Properties

Label 150.3.d.a.101.1
Level $150$
Weight $3$
Character 150.101
Analytic conductor $4.087$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,3,Mod(101,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.101");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 150.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.08720396540\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 101.1
Root \(-1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 150.101
Dual form 150.3.d.a.101.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} +(-1.00000 + 2.82843i) q^{3} -2.00000 q^{4} +(4.00000 + 1.41421i) q^{6} -7.00000 q^{7} +2.82843i q^{8} +(-7.00000 - 5.65685i) q^{9} -8.48528i q^{11} +(2.00000 - 5.65685i) q^{12} -25.0000 q^{13} +9.89949i q^{14} +4.00000 q^{16} +25.4558i q^{17} +(-8.00000 + 9.89949i) q^{18} -7.00000 q^{19} +(7.00000 - 19.7990i) q^{21} -12.0000 q^{22} -25.4558i q^{23} +(-8.00000 - 2.82843i) q^{24} +35.3553i q^{26} +(23.0000 - 14.1421i) q^{27} +14.0000 q^{28} +42.4264i q^{29} -7.00000 q^{31} -5.65685i q^{32} +(24.0000 + 8.48528i) q^{33} +36.0000 q^{34} +(14.0000 + 11.3137i) q^{36} +2.00000 q^{37} +9.89949i q^{38} +(25.0000 - 70.7107i) q^{39} +8.48528i q^{41} +(-28.0000 - 9.89949i) q^{42} +41.0000 q^{43} +16.9706i q^{44} -36.0000 q^{46} +(-4.00000 + 11.3137i) q^{48} +(-72.0000 - 25.4558i) q^{51} +50.0000 q^{52} -59.3970i q^{53} +(-20.0000 - 32.5269i) q^{54} -19.7990i q^{56} +(7.00000 - 19.7990i) q^{57} +60.0000 q^{58} -33.9411i q^{59} -1.00000 q^{61} +9.89949i q^{62} +(49.0000 + 39.5980i) q^{63} -8.00000 q^{64} +(12.0000 - 33.9411i) q^{66} +17.0000 q^{67} -50.9117i q^{68} +(72.0000 + 25.4558i) q^{69} +42.4264i q^{71} +(16.0000 - 19.7990i) q^{72} -70.0000 q^{73} -2.82843i q^{74} +14.0000 q^{76} +59.3970i q^{77} +(-100.000 - 35.3553i) q^{78} -58.0000 q^{79} +(17.0000 + 79.1960i) q^{81} +12.0000 q^{82} +118.794i q^{83} +(-14.0000 + 39.5980i) q^{84} -57.9828i q^{86} +(-120.000 - 42.4264i) q^{87} +24.0000 q^{88} +135.765i q^{89} +175.000 q^{91} +50.9117i q^{92} +(7.00000 - 19.7990i) q^{93} +(16.0000 + 5.65685i) q^{96} -49.0000 q^{97} +(-48.0000 + 59.3970i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 4 q^{4} + 8 q^{6} - 14 q^{7} - 14 q^{9} + 4 q^{12} - 50 q^{13} + 8 q^{16} - 16 q^{18} - 14 q^{19} + 14 q^{21} - 24 q^{22} - 16 q^{24} + 46 q^{27} + 28 q^{28} - 14 q^{31} + 48 q^{33} + 72 q^{34}+ \cdots - 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) −1.00000 + 2.82843i −0.333333 + 0.942809i
\(4\) −2.00000 −0.500000
\(5\) 0 0
\(6\) 4.00000 + 1.41421i 0.666667 + 0.235702i
\(7\) −7.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(8\) 2.82843i 0.353553i
\(9\) −7.00000 5.65685i −0.777778 0.628539i
\(10\) 0 0
\(11\) 8.48528i 0.771389i −0.922627 0.385695i \(-0.873962\pi\)
0.922627 0.385695i \(-0.126038\pi\)
\(12\) 2.00000 5.65685i 0.166667 0.471405i
\(13\) −25.0000 −1.92308 −0.961538 0.274670i \(-0.911431\pi\)
−0.961538 + 0.274670i \(0.911431\pi\)
\(14\) 9.89949i 0.707107i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) 25.4558i 1.49740i 0.662908 + 0.748701i \(0.269322\pi\)
−0.662908 + 0.748701i \(0.730678\pi\)
\(18\) −8.00000 + 9.89949i −0.444444 + 0.549972i
\(19\) −7.00000 −0.368421 −0.184211 0.982887i \(-0.558973\pi\)
−0.184211 + 0.982887i \(0.558973\pi\)
\(20\) 0 0
\(21\) 7.00000 19.7990i 0.333333 0.942809i
\(22\) −12.0000 −0.545455
\(23\) 25.4558i 1.10678i −0.832924 0.553388i \(-0.813335\pi\)
0.832924 0.553388i \(-0.186665\pi\)
\(24\) −8.00000 2.82843i −0.333333 0.117851i
\(25\) 0 0
\(26\) 35.3553i 1.35982i
\(27\) 23.0000 14.1421i 0.851852 0.523783i
\(28\) 14.0000 0.500000
\(29\) 42.4264i 1.46298i 0.681852 + 0.731490i \(0.261175\pi\)
−0.681852 + 0.731490i \(0.738825\pi\)
\(30\) 0 0
\(31\) −7.00000 −0.225806 −0.112903 0.993606i \(-0.536015\pi\)
−0.112903 + 0.993606i \(0.536015\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 24.0000 + 8.48528i 0.727273 + 0.257130i
\(34\) 36.0000 1.05882
\(35\) 0 0
\(36\) 14.0000 + 11.3137i 0.388889 + 0.314270i
\(37\) 2.00000 0.0540541 0.0270270 0.999635i \(-0.491396\pi\)
0.0270270 + 0.999635i \(0.491396\pi\)
\(38\) 9.89949i 0.260513i
\(39\) 25.0000 70.7107i 0.641026 1.81309i
\(40\) 0 0
\(41\) 8.48528i 0.206958i 0.994632 + 0.103479i \(0.0329975\pi\)
−0.994632 + 0.103479i \(0.967003\pi\)
\(42\) −28.0000 9.89949i −0.666667 0.235702i
\(43\) 41.0000 0.953488 0.476744 0.879042i \(-0.341817\pi\)
0.476744 + 0.879042i \(0.341817\pi\)
\(44\) 16.9706i 0.385695i
\(45\) 0 0
\(46\) −36.0000 −0.782609
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) −4.00000 + 11.3137i −0.0833333 + 0.235702i
\(49\) 0 0
\(50\) 0 0
\(51\) −72.0000 25.4558i −1.41176 0.499134i
\(52\) 50.0000 0.961538
\(53\) 59.3970i 1.12070i −0.828257 0.560349i \(-0.810667\pi\)
0.828257 0.560349i \(-0.189333\pi\)
\(54\) −20.0000 32.5269i −0.370370 0.602350i
\(55\) 0 0
\(56\) 19.7990i 0.353553i
\(57\) 7.00000 19.7990i 0.122807 0.347351i
\(58\) 60.0000 1.03448
\(59\) 33.9411i 0.575273i −0.957740 0.287637i \(-0.907130\pi\)
0.957740 0.287637i \(-0.0928695\pi\)
\(60\) 0 0
\(61\) −1.00000 −0.0163934 −0.00819672 0.999966i \(-0.502609\pi\)
−0.00819672 + 0.999966i \(0.502609\pi\)
\(62\) 9.89949i 0.159669i
\(63\) 49.0000 + 39.5980i 0.777778 + 0.628539i
\(64\) −8.00000 −0.125000
\(65\) 0 0
\(66\) 12.0000 33.9411i 0.181818 0.514259i
\(67\) 17.0000 0.253731 0.126866 0.991920i \(-0.459508\pi\)
0.126866 + 0.991920i \(0.459508\pi\)
\(68\) 50.9117i 0.748701i
\(69\) 72.0000 + 25.4558i 1.04348 + 0.368925i
\(70\) 0 0
\(71\) 42.4264i 0.597555i 0.954323 + 0.298778i \(0.0965788\pi\)
−0.954323 + 0.298778i \(0.903421\pi\)
\(72\) 16.0000 19.7990i 0.222222 0.274986i
\(73\) −70.0000 −0.958904 −0.479452 0.877568i \(-0.659165\pi\)
−0.479452 + 0.877568i \(0.659165\pi\)
\(74\) 2.82843i 0.0382220i
\(75\) 0 0
\(76\) 14.0000 0.184211
\(77\) 59.3970i 0.771389i
\(78\) −100.000 35.3553i −1.28205 0.453274i
\(79\) −58.0000 −0.734177 −0.367089 0.930186i \(-0.619645\pi\)
−0.367089 + 0.930186i \(0.619645\pi\)
\(80\) 0 0
\(81\) 17.0000 + 79.1960i 0.209877 + 0.977728i
\(82\) 12.0000 0.146341
\(83\) 118.794i 1.43125i 0.698484 + 0.715626i \(0.253859\pi\)
−0.698484 + 0.715626i \(0.746141\pi\)
\(84\) −14.0000 + 39.5980i −0.166667 + 0.471405i
\(85\) 0 0
\(86\) 57.9828i 0.674218i
\(87\) −120.000 42.4264i −1.37931 0.487660i
\(88\) 24.0000 0.272727
\(89\) 135.765i 1.52544i 0.646727 + 0.762722i \(0.276137\pi\)
−0.646727 + 0.762722i \(0.723863\pi\)
\(90\) 0 0
\(91\) 175.000 1.92308
\(92\) 50.9117i 0.553388i
\(93\) 7.00000 19.7990i 0.0752688 0.212892i
\(94\) 0 0
\(95\) 0 0
\(96\) 16.0000 + 5.65685i 0.166667 + 0.0589256i
\(97\) −49.0000 −0.505155 −0.252577 0.967577i \(-0.581278\pi\)
−0.252577 + 0.967577i \(0.581278\pi\)
\(98\) 0 0
\(99\) −48.0000 + 59.3970i −0.484848 + 0.599969i
\(100\) 0 0
\(101\) 59.3970i 0.588089i 0.955792 + 0.294044i \(0.0950014\pi\)
−0.955792 + 0.294044i \(0.904999\pi\)
\(102\) −36.0000 + 101.823i −0.352941 + 0.998268i
\(103\) −154.000 −1.49515 −0.747573 0.664180i \(-0.768781\pi\)
−0.747573 + 0.664180i \(0.768781\pi\)
\(104\) 70.7107i 0.679910i
\(105\) 0 0
\(106\) −84.0000 −0.792453
\(107\) 178.191i 1.66534i −0.553773 0.832668i \(-0.686812\pi\)
0.553773 0.832668i \(-0.313188\pi\)
\(108\) −46.0000 + 28.2843i −0.425926 + 0.261891i
\(109\) −25.0000 −0.229358 −0.114679 0.993403i \(-0.536584\pi\)
−0.114679 + 0.993403i \(0.536584\pi\)
\(110\) 0 0
\(111\) −2.00000 + 5.65685i −0.0180180 + 0.0509627i
\(112\) −28.0000 −0.250000
\(113\) 16.9706i 0.150182i 0.997177 + 0.0750910i \(0.0239247\pi\)
−0.997177 + 0.0750910i \(0.976075\pi\)
\(114\) −28.0000 9.89949i −0.245614 0.0868377i
\(115\) 0 0
\(116\) 84.8528i 0.731490i
\(117\) 175.000 + 141.421i 1.49573 + 1.20873i
\(118\) −48.0000 −0.406780
\(119\) 178.191i 1.49740i
\(120\) 0 0
\(121\) 49.0000 0.404959
\(122\) 1.41421i 0.0115919i
\(123\) −24.0000 8.48528i −0.195122 0.0689860i
\(124\) 14.0000 0.112903
\(125\) 0 0
\(126\) 56.0000 69.2965i 0.444444 0.549972i
\(127\) −34.0000 −0.267717 −0.133858 0.991000i \(-0.542737\pi\)
−0.133858 + 0.991000i \(0.542737\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) −41.0000 + 115.966i −0.317829 + 0.898957i
\(130\) 0 0
\(131\) 195.161i 1.48978i −0.667186 0.744891i \(-0.732501\pi\)
0.667186 0.744891i \(-0.267499\pi\)
\(132\) −48.0000 16.9706i −0.363636 0.128565i
\(133\) 49.0000 0.368421
\(134\) 24.0416i 0.179415i
\(135\) 0 0
\(136\) −72.0000 −0.529412
\(137\) 118.794i 0.867109i −0.901127 0.433555i \(-0.857259\pi\)
0.901127 0.433555i \(-0.142741\pi\)
\(138\) 36.0000 101.823i 0.260870 0.737851i
\(139\) −154.000 −1.10791 −0.553957 0.832545i \(-0.686883\pi\)
−0.553957 + 0.832545i \(0.686883\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 60.0000 0.422535
\(143\) 212.132i 1.48344i
\(144\) −28.0000 22.6274i −0.194444 0.157135i
\(145\) 0 0
\(146\) 98.9949i 0.678048i
\(147\) 0 0
\(148\) −4.00000 −0.0270270
\(149\) 152.735i 1.02507i −0.858667 0.512534i \(-0.828707\pi\)
0.858667 0.512534i \(-0.171293\pi\)
\(150\) 0 0
\(151\) −199.000 −1.31788 −0.658940 0.752195i \(-0.728995\pi\)
−0.658940 + 0.752195i \(0.728995\pi\)
\(152\) 19.7990i 0.130257i
\(153\) 144.000 178.191i 0.941176 1.16465i
\(154\) 84.0000 0.545455
\(155\) 0 0
\(156\) −50.0000 + 141.421i −0.320513 + 0.906547i
\(157\) −145.000 −0.923567 −0.461783 0.886993i \(-0.652790\pi\)
−0.461783 + 0.886993i \(0.652790\pi\)
\(158\) 82.0244i 0.519142i
\(159\) 168.000 + 59.3970i 1.05660 + 0.373566i
\(160\) 0 0
\(161\) 178.191i 1.10678i
\(162\) 112.000 24.0416i 0.691358 0.148405i
\(163\) 161.000 0.987730 0.493865 0.869539i \(-0.335584\pi\)
0.493865 + 0.869539i \(0.335584\pi\)
\(164\) 16.9706i 0.103479i
\(165\) 0 0
\(166\) 168.000 1.01205
\(167\) 110.309i 0.660531i 0.943888 + 0.330265i \(0.107138\pi\)
−0.943888 + 0.330265i \(0.892862\pi\)
\(168\) 56.0000 + 19.7990i 0.333333 + 0.117851i
\(169\) 456.000 2.69822
\(170\) 0 0
\(171\) 49.0000 + 39.5980i 0.286550 + 0.231567i
\(172\) −82.0000 −0.476744
\(173\) 178.191i 1.03001i −0.857189 0.515003i \(-0.827791\pi\)
0.857189 0.515003i \(-0.172209\pi\)
\(174\) −60.0000 + 169.706i −0.344828 + 0.975320i
\(175\) 0 0
\(176\) 33.9411i 0.192847i
\(177\) 96.0000 + 33.9411i 0.542373 + 0.191758i
\(178\) 192.000 1.07865
\(179\) 118.794i 0.663653i −0.943340 0.331827i \(-0.892335\pi\)
0.943340 0.331827i \(-0.107665\pi\)
\(180\) 0 0
\(181\) −217.000 −1.19890 −0.599448 0.800414i \(-0.704613\pi\)
−0.599448 + 0.800414i \(0.704613\pi\)
\(182\) 247.487i 1.35982i
\(183\) 1.00000 2.82843i 0.00546448 0.0154559i
\(184\) 72.0000 0.391304
\(185\) 0 0
\(186\) −28.0000 9.89949i −0.150538 0.0532231i
\(187\) 216.000 1.15508
\(188\) 0 0
\(189\) −161.000 + 98.9949i −0.851852 + 0.523783i
\(190\) 0 0
\(191\) 59.3970i 0.310979i −0.987838 0.155489i \(-0.950305\pi\)
0.987838 0.155489i \(-0.0496955\pi\)
\(192\) 8.00000 22.6274i 0.0416667 0.117851i
\(193\) −25.0000 −0.129534 −0.0647668 0.997900i \(-0.520630\pi\)
−0.0647668 + 0.997900i \(0.520630\pi\)
\(194\) 69.2965i 0.357198i
\(195\) 0 0
\(196\) 0 0
\(197\) 135.765i 0.689160i 0.938757 + 0.344580i \(0.111979\pi\)
−0.938757 + 0.344580i \(0.888021\pi\)
\(198\) 84.0000 + 67.8823i 0.424242 + 0.342840i
\(199\) −103.000 −0.517588 −0.258794 0.965933i \(-0.583325\pi\)
−0.258794 + 0.965933i \(0.583325\pi\)
\(200\) 0 0
\(201\) −17.0000 + 48.0833i −0.0845771 + 0.239220i
\(202\) 84.0000 0.415842
\(203\) 296.985i 1.46298i
\(204\) 144.000 + 50.9117i 0.705882 + 0.249567i
\(205\) 0 0
\(206\) 217.789i 1.05723i
\(207\) −144.000 + 178.191i −0.695652 + 0.860826i
\(208\) −100.000 −0.480769
\(209\) 59.3970i 0.284196i
\(210\) 0 0
\(211\) −7.00000 −0.0331754 −0.0165877 0.999862i \(-0.505280\pi\)
−0.0165877 + 0.999862i \(0.505280\pi\)
\(212\) 118.794i 0.560349i
\(213\) −120.000 42.4264i −0.563380 0.199185i
\(214\) −252.000 −1.17757
\(215\) 0 0
\(216\) 40.0000 + 65.0538i 0.185185 + 0.301175i
\(217\) 49.0000 0.225806
\(218\) 35.3553i 0.162180i
\(219\) 70.0000 197.990i 0.319635 0.904063i
\(220\) 0 0
\(221\) 636.396i 2.87962i
\(222\) 8.00000 + 2.82843i 0.0360360 + 0.0127407i
\(223\) 161.000 0.721973 0.360987 0.932571i \(-0.382440\pi\)
0.360987 + 0.932571i \(0.382440\pi\)
\(224\) 39.5980i 0.176777i
\(225\) 0 0
\(226\) 24.0000 0.106195
\(227\) 59.3970i 0.261661i −0.991405 0.130830i \(-0.958236\pi\)
0.991405 0.130830i \(-0.0417643\pi\)
\(228\) −14.0000 + 39.5980i −0.0614035 + 0.173675i
\(229\) −97.0000 −0.423581 −0.211790 0.977315i \(-0.567929\pi\)
−0.211790 + 0.977315i \(0.567929\pi\)
\(230\) 0 0
\(231\) −168.000 59.3970i −0.727273 0.257130i
\(232\) −120.000 −0.517241
\(233\) 263.044i 1.12894i 0.825453 + 0.564472i \(0.190920\pi\)
−0.825453 + 0.564472i \(0.809080\pi\)
\(234\) 200.000 247.487i 0.854701 1.05764i
\(235\) 0 0
\(236\) 67.8823i 0.287637i
\(237\) 58.0000 164.049i 0.244726 0.692189i
\(238\) −252.000 −1.05882
\(239\) 59.3970i 0.248523i 0.992250 + 0.124261i \(0.0396562\pi\)
−0.992250 + 0.124261i \(0.960344\pi\)
\(240\) 0 0
\(241\) 119.000 0.493776 0.246888 0.969044i \(-0.420592\pi\)
0.246888 + 0.969044i \(0.420592\pi\)
\(242\) 69.2965i 0.286349i
\(243\) −241.000 31.1127i −0.991770 0.128036i
\(244\) 2.00000 0.00819672
\(245\) 0 0
\(246\) −12.0000 + 33.9411i −0.0487805 + 0.137972i
\(247\) 175.000 0.708502
\(248\) 19.7990i 0.0798346i
\(249\) −336.000 118.794i −1.34940 0.477084i
\(250\) 0 0
\(251\) 288.500i 1.14940i 0.818364 + 0.574700i \(0.194881\pi\)
−0.818364 + 0.574700i \(0.805119\pi\)
\(252\) −98.0000 79.1960i −0.388889 0.314270i
\(253\) −216.000 −0.853755
\(254\) 48.0833i 0.189304i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 118.794i 0.462233i 0.972926 + 0.231117i \(0.0742379\pi\)
−0.972926 + 0.231117i \(0.925762\pi\)
\(258\) 164.000 + 57.9828i 0.635659 + 0.224739i
\(259\) −14.0000 −0.0540541
\(260\) 0 0
\(261\) 240.000 296.985i 0.919540 1.13787i
\(262\) −276.000 −1.05344
\(263\) 8.48528i 0.0322634i −0.999870 0.0161317i \(-0.994865\pi\)
0.999870 0.0161317i \(-0.00513511\pi\)
\(264\) −24.0000 + 67.8823i −0.0909091 + 0.257130i
\(265\) 0 0
\(266\) 69.2965i 0.260513i
\(267\) −384.000 135.765i −1.43820 0.508481i
\(268\) −34.0000 −0.126866
\(269\) 59.3970i 0.220807i 0.993887 + 0.110403i \(0.0352142\pi\)
−0.993887 + 0.110403i \(0.964786\pi\)
\(270\) 0 0
\(271\) 470.000 1.73432 0.867159 0.498032i \(-0.165944\pi\)
0.867159 + 0.498032i \(0.165944\pi\)
\(272\) 101.823i 0.374351i
\(273\) −175.000 + 494.975i −0.641026 + 1.81309i
\(274\) −168.000 −0.613139
\(275\) 0 0
\(276\) −144.000 50.9117i −0.521739 0.184463i
\(277\) −217.000 −0.783394 −0.391697 0.920094i \(-0.628112\pi\)
−0.391697 + 0.920094i \(0.628112\pi\)
\(278\) 217.789i 0.783413i
\(279\) 49.0000 + 39.5980i 0.175627 + 0.141928i
\(280\) 0 0
\(281\) 517.602i 1.84200i 0.389562 + 0.921000i \(0.372626\pi\)
−0.389562 + 0.921000i \(0.627374\pi\)
\(282\) 0 0
\(283\) 65.0000 0.229682 0.114841 0.993384i \(-0.463364\pi\)
0.114841 + 0.993384i \(0.463364\pi\)
\(284\) 84.8528i 0.298778i
\(285\) 0 0
\(286\) 300.000 1.04895
\(287\) 59.3970i 0.206958i
\(288\) −32.0000 + 39.5980i −0.111111 + 0.137493i
\(289\) −359.000 −1.24221
\(290\) 0 0
\(291\) 49.0000 138.593i 0.168385 0.476264i
\(292\) 140.000 0.479452
\(293\) 169.706i 0.579200i −0.957148 0.289600i \(-0.906478\pi\)
0.957148 0.289600i \(-0.0935223\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 5.65685i 0.0191110i
\(297\) −120.000 195.161i −0.404040 0.657109i
\(298\) −216.000 −0.724832
\(299\) 636.396i 2.12842i
\(300\) 0 0
\(301\) −287.000 −0.953488
\(302\) 281.428i 0.931882i
\(303\) −168.000 59.3970i −0.554455 0.196030i
\(304\) −28.0000 −0.0921053
\(305\) 0 0
\(306\) −252.000 203.647i −0.823529 0.665512i
\(307\) 521.000 1.69707 0.848534 0.529141i \(-0.177486\pi\)
0.848534 + 0.529141i \(0.177486\pi\)
\(308\) 118.794i 0.385695i
\(309\) 154.000 435.578i 0.498382 1.40964i
\(310\) 0 0
\(311\) 33.9411i 0.109135i −0.998510 0.0545677i \(-0.982622\pi\)
0.998510 0.0545677i \(-0.0173781\pi\)
\(312\) 200.000 + 70.7107i 0.641026 + 0.226637i
\(313\) 119.000 0.380192 0.190096 0.981766i \(-0.439120\pi\)
0.190096 + 0.981766i \(0.439120\pi\)
\(314\) 205.061i 0.653060i
\(315\) 0 0
\(316\) 116.000 0.367089
\(317\) 152.735i 0.481814i 0.970548 + 0.240907i \(0.0774449\pi\)
−0.970548 + 0.240907i \(0.922555\pi\)
\(318\) 84.0000 237.588i 0.264151 0.747132i
\(319\) 360.000 1.12853
\(320\) 0 0
\(321\) 504.000 + 178.191i 1.57009 + 0.555112i
\(322\) 252.000 0.782609
\(323\) 178.191i 0.551675i
\(324\) −34.0000 158.392i −0.104938 0.488864i
\(325\) 0 0
\(326\) 227.688i 0.698431i
\(327\) 25.0000 70.7107i 0.0764526 0.216241i
\(328\) −24.0000 −0.0731707
\(329\) 0 0
\(330\) 0 0
\(331\) −418.000 −1.26284 −0.631420 0.775441i \(-0.717528\pi\)
−0.631420 + 0.775441i \(0.717528\pi\)
\(332\) 237.588i 0.715626i
\(333\) −14.0000 11.3137i −0.0420420 0.0339751i
\(334\) 156.000 0.467066
\(335\) 0 0
\(336\) 28.0000 79.1960i 0.0833333 0.235702i
\(337\) −553.000 −1.64095 −0.820475 0.571683i \(-0.806291\pi\)
−0.820475 + 0.571683i \(0.806291\pi\)
\(338\) 644.881i 1.90793i
\(339\) −48.0000 16.9706i −0.141593 0.0500607i
\(340\) 0 0
\(341\) 59.3970i 0.174185i
\(342\) 56.0000 69.2965i 0.163743 0.202621i
\(343\) 343.000 1.00000
\(344\) 115.966i 0.337109i
\(345\) 0 0
\(346\) −252.000 −0.728324
\(347\) 644.881i 1.85845i 0.369517 + 0.929224i \(0.379523\pi\)
−0.369517 + 0.929224i \(0.620477\pi\)
\(348\) 240.000 + 84.8528i 0.689655 + 0.243830i
\(349\) 266.000 0.762178 0.381089 0.924538i \(-0.375549\pi\)
0.381089 + 0.924538i \(0.375549\pi\)
\(350\) 0 0
\(351\) −575.000 + 353.553i −1.63818 + 1.00727i
\(352\) −48.0000 −0.136364
\(353\) 415.779i 1.17784i 0.808190 + 0.588922i \(0.200447\pi\)
−0.808190 + 0.588922i \(0.799553\pi\)
\(354\) 48.0000 135.765i 0.135593 0.383516i
\(355\) 0 0
\(356\) 271.529i 0.762722i
\(357\) 504.000 + 178.191i 1.41176 + 0.499134i
\(358\) −168.000 −0.469274
\(359\) 330.926i 0.921799i 0.887452 + 0.460900i \(0.152473\pi\)
−0.887452 + 0.460900i \(0.847527\pi\)
\(360\) 0 0
\(361\) −312.000 −0.864266
\(362\) 306.884i 0.847747i
\(363\) −49.0000 + 138.593i −0.134986 + 0.381799i
\(364\) −350.000 −0.961538
\(365\) 0 0
\(366\) −4.00000 1.41421i −0.0109290 0.00386397i
\(367\) −103.000 −0.280654 −0.140327 0.990105i \(-0.544815\pi\)
−0.140327 + 0.990105i \(0.544815\pi\)
\(368\) 101.823i 0.276694i
\(369\) 48.0000 59.3970i 0.130081 0.160967i
\(370\) 0 0
\(371\) 415.779i 1.12070i
\(372\) −14.0000 + 39.5980i −0.0376344 + 0.106446i
\(373\) 359.000 0.962466 0.481233 0.876593i \(-0.340189\pi\)
0.481233 + 0.876593i \(0.340189\pi\)
\(374\) 305.470i 0.816765i
\(375\) 0 0
\(376\) 0 0
\(377\) 1060.66i 2.81342i
\(378\) 140.000 + 227.688i 0.370370 + 0.602350i
\(379\) 377.000 0.994723 0.497361 0.867543i \(-0.334302\pi\)
0.497361 + 0.867543i \(0.334302\pi\)
\(380\) 0 0
\(381\) 34.0000 96.1665i 0.0892388 0.252406i
\(382\) −84.0000 −0.219895
\(383\) 610.940i 1.59514i −0.603224 0.797572i \(-0.706117\pi\)
0.603224 0.797572i \(-0.293883\pi\)
\(384\) −32.0000 11.3137i −0.0833333 0.0294628i
\(385\) 0 0
\(386\) 35.3553i 0.0915941i
\(387\) −287.000 231.931i −0.741602 0.599305i
\(388\) 98.0000 0.252577
\(389\) 347.897i 0.894336i −0.894450 0.447168i \(-0.852433\pi\)
0.894450 0.447168i \(-0.147567\pi\)
\(390\) 0 0
\(391\) 648.000 1.65729
\(392\) 0 0
\(393\) 552.000 + 195.161i 1.40458 + 0.496594i
\(394\) 192.000 0.487310
\(395\) 0 0
\(396\) 96.0000 118.794i 0.242424 0.299985i
\(397\) 239.000 0.602015 0.301008 0.953622i \(-0.402677\pi\)
0.301008 + 0.953622i \(0.402677\pi\)
\(398\) 145.664i 0.365990i
\(399\) −49.0000 + 138.593i −0.122807 + 0.347351i
\(400\) 0 0
\(401\) 93.3381i 0.232763i −0.993205 0.116382i \(-0.962870\pi\)
0.993205 0.116382i \(-0.0371296\pi\)
\(402\) 68.0000 + 24.0416i 0.169154 + 0.0598051i
\(403\) 175.000 0.434243
\(404\) 118.794i 0.294044i
\(405\) 0 0
\(406\) −420.000 −1.03448
\(407\) 16.9706i 0.0416967i
\(408\) 72.0000 203.647i 0.176471 0.499134i
\(409\) 455.000 1.11247 0.556235 0.831025i \(-0.312246\pi\)
0.556235 + 0.831025i \(0.312246\pi\)
\(410\) 0 0
\(411\) 336.000 + 118.794i 0.817518 + 0.289036i
\(412\) 308.000 0.747573
\(413\) 237.588i 0.575273i
\(414\) 252.000 + 203.647i 0.608696 + 0.491900i
\(415\) 0 0
\(416\) 141.421i 0.339955i
\(417\) 154.000 435.578i 0.369305 1.04455i
\(418\) 84.0000 0.200957
\(419\) 296.985i 0.708794i −0.935095 0.354397i \(-0.884686\pi\)
0.935095 0.354397i \(-0.115314\pi\)
\(420\) 0 0
\(421\) −526.000 −1.24941 −0.624703 0.780862i \(-0.714780\pi\)
−0.624703 + 0.780862i \(0.714780\pi\)
\(422\) 9.89949i 0.0234585i
\(423\) 0 0
\(424\) 168.000 0.396226
\(425\) 0 0
\(426\) −60.0000 + 169.706i −0.140845 + 0.398370i
\(427\) 7.00000 0.0163934
\(428\) 356.382i 0.832668i
\(429\) −600.000 212.132i −1.39860 0.494480i
\(430\) 0 0
\(431\) 280.014i 0.649685i 0.945768 + 0.324843i \(0.105311\pi\)
−0.945768 + 0.324843i \(0.894689\pi\)
\(432\) 92.0000 56.5685i 0.212963 0.130946i
\(433\) 119.000 0.274827 0.137413 0.990514i \(-0.456121\pi\)
0.137413 + 0.990514i \(0.456121\pi\)
\(434\) 69.2965i 0.159669i
\(435\) 0 0
\(436\) 50.0000 0.114679
\(437\) 178.191i 0.407760i
\(438\) −280.000 98.9949i −0.639269 0.226016i
\(439\) −727.000 −1.65604 −0.828018 0.560701i \(-0.810532\pi\)
−0.828018 + 0.560701i \(0.810532\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −900.000 −2.03620
\(443\) 526.087i 1.18756i 0.804629 + 0.593778i \(0.202364\pi\)
−0.804629 + 0.593778i \(0.797636\pi\)
\(444\) 4.00000 11.3137i 0.00900901 0.0254813i
\(445\) 0 0
\(446\) 227.688i 0.510512i
\(447\) 432.000 + 152.735i 0.966443 + 0.341689i
\(448\) 56.0000 0.125000
\(449\) 254.558i 0.566945i −0.958980 0.283473i \(-0.908513\pi\)
0.958980 0.283473i \(-0.0914865\pi\)
\(450\) 0 0
\(451\) 72.0000 0.159645
\(452\) 33.9411i 0.0750910i
\(453\) 199.000 562.857i 0.439294 1.24251i
\(454\) −84.0000 −0.185022
\(455\) 0 0
\(456\) 56.0000 + 19.7990i 0.122807 + 0.0434188i
\(457\) −310.000 −0.678337 −0.339168 0.940726i \(-0.610146\pi\)
−0.339168 + 0.940726i \(0.610146\pi\)
\(458\) 137.179i 0.299517i
\(459\) 360.000 + 585.484i 0.784314 + 1.27557i
\(460\) 0 0
\(461\) 721.249i 1.56453i −0.622945 0.782266i \(-0.714064\pi\)
0.622945 0.782266i \(-0.285936\pi\)
\(462\) −84.0000 + 237.588i −0.181818 + 0.514259i
\(463\) −730.000 −1.57667 −0.788337 0.615244i \(-0.789058\pi\)
−0.788337 + 0.615244i \(0.789058\pi\)
\(464\) 169.706i 0.365745i
\(465\) 0 0
\(466\) 372.000 0.798283
\(467\) 195.161i 0.417905i 0.977926 + 0.208952i \(0.0670053\pi\)
−0.977926 + 0.208952i \(0.932995\pi\)
\(468\) −350.000 282.843i −0.747863 0.604365i
\(469\) −119.000 −0.253731
\(470\) 0 0
\(471\) 145.000 410.122i 0.307856 0.870747i
\(472\) 96.0000 0.203390
\(473\) 347.897i 0.735511i
\(474\) −232.000 82.0244i −0.489451 0.173047i
\(475\) 0 0
\(476\) 356.382i 0.748701i
\(477\) −336.000 + 415.779i −0.704403 + 0.871654i
\(478\) 84.0000 0.175732
\(479\) 390.323i 0.814870i 0.913234 + 0.407435i \(0.133577\pi\)
−0.913234 + 0.407435i \(0.866423\pi\)
\(480\) 0 0
\(481\) −50.0000 −0.103950
\(482\) 168.291i 0.349152i
\(483\) −504.000 178.191i −1.04348 0.368925i
\(484\) −98.0000 −0.202479
\(485\) 0 0
\(486\) −44.0000 + 340.825i −0.0905350 + 0.701287i
\(487\) 473.000 0.971253 0.485626 0.874167i \(-0.338592\pi\)
0.485626 + 0.874167i \(0.338592\pi\)
\(488\) 2.82843i 0.00579596i
\(489\) −161.000 + 455.377i −0.329243 + 0.931241i
\(490\) 0 0
\(491\) 814.587i 1.65904i −0.558479 0.829518i \(-0.688615\pi\)
0.558479 0.829518i \(-0.311385\pi\)
\(492\) 48.0000 + 16.9706i 0.0975610 + 0.0344930i
\(493\) −1080.00 −2.19067
\(494\) 247.487i 0.500987i
\(495\) 0 0
\(496\) −28.0000 −0.0564516
\(497\) 296.985i 0.597555i
\(498\) −168.000 + 475.176i −0.337349 + 0.954168i
\(499\) −175.000 −0.350701 −0.175351 0.984506i \(-0.556106\pi\)
−0.175351 + 0.984506i \(0.556106\pi\)
\(500\) 0 0
\(501\) −312.000 110.309i −0.622754 0.220177i
\(502\) 408.000 0.812749
\(503\) 347.897i 0.691643i 0.938300 + 0.345822i \(0.112400\pi\)
−0.938300 + 0.345822i \(0.887600\pi\)
\(504\) −112.000 + 138.593i −0.222222 + 0.274986i
\(505\) 0 0
\(506\) 305.470i 0.603696i
\(507\) −456.000 + 1289.76i −0.899408 + 2.54391i
\(508\) 68.0000 0.133858
\(509\) 729.734i 1.43366i −0.697247 0.716831i \(-0.745592\pi\)
0.697247 0.716831i \(-0.254408\pi\)
\(510\) 0 0
\(511\) 490.000 0.958904
\(512\) 22.6274i 0.0441942i
\(513\) −161.000 + 98.9949i −0.313840 + 0.192973i
\(514\) 168.000 0.326848
\(515\) 0 0
\(516\) 82.0000 231.931i 0.158915 0.449479i
\(517\) 0 0
\(518\) 19.7990i 0.0382220i
\(519\) 504.000 + 178.191i 0.971098 + 0.343335i
\(520\) 0 0
\(521\) 568.514i 1.09120i 0.838047 + 0.545599i \(0.183698\pi\)
−0.838047 + 0.545599i \(0.816302\pi\)
\(522\) −420.000 339.411i −0.804598 0.650213i
\(523\) −175.000 −0.334608 −0.167304 0.985905i \(-0.553506\pi\)
−0.167304 + 0.985905i \(0.553506\pi\)
\(524\) 390.323i 0.744891i
\(525\) 0 0
\(526\) −12.0000 −0.0228137
\(527\) 178.191i 0.338123i
\(528\) 96.0000 + 33.9411i 0.181818 + 0.0642824i
\(529\) −119.000 −0.224953
\(530\) 0 0
\(531\) −192.000 + 237.588i −0.361582 + 0.447435i
\(532\) −98.0000 −0.184211
\(533\) 212.132i 0.397996i
\(534\) −192.000 + 543.058i −0.359551 + 1.01696i
\(535\) 0 0
\(536\) 48.0833i 0.0897076i
\(537\) 336.000 + 118.794i 0.625698 + 0.221218i
\(538\) 84.0000 0.156134
\(539\) 0 0
\(540\) 0 0
\(541\) 863.000 1.59519 0.797597 0.603191i \(-0.206104\pi\)
0.797597 + 0.603191i \(0.206104\pi\)
\(542\) 664.680i 1.22635i
\(543\) 217.000 613.769i 0.399632 1.13033i
\(544\) 144.000 0.264706
\(545\) 0 0
\(546\) 700.000 + 247.487i 1.28205 + 0.453274i
\(547\) −778.000 −1.42230 −0.711152 0.703039i \(-0.751826\pi\)
−0.711152 + 0.703039i \(0.751826\pi\)
\(548\) 237.588i 0.433555i
\(549\) 7.00000 + 5.65685i 0.0127505 + 0.0103039i
\(550\) 0 0
\(551\) 296.985i 0.538992i
\(552\) −72.0000 + 203.647i −0.130435 + 0.368925i
\(553\) 406.000 0.734177
\(554\) 306.884i 0.553943i
\(555\) 0 0
\(556\) 308.000 0.553957
\(557\) 424.264i 0.761695i 0.924638 + 0.380847i \(0.124368\pi\)
−0.924638 + 0.380847i \(0.875632\pi\)
\(558\) 56.0000 69.2965i 0.100358 0.124187i
\(559\) −1025.00 −1.83363
\(560\) 0 0
\(561\) −216.000 + 610.940i −0.385027 + 1.08902i
\(562\) 732.000 1.30249
\(563\) 381.838i 0.678220i 0.940747 + 0.339110i \(0.110126\pi\)
−0.940747 + 0.339110i \(0.889874\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 91.9239i 0.162410i
\(567\) −119.000 554.372i −0.209877 0.977728i
\(568\) −120.000 −0.211268
\(569\) 381.838i 0.671068i −0.942028 0.335534i \(-0.891083\pi\)
0.942028 0.335534i \(-0.108917\pi\)
\(570\) 0 0
\(571\) −535.000 −0.936953 −0.468476 0.883476i \(-0.655197\pi\)
−0.468476 + 0.883476i \(0.655197\pi\)
\(572\) 424.264i 0.741720i
\(573\) 168.000 + 59.3970i 0.293194 + 0.103660i
\(574\) −84.0000 −0.146341
\(575\) 0 0
\(576\) 56.0000 + 45.2548i 0.0972222 + 0.0785674i
\(577\) −49.0000 −0.0849220 −0.0424610 0.999098i \(-0.513520\pi\)
−0.0424610 + 0.999098i \(0.513520\pi\)
\(578\) 507.703i 0.878378i
\(579\) 25.0000 70.7107i 0.0431779 0.122126i
\(580\) 0 0
\(581\) 831.558i 1.43125i
\(582\) −196.000 69.2965i −0.336770 0.119066i
\(583\) −504.000 −0.864494
\(584\) 197.990i 0.339024i
\(585\) 0 0
\(586\) −240.000 −0.409556
\(587\) 415.779i 0.708311i −0.935186 0.354156i \(-0.884768\pi\)
0.935186 0.354156i \(-0.115232\pi\)
\(588\) 0 0
\(589\) 49.0000 0.0831919
\(590\) 0 0
\(591\) −384.000 135.765i −0.649746 0.229720i
\(592\) 8.00000 0.0135135
\(593\) 772.161i 1.30213i 0.759024 + 0.651063i \(0.225677\pi\)
−0.759024 + 0.651063i \(0.774323\pi\)
\(594\) −276.000 + 169.706i −0.464646 + 0.285700i
\(595\) 0 0
\(596\) 305.470i 0.512534i
\(597\) 103.000 291.328i 0.172529 0.487987i
\(598\) 900.000 1.50502
\(599\) 644.881i 1.07660i −0.842754 0.538298i \(-0.819067\pi\)
0.842754 0.538298i \(-0.180933\pi\)
\(600\) 0 0
\(601\) 455.000 0.757072 0.378536 0.925587i \(-0.376428\pi\)
0.378536 + 0.925587i \(0.376428\pi\)
\(602\) 405.879i 0.674218i
\(603\) −119.000 96.1665i −0.197347 0.159480i
\(604\) 398.000 0.658940
\(605\) 0 0
\(606\) −84.0000 + 237.588i −0.138614 + 0.392059i
\(607\) 566.000 0.932455 0.466227 0.884665i \(-0.345613\pi\)
0.466227 + 0.884665i \(0.345613\pi\)
\(608\) 39.5980i 0.0651283i
\(609\) 840.000 + 296.985i 1.37931 + 0.487660i
\(610\) 0 0
\(611\) 0 0
\(612\) −288.000 + 356.382i −0.470588 + 0.582323i
\(613\) 578.000 0.942904 0.471452 0.881892i \(-0.343730\pi\)
0.471452 + 0.881892i \(0.343730\pi\)
\(614\) 736.805i 1.20001i
\(615\) 0 0
\(616\) −168.000 −0.272727
\(617\) 636.396i 1.03144i 0.856758 + 0.515718i \(0.172475\pi\)
−0.856758 + 0.515718i \(0.827525\pi\)
\(618\) −616.000 217.789i −0.996764 0.352409i
\(619\) 593.000 0.957997 0.478998 0.877816i \(-0.341000\pi\)
0.478998 + 0.877816i \(0.341000\pi\)
\(620\) 0 0
\(621\) −360.000 585.484i −0.579710 0.942809i
\(622\) −48.0000 −0.0771704
\(623\) 950.352i 1.52544i
\(624\) 100.000 282.843i 0.160256 0.453274i
\(625\) 0 0
\(626\) 168.291i 0.268836i
\(627\) −168.000 59.3970i −0.267943 0.0947320i
\(628\) 290.000 0.461783
\(629\) 50.9117i 0.0809407i
\(630\) 0 0
\(631\) −559.000 −0.885895 −0.442948 0.896547i \(-0.646067\pi\)
−0.442948 + 0.896547i \(0.646067\pi\)
\(632\) 164.049i 0.259571i
\(633\) 7.00000 19.7990i 0.0110585 0.0312780i
\(634\) 216.000 0.340694
\(635\) 0 0
\(636\) −336.000 118.794i −0.528302 0.186783i
\(637\) 0 0
\(638\) 509.117i 0.797989i
\(639\) 240.000 296.985i 0.375587 0.464765i
\(640\) 0 0
\(641\) 543.058i 0.847204i 0.905848 + 0.423602i \(0.139235\pi\)
−0.905848 + 0.423602i \(0.860765\pi\)
\(642\) 252.000 712.764i 0.392523 1.11022i
\(643\) 854.000 1.32815 0.664075 0.747666i \(-0.268826\pi\)
0.664075 + 0.747666i \(0.268826\pi\)
\(644\) 356.382i 0.553388i
\(645\) 0 0
\(646\) −252.000 −0.390093
\(647\) 322.441i 0.498363i −0.968457 0.249181i \(-0.919838\pi\)
0.968457 0.249181i \(-0.0801615\pi\)
\(648\) −224.000 + 48.0833i −0.345679 + 0.0742026i
\(649\) −288.000 −0.443760
\(650\) 0 0
\(651\) −49.0000 + 138.593i −0.0752688 + 0.212892i
\(652\) −322.000 −0.493865
\(653\) 356.382i 0.545761i −0.962048 0.272880i \(-0.912024\pi\)
0.962048 0.272880i \(-0.0879763\pi\)
\(654\) −100.000 35.3553i −0.152905 0.0540602i
\(655\) 0 0
\(656\) 33.9411i 0.0517395i
\(657\) 490.000 + 395.980i 0.745814 + 0.602709i
\(658\) 0 0
\(659\) 890.955i 1.35198i −0.736911 0.675990i \(-0.763716\pi\)
0.736911 0.675990i \(-0.236284\pi\)
\(660\) 0 0
\(661\) −910.000 −1.37670 −0.688351 0.725378i \(-0.741665\pi\)
−0.688351 + 0.725378i \(0.741665\pi\)
\(662\) 591.141i 0.892963i
\(663\) 1800.00 + 636.396i 2.71493 + 0.959873i
\(664\) −336.000 −0.506024
\(665\) 0 0
\(666\) −16.0000 + 19.7990i −0.0240240 + 0.0297282i
\(667\) 1080.00 1.61919
\(668\) 220.617i 0.330265i
\(669\) −161.000 + 455.377i −0.240658 + 0.680683i
\(670\) 0 0
\(671\) 8.48528i 0.0126457i
\(672\) −112.000 39.5980i −0.166667 0.0589256i
\(673\) −742.000 −1.10253 −0.551263 0.834332i \(-0.685854\pi\)
−0.551263 + 0.834332i \(0.685854\pi\)
\(674\) 782.060i 1.16033i
\(675\) 0 0
\(676\) −912.000 −1.34911
\(677\) 432.749i 0.639216i −0.947550 0.319608i \(-0.896449\pi\)
0.947550 0.319608i \(-0.103551\pi\)
\(678\) −24.0000 + 67.8823i −0.0353982 + 0.100121i
\(679\) 343.000 0.505155
\(680\) 0 0
\(681\) 168.000 + 59.3970i 0.246696 + 0.0872202i
\(682\) 84.0000 0.123167
\(683\) 661.852i 0.969037i −0.874781 0.484518i \(-0.838995\pi\)
0.874781 0.484518i \(-0.161005\pi\)
\(684\) −98.0000 79.1960i −0.143275 0.115784i
\(685\) 0 0
\(686\) 485.075i 0.707107i
\(687\) 97.0000 274.357i 0.141194 0.399356i
\(688\) 164.000 0.238372
\(689\) 1484.92i 2.15519i
\(690\) 0 0
\(691\) 302.000 0.437048 0.218524 0.975832i \(-0.429876\pi\)
0.218524 + 0.975832i \(0.429876\pi\)
\(692\) 356.382i 0.515003i
\(693\) 336.000 415.779i 0.484848 0.599969i
\(694\) 912.000 1.31412
\(695\) 0 0
\(696\) 120.000 339.411i 0.172414 0.487660i
\(697\) −216.000 −0.309900
\(698\) 376.181i 0.538941i
\(699\) −744.000 263.044i −1.06438 0.376314i
\(700\) 0 0
\(701\) 178.191i 0.254195i 0.991890 + 0.127098i \(0.0405662\pi\)
−0.991890 + 0.127098i \(0.959434\pi\)
\(702\) 500.000 + 813.173i 0.712251 + 1.15837i
\(703\) −14.0000 −0.0199147
\(704\) 67.8823i 0.0964237i
\(705\) 0 0
\(706\) 588.000 0.832861
\(707\) 415.779i 0.588089i
\(708\) −192.000 67.8823i −0.271186 0.0958789i
\(709\) 95.0000 0.133992 0.0669958 0.997753i \(-0.478659\pi\)
0.0669958 + 0.997753i \(0.478659\pi\)
\(710\) 0 0
\(711\) 406.000 + 328.098i 0.571027 + 0.461459i
\(712\) −384.000 −0.539326
\(713\) 178.191i 0.249917i
\(714\) 252.000 712.764i 0.352941 0.998268i
\(715\) 0 0
\(716\) 237.588i 0.331827i
\(717\) −168.000 59.3970i −0.234310 0.0828410i
\(718\) 468.000 0.651811
\(719\) 873.984i 1.21555i 0.794107 + 0.607777i \(0.207939\pi\)
−0.794107 + 0.607777i \(0.792061\pi\)
\(720\) 0 0
\(721\) 1078.00 1.49515
\(722\) 441.235i 0.611128i
\(723\) −119.000 + 336.583i −0.164592 + 0.465536i
\(724\) 434.000 0.599448
\(725\) 0 0
\(726\) 196.000 + 69.2965i 0.269972 + 0.0954497i
\(727\) −871.000 −1.19807 −0.599037 0.800721i \(-0.704450\pi\)
−0.599037 + 0.800721i \(0.704450\pi\)
\(728\) 494.975i 0.679910i
\(729\) 329.000 650.538i 0.451303 0.892371i
\(730\) 0 0
\(731\) 1043.69i 1.42776i
\(732\) −2.00000 + 5.65685i −0.00273224 + 0.00772794i
\(733\) −406.000 −0.553888 −0.276944 0.960886i \(-0.589322\pi\)
−0.276944 + 0.960886i \(0.589322\pi\)
\(734\) 145.664i 0.198452i
\(735\) 0 0
\(736\) −144.000 −0.195652
\(737\) 144.250i 0.195726i
\(738\) −84.0000 67.8823i −0.113821 0.0919814i
\(739\) 830.000 1.12314 0.561570 0.827429i \(-0.310198\pi\)
0.561570 + 0.827429i \(0.310198\pi\)
\(740\) 0 0
\(741\) −175.000 + 494.975i −0.236167 + 0.667982i
\(742\) 588.000 0.792453
\(743\) 1306.73i 1.75873i 0.476152 + 0.879363i \(0.342031\pi\)
−0.476152 + 0.879363i \(0.657969\pi\)
\(744\) 56.0000 + 19.7990i 0.0752688 + 0.0266115i
\(745\) 0 0
\(746\) 507.703i 0.680567i
\(747\) 672.000 831.558i 0.899598 1.11320i
\(748\) −432.000 −0.577540
\(749\) 1247.34i 1.66534i
\(750\) 0 0
\(751\) 350.000 0.466045 0.233023 0.972471i \(-0.425138\pi\)
0.233023 + 0.972471i \(0.425138\pi\)
\(752\) 0 0
\(753\) −816.000 288.500i −1.08367 0.383134i
\(754\) −1500.00 −1.98939
\(755\) 0 0
\(756\) 322.000 197.990i 0.425926 0.261891i
\(757\) −265.000 −0.350066 −0.175033 0.984563i \(-0.556003\pi\)
−0.175033 + 0.984563i \(0.556003\pi\)
\(758\) 533.159i 0.703375i
\(759\) 216.000 610.940i 0.284585 0.804928i
\(760\) 0 0
\(761\) 1069.15i 1.40492i 0.711722 + 0.702461i \(0.247915\pi\)
−0.711722 + 0.702461i \(0.752085\pi\)
\(762\) −136.000 48.0833i −0.178478 0.0631014i
\(763\) 175.000 0.229358
\(764\) 118.794i 0.155489i
\(765\) 0 0
\(766\) −864.000 −1.12794
\(767\) 848.528i 1.10629i
\(768\) −16.0000 + 45.2548i −0.0208333 + 0.0589256i
\(769\) −529.000 −0.687906 −0.343953 0.938987i \(-0.611766\pi\)
−0.343953 + 0.938987i \(0.611766\pi\)
\(770\) 0 0
\(771\) −336.000 118.794i −0.435798 0.154078i
\(772\) 50.0000 0.0647668
\(773\) 1009.75i 1.30627i −0.757240 0.653136i \(-0.773453\pi\)
0.757240 0.653136i \(-0.226547\pi\)
\(774\) −328.000 + 405.879i −0.423773 + 0.524392i
\(775\) 0 0
\(776\) 138.593i 0.178599i
\(777\) 14.0000 39.5980i 0.0180180 0.0509627i
\(778\) −492.000 −0.632391
\(779\) 59.3970i 0.0762477i
\(780\) 0 0
\(781\) 360.000 0.460948
\(782\) 916.410i 1.17188i
\(783\) 600.000 + 975.807i 0.766284 + 1.24624i
\(784\) 0 0
\(785\) 0 0
\(786\) 276.000 780.646i 0.351145 0.993188i
\(787\) −1519.00 −1.93011 −0.965057 0.262039i \(-0.915605\pi\)
−0.965057 + 0.262039i \(0.915605\pi\)
\(788\) 271.529i 0.344580i
\(789\) 24.0000 + 8.48528i 0.0304183 + 0.0107545i
\(790\) 0 0
\(791\) 118.794i 0.150182i
\(792\) −168.000 135.765i −0.212121 0.171420i
\(793\) 25.0000 0.0315259
\(794\) 337.997i 0.425689i
\(795\) 0 0
\(796\) 206.000 0.258794
\(797\) 526.087i 0.660085i 0.943966 + 0.330042i \(0.107063\pi\)
−0.943966 + 0.330042i \(0.892937\pi\)
\(798\) 196.000 + 69.2965i 0.245614 + 0.0868377i
\(799\) 0 0
\(800\) 0 0
\(801\) 768.000 950.352i 0.958801 1.18646i
\(802\) −132.000 −0.164589
\(803\) 593.970i 0.739688i
\(804\) 34.0000 96.1665i 0.0422886 0.119610i
\(805\) 0 0
\(806\) 247.487i 0.307056i
\(807\) −168.000 59.3970i −0.208178 0.0736022i
\(808\) −168.000 −0.207921
\(809\) 823.072i 1.01739i 0.860945 + 0.508697i \(0.169873\pi\)
−0.860945 + 0.508697i \(0.830127\pi\)
\(810\) 0 0
\(811\) −319.000 −0.393342 −0.196671 0.980470i \(-0.563013\pi\)
−0.196671 + 0.980470i \(0.563013\pi\)
\(812\) 593.970i 0.731490i
\(813\) −470.000 + 1329.36i −0.578106 + 1.63513i
\(814\) −24.0000 −0.0294840
\(815\) 0 0
\(816\) −288.000 101.823i −0.352941 0.124784i
\(817\) −287.000 −0.351285
\(818\) 643.467i 0.786635i
\(819\) −1225.00 989.949i −1.49573 1.20873i
\(820\) 0 0
\(821\) 118.794i 0.144694i 0.997380 + 0.0723471i \(0.0230489\pi\)
−0.997380 + 0.0723471i \(0.976951\pi\)
\(822\) 168.000 475.176i 0.204380 0.578073i
\(823\) −1375.00 −1.67072 −0.835358 0.549706i \(-0.814740\pi\)
−0.835358 + 0.549706i \(0.814740\pi\)
\(824\) 435.578i 0.528614i
\(825\) 0 0
\(826\) 336.000 0.406780
\(827\) 280.014i 0.338590i 0.985565 + 0.169295i \(0.0541491\pi\)
−0.985565 + 0.169295i \(0.945851\pi\)
\(828\) 288.000 356.382i 0.347826 0.430413i
\(829\) −142.000 −0.171291 −0.0856454 0.996326i \(-0.527295\pi\)
−0.0856454 + 0.996326i \(0.527295\pi\)
\(830\) 0 0
\(831\) 217.000 613.769i 0.261131 0.738590i
\(832\) 200.000 0.240385
\(833\) 0 0
\(834\) −616.000 217.789i −0.738609 0.261138i
\(835\) 0 0
\(836\) 118.794i 0.142098i
\(837\) −161.000 + 98.9949i −0.192354 + 0.118274i
\(838\) −420.000 −0.501193
\(839\) 1247.34i 1.48669i −0.668906 0.743347i \(-0.733237\pi\)
0.668906 0.743347i \(-0.266763\pi\)
\(840\) 0 0
\(841\) −959.000 −1.14031
\(842\) 743.876i 0.883464i
\(843\) −1464.00 517.602i −1.73665 0.614000i
\(844\) 14.0000 0.0165877
\(845\) 0 0
\(846\) 0 0
\(847\) −343.000 −0.404959
\(848\) 237.588i 0.280174i
\(849\) −65.0000 + 183.848i −0.0765607 + 0.216546i
\(850\) 0 0
\(851\) 50.9117i 0.0598257i
\(852\) 240.000 + 84.8528i 0.281690 + 0.0995925i
\(853\) −1057.00 −1.23916 −0.619578 0.784935i \(-0.712696\pi\)
−0.619578 + 0.784935i \(0.712696\pi\)
\(854\) 9.89949i 0.0115919i
\(855\) 0 0
\(856\) 504.000 0.588785
\(857\) 627.911i 0.732685i 0.930480 + 0.366342i \(0.119390\pi\)
−0.930480 + 0.366342i \(0.880610\pi\)
\(858\) −300.000 + 848.528i −0.349650 + 0.988961i
\(859\) −946.000 −1.10128 −0.550640 0.834743i \(-0.685616\pi\)
−0.550640 + 0.834743i \(0.685616\pi\)
\(860\) 0 0
\(861\) 168.000 + 59.3970i 0.195122 + 0.0689860i
\(862\) 396.000 0.459397
\(863\) 390.323i 0.452286i 0.974094 + 0.226143i \(0.0726117\pi\)
−0.974094 + 0.226143i \(0.927388\pi\)
\(864\) −80.0000 130.108i −0.0925926 0.150588i
\(865\) 0 0
\(866\) 168.291i 0.194332i
\(867\) 359.000 1015.41i 0.414072 1.17117i
\(868\) −98.0000 −0.112903
\(869\) 492.146i 0.566336i
\(870\) 0 0
\(871\) −425.000 −0.487945
\(872\) 70.7107i 0.0810902i
\(873\) 343.000 + 277.186i 0.392898 + 0.317510i
\(874\) 252.000 0.288330
\(875\) 0 0
\(876\) −140.000 + 395.980i −0.159817 + 0.452032i
\(877\) 1463.00 1.66819 0.834094 0.551623i \(-0.185991\pi\)
0.834094 + 0.551623i \(0.185991\pi\)
\(878\) 1028.13i 1.17099i
\(879\) 480.000 + 169.706i 0.546075 + 0.193067i
\(880\) 0 0
\(881\) 1069.15i 1.21356i −0.794870 0.606779i \(-0.792461\pi\)
0.794870 0.606779i \(-0.207539\pi\)
\(882\) 0 0
\(883\) 1289.00 1.45980 0.729898 0.683556i \(-0.239568\pi\)
0.729898 + 0.683556i \(0.239568\pi\)
\(884\) 1272.79i 1.43981i
\(885\) 0 0
\(886\) 744.000 0.839729
\(887\) 1289.76i 1.45407i −0.686599 0.727037i \(-0.740897\pi\)
0.686599 0.727037i \(-0.259103\pi\)
\(888\) −16.0000 5.65685i −0.0180180 0.00637033i
\(889\) 238.000 0.267717
\(890\) 0 0
\(891\) 672.000 144.250i 0.754209 0.161897i
\(892\) −322.000 −0.360987
\(893\) 0 0
\(894\) 216.000 610.940i 0.241611 0.683378i
\(895\) 0 0
\(896\) 79.1960i 0.0883883i
\(897\) −1800.00 636.396i −2.00669 0.709472i
\(898\) −360.000 −0.400891
\(899\) 296.985i 0.330350i
\(900\) 0 0
\(901\) 1512.00 1.67814
\(902\) 101.823i 0.112886i
\(903\) 287.000 811.759i 0.317829 0.898957i
\(904\) −48.0000 −0.0530973
\(905\) 0 0
\(906\) −796.000 281.428i −0.878587 0.310627i
\(907\) 14.0000 0.0154355 0.00771775 0.999970i \(-0.497543\pi\)
0.00771775 + 0.999970i \(0.497543\pi\)
\(908\) 118.794i 0.130830i
\(909\) 336.000 415.779i 0.369637 0.457402i
\(910\) 0 0
\(911\) 695.793i 0.763768i −0.924210 0.381884i \(-0.875275\pi\)
0.924210 0.381884i \(-0.124725\pi\)
\(912\) 28.0000 79.1960i 0.0307018 0.0868377i
\(913\) 1008.00 1.10405
\(914\) 438.406i 0.479657i
\(915\) 0 0
\(916\) 194.000 0.211790
\(917\) 1366.13i 1.48978i
\(918\) 828.000 509.117i 0.901961 0.554594i
\(919\) −1423.00 −1.54842 −0.774211 0.632927i \(-0.781853\pi\)
−0.774211 + 0.632927i \(0.781853\pi\)
\(920\) 0 0
\(921\) −521.000 + 1473.61i −0.565689 + 1.60001i
\(922\) −1020.00 −1.10629
\(923\) 1060.66i 1.14914i
\(924\) 336.000 + 118.794i 0.363636 + 0.128565i
\(925\) 0 0
\(926\) 1032.38i 1.11488i
\(927\) 1078.00 + 871.156i 1.16289 + 0.939758i
\(928\) 240.000 0.258621
\(929\) 415.779i 0.447555i 0.974640 + 0.223778i \(0.0718389\pi\)
−0.974640 + 0.223778i \(0.928161\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 526.087i 0.564472i
\(933\) 96.0000 + 33.9411i 0.102894 + 0.0363785i
\(934\) 276.000 0.295503
\(935\) 0 0
\(936\) −400.000 + 494.975i −0.427350 + 0.528819i
\(937\) 1655.00 1.76628 0.883138 0.469114i \(-0.155427\pi\)
0.883138 + 0.469114i \(0.155427\pi\)
\(938\) 168.291i 0.179415i
\(939\) −119.000 + 336.583i −0.126731 + 0.358448i
\(940\) 0 0
\(941\) 1663.12i 1.76739i 0.468062 + 0.883696i \(0.344952\pi\)
−0.468062 + 0.883696i \(0.655048\pi\)
\(942\) −580.000 205.061i −0.615711 0.217687i
\(943\) 216.000 0.229056
\(944\) 135.765i 0.143818i
\(945\) 0 0
\(946\) −492.000 −0.520085
\(947\) 415.779i 0.439048i −0.975607 0.219524i \(-0.929550\pi\)
0.975607 0.219524i \(-0.0704505\pi\)
\(948\) −116.000 + 328.098i −0.122363 + 0.346094i
\(949\) 1750.00 1.84405
\(950\) 0 0
\(951\) −432.000 152.735i −0.454259 0.160605i
\(952\) 504.000 0.529412
\(953\) 1680.09i 1.76294i −0.472236 0.881472i \(-0.656553\pi\)
0.472236 0.881472i \(-0.343447\pi\)
\(954\) 588.000 + 475.176i 0.616352 + 0.498088i
\(955\) 0 0
\(956\) 118.794i 0.124261i
\(957\) −360.000 + 1018.23i −0.376176 + 1.06399i
\(958\) 552.000 0.576200
\(959\) 831.558i 0.867109i
\(960\) 0 0
\(961\) −912.000 −0.949011
\(962\) 70.7107i 0.0735038i
\(963\) −1008.00 + 1247.34i −1.04673 + 1.29526i
\(964\) −238.000 −0.246888
\(965\) 0 0
\(966\) −252.000 + 712.764i −0.260870 + 0.737851i
\(967\) −1162.00 −1.20165 −0.600827 0.799379i \(-0.705162\pi\)
−0.600827 + 0.799379i \(0.705162\pi\)
\(968\) 138.593i 0.143175i
\(969\) 504.000 + 178.191i 0.520124 + 0.183892i
\(970\) 0 0
\(971\) 712.764i 0.734051i −0.930211 0.367026i \(-0.880376\pi\)
0.930211 0.367026i \(-0.119624\pi\)
\(972\) 482.000 + 62.2254i 0.495885 + 0.0640179i
\(973\) 1078.00 1.10791
\(974\) 668.923i 0.686779i
\(975\) 0 0
\(976\) −4.00000 −0.00409836
\(977\) 899.440i 0.920614i −0.887760 0.460307i \(-0.847739\pi\)
0.887760 0.460307i \(-0.152261\pi\)
\(978\) 644.000 + 227.688i 0.658487 + 0.232810i
\(979\) 1152.00 1.17671
\(980\) 0 0
\(981\) 175.000 + 141.421i 0.178389 + 0.144160i
\(982\) −1152.00 −1.17312
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 24.0000 67.8823i 0.0243902 0.0689860i
\(985\) 0 0
\(986\) 1527.35i 1.54904i
\(987\) 0 0
\(988\) −350.000 −0.354251
\(989\) 1043.69i 1.05530i
\(990\) 0 0
\(991\) −535.000 −0.539859 −0.269929 0.962880i \(-0.587000\pi\)
−0.269929 + 0.962880i \(0.587000\pi\)
\(992\) 39.5980i 0.0399173i
\(993\) 418.000 1182.28i 0.420947 1.19062i
\(994\) −420.000 −0.422535
\(995\) 0 0
\(996\) 672.000 + 237.588i 0.674699 + 0.238542i
\(997\) 1274.00 1.27783 0.638917 0.769276i \(-0.279383\pi\)
0.638917 + 0.769276i \(0.279383\pi\)
\(998\) 247.487i 0.247983i
\(999\) 46.0000 28.2843i 0.0460460 0.0283126i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 150.3.d.a.101.1 2
3.2 odd 2 inner 150.3.d.a.101.2 yes 2
4.3 odd 2 1200.3.l.p.401.1 2
5.2 odd 4 150.3.b.a.149.4 4
5.3 odd 4 150.3.b.a.149.1 4
5.4 even 2 150.3.d.b.101.2 yes 2
12.11 even 2 1200.3.l.p.401.2 2
15.2 even 4 150.3.b.a.149.2 4
15.8 even 4 150.3.b.a.149.3 4
15.14 odd 2 150.3.d.b.101.1 yes 2
20.3 even 4 1200.3.c.h.449.4 4
20.7 even 4 1200.3.c.h.449.1 4
20.19 odd 2 1200.3.l.i.401.2 2
60.23 odd 4 1200.3.c.h.449.2 4
60.47 odd 4 1200.3.c.h.449.3 4
60.59 even 2 1200.3.l.i.401.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.3.b.a.149.1 4 5.3 odd 4
150.3.b.a.149.2 4 15.2 even 4
150.3.b.a.149.3 4 15.8 even 4
150.3.b.a.149.4 4 5.2 odd 4
150.3.d.a.101.1 2 1.1 even 1 trivial
150.3.d.a.101.2 yes 2 3.2 odd 2 inner
150.3.d.b.101.1 yes 2 15.14 odd 2
150.3.d.b.101.2 yes 2 5.4 even 2
1200.3.c.h.449.1 4 20.7 even 4
1200.3.c.h.449.2 4 60.23 odd 4
1200.3.c.h.449.3 4 60.47 odd 4
1200.3.c.h.449.4 4 20.3 even 4
1200.3.l.i.401.1 2 60.59 even 2
1200.3.l.i.401.2 2 20.19 odd 2
1200.3.l.p.401.1 2 4.3 odd 2
1200.3.l.p.401.2 2 12.11 even 2