Properties

Label 150.8.a.h.1.1
Level $150$
Weight $8$
Character 150.1
Self dual yes
Analytic conductor $46.858$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,8,Mod(1,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 150.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.8577538226\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 150.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000 q^{2} +27.0000 q^{3} +64.0000 q^{4} -216.000 q^{6} +713.000 q^{7} -512.000 q^{8} +729.000 q^{9} +3810.00 q^{11} +1728.00 q^{12} -391.000 q^{13} -5704.00 q^{14} +4096.00 q^{16} -4182.00 q^{17} -5832.00 q^{18} -1561.00 q^{19} +19251.0 q^{21} -30480.0 q^{22} +114150. q^{23} -13824.0 q^{24} +3128.00 q^{26} +19683.0 q^{27} +45632.0 q^{28} -83214.0 q^{29} -83167.0 q^{31} -32768.0 q^{32} +102870. q^{33} +33456.0 q^{34} +46656.0 q^{36} -231334. q^{37} +12488.0 q^{38} -10557.0 q^{39} -124656. q^{41} -154008. q^{42} +193757. q^{43} +243840. q^{44} -913200. q^{46} +319290. q^{47} +110592. q^{48} -315174. q^{49} -112914. q^{51} -25024.0 q^{52} +1.64543e6 q^{53} -157464. q^{54} -365056. q^{56} -42147.0 q^{57} +665712. q^{58} -38610.0 q^{59} -1.97390e6 q^{61} +665336. q^{62} +519777. q^{63} +262144. q^{64} -822960. q^{66} +4.40975e6 q^{67} -267648. q^{68} +3.08205e6 q^{69} +124080. q^{71} -373248. q^{72} +3.96763e6 q^{73} +1.85067e6 q^{74} -99904.0 q^{76} +2.71653e6 q^{77} +84456.0 q^{78} +7.10799e6 q^{79} +531441. q^{81} +997248. q^{82} +8.11769e6 q^{83} +1.23206e6 q^{84} -1.55006e6 q^{86} -2.24678e6 q^{87} -1.95072e6 q^{88} +6.72787e6 q^{89} -278783. q^{91} +7.30560e6 q^{92} -2.24551e6 q^{93} -2.55432e6 q^{94} -884736. q^{96} -1.42687e7 q^{97} +2.52139e6 q^{98} +2.77749e6 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.00000 −0.707107
\(3\) 27.0000 0.577350
\(4\) 64.0000 0.500000
\(5\) 0 0
\(6\) −216.000 −0.408248
\(7\) 713.000 0.785681 0.392841 0.919607i \(-0.371492\pi\)
0.392841 + 0.919607i \(0.371492\pi\)
\(8\) −512.000 −0.353553
\(9\) 729.000 0.333333
\(10\) 0 0
\(11\) 3810.00 0.863079 0.431540 0.902094i \(-0.357971\pi\)
0.431540 + 0.902094i \(0.357971\pi\)
\(12\) 1728.00 0.288675
\(13\) −391.000 −0.0493600 −0.0246800 0.999695i \(-0.507857\pi\)
−0.0246800 + 0.999695i \(0.507857\pi\)
\(14\) −5704.00 −0.555561
\(15\) 0 0
\(16\) 4096.00 0.250000
\(17\) −4182.00 −0.206449 −0.103225 0.994658i \(-0.532916\pi\)
−0.103225 + 0.994658i \(0.532916\pi\)
\(18\) −5832.00 −0.235702
\(19\) −1561.00 −0.0522114 −0.0261057 0.999659i \(-0.508311\pi\)
−0.0261057 + 0.999659i \(0.508311\pi\)
\(20\) 0 0
\(21\) 19251.0 0.453613
\(22\) −30480.0 −0.610289
\(23\) 114150. 1.95627 0.978134 0.207974i \(-0.0666870\pi\)
0.978134 + 0.207974i \(0.0666870\pi\)
\(24\) −13824.0 −0.204124
\(25\) 0 0
\(26\) 3128.00 0.0349028
\(27\) 19683.0 0.192450
\(28\) 45632.0 0.392841
\(29\) −83214.0 −0.633583 −0.316791 0.948495i \(-0.602606\pi\)
−0.316791 + 0.948495i \(0.602606\pi\)
\(30\) 0 0
\(31\) −83167.0 −0.501401 −0.250700 0.968065i \(-0.580661\pi\)
−0.250700 + 0.968065i \(0.580661\pi\)
\(32\) −32768.0 −0.176777
\(33\) 102870. 0.498299
\(34\) 33456.0 0.145981
\(35\) 0 0
\(36\) 46656.0 0.166667
\(37\) −231334. −0.750816 −0.375408 0.926860i \(-0.622497\pi\)
−0.375408 + 0.926860i \(0.622497\pi\)
\(38\) 12488.0 0.0369190
\(39\) −10557.0 −0.0284980
\(40\) 0 0
\(41\) −124656. −0.282468 −0.141234 0.989976i \(-0.545107\pi\)
−0.141234 + 0.989976i \(0.545107\pi\)
\(42\) −154008. −0.320753
\(43\) 193757. 0.371636 0.185818 0.982584i \(-0.440507\pi\)
0.185818 + 0.982584i \(0.440507\pi\)
\(44\) 243840. 0.431540
\(45\) 0 0
\(46\) −913200. −1.38329
\(47\) 319290. 0.448583 0.224292 0.974522i \(-0.427993\pi\)
0.224292 + 0.974522i \(0.427993\pi\)
\(48\) 110592. 0.144338
\(49\) −315174. −0.382705
\(50\) 0 0
\(51\) −112914. −0.119193
\(52\) −25024.0 −0.0246800
\(53\) 1.64543e6 1.51815 0.759073 0.651006i \(-0.225653\pi\)
0.759073 + 0.651006i \(0.225653\pi\)
\(54\) −157464. −0.136083
\(55\) 0 0
\(56\) −365056. −0.277780
\(57\) −42147.0 −0.0301443
\(58\) 665712. 0.448011
\(59\) −38610.0 −0.0244747 −0.0122374 0.999925i \(-0.503895\pi\)
−0.0122374 + 0.999925i \(0.503895\pi\)
\(60\) 0 0
\(61\) −1.97390e6 −1.11345 −0.556726 0.830696i \(-0.687943\pi\)
−0.556726 + 0.830696i \(0.687943\pi\)
\(62\) 665336. 0.354544
\(63\) 519777. 0.261894
\(64\) 262144. 0.125000
\(65\) 0 0
\(66\) −822960. −0.352351
\(67\) 4.40975e6 1.79123 0.895617 0.444825i \(-0.146734\pi\)
0.895617 + 0.444825i \(0.146734\pi\)
\(68\) −267648. −0.103225
\(69\) 3.08205e6 1.12945
\(70\) 0 0
\(71\) 124080. 0.0411432 0.0205716 0.999788i \(-0.493451\pi\)
0.0205716 + 0.999788i \(0.493451\pi\)
\(72\) −373248. −0.117851
\(73\) 3.96763e6 1.19372 0.596859 0.802346i \(-0.296415\pi\)
0.596859 + 0.802346i \(0.296415\pi\)
\(74\) 1.85067e6 0.530907
\(75\) 0 0
\(76\) −99904.0 −0.0261057
\(77\) 2.71653e6 0.678105
\(78\) 84456.0 0.0201511
\(79\) 7.10799e6 1.62200 0.811002 0.585043i \(-0.198922\pi\)
0.811002 + 0.585043i \(0.198922\pi\)
\(80\) 0 0
\(81\) 531441. 0.111111
\(82\) 997248. 0.199735
\(83\) 8.11769e6 1.55833 0.779165 0.626819i \(-0.215643\pi\)
0.779165 + 0.626819i \(0.215643\pi\)
\(84\) 1.23206e6 0.226807
\(85\) 0 0
\(86\) −1.55006e6 −0.262786
\(87\) −2.24678e6 −0.365799
\(88\) −1.95072e6 −0.305145
\(89\) 6.72787e6 1.01161 0.505805 0.862648i \(-0.331196\pi\)
0.505805 + 0.862648i \(0.331196\pi\)
\(90\) 0 0
\(91\) −278783. −0.0387812
\(92\) 7.30560e6 0.978134
\(93\) −2.24551e6 −0.289484
\(94\) −2.55432e6 −0.317196
\(95\) 0 0
\(96\) −884736. −0.102062
\(97\) −1.42687e7 −1.58739 −0.793693 0.608318i \(-0.791844\pi\)
−0.793693 + 0.608318i \(0.791844\pi\)
\(98\) 2.52139e6 0.270613
\(99\) 2.77749e6 0.287693
\(100\) 0 0
\(101\) 6.93119e6 0.669396 0.334698 0.942326i \(-0.391366\pi\)
0.334698 + 0.942326i \(0.391366\pi\)
\(102\) 903312. 0.0842825
\(103\) 1.34707e7 1.21467 0.607337 0.794444i \(-0.292238\pi\)
0.607337 + 0.794444i \(0.292238\pi\)
\(104\) 200192. 0.0174514
\(105\) 0 0
\(106\) −1.31634e7 −1.07349
\(107\) 1.05625e7 0.833533 0.416767 0.909014i \(-0.363163\pi\)
0.416767 + 0.909014i \(0.363163\pi\)
\(108\) 1.25971e6 0.0962250
\(109\) 6.74796e6 0.499091 0.249546 0.968363i \(-0.419719\pi\)
0.249546 + 0.968363i \(0.419719\pi\)
\(110\) 0 0
\(111\) −6.24602e6 −0.433484
\(112\) 2.92045e6 0.196420
\(113\) 730764. 0.0476434 0.0238217 0.999716i \(-0.492417\pi\)
0.0238217 + 0.999716i \(0.492417\pi\)
\(114\) 337176. 0.0213152
\(115\) 0 0
\(116\) −5.32570e6 −0.316791
\(117\) −285039. −0.0164533
\(118\) 308880. 0.0173062
\(119\) −2.98177e6 −0.162203
\(120\) 0 0
\(121\) −4.97107e6 −0.255095
\(122\) 1.57912e7 0.787330
\(123\) −3.36571e6 −0.163083
\(124\) −5.32269e6 −0.250700
\(125\) 0 0
\(126\) −4.15822e6 −0.185187
\(127\) −3.53961e7 −1.53335 −0.766676 0.642034i \(-0.778091\pi\)
−0.766676 + 0.642034i \(0.778091\pi\)
\(128\) −2.09715e6 −0.0883883
\(129\) 5.23144e6 0.214564
\(130\) 0 0
\(131\) 2.58059e7 1.00293 0.501464 0.865178i \(-0.332795\pi\)
0.501464 + 0.865178i \(0.332795\pi\)
\(132\) 6.58368e6 0.249149
\(133\) −1.11299e6 −0.0410215
\(134\) −3.52780e7 −1.26659
\(135\) 0 0
\(136\) 2.14118e6 0.0729907
\(137\) 1.09054e7 0.362344 0.181172 0.983451i \(-0.442011\pi\)
0.181172 + 0.983451i \(0.442011\pi\)
\(138\) −2.46564e7 −0.798643
\(139\) −5.32412e7 −1.68150 −0.840748 0.541426i \(-0.817885\pi\)
−0.840748 + 0.541426i \(0.817885\pi\)
\(140\) 0 0
\(141\) 8.62083e6 0.258990
\(142\) −992640. −0.0290926
\(143\) −1.48971e6 −0.0426016
\(144\) 2.98598e6 0.0833333
\(145\) 0 0
\(146\) −3.17411e7 −0.844086
\(147\) −8.50970e6 −0.220955
\(148\) −1.48054e7 −0.375408
\(149\) −3.39941e7 −0.841884 −0.420942 0.907088i \(-0.638300\pi\)
−0.420942 + 0.907088i \(0.638300\pi\)
\(150\) 0 0
\(151\) 3.13410e7 0.740786 0.370393 0.928875i \(-0.379223\pi\)
0.370393 + 0.928875i \(0.379223\pi\)
\(152\) 799232. 0.0184595
\(153\) −3.04868e6 −0.0688163
\(154\) −2.17322e7 −0.479493
\(155\) 0 0
\(156\) −675648. −0.0142490
\(157\) −6.83485e7 −1.40955 −0.704775 0.709431i \(-0.748952\pi\)
−0.704775 + 0.709431i \(0.748952\pi\)
\(158\) −5.68639e7 −1.14693
\(159\) 4.44266e7 0.876502
\(160\) 0 0
\(161\) 8.13890e7 1.53700
\(162\) −4.25153e6 −0.0785674
\(163\) 4.62777e7 0.836980 0.418490 0.908221i \(-0.362560\pi\)
0.418490 + 0.908221i \(0.362560\pi\)
\(164\) −7.97798e6 −0.141234
\(165\) 0 0
\(166\) −6.49416e7 −1.10191
\(167\) −3.99639e7 −0.663988 −0.331994 0.943282i \(-0.607721\pi\)
−0.331994 + 0.943282i \(0.607721\pi\)
\(168\) −9.85651e6 −0.160377
\(169\) −6.25956e7 −0.997564
\(170\) 0 0
\(171\) −1.13797e6 −0.0174038
\(172\) 1.24004e7 0.185818
\(173\) −9.07312e7 −1.33228 −0.666139 0.745827i \(-0.732054\pi\)
−0.666139 + 0.745827i \(0.732054\pi\)
\(174\) 1.79742e7 0.258659
\(175\) 0 0
\(176\) 1.56058e7 0.215770
\(177\) −1.04247e6 −0.0141305
\(178\) −5.38230e7 −0.715316
\(179\) 1.30570e8 1.70160 0.850802 0.525486i \(-0.176117\pi\)
0.850802 + 0.525486i \(0.176117\pi\)
\(180\) 0 0
\(181\) 1.11281e8 1.39490 0.697452 0.716632i \(-0.254317\pi\)
0.697452 + 0.716632i \(0.254317\pi\)
\(182\) 2.23026e6 0.0274225
\(183\) −5.32954e7 −0.642852
\(184\) −5.84448e7 −0.691645
\(185\) 0 0
\(186\) 1.79641e7 0.204696
\(187\) −1.59334e7 −0.178182
\(188\) 2.04346e7 0.224292
\(189\) 1.40340e7 0.151204
\(190\) 0 0
\(191\) 1.39416e8 1.44776 0.723880 0.689926i \(-0.242357\pi\)
0.723880 + 0.689926i \(0.242357\pi\)
\(192\) 7.07789e6 0.0721688
\(193\) −2.37893e7 −0.238194 −0.119097 0.992883i \(-0.538000\pi\)
−0.119097 + 0.992883i \(0.538000\pi\)
\(194\) 1.14149e8 1.12245
\(195\) 0 0
\(196\) −2.01711e7 −0.191352
\(197\) 4.67913e7 0.436047 0.218024 0.975943i \(-0.430039\pi\)
0.218024 + 0.975943i \(0.430039\pi\)
\(198\) −2.22199e7 −0.203430
\(199\) −1.16854e8 −1.05113 −0.525566 0.850753i \(-0.676146\pi\)
−0.525566 + 0.850753i \(0.676146\pi\)
\(200\) 0 0
\(201\) 1.19063e8 1.03417
\(202\) −5.54495e7 −0.473334
\(203\) −5.93316e7 −0.497794
\(204\) −7.22650e6 −0.0595967
\(205\) 0 0
\(206\) −1.07766e8 −0.858904
\(207\) 8.32154e7 0.652090
\(208\) −1.60154e6 −0.0123400
\(209\) −5.94741e6 −0.0450626
\(210\) 0 0
\(211\) −1.83300e8 −1.34330 −0.671651 0.740867i \(-0.734415\pi\)
−0.671651 + 0.740867i \(0.734415\pi\)
\(212\) 1.05307e8 0.759073
\(213\) 3.35016e6 0.0237540
\(214\) −8.44999e7 −0.589397
\(215\) 0 0
\(216\) −1.00777e7 −0.0680414
\(217\) −5.92981e7 −0.393941
\(218\) −5.39837e7 −0.352911
\(219\) 1.07126e8 0.689193
\(220\) 0 0
\(221\) 1.63516e6 0.0101903
\(222\) 4.99681e7 0.306519
\(223\) 1.91650e8 1.15729 0.578644 0.815580i \(-0.303582\pi\)
0.578644 + 0.815580i \(0.303582\pi\)
\(224\) −2.33636e7 −0.138890
\(225\) 0 0
\(226\) −5.84611e6 −0.0336890
\(227\) −1.11119e8 −0.630521 −0.315260 0.949005i \(-0.602092\pi\)
−0.315260 + 0.949005i \(0.602092\pi\)
\(228\) −2.69741e6 −0.0150721
\(229\) −8.92220e7 −0.490962 −0.245481 0.969401i \(-0.578946\pi\)
−0.245481 + 0.969401i \(0.578946\pi\)
\(230\) 0 0
\(231\) 7.33463e7 0.391504
\(232\) 4.26056e7 0.224005
\(233\) −5.04671e7 −0.261374 −0.130687 0.991424i \(-0.541718\pi\)
−0.130687 + 0.991424i \(0.541718\pi\)
\(234\) 2.28031e6 0.0116343
\(235\) 0 0
\(236\) −2.47104e6 −0.0122374
\(237\) 1.91916e8 0.936465
\(238\) 2.38541e7 0.114695
\(239\) 8.16563e7 0.386899 0.193449 0.981110i \(-0.438033\pi\)
0.193449 + 0.981110i \(0.438033\pi\)
\(240\) 0 0
\(241\) −2.40323e8 −1.10595 −0.552976 0.833197i \(-0.686508\pi\)
−0.552976 + 0.833197i \(0.686508\pi\)
\(242\) 3.97686e7 0.180379
\(243\) 1.43489e7 0.0641500
\(244\) −1.26330e8 −0.556726
\(245\) 0 0
\(246\) 2.69257e7 0.115317
\(247\) 610351. 0.00257715
\(248\) 4.25815e7 0.177272
\(249\) 2.19178e8 0.899702
\(250\) 0 0
\(251\) −3.23741e8 −1.29223 −0.646115 0.763240i \(-0.723607\pi\)
−0.646115 + 0.763240i \(0.723607\pi\)
\(252\) 3.32657e7 0.130947
\(253\) 4.34912e8 1.68841
\(254\) 2.83169e8 1.08424
\(255\) 0 0
\(256\) 1.67772e7 0.0625000
\(257\) −8.10385e7 −0.297800 −0.148900 0.988852i \(-0.547573\pi\)
−0.148900 + 0.988852i \(0.547573\pi\)
\(258\) −4.18515e7 −0.151720
\(259\) −1.64941e8 −0.589902
\(260\) 0 0
\(261\) −6.06630e7 −0.211194
\(262\) −2.06448e8 −0.709178
\(263\) 2.11263e8 0.716106 0.358053 0.933701i \(-0.383441\pi\)
0.358053 + 0.933701i \(0.383441\pi\)
\(264\) −5.26694e7 −0.176175
\(265\) 0 0
\(266\) 8.90394e6 0.0290066
\(267\) 1.81653e8 0.584053
\(268\) 2.82224e8 0.895617
\(269\) 4.20832e8 1.31818 0.659092 0.752062i \(-0.270941\pi\)
0.659092 + 0.752062i \(0.270941\pi\)
\(270\) 0 0
\(271\) −2.13859e8 −0.652731 −0.326366 0.945244i \(-0.605824\pi\)
−0.326366 + 0.945244i \(0.605824\pi\)
\(272\) −1.71295e7 −0.0516123
\(273\) −7.52714e6 −0.0223903
\(274\) −8.72435e7 −0.256216
\(275\) 0 0
\(276\) 1.97251e8 0.564726
\(277\) −2.94664e8 −0.833007 −0.416503 0.909134i \(-0.636745\pi\)
−0.416503 + 0.909134i \(0.636745\pi\)
\(278\) 4.25930e8 1.18900
\(279\) −6.06287e7 −0.167134
\(280\) 0 0
\(281\) −2.81001e8 −0.755503 −0.377752 0.925907i \(-0.623303\pi\)
−0.377752 + 0.925907i \(0.623303\pi\)
\(282\) −6.89666e7 −0.183133
\(283\) 5.81465e8 1.52500 0.762502 0.646986i \(-0.223971\pi\)
0.762502 + 0.646986i \(0.223971\pi\)
\(284\) 7.94112e6 0.0205716
\(285\) 0 0
\(286\) 1.19177e7 0.0301239
\(287\) −8.88797e7 −0.221930
\(288\) −2.38879e7 −0.0589256
\(289\) −3.92850e8 −0.957379
\(290\) 0 0
\(291\) −3.85254e8 −0.916478
\(292\) 2.53929e8 0.596859
\(293\) −7.92049e8 −1.83957 −0.919783 0.392427i \(-0.871635\pi\)
−0.919783 + 0.392427i \(0.871635\pi\)
\(294\) 6.80776e7 0.156239
\(295\) 0 0
\(296\) 1.18443e8 0.265453
\(297\) 7.49922e7 0.166100
\(298\) 2.71953e8 0.595302
\(299\) −4.46326e7 −0.0965614
\(300\) 0 0
\(301\) 1.38149e8 0.291987
\(302\) −2.50728e8 −0.523815
\(303\) 1.87142e8 0.386476
\(304\) −6.39386e6 −0.0130528
\(305\) 0 0
\(306\) 2.43894e7 0.0486605
\(307\) 2.03330e8 0.401067 0.200533 0.979687i \(-0.435732\pi\)
0.200533 + 0.979687i \(0.435732\pi\)
\(308\) 1.73858e8 0.339053
\(309\) 3.63709e8 0.701292
\(310\) 0 0
\(311\) 3.29428e8 0.621011 0.310505 0.950572i \(-0.399502\pi\)
0.310505 + 0.950572i \(0.399502\pi\)
\(312\) 5.40518e6 0.0100756
\(313\) 1.61495e8 0.297684 0.148842 0.988861i \(-0.452445\pi\)
0.148842 + 0.988861i \(0.452445\pi\)
\(314\) 5.46788e8 0.996702
\(315\) 0 0
\(316\) 4.54911e8 0.811002
\(317\) 6.39147e8 1.12692 0.563460 0.826143i \(-0.309470\pi\)
0.563460 + 0.826143i \(0.309470\pi\)
\(318\) −3.55412e8 −0.619780
\(319\) −3.17045e8 −0.546832
\(320\) 0 0
\(321\) 2.85187e8 0.481241
\(322\) −6.51112e8 −1.08683
\(323\) 6.52810e6 0.0107790
\(324\) 3.40122e7 0.0555556
\(325\) 0 0
\(326\) −3.70221e8 −0.591834
\(327\) 1.82195e8 0.288151
\(328\) 6.38239e7 0.0998676
\(329\) 2.27654e8 0.352443
\(330\) 0 0
\(331\) −5.39401e8 −0.817548 −0.408774 0.912636i \(-0.634044\pi\)
−0.408774 + 0.912636i \(0.634044\pi\)
\(332\) 5.19532e8 0.779165
\(333\) −1.68642e8 −0.250272
\(334\) 3.19711e8 0.469510
\(335\) 0 0
\(336\) 7.88521e7 0.113403
\(337\) 7.72336e8 1.09926 0.549632 0.835407i \(-0.314768\pi\)
0.549632 + 0.835407i \(0.314768\pi\)
\(338\) 5.00765e8 0.705384
\(339\) 1.97306e7 0.0275069
\(340\) 0 0
\(341\) −3.16866e8 −0.432749
\(342\) 9.10375e6 0.0123063
\(343\) −8.11905e8 −1.08637
\(344\) −9.92036e7 −0.131393
\(345\) 0 0
\(346\) 7.25849e8 0.942063
\(347\) 5.21028e8 0.669435 0.334717 0.942319i \(-0.391359\pi\)
0.334717 + 0.942319i \(0.391359\pi\)
\(348\) −1.43794e8 −0.182900
\(349\) 5.22374e8 0.657798 0.328899 0.944365i \(-0.393322\pi\)
0.328899 + 0.944365i \(0.393322\pi\)
\(350\) 0 0
\(351\) −7.69605e6 −0.00949933
\(352\) −1.24846e8 −0.152572
\(353\) −1.02256e9 −1.23731 −0.618656 0.785662i \(-0.712323\pi\)
−0.618656 + 0.785662i \(0.712323\pi\)
\(354\) 8.33976e6 0.00999176
\(355\) 0 0
\(356\) 4.30584e8 0.505805
\(357\) −8.05077e7 −0.0936480
\(358\) −1.04456e9 −1.20322
\(359\) −1.17896e9 −1.34484 −0.672418 0.740171i \(-0.734744\pi\)
−0.672418 + 0.740171i \(0.734744\pi\)
\(360\) 0 0
\(361\) −8.91435e8 −0.997274
\(362\) −8.90244e8 −0.986346
\(363\) −1.34219e8 −0.147279
\(364\) −1.78421e7 −0.0193906
\(365\) 0 0
\(366\) 4.26363e8 0.454565
\(367\) −7.85348e8 −0.829337 −0.414668 0.909973i \(-0.636102\pi\)
−0.414668 + 0.909973i \(0.636102\pi\)
\(368\) 4.67558e8 0.489067
\(369\) −9.08742e7 −0.0941561
\(370\) 0 0
\(371\) 1.17319e9 1.19278
\(372\) −1.43713e8 −0.144742
\(373\) −7.41463e8 −0.739791 −0.369895 0.929073i \(-0.620606\pi\)
−0.369895 + 0.929073i \(0.620606\pi\)
\(374\) 1.27467e8 0.125994
\(375\) 0 0
\(376\) −1.63476e8 −0.158598
\(377\) 3.25367e7 0.0312736
\(378\) −1.12272e8 −0.106918
\(379\) −4.13198e8 −0.389871 −0.194936 0.980816i \(-0.562450\pi\)
−0.194936 + 0.980816i \(0.562450\pi\)
\(380\) 0 0
\(381\) −9.55694e8 −0.885282
\(382\) −1.11533e9 −1.02372
\(383\) −2.07784e9 −1.88980 −0.944899 0.327361i \(-0.893841\pi\)
−0.944899 + 0.327361i \(0.893841\pi\)
\(384\) −5.66231e7 −0.0510310
\(385\) 0 0
\(386\) 1.90314e8 0.168428
\(387\) 1.41249e8 0.123879
\(388\) −9.13195e8 −0.793693
\(389\) −1.62801e9 −1.40227 −0.701137 0.713027i \(-0.747324\pi\)
−0.701137 + 0.713027i \(0.747324\pi\)
\(390\) 0 0
\(391\) −4.77375e8 −0.403870
\(392\) 1.61369e8 0.135307
\(393\) 6.96760e8 0.579041
\(394\) −3.74331e8 −0.308332
\(395\) 0 0
\(396\) 1.77759e8 0.143847
\(397\) 6.54372e8 0.524877 0.262439 0.964949i \(-0.415473\pi\)
0.262439 + 0.964949i \(0.415473\pi\)
\(398\) 9.34830e8 0.743262
\(399\) −3.00508e7 −0.0236838
\(400\) 0 0
\(401\) 1.91730e9 1.48486 0.742430 0.669924i \(-0.233673\pi\)
0.742430 + 0.669924i \(0.233673\pi\)
\(402\) −9.52507e8 −0.731268
\(403\) 3.25183e7 0.0247491
\(404\) 4.43596e8 0.334698
\(405\) 0 0
\(406\) 4.74653e8 0.351994
\(407\) −8.81383e8 −0.648013
\(408\) 5.78120e7 0.0421412
\(409\) 1.46590e9 1.05943 0.529717 0.848175i \(-0.322298\pi\)
0.529717 + 0.848175i \(0.322298\pi\)
\(410\) 0 0
\(411\) 2.94447e8 0.209199
\(412\) 8.62124e8 0.607337
\(413\) −2.75289e7 −0.0192293
\(414\) −6.65723e8 −0.461097
\(415\) 0 0
\(416\) 1.28123e7 0.00872570
\(417\) −1.43751e9 −0.970813
\(418\) 4.75793e7 0.0318640
\(419\) −1.87001e9 −1.24192 −0.620961 0.783841i \(-0.713258\pi\)
−0.620961 + 0.783841i \(0.713258\pi\)
\(420\) 0 0
\(421\) 1.79884e9 1.17491 0.587456 0.809256i \(-0.300129\pi\)
0.587456 + 0.809256i \(0.300129\pi\)
\(422\) 1.46640e9 0.949859
\(423\) 2.32762e8 0.149528
\(424\) −8.42459e8 −0.536745
\(425\) 0 0
\(426\) −2.68013e7 −0.0167966
\(427\) −1.40739e9 −0.874819
\(428\) 6.75999e8 0.416767
\(429\) −4.02222e7 −0.0245960
\(430\) 0 0
\(431\) 3.61421e7 0.0217442 0.0108721 0.999941i \(-0.496539\pi\)
0.0108721 + 0.999941i \(0.496539\pi\)
\(432\) 8.06216e7 0.0481125
\(433\) −1.54727e9 −0.915924 −0.457962 0.888972i \(-0.651420\pi\)
−0.457962 + 0.888972i \(0.651420\pi\)
\(434\) 4.74385e8 0.278559
\(435\) 0 0
\(436\) 4.31870e8 0.249546
\(437\) −1.78188e8 −0.102140
\(438\) −8.57009e8 −0.487333
\(439\) −5.66134e8 −0.319370 −0.159685 0.987168i \(-0.551048\pi\)
−0.159685 + 0.987168i \(0.551048\pi\)
\(440\) 0 0
\(441\) −2.29762e8 −0.127568
\(442\) −1.30813e7 −0.00720564
\(443\) 9.51833e8 0.520173 0.260087 0.965585i \(-0.416249\pi\)
0.260087 + 0.965585i \(0.416249\pi\)
\(444\) −3.99745e8 −0.216742
\(445\) 0 0
\(446\) −1.53320e9 −0.818326
\(447\) −9.17842e8 −0.486062
\(448\) 1.86909e8 0.0982102
\(449\) −1.12013e9 −0.583989 −0.291995 0.956420i \(-0.594319\pi\)
−0.291995 + 0.956420i \(0.594319\pi\)
\(450\) 0 0
\(451\) −4.74939e8 −0.243792
\(452\) 4.67689e7 0.0238217
\(453\) 8.46206e8 0.427693
\(454\) 8.88955e8 0.445845
\(455\) 0 0
\(456\) 2.15793e7 0.0106576
\(457\) 2.91044e9 1.42644 0.713218 0.700943i \(-0.247237\pi\)
0.713218 + 0.700943i \(0.247237\pi\)
\(458\) 7.13776e8 0.347162
\(459\) −8.23143e7 −0.0397311
\(460\) 0 0
\(461\) 4.59640e8 0.218507 0.109253 0.994014i \(-0.465154\pi\)
0.109253 + 0.994014i \(0.465154\pi\)
\(462\) −5.86770e8 −0.276835
\(463\) 5.60051e8 0.262237 0.131118 0.991367i \(-0.458143\pi\)
0.131118 + 0.991367i \(0.458143\pi\)
\(464\) −3.40845e8 −0.158396
\(465\) 0 0
\(466\) 4.03736e8 0.184819
\(467\) −3.70796e9 −1.68471 −0.842356 0.538921i \(-0.818832\pi\)
−0.842356 + 0.538921i \(0.818832\pi\)
\(468\) −1.82425e7 −0.00822666
\(469\) 3.14415e9 1.40734
\(470\) 0 0
\(471\) −1.84541e9 −0.813804
\(472\) 1.97683e7 0.00865312
\(473\) 7.38214e8 0.320751
\(474\) −1.53533e9 −0.662181
\(475\) 0 0
\(476\) −1.90833e8 −0.0811016
\(477\) 1.19952e9 0.506048
\(478\) −6.53251e8 −0.273579
\(479\) −3.96322e9 −1.64768 −0.823842 0.566820i \(-0.808174\pi\)
−0.823842 + 0.566820i \(0.808174\pi\)
\(480\) 0 0
\(481\) 9.04516e7 0.0370603
\(482\) 1.92259e9 0.782026
\(483\) 2.19750e9 0.887389
\(484\) −3.18149e8 −0.127547
\(485\) 0 0
\(486\) −1.14791e8 −0.0453609
\(487\) 1.33008e9 0.521825 0.260913 0.965362i \(-0.415977\pi\)
0.260913 + 0.965362i \(0.415977\pi\)
\(488\) 1.01064e9 0.393665
\(489\) 1.24950e9 0.483231
\(490\) 0 0
\(491\) −2.55785e9 −0.975191 −0.487596 0.873070i \(-0.662126\pi\)
−0.487596 + 0.873070i \(0.662126\pi\)
\(492\) −2.15406e8 −0.0815416
\(493\) 3.48001e8 0.130803
\(494\) −4.88281e6 −0.00182232
\(495\) 0 0
\(496\) −3.40652e8 −0.125350
\(497\) 8.84690e7 0.0323254
\(498\) −1.75342e9 −0.636185
\(499\) 4.31855e9 1.55592 0.777959 0.628316i \(-0.216255\pi\)
0.777959 + 0.628316i \(0.216255\pi\)
\(500\) 0 0
\(501\) −1.07903e9 −0.383354
\(502\) 2.58993e9 0.913745
\(503\) 6.29536e8 0.220563 0.110281 0.993900i \(-0.464825\pi\)
0.110281 + 0.993900i \(0.464825\pi\)
\(504\) −2.66126e8 −0.0925934
\(505\) 0 0
\(506\) −3.47929e9 −1.19389
\(507\) −1.69008e9 −0.575944
\(508\) −2.26535e9 −0.766676
\(509\) 5.79723e9 1.94853 0.974267 0.225397i \(-0.0723678\pi\)
0.974267 + 0.225397i \(0.0723678\pi\)
\(510\) 0 0
\(511\) 2.82892e9 0.937882
\(512\) −1.34218e8 −0.0441942
\(513\) −3.07252e7 −0.0100481
\(514\) 6.48308e8 0.210577
\(515\) 0 0
\(516\) 3.34812e8 0.107282
\(517\) 1.21649e9 0.387163
\(518\) 1.31953e9 0.417124
\(519\) −2.44974e9 −0.769191
\(520\) 0 0
\(521\) 1.39059e9 0.430790 0.215395 0.976527i \(-0.430896\pi\)
0.215395 + 0.976527i \(0.430896\pi\)
\(522\) 4.85304e8 0.149337
\(523\) 1.35994e9 0.415684 0.207842 0.978162i \(-0.433356\pi\)
0.207842 + 0.978162i \(0.433356\pi\)
\(524\) 1.65158e9 0.501464
\(525\) 0 0
\(526\) −1.69010e9 −0.506363
\(527\) 3.47804e8 0.103514
\(528\) 4.21356e8 0.124575
\(529\) 9.62540e9 2.82699
\(530\) 0 0
\(531\) −2.81467e7 −0.00815824
\(532\) −7.12316e7 −0.0205108
\(533\) 4.87405e7 0.0139426
\(534\) −1.45322e9 −0.412988
\(535\) 0 0
\(536\) −2.25779e9 −0.633297
\(537\) 3.52540e9 0.982421
\(538\) −3.36666e9 −0.932097
\(539\) −1.20081e9 −0.330305
\(540\) 0 0
\(541\) 6.15055e8 0.167003 0.0835013 0.996508i \(-0.473390\pi\)
0.0835013 + 0.996508i \(0.473390\pi\)
\(542\) 1.71087e9 0.461551
\(543\) 3.00457e9 0.805348
\(544\) 1.37036e8 0.0364954
\(545\) 0 0
\(546\) 6.02171e7 0.0158324
\(547\) 3.38341e8 0.0883890 0.0441945 0.999023i \(-0.485928\pi\)
0.0441945 + 0.999023i \(0.485928\pi\)
\(548\) 6.97948e8 0.181172
\(549\) −1.43898e9 −0.371151
\(550\) 0 0
\(551\) 1.29897e8 0.0330802
\(552\) −1.57801e9 −0.399322
\(553\) 5.06800e9 1.27438
\(554\) 2.35732e9 0.589025
\(555\) 0 0
\(556\) −3.40744e9 −0.840748
\(557\) 1.09577e9 0.268674 0.134337 0.990936i \(-0.457110\pi\)
0.134337 + 0.990936i \(0.457110\pi\)
\(558\) 4.85030e8 0.118181
\(559\) −7.57590e7 −0.0183439
\(560\) 0 0
\(561\) −4.30202e8 −0.102873
\(562\) 2.24801e9 0.534222
\(563\) 7.36019e8 0.173824 0.0869119 0.996216i \(-0.472300\pi\)
0.0869119 + 0.996216i \(0.472300\pi\)
\(564\) 5.51733e8 0.129495
\(565\) 0 0
\(566\) −4.65172e9 −1.07834
\(567\) 3.78917e8 0.0872979
\(568\) −6.35290e7 −0.0145463
\(569\) 9.08142e8 0.206662 0.103331 0.994647i \(-0.467050\pi\)
0.103331 + 0.994647i \(0.467050\pi\)
\(570\) 0 0
\(571\) 1.02179e9 0.229685 0.114843 0.993384i \(-0.463364\pi\)
0.114843 + 0.993384i \(0.463364\pi\)
\(572\) −9.53414e7 −0.0213008
\(573\) 3.76424e9 0.835865
\(574\) 7.11038e8 0.156928
\(575\) 0 0
\(576\) 1.91103e8 0.0416667
\(577\) 9.10202e8 0.197253 0.0986263 0.995125i \(-0.468555\pi\)
0.0986263 + 0.995125i \(0.468555\pi\)
\(578\) 3.14280e9 0.676969
\(579\) −6.42310e8 −0.137521
\(580\) 0 0
\(581\) 5.78792e9 1.22435
\(582\) 3.08203e9 0.648048
\(583\) 6.26908e9 1.31028
\(584\) −2.03143e9 −0.422043
\(585\) 0 0
\(586\) 6.33639e9 1.30077
\(587\) −7.80594e9 −1.59291 −0.796456 0.604697i \(-0.793294\pi\)
−0.796456 + 0.604697i \(0.793294\pi\)
\(588\) −5.44621e8 −0.110477
\(589\) 1.29824e8 0.0261788
\(590\) 0 0
\(591\) 1.26337e9 0.251752
\(592\) −9.47544e8 −0.187704
\(593\) −5.90086e9 −1.16205 −0.581024 0.813886i \(-0.697348\pi\)
−0.581024 + 0.813886i \(0.697348\pi\)
\(594\) −5.99938e8 −0.117450
\(595\) 0 0
\(596\) −2.17562e9 −0.420942
\(597\) −3.15505e9 −0.606871
\(598\) 3.57061e8 0.0682792
\(599\) −3.05005e9 −0.579847 −0.289924 0.957050i \(-0.593630\pi\)
−0.289924 + 0.957050i \(0.593630\pi\)
\(600\) 0 0
\(601\) 6.80081e8 0.127791 0.0638954 0.997957i \(-0.479648\pi\)
0.0638954 + 0.997957i \(0.479648\pi\)
\(602\) −1.10519e9 −0.206466
\(603\) 3.21471e9 0.597078
\(604\) 2.00582e9 0.370393
\(605\) 0 0
\(606\) −1.49714e9 −0.273280
\(607\) 7.79549e9 1.41476 0.707381 0.706833i \(-0.249877\pi\)
0.707381 + 0.706833i \(0.249877\pi\)
\(608\) 5.11508e7 0.00922976
\(609\) −1.60195e9 −0.287402
\(610\) 0 0
\(611\) −1.24842e8 −0.0221421
\(612\) −1.95115e8 −0.0344082
\(613\) −9.21168e9 −1.61520 −0.807602 0.589728i \(-0.799235\pi\)
−0.807602 + 0.589728i \(0.799235\pi\)
\(614\) −1.62664e9 −0.283597
\(615\) 0 0
\(616\) −1.39086e9 −0.239746
\(617\) −5.26863e9 −0.903024 −0.451512 0.892265i \(-0.649115\pi\)
−0.451512 + 0.892265i \(0.649115\pi\)
\(618\) −2.90967e9 −0.495888
\(619\) −5.84901e9 −0.991208 −0.495604 0.868548i \(-0.665053\pi\)
−0.495604 + 0.868548i \(0.665053\pi\)
\(620\) 0 0
\(621\) 2.24681e9 0.376484
\(622\) −2.63542e9 −0.439121
\(623\) 4.79697e9 0.794802
\(624\) −4.32415e7 −0.00712450
\(625\) 0 0
\(626\) −1.29196e9 −0.210494
\(627\) −1.60580e8 −0.0260169
\(628\) −4.37430e9 −0.704775
\(629\) 9.67439e8 0.155005
\(630\) 0 0
\(631\) 2.65927e9 0.421366 0.210683 0.977554i \(-0.432431\pi\)
0.210683 + 0.977554i \(0.432431\pi\)
\(632\) −3.63929e9 −0.573465
\(633\) −4.94910e9 −0.775556
\(634\) −5.11318e9 −0.796853
\(635\) 0 0
\(636\) 2.84330e9 0.438251
\(637\) 1.23233e8 0.0188903
\(638\) 2.53636e9 0.386669
\(639\) 9.04543e7 0.0137144
\(640\) 0 0
\(641\) 4.97659e8 0.0746327 0.0373163 0.999304i \(-0.488119\pi\)
0.0373163 + 0.999304i \(0.488119\pi\)
\(642\) −2.28150e9 −0.340288
\(643\) 2.59642e9 0.385156 0.192578 0.981282i \(-0.438315\pi\)
0.192578 + 0.981282i \(0.438315\pi\)
\(644\) 5.20889e9 0.768502
\(645\) 0 0
\(646\) −5.22248e7 −0.00762190
\(647\) −4.44711e9 −0.645525 −0.322762 0.946480i \(-0.604611\pi\)
−0.322762 + 0.946480i \(0.604611\pi\)
\(648\) −2.72098e8 −0.0392837
\(649\) −1.47104e8 −0.0211236
\(650\) 0 0
\(651\) −1.60105e9 −0.227442
\(652\) 2.96177e9 0.418490
\(653\) −1.83971e9 −0.258556 −0.129278 0.991608i \(-0.541266\pi\)
−0.129278 + 0.991608i \(0.541266\pi\)
\(654\) −1.45756e9 −0.203753
\(655\) 0 0
\(656\) −5.10591e8 −0.0706171
\(657\) 2.89241e9 0.397906
\(658\) −1.82123e9 −0.249215
\(659\) −3.41580e9 −0.464936 −0.232468 0.972604i \(-0.574680\pi\)
−0.232468 + 0.972604i \(0.574680\pi\)
\(660\) 0 0
\(661\) −4.71690e9 −0.635260 −0.317630 0.948215i \(-0.602887\pi\)
−0.317630 + 0.948215i \(0.602887\pi\)
\(662\) 4.31521e9 0.578094
\(663\) 4.41494e7 0.00588338
\(664\) −4.15626e9 −0.550953
\(665\) 0 0
\(666\) 1.34914e9 0.176969
\(667\) −9.49888e9 −1.23946
\(668\) −2.55769e9 −0.331994
\(669\) 5.17454e9 0.668160
\(670\) 0 0
\(671\) −7.52058e9 −0.960998
\(672\) −6.30817e8 −0.0801883
\(673\) −5.83430e9 −0.737796 −0.368898 0.929470i \(-0.620265\pi\)
−0.368898 + 0.929470i \(0.620265\pi\)
\(674\) −6.17869e9 −0.777297
\(675\) 0 0
\(676\) −4.00612e9 −0.498782
\(677\) 1.34655e8 0.0166787 0.00833935 0.999965i \(-0.497345\pi\)
0.00833935 + 0.999965i \(0.497345\pi\)
\(678\) −1.57845e8 −0.0194503
\(679\) −1.01736e10 −1.24718
\(680\) 0 0
\(681\) −3.00022e9 −0.364031
\(682\) 2.53493e9 0.305999
\(683\) −1.33536e10 −1.60371 −0.801853 0.597521i \(-0.796152\pi\)
−0.801853 + 0.597521i \(0.796152\pi\)
\(684\) −7.28300e7 −0.00870190
\(685\) 0 0
\(686\) 6.49524e9 0.768176
\(687\) −2.40899e9 −0.283457
\(688\) 7.93629e8 0.0929090
\(689\) −6.43362e8 −0.0749356
\(690\) 0 0
\(691\) −3.26642e9 −0.376616 −0.188308 0.982110i \(-0.560300\pi\)
−0.188308 + 0.982110i \(0.560300\pi\)
\(692\) −5.80679e9 −0.666139
\(693\) 1.98035e9 0.226035
\(694\) −4.16823e9 −0.473362
\(695\) 0 0
\(696\) 1.15035e9 0.129330
\(697\) 5.21311e8 0.0583153
\(698\) −4.17899e9 −0.465134
\(699\) −1.36261e9 −0.150904
\(700\) 0 0
\(701\) 7.82925e9 0.858434 0.429217 0.903201i \(-0.358789\pi\)
0.429217 + 0.903201i \(0.358789\pi\)
\(702\) 6.15684e7 0.00671704
\(703\) 3.61112e8 0.0392011
\(704\) 9.98769e8 0.107885
\(705\) 0 0
\(706\) 8.18052e9 0.874912
\(707\) 4.94194e9 0.525932
\(708\) −6.67181e7 −0.00706524
\(709\) −3.26880e9 −0.344450 −0.172225 0.985058i \(-0.555096\pi\)
−0.172225 + 0.985058i \(0.555096\pi\)
\(710\) 0 0
\(711\) 5.18173e9 0.540668
\(712\) −3.44467e9 −0.357658
\(713\) −9.49351e9 −0.980875
\(714\) 6.44061e8 0.0662191
\(715\) 0 0
\(716\) 8.35649e9 0.850802
\(717\) 2.20472e9 0.223376
\(718\) 9.43170e9 0.950943
\(719\) −4.69765e9 −0.471335 −0.235668 0.971834i \(-0.575728\pi\)
−0.235668 + 0.971834i \(0.575728\pi\)
\(720\) 0 0
\(721\) 9.60460e9 0.954346
\(722\) 7.13148e9 0.705179
\(723\) −6.48873e9 −0.638522
\(724\) 7.12195e9 0.697452
\(725\) 0 0
\(726\) 1.07375e9 0.104142
\(727\) −1.10503e10 −1.06661 −0.533304 0.845924i \(-0.679050\pi\)
−0.533304 + 0.845924i \(0.679050\pi\)
\(728\) 1.42737e8 0.0137112
\(729\) 3.87420e8 0.0370370
\(730\) 0 0
\(731\) −8.10292e8 −0.0767239
\(732\) −3.41091e9 −0.321426
\(733\) −1.52446e10 −1.42972 −0.714860 0.699268i \(-0.753509\pi\)
−0.714860 + 0.699268i \(0.753509\pi\)
\(734\) 6.28279e9 0.586430
\(735\) 0 0
\(736\) −3.74047e9 −0.345823
\(737\) 1.68012e10 1.54598
\(738\) 7.26994e8 0.0665784
\(739\) −1.54738e10 −1.41039 −0.705197 0.709012i \(-0.749141\pi\)
−0.705197 + 0.709012i \(0.749141\pi\)
\(740\) 0 0
\(741\) 1.64795e7 0.00148792
\(742\) −9.38552e9 −0.843422
\(743\) 1.25550e9 0.112294 0.0561471 0.998423i \(-0.482118\pi\)
0.0561471 + 0.998423i \(0.482118\pi\)
\(744\) 1.14970e9 0.102348
\(745\) 0 0
\(746\) 5.93171e9 0.523111
\(747\) 5.91780e9 0.519443
\(748\) −1.01974e9 −0.0890909
\(749\) 7.53105e9 0.654891
\(750\) 0 0
\(751\) −1.75101e10 −1.50851 −0.754257 0.656580i \(-0.772003\pi\)
−0.754257 + 0.656580i \(0.772003\pi\)
\(752\) 1.30781e9 0.112146
\(753\) −8.74101e9 −0.746069
\(754\) −2.60293e8 −0.0221138
\(755\) 0 0
\(756\) 8.98175e8 0.0756022
\(757\) 1.55877e9 0.130601 0.0653005 0.997866i \(-0.479199\pi\)
0.0653005 + 0.997866i \(0.479199\pi\)
\(758\) 3.30559e9 0.275681
\(759\) 1.17426e10 0.974807
\(760\) 0 0
\(761\) 8.14586e9 0.670025 0.335012 0.942214i \(-0.391260\pi\)
0.335012 + 0.942214i \(0.391260\pi\)
\(762\) 7.64555e9 0.625989
\(763\) 4.81130e9 0.392127
\(764\) 8.92264e9 0.723880
\(765\) 0 0
\(766\) 1.66227e10 1.33629
\(767\) 1.50965e7 0.00120807
\(768\) 4.52985e8 0.0360844
\(769\) 1.61934e10 1.28409 0.642046 0.766666i \(-0.278086\pi\)
0.642046 + 0.766666i \(0.278086\pi\)
\(770\) 0 0
\(771\) −2.18804e9 −0.171935
\(772\) −1.52251e9 −0.119097
\(773\) −3.85870e9 −0.300478 −0.150239 0.988650i \(-0.548004\pi\)
−0.150239 + 0.988650i \(0.548004\pi\)
\(774\) −1.12999e9 −0.0875955
\(775\) 0 0
\(776\) 7.30556e9 0.561226
\(777\) −4.45341e9 −0.340580
\(778\) 1.30241e10 0.991557
\(779\) 1.94588e8 0.0147481
\(780\) 0 0
\(781\) 4.72745e8 0.0355098
\(782\) 3.81900e9 0.285579
\(783\) −1.63790e9 −0.121933
\(784\) −1.29095e9 −0.0956762
\(785\) 0 0
\(786\) −5.57408e9 −0.409444
\(787\) −9.76950e9 −0.714431 −0.357216 0.934022i \(-0.616274\pi\)
−0.357216 + 0.934022i \(0.616274\pi\)
\(788\) 2.99465e9 0.218024
\(789\) 5.70409e9 0.413444
\(790\) 0 0
\(791\) 5.21035e8 0.0374325
\(792\) −1.42207e9 −0.101715
\(793\) 7.71797e8 0.0549600
\(794\) −5.23498e9 −0.371144
\(795\) 0 0
\(796\) −7.47864e9 −0.525566
\(797\) 1.86704e10 1.30632 0.653159 0.757221i \(-0.273443\pi\)
0.653159 + 0.757221i \(0.273443\pi\)
\(798\) 2.40406e8 0.0167470
\(799\) −1.33527e9 −0.0926095
\(800\) 0 0
\(801\) 4.90462e9 0.337203
\(802\) −1.53384e10 −1.04995
\(803\) 1.51167e10 1.03027
\(804\) 7.62005e9 0.517085
\(805\) 0 0
\(806\) −2.60146e8 −0.0175003
\(807\) 1.13625e10 0.761054
\(808\) −3.54877e9 −0.236667
\(809\) −7.97985e9 −0.529877 −0.264938 0.964265i \(-0.585352\pi\)
−0.264938 + 0.964265i \(0.585352\pi\)
\(810\) 0 0
\(811\) −1.70481e10 −1.12228 −0.561141 0.827720i \(-0.689638\pi\)
−0.561141 + 0.827720i \(0.689638\pi\)
\(812\) −3.79722e9 −0.248897
\(813\) −5.77419e9 −0.376855
\(814\) 7.05106e9 0.458215
\(815\) 0 0
\(816\) −4.62496e8 −0.0297983
\(817\) −3.02455e8 −0.0194036
\(818\) −1.17272e10 −0.749132
\(819\) −2.03233e8 −0.0129271
\(820\) 0 0
\(821\) −6.64028e9 −0.418779 −0.209390 0.977832i \(-0.567148\pi\)
−0.209390 + 0.977832i \(0.567148\pi\)
\(822\) −2.35557e9 −0.147926
\(823\) 2.99586e10 1.87336 0.936682 0.350180i \(-0.113880\pi\)
0.936682 + 0.350180i \(0.113880\pi\)
\(824\) −6.89699e9 −0.429452
\(825\) 0 0
\(826\) 2.20231e8 0.0135972
\(827\) 3.07056e9 0.188777 0.0943883 0.995535i \(-0.469910\pi\)
0.0943883 + 0.995535i \(0.469910\pi\)
\(828\) 5.32578e9 0.326045
\(829\) −2.10442e10 −1.28289 −0.641447 0.767167i \(-0.721666\pi\)
−0.641447 + 0.767167i \(0.721666\pi\)
\(830\) 0 0
\(831\) −7.95594e9 −0.480937
\(832\) −1.02498e8 −0.00617000
\(833\) 1.31806e9 0.0790091
\(834\) 1.15001e10 0.686468
\(835\) 0 0
\(836\) −3.80634e8 −0.0225313
\(837\) −1.63698e9 −0.0964946
\(838\) 1.49601e10 0.878172
\(839\) 1.16048e10 0.678377 0.339189 0.940718i \(-0.389848\pi\)
0.339189 + 0.940718i \(0.389848\pi\)
\(840\) 0 0
\(841\) −1.03253e10 −0.598573
\(842\) −1.43907e10 −0.830789
\(843\) −7.58704e9 −0.436190
\(844\) −1.17312e10 −0.671651
\(845\) 0 0
\(846\) −1.86210e9 −0.105732
\(847\) −3.54437e9 −0.200423
\(848\) 6.73967e9 0.379536
\(849\) 1.56995e10 0.880461
\(850\) 0 0
\(851\) −2.64068e10 −1.46880
\(852\) 2.14410e8 0.0118770
\(853\) 3.08015e10 1.69922 0.849610 0.527411i \(-0.176837\pi\)
0.849610 + 0.527411i \(0.176837\pi\)
\(854\) 1.12592e10 0.618590
\(855\) 0 0
\(856\) −5.40799e9 −0.294698
\(857\) 2.03442e10 1.10410 0.552050 0.833811i \(-0.313846\pi\)
0.552050 + 0.833811i \(0.313846\pi\)
\(858\) 3.21777e8 0.0173920
\(859\) −5.51078e9 −0.296645 −0.148323 0.988939i \(-0.547387\pi\)
−0.148323 + 0.988939i \(0.547387\pi\)
\(860\) 0 0
\(861\) −2.39975e9 −0.128131
\(862\) −2.89137e8 −0.0153755
\(863\) 2.54712e10 1.34900 0.674501 0.738274i \(-0.264359\pi\)
0.674501 + 0.738274i \(0.264359\pi\)
\(864\) −6.44973e8 −0.0340207
\(865\) 0 0
\(866\) 1.23782e10 0.647656
\(867\) −1.06069e10 −0.552743
\(868\) −3.79508e9 −0.196971
\(869\) 2.70814e10 1.39992
\(870\) 0 0
\(871\) −1.72421e9 −0.0884153
\(872\) −3.45496e9 −0.176455
\(873\) −1.04019e10 −0.529129
\(874\) 1.42551e9 0.0722235
\(875\) 0 0
\(876\) 6.85607e9 0.344597
\(877\) −1.83885e9 −0.0920549 −0.0460275 0.998940i \(-0.514656\pi\)
−0.0460275 + 0.998940i \(0.514656\pi\)
\(878\) 4.52907e9 0.225828
\(879\) −2.13853e10 −1.06207
\(880\) 0 0
\(881\) −3.40718e10 −1.67873 −0.839363 0.543571i \(-0.817072\pi\)
−0.839363 + 0.543571i \(0.817072\pi\)
\(882\) 1.83809e9 0.0902044
\(883\) −2.54935e10 −1.24614 −0.623071 0.782165i \(-0.714115\pi\)
−0.623071 + 0.782165i \(0.714115\pi\)
\(884\) 1.04650e8 0.00509516
\(885\) 0 0
\(886\) −7.61467e9 −0.367818
\(887\) 2.29613e10 1.10475 0.552374 0.833596i \(-0.313722\pi\)
0.552374 + 0.833596i \(0.313722\pi\)
\(888\) 3.19796e9 0.153260
\(889\) −2.52374e10 −1.20473
\(890\) 0 0
\(891\) 2.02479e9 0.0958977
\(892\) 1.22656e10 0.578644
\(893\) −4.98412e8 −0.0234211
\(894\) 7.34273e9 0.343698
\(895\) 0 0
\(896\) −1.49527e9 −0.0694451
\(897\) −1.20508e9 −0.0557497
\(898\) 8.96101e9 0.412943
\(899\) 6.92066e9 0.317679
\(900\) 0 0
\(901\) −6.88118e9 −0.313420
\(902\) 3.79951e9 0.172387
\(903\) 3.73002e9 0.168579
\(904\) −3.74151e8 −0.0168445
\(905\) 0 0
\(906\) −6.76965e9 −0.302425
\(907\) 5.32481e9 0.236962 0.118481 0.992956i \(-0.462198\pi\)
0.118481 + 0.992956i \(0.462198\pi\)
\(908\) −7.11164e9 −0.315260
\(909\) 5.05284e9 0.223132
\(910\) 0 0
\(911\) 2.29502e10 1.00571 0.502853 0.864372i \(-0.332284\pi\)
0.502853 + 0.864372i \(0.332284\pi\)
\(912\) −1.72634e8 −0.00753607
\(913\) 3.09284e10 1.34496
\(914\) −2.32835e10 −1.00864
\(915\) 0 0
\(916\) −5.71021e9 −0.245481
\(917\) 1.83996e10 0.787982
\(918\) 6.58514e8 0.0280942
\(919\) −2.49309e10 −1.05958 −0.529790 0.848129i \(-0.677729\pi\)
−0.529790 + 0.848129i \(0.677729\pi\)
\(920\) 0 0
\(921\) 5.48991e9 0.231556
\(922\) −3.67712e9 −0.154507
\(923\) −4.85153e7 −0.00203083
\(924\) 4.69416e9 0.195752
\(925\) 0 0
\(926\) −4.48040e9 −0.185429
\(927\) 9.82013e9 0.404891
\(928\) 2.72676e9 0.112003
\(929\) 1.04115e10 0.426049 0.213024 0.977047i \(-0.431669\pi\)
0.213024 + 0.977047i \(0.431669\pi\)
\(930\) 0 0
\(931\) 4.91987e8 0.0199816
\(932\) −3.22989e9 −0.130687
\(933\) 8.89456e9 0.358541
\(934\) 2.96637e10 1.19127
\(935\) 0 0
\(936\) 1.45940e8 0.00581713
\(937\) −7.28154e9 −0.289158 −0.144579 0.989493i \(-0.546183\pi\)
−0.144579 + 0.989493i \(0.546183\pi\)
\(938\) −2.51532e10 −0.995139
\(939\) 4.36038e9 0.171868
\(940\) 0 0
\(941\) 2.30278e10 0.900927 0.450464 0.892795i \(-0.351259\pi\)
0.450464 + 0.892795i \(0.351259\pi\)
\(942\) 1.47633e10 0.575446
\(943\) −1.42295e10 −0.552584
\(944\) −1.58147e8 −0.00611868
\(945\) 0 0
\(946\) −5.90571e9 −0.226805
\(947\) −4.69600e10 −1.79681 −0.898407 0.439164i \(-0.855275\pi\)
−0.898407 + 0.439164i \(0.855275\pi\)
\(948\) 1.22826e10 0.468232
\(949\) −1.55134e9 −0.0589219
\(950\) 0 0
\(951\) 1.72570e10 0.650628
\(952\) 1.52666e9 0.0573475
\(953\) 3.43809e10 1.28674 0.643372 0.765553i \(-0.277535\pi\)
0.643372 + 0.765553i \(0.277535\pi\)
\(954\) −9.59614e9 −0.357830
\(955\) 0 0
\(956\) 5.22600e9 0.193449
\(957\) −8.56022e9 −0.315714
\(958\) 3.17058e10 1.16509
\(959\) 7.77558e9 0.284687
\(960\) 0 0
\(961\) −2.05959e10 −0.748597
\(962\) −7.23613e8 −0.0262056
\(963\) 7.70005e9 0.277844
\(964\) −1.53807e10 −0.552976
\(965\) 0 0
\(966\) −1.75800e10 −0.627479
\(967\) 1.14483e10 0.407146 0.203573 0.979060i \(-0.434745\pi\)
0.203573 + 0.979060i \(0.434745\pi\)
\(968\) 2.54519e9 0.0901895
\(969\) 1.76259e8 0.00622325
\(970\) 0 0
\(971\) 1.85255e8 0.00649385 0.00324693 0.999995i \(-0.498966\pi\)
0.00324693 + 0.999995i \(0.498966\pi\)
\(972\) 9.18330e8 0.0320750
\(973\) −3.79610e10 −1.32112
\(974\) −1.06406e10 −0.368986
\(975\) 0 0
\(976\) −8.08511e9 −0.278363
\(977\) −3.06849e10 −1.05267 −0.526337 0.850276i \(-0.676435\pi\)
−0.526337 + 0.850276i \(0.676435\pi\)
\(978\) −9.99598e9 −0.341696
\(979\) 2.56332e10 0.873099
\(980\) 0 0
\(981\) 4.91927e9 0.166364
\(982\) 2.04628e10 0.689564
\(983\) −1.00287e9 −0.0336751 −0.0168376 0.999858i \(-0.505360\pi\)
−0.0168376 + 0.999858i \(0.505360\pi\)
\(984\) 1.72324e9 0.0576586
\(985\) 0 0
\(986\) −2.78401e9 −0.0924914
\(987\) 6.14665e9 0.203483
\(988\) 3.90625e7 0.00128858
\(989\) 2.21174e10 0.727020
\(990\) 0 0
\(991\) 4.82282e10 1.57414 0.787070 0.616864i \(-0.211597\pi\)
0.787070 + 0.616864i \(0.211597\pi\)
\(992\) 2.72522e9 0.0886360
\(993\) −1.45638e10 −0.472012
\(994\) −7.07752e8 −0.0228575
\(995\) 0 0
\(996\) 1.40274e10 0.449851
\(997\) −4.68836e10 −1.49826 −0.749132 0.662421i \(-0.769529\pi\)
−0.749132 + 0.662421i \(0.769529\pi\)
\(998\) −3.45484e10 −1.10020
\(999\) −4.55335e9 −0.144495
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 150.8.a.h.1.1 1
3.2 odd 2 450.8.a.w.1.1 1
5.2 odd 4 150.8.c.c.49.1 2
5.3 odd 4 150.8.c.c.49.2 2
5.4 even 2 150.8.a.j.1.1 yes 1
15.2 even 4 450.8.c.e.199.2 2
15.8 even 4 450.8.c.e.199.1 2
15.14 odd 2 450.8.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.8.a.h.1.1 1 1.1 even 1 trivial
150.8.a.j.1.1 yes 1 5.4 even 2
150.8.c.c.49.1 2 5.2 odd 4
150.8.c.c.49.2 2 5.3 odd 4
450.8.a.d.1.1 1 15.14 odd 2
450.8.a.w.1.1 1 3.2 odd 2
450.8.c.e.199.1 2 15.8 even 4
450.8.c.e.199.2 2 15.2 even 4