pi\)
−0.549706 + 0.835358i \(0.685260\pi\)
\(824\) 435.578i 0.528614i
\(825\) 0 0
\(826\) 336.000 0.406780
\(827\) −280.014 −0.338590 −0.169295 0.985565i \(-0.554149\pi\)
−0.169295 + 0.985565i \(0.554149\pi\)
\(828\) −356.382 288.000i −0.430413 0.347826i
\(829\) 142.000 0.171291 0.0856454 0.996326i \(-0.472705\pi\)
0.0856454 + 0.996326i \(0.472705\pi\)
\(830\) 0 0
\(831\) 217.000 613.769i 0.261131 0.738590i
\(832\) 200.000i 0.240385i
\(833\) 0 0
\(834\) 616.000 + 217.789i 0.738609 + 0.261138i
\(835\) 0 0
\(836\) 118.794i 0.142098i
\(837\) −98.9949 161.000i −0.118274 0.192354i
\(838\) 420.000i 0.501193i
\(839\) 1247.34i 1.48669i 0.668906 + 0.743347i \(0.266763\pi\)
−0.668906 + 0.743347i \(0.733237\pi\)
\(840\) 0 0
\(841\) −959.000 −1.14031
\(842\) −743.876 −0.883464
\(843\) −517.602 + 1464.00i −0.614000 + 1.73665i
\(844\) −14.0000 −0.0165877
\(845\) 0 0
\(846\) 0 0
\(847\) 343.000i 0.404959i
\(848\) −237.588 −0.280174
\(849\) 65.0000 183.848i 0.0765607 0.216546i
\(850\) 0 0
\(851\) 50.9117i 0.0598257i
\(852\) −84.8528 + 240.000i −0.0995925 + 0.281690i
\(853\) 1057.00i 1.23916i 0.784935 + 0.619578i \(0.212696\pi\)
−0.784935 + 0.619578i \(0.787304\pi\)
\(854\) 9.89949i 0.0115919i
\(855\) 0 0
\(856\) 504.000 0.588785
\(857\) −627.911 −0.732685 −0.366342 0.930480i \(-0.619390\pi\)
−0.366342 + 0.930480i \(0.619390\pi\)
\(858\) 848.528 + 300.000i 0.988961 + 0.349650i
\(859\) 946.000 1.10128 0.550640 0.834743i \(-0.314384\pi\)
0.550640 + 0.834743i \(0.314384\pi\)
\(860\) 0 0
\(861\) 168.000 + 59.3970i 0.195122 + 0.0689860i
\(862\) 396.000i 0.459397i
\(863\) 390.323 0.452286 0.226143 0.974094i \(-0.427388\pi\)
0.226143 + 0.974094i \(0.427388\pi\)
\(864\) 80.0000 + 130.108i 0.0925926 + 0.150588i
\(865\) 0 0
\(866\) 168.291i 0.194332i
\(867\) 1015.41 + 359.000i 1.17117 + 0.414072i
\(868\) 98.0000i 0.112903i
\(869\) 492.146i 0.566336i
\(870\) 0 0
\(871\) −425.000 −0.487945
\(872\) 70.7107 0.0810902
\(873\) 277.186 343.000i 0.317510 0.392898i
\(874\) −252.000 −0.288330
\(875\) 0 0
\(876\) −140.000 + 395.980i −0.159817 + 0.452032i
\(877\) 1463.00i 1.66819i 0.551623 + 0.834094i \(0.314009\pi\)
−0.551623 + 0.834094i \(0.685991\pi\)
\(878\) 1028.13 1.17099
\(879\) −480.000 169.706i −0.546075 0.193067i
\(880\) 0 0
\(881\) 1069.15i 1.21356i −0.794870 0.606779i \(-0.792461\pi\)
0.794870 0.606779i \(-0.207539\pi\)
\(882\) 0 0
\(883\) 1289.00i 1.45980i −0.683556 0.729898i \(-0.739568\pi\)
0.683556 0.729898i \(-0.260432\pi\)
\(884\) 1272.79i 1.43981i
\(885\) 0 0
\(886\) 744.000 0.839729
\(887\) 1289.76 1.45407 0.727037 0.686599i \(-0.240897\pi\)
0.727037 + 0.686599i \(0.240897\pi\)
\(888\) −5.65685 + 16.0000i −0.00637033 + 0.0180180i
\(889\) −238.000 −0.267717
\(890\) 0 0
\(891\) 672.000 144.250i 0.754209 0.161897i
\(892\) 322.000i 0.360987i
\(893\) 0 0
\(894\) −216.000 + 610.940i −0.241611 + 0.683378i
\(895\) 0 0
\(896\) 79.1960i 0.0883883i
\(897\) 636.396 1800.00i 0.709472 2.00669i
\(898\) 360.000i 0.400891i
\(899\) 296.985i 0.330350i
\(900\) 0 0
\(901\) 1512.00 1.67814
\(902\) 101.823 0.112886
\(903\) −811.759 287.000i −0.898957 0.317829i
\(904\) 48.0000 0.0530973
\(905\) 0 0
\(906\) −796.000 281.428i −0.878587 0.310627i
\(907\) 14.0000i 0.0154355i 0.999970 + 0.00771775i \(0.00245666\pi\)
−0.999970 + 0.00771775i \(0.997543\pi\)
\(908\) 118.794 0.130830
\(909\) −336.000 + 415.779i −0.369637 + 0.457402i
\(910\) 0 0
\(911\) 695.793i 0.763768i −0.924210 0.381884i \(-0.875275\pi\)
0.924210 0.381884i \(-0.124725\pi\)
\(912\) 79.1960 + 28.0000i 0.0868377 + 0.0307018i
\(913\) 1008.00i 1.10405i
\(914\) 438.406i 0.479657i
\(915\) 0 0
\(916\) 194.000 0.211790
\(917\) −1366.13 −1.48978
\(918\) −509.117 828.000i −0.554594 0.901961i
\(919\) 1423.00 1.54842 0.774211 0.632927i \(-0.218147\pi\)
0.774211 + 0.632927i \(0.218147\pi\)
\(920\) 0 0
\(921\) −521.000 + 1473.61i −0.565689 + 1.60001i
\(922\) 1020.00i 1.10629i
\(923\) −1060.66 −1.14914
\(924\) −336.000 118.794i −0.363636 0.128565i
\(925\) 0 0
\(926\) 1032.38i 1.11488i
\(927\) −871.156 + 1078.00i −0.939758 + 1.16289i
\(928\) 240.000i 0.258621i
\(929\) 415.779i 0.447555i −0.974640 0.223778i \(-0.928161\pi\)
0.974640 0.223778i \(-0.0718389\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 526.087 0.564472
\(933\) 33.9411 96.0000i 0.0363785 0.102894i
\(934\) −276.000 −0.295503
\(935\) 0 0
\(936\) −400.000 + 494.975i −0.427350 + 0.528819i
\(937\) 1655.00i 1.76628i 0.469114 + 0.883138i \(0.344573\pi\)
−0.469114 + 0.883138i \(0.655427\pi\)
\(938\) 168.291 0.179415
\(939\) 119.000 336.583i 0.126731 0.358448i
\(940\) 0 0
\(941\) 1663.12i 1.76739i 0.468062 + 0.883696i \(0.344952\pi\)
−0.468062 + 0.883696i \(0.655048\pi\)
\(942\) 205.061 580.000i 0.217687 0.615711i
\(943\) 216.000i 0.229056i
\(944\) 135.765i 0.143818i
\(945\) 0 0
\(946\) −492.000 −0.520085
\(947\) 415.779 0.439048 0.219524 0.975607i \(-0.429550\pi\)
0.219524 + 0.975607i \(0.429550\pi\)
\(948\) 328.098 + 116.000i 0.346094 + 0.122363i
\(949\) −1750.00 −1.84405
\(950\) 0 0
\(951\) −432.000 152.735i −0.454259 0.160605i
\(952\) 504.000i 0.529412i
\(953\) −1680.09 −1.76294 −0.881472 0.472236i \(-0.843447\pi\)
−0.881472 + 0.472236i \(0.843447\pi\)
\(954\) −588.000 475.176i −0.616352 0.498088i
\(955\) 0 0
\(956\) 118.794i 0.124261i
\(957\) −1018.23 360.000i −1.06399 0.376176i
\(958\) 552.000i 0.576200i
\(959\) 831.558i 0.867109i
\(960\) 0 0
\(961\) −912.000 −0.949011
\(962\) −70.7107 −0.0735038
\(963\) 1247.34 + 1008.00i 1.29526 + 1.04673i
\(964\) 238.000 0.246888
\(965\) 0 0
\(966\) −252.000 + 712.764i −0.260870 + 0.737851i
\(967\) 1162.00i 1.20165i −0.799379 0.600827i \(-0.794838\pi\)
0.799379 0.600827i \(-0.205162\pi\)
\(968\) 138.593 0.143175
\(969\) −504.000 178.191i −0.520124 0.183892i
\(970\) 0 0
\(971\) 712.764i 0.734051i −0.930211 0.367026i \(-0.880376\pi\)
0.930211 0.367026i \(-0.119624\pi\)
\(972\) −62.2254 + 482.000i −0.0640179 + 0.495885i
\(973\) 1078.00i 1.10791i
\(974\) 668.923i 0.686779i
\(975\) 0 0
\(976\) −4.00000 −0.00409836
\(977\) 899.440 0.920614 0.460307 0.887760i \(-0.347739\pi\)
0.460307 + 0.887760i \(0.347739\pi\)
\(978\) 227.688 644.000i 0.232810 0.658487i
\(979\) −1152.00 −1.17671
\(980\) 0 0
\(981\) 175.000 + 141.421i 0.178389 + 0.144160i
\(982\) 1152.00i 1.17312i
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) −24.0000 + 67.8823i −0.0243902 + 0.0689860i
\(985\) 0 0
\(986\) 1527.35i 1.54904i
\(987\) 0 0
\(988\) 350.000i 0.354251i
\(989\) 1043.69i 1.05530i
\(990\) 0 0
\(991\) −535.000 −0.539859 −0.269929 0.962880i \(-0.587000\pi\)
−0.269929 + 0.962880i \(0.587000\pi\)
\(992\) −39.5980 −0.0399173
\(993\) −1182.28 418.000i −1.19062 0.420947i
\(994\) 420.000 0.422535
\(995\) 0 0
\(996\) 672.000 + 237.588i 0.674699 + 0.238542i
\(997\) 1274.00i 1.27783i 0.769276 + 0.638917i \(0.220617\pi\)
−0.769276 + 0.638917i \(0.779383\pi\)
\(998\) 247.487 0.247983
\(999\) −46.0000 + 28.2843i −0.0460460 + 0.0283126i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 150.3.b.a.149.4 4
3.2 odd 2 inner 150.3.b.a.149.2 4
4.3 odd 2 1200.3.c.h.449.1 4
5.2 odd 4 150.3.d.b.101.2 yes 2
5.3 odd 4 150.3.d.a.101.1 2
5.4 even 2 inner 150.3.b.a.149.1 4
12.11 even 2 1200.3.c.h.449.3 4
15.2 even 4 150.3.d.b.101.1 yes 2
15.8 even 4 150.3.d.a.101.2 yes 2
15.14 odd 2 inner 150.3.b.a.149.3 4
20.3 even 4 1200.3.l.p.401.1 2
20.7 even 4 1200.3.l.i.401.2 2
20.19 odd 2 1200.3.c.h.449.4 4
60.23 odd 4 1200.3.l.p.401.2 2
60.47 odd 4 1200.3.l.i.401.1 2
60.59 even 2 1200.3.c.h.449.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.3.b.a.149.1 4 5.4 even 2 inner
150.3.b.a.149.2 4 3.2 odd 2 inner
150.3.b.a.149.3 4 15.14 odd 2 inner
150.3.b.a.149.4 4 1.1 even 1 trivial
150.3.d.a.101.1 2 5.3 odd 4
150.3.d.a.101.2 yes 2 15.8 even 4
150.3.d.b.101.1 yes 2 15.2 even 4
150.3.d.b.101.2 yes 2 5.2 odd 4
1200.3.c.h.449.1 4 4.3 odd 2
1200.3.c.h.449.2 4 60.59 even 2
1200.3.c.h.449.3 4 12.11 even 2
1200.3.c.h.449.4 4 20.19 odd 2
1200.3.l.i.401.1 2 60.47 odd 4
1200.3.l.i.401.2 2 20.7 even 4
1200.3.l.p.401.1 2 20.3 even 4
1200.3.l.p.401.2 2 60.23 odd 4