Properties

Label 450.8.a.w.1.1
Level $450$
Weight $8$
Character 450.1
Self dual yes
Analytic conductor $140.573$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [450,8,Mod(1,450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(450, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("450.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 450.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(140.573261468\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 150)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 450.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.00000 q^{2} +64.0000 q^{4} +713.000 q^{7} +512.000 q^{8} -3810.00 q^{11} -391.000 q^{13} +5704.00 q^{14} +4096.00 q^{16} +4182.00 q^{17} -1561.00 q^{19} -30480.0 q^{22} -114150. q^{23} -3128.00 q^{26} +45632.0 q^{28} +83214.0 q^{29} -83167.0 q^{31} +32768.0 q^{32} +33456.0 q^{34} -231334. q^{37} -12488.0 q^{38} +124656. q^{41} +193757. q^{43} -243840. q^{44} -913200. q^{46} -319290. q^{47} -315174. q^{49} -25024.0 q^{52} -1.64543e6 q^{53} +365056. q^{56} +665712. q^{58} +38610.0 q^{59} -1.97390e6 q^{61} -665336. q^{62} +262144. q^{64} +4.40975e6 q^{67} +267648. q^{68} -124080. q^{71} +3.96763e6 q^{73} -1.85067e6 q^{74} -99904.0 q^{76} -2.71653e6 q^{77} +7.10799e6 q^{79} +997248. q^{82} -8.11769e6 q^{83} +1.55006e6 q^{86} -1.95072e6 q^{88} -6.72787e6 q^{89} -278783. q^{91} -7.30560e6 q^{92} -2.55432e6 q^{94} -1.42687e7 q^{97} -2.52139e6 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.00000 0.707107
\(3\) 0 0
\(4\) 64.0000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) 713.000 0.785681 0.392841 0.919607i \(-0.371492\pi\)
0.392841 + 0.919607i \(0.371492\pi\)
\(8\) 512.000 0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) −3810.00 −0.863079 −0.431540 0.902094i \(-0.642029\pi\)
−0.431540 + 0.902094i \(0.642029\pi\)
\(12\) 0 0
\(13\) −391.000 −0.0493600 −0.0246800 0.999695i \(-0.507857\pi\)
−0.0246800 + 0.999695i \(0.507857\pi\)
\(14\) 5704.00 0.555561
\(15\) 0 0
\(16\) 4096.00 0.250000
\(17\) 4182.00 0.206449 0.103225 0.994658i \(-0.467084\pi\)
0.103225 + 0.994658i \(0.467084\pi\)
\(18\) 0 0
\(19\) −1561.00 −0.0522114 −0.0261057 0.999659i \(-0.508311\pi\)
−0.0261057 + 0.999659i \(0.508311\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −30480.0 −0.610289
\(23\) −114150. −1.95627 −0.978134 0.207974i \(-0.933313\pi\)
−0.978134 + 0.207974i \(0.933313\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −3128.00 −0.0349028
\(27\) 0 0
\(28\) 45632.0 0.392841
\(29\) 83214.0 0.633583 0.316791 0.948495i \(-0.397394\pi\)
0.316791 + 0.948495i \(0.397394\pi\)
\(30\) 0 0
\(31\) −83167.0 −0.501401 −0.250700 0.968065i \(-0.580661\pi\)
−0.250700 + 0.968065i \(0.580661\pi\)
\(32\) 32768.0 0.176777
\(33\) 0 0
\(34\) 33456.0 0.145981
\(35\) 0 0
\(36\) 0 0
\(37\) −231334. −0.750816 −0.375408 0.926860i \(-0.622497\pi\)
−0.375408 + 0.926860i \(0.622497\pi\)
\(38\) −12488.0 −0.0369190
\(39\) 0 0
\(40\) 0 0
\(41\) 124656. 0.282468 0.141234 0.989976i \(-0.454893\pi\)
0.141234 + 0.989976i \(0.454893\pi\)
\(42\) 0 0
\(43\) 193757. 0.371636 0.185818 0.982584i \(-0.440507\pi\)
0.185818 + 0.982584i \(0.440507\pi\)
\(44\) −243840. −0.431540
\(45\) 0 0
\(46\) −913200. −1.38329
\(47\) −319290. −0.448583 −0.224292 0.974522i \(-0.572007\pi\)
−0.224292 + 0.974522i \(0.572007\pi\)
\(48\) 0 0
\(49\) −315174. −0.382705
\(50\) 0 0
\(51\) 0 0
\(52\) −25024.0 −0.0246800
\(53\) −1.64543e6 −1.51815 −0.759073 0.651006i \(-0.774347\pi\)
−0.759073 + 0.651006i \(0.774347\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 365056. 0.277780
\(57\) 0 0
\(58\) 665712. 0.448011
\(59\) 38610.0 0.0244747 0.0122374 0.999925i \(-0.496105\pi\)
0.0122374 + 0.999925i \(0.496105\pi\)
\(60\) 0 0
\(61\) −1.97390e6 −1.11345 −0.556726 0.830696i \(-0.687943\pi\)
−0.556726 + 0.830696i \(0.687943\pi\)
\(62\) −665336. −0.354544
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 4.40975e6 1.79123 0.895617 0.444825i \(-0.146734\pi\)
0.895617 + 0.444825i \(0.146734\pi\)
\(68\) 267648. 0.103225
\(69\) 0 0
\(70\) 0 0
\(71\) −124080. −0.0411432 −0.0205716 0.999788i \(-0.506549\pi\)
−0.0205716 + 0.999788i \(0.506549\pi\)
\(72\) 0 0
\(73\) 3.96763e6 1.19372 0.596859 0.802346i \(-0.296415\pi\)
0.596859 + 0.802346i \(0.296415\pi\)
\(74\) −1.85067e6 −0.530907
\(75\) 0 0
\(76\) −99904.0 −0.0261057
\(77\) −2.71653e6 −0.678105
\(78\) 0 0
\(79\) 7.10799e6 1.62200 0.811002 0.585043i \(-0.198922\pi\)
0.811002 + 0.585043i \(0.198922\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 997248. 0.199735
\(83\) −8.11769e6 −1.55833 −0.779165 0.626819i \(-0.784357\pi\)
−0.779165 + 0.626819i \(0.784357\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 1.55006e6 0.262786
\(87\) 0 0
\(88\) −1.95072e6 −0.305145
\(89\) −6.72787e6 −1.01161 −0.505805 0.862648i \(-0.668804\pi\)
−0.505805 + 0.862648i \(0.668804\pi\)
\(90\) 0 0
\(91\) −278783. −0.0387812
\(92\) −7.30560e6 −0.978134
\(93\) 0 0
\(94\) −2.55432e6 −0.317196
\(95\) 0 0
\(96\) 0 0
\(97\) −1.42687e7 −1.58739 −0.793693 0.608318i \(-0.791844\pi\)
−0.793693 + 0.608318i \(0.791844\pi\)
\(98\) −2.52139e6 −0.270613
\(99\) 0 0
\(100\) 0 0
\(101\) −6.93119e6 −0.669396 −0.334698 0.942326i \(-0.608634\pi\)
−0.334698 + 0.942326i \(0.608634\pi\)
\(102\) 0 0
\(103\) 1.34707e7 1.21467 0.607337 0.794444i \(-0.292238\pi\)
0.607337 + 0.794444i \(0.292238\pi\)
\(104\) −200192. −0.0174514
\(105\) 0 0
\(106\) −1.31634e7 −1.07349
\(107\) −1.05625e7 −0.833533 −0.416767 0.909014i \(-0.636837\pi\)
−0.416767 + 0.909014i \(0.636837\pi\)
\(108\) 0 0
\(109\) 6.74796e6 0.499091 0.249546 0.968363i \(-0.419719\pi\)
0.249546 + 0.968363i \(0.419719\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2.92045e6 0.196420
\(113\) −730764. −0.0476434 −0.0238217 0.999716i \(-0.507583\pi\)
−0.0238217 + 0.999716i \(0.507583\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 5.32570e6 0.316791
\(117\) 0 0
\(118\) 308880. 0.0173062
\(119\) 2.98177e6 0.162203
\(120\) 0 0
\(121\) −4.97107e6 −0.255095
\(122\) −1.57912e7 −0.787330
\(123\) 0 0
\(124\) −5.32269e6 −0.250700
\(125\) 0 0
\(126\) 0 0
\(127\) −3.53961e7 −1.53335 −0.766676 0.642034i \(-0.778091\pi\)
−0.766676 + 0.642034i \(0.778091\pi\)
\(128\) 2.09715e6 0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) −2.58059e7 −1.00293 −0.501464 0.865178i \(-0.667205\pi\)
−0.501464 + 0.865178i \(0.667205\pi\)
\(132\) 0 0
\(133\) −1.11299e6 −0.0410215
\(134\) 3.52780e7 1.26659
\(135\) 0 0
\(136\) 2.14118e6 0.0729907
\(137\) −1.09054e7 −0.362344 −0.181172 0.983451i \(-0.557989\pi\)
−0.181172 + 0.983451i \(0.557989\pi\)
\(138\) 0 0
\(139\) −5.32412e7 −1.68150 −0.840748 0.541426i \(-0.817885\pi\)
−0.840748 + 0.541426i \(0.817885\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −992640. −0.0290926
\(143\) 1.48971e6 0.0426016
\(144\) 0 0
\(145\) 0 0
\(146\) 3.17411e7 0.844086
\(147\) 0 0
\(148\) −1.48054e7 −0.375408
\(149\) 3.39941e7 0.841884 0.420942 0.907088i \(-0.361700\pi\)
0.420942 + 0.907088i \(0.361700\pi\)
\(150\) 0 0
\(151\) 3.13410e7 0.740786 0.370393 0.928875i \(-0.379223\pi\)
0.370393 + 0.928875i \(0.379223\pi\)
\(152\) −799232. −0.0184595
\(153\) 0 0
\(154\) −2.17322e7 −0.479493
\(155\) 0 0
\(156\) 0 0
\(157\) −6.83485e7 −1.40955 −0.704775 0.709431i \(-0.748952\pi\)
−0.704775 + 0.709431i \(0.748952\pi\)
\(158\) 5.68639e7 1.14693
\(159\) 0 0
\(160\) 0 0
\(161\) −8.13890e7 −1.53700
\(162\) 0 0
\(163\) 4.62777e7 0.836980 0.418490 0.908221i \(-0.362560\pi\)
0.418490 + 0.908221i \(0.362560\pi\)
\(164\) 7.97798e6 0.141234
\(165\) 0 0
\(166\) −6.49416e7 −1.10191
\(167\) 3.99639e7 0.663988 0.331994 0.943282i \(-0.392279\pi\)
0.331994 + 0.943282i \(0.392279\pi\)
\(168\) 0 0
\(169\) −6.25956e7 −0.997564
\(170\) 0 0
\(171\) 0 0
\(172\) 1.24004e7 0.185818
\(173\) 9.07312e7 1.33228 0.666139 0.745827i \(-0.267946\pi\)
0.666139 + 0.745827i \(0.267946\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.56058e7 −0.215770
\(177\) 0 0
\(178\) −5.38230e7 −0.715316
\(179\) −1.30570e8 −1.70160 −0.850802 0.525486i \(-0.823883\pi\)
−0.850802 + 0.525486i \(0.823883\pi\)
\(180\) 0 0
\(181\) 1.11281e8 1.39490 0.697452 0.716632i \(-0.254317\pi\)
0.697452 + 0.716632i \(0.254317\pi\)
\(182\) −2.23026e6 −0.0274225
\(183\) 0 0
\(184\) −5.84448e7 −0.691645
\(185\) 0 0
\(186\) 0 0
\(187\) −1.59334e7 −0.178182
\(188\) −2.04346e7 −0.224292
\(189\) 0 0
\(190\) 0 0
\(191\) −1.39416e8 −1.44776 −0.723880 0.689926i \(-0.757643\pi\)
−0.723880 + 0.689926i \(0.757643\pi\)
\(192\) 0 0
\(193\) −2.37893e7 −0.238194 −0.119097 0.992883i \(-0.538000\pi\)
−0.119097 + 0.992883i \(0.538000\pi\)
\(194\) −1.14149e8 −1.12245
\(195\) 0 0
\(196\) −2.01711e7 −0.191352
\(197\) −4.67913e7 −0.436047 −0.218024 0.975943i \(-0.569961\pi\)
−0.218024 + 0.975943i \(0.569961\pi\)
\(198\) 0 0
\(199\) −1.16854e8 −1.05113 −0.525566 0.850753i \(-0.676146\pi\)
−0.525566 + 0.850753i \(0.676146\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −5.54495e7 −0.473334
\(203\) 5.93316e7 0.497794
\(204\) 0 0
\(205\) 0 0
\(206\) 1.07766e8 0.858904
\(207\) 0 0
\(208\) −1.60154e6 −0.0123400
\(209\) 5.94741e6 0.0450626
\(210\) 0 0
\(211\) −1.83300e8 −1.34330 −0.671651 0.740867i \(-0.734415\pi\)
−0.671651 + 0.740867i \(0.734415\pi\)
\(212\) −1.05307e8 −0.759073
\(213\) 0 0
\(214\) −8.44999e7 −0.589397
\(215\) 0 0
\(216\) 0 0
\(217\) −5.92981e7 −0.393941
\(218\) 5.39837e7 0.352911
\(219\) 0 0
\(220\) 0 0
\(221\) −1.63516e6 −0.0101903
\(222\) 0 0
\(223\) 1.91650e8 1.15729 0.578644 0.815580i \(-0.303582\pi\)
0.578644 + 0.815580i \(0.303582\pi\)
\(224\) 2.33636e7 0.138890
\(225\) 0 0
\(226\) −5.84611e6 −0.0336890
\(227\) 1.11119e8 0.630521 0.315260 0.949005i \(-0.397908\pi\)
0.315260 + 0.949005i \(0.397908\pi\)
\(228\) 0 0
\(229\) −8.92220e7 −0.490962 −0.245481 0.969401i \(-0.578946\pi\)
−0.245481 + 0.969401i \(0.578946\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 4.26056e7 0.224005
\(233\) 5.04671e7 0.261374 0.130687 0.991424i \(-0.458282\pi\)
0.130687 + 0.991424i \(0.458282\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 2.47104e6 0.0122374
\(237\) 0 0
\(238\) 2.38541e7 0.114695
\(239\) −8.16563e7 −0.386899 −0.193449 0.981110i \(-0.561967\pi\)
−0.193449 + 0.981110i \(0.561967\pi\)
\(240\) 0 0
\(241\) −2.40323e8 −1.10595 −0.552976 0.833197i \(-0.686508\pi\)
−0.552976 + 0.833197i \(0.686508\pi\)
\(242\) −3.97686e7 −0.180379
\(243\) 0 0
\(244\) −1.26330e8 −0.556726
\(245\) 0 0
\(246\) 0 0
\(247\) 610351. 0.00257715
\(248\) −4.25815e7 −0.177272
\(249\) 0 0
\(250\) 0 0
\(251\) 3.23741e8 1.29223 0.646115 0.763240i \(-0.276393\pi\)
0.646115 + 0.763240i \(0.276393\pi\)
\(252\) 0 0
\(253\) 4.34912e8 1.68841
\(254\) −2.83169e8 −1.08424
\(255\) 0 0
\(256\) 1.67772e7 0.0625000
\(257\) 8.10385e7 0.297800 0.148900 0.988852i \(-0.452427\pi\)
0.148900 + 0.988852i \(0.452427\pi\)
\(258\) 0 0
\(259\) −1.64941e8 −0.589902
\(260\) 0 0
\(261\) 0 0
\(262\) −2.06448e8 −0.709178
\(263\) −2.11263e8 −0.716106 −0.358053 0.933701i \(-0.616559\pi\)
−0.358053 + 0.933701i \(0.616559\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −8.90394e6 −0.0290066
\(267\) 0 0
\(268\) 2.82224e8 0.895617
\(269\) −4.20832e8 −1.31818 −0.659092 0.752062i \(-0.729059\pi\)
−0.659092 + 0.752062i \(0.729059\pi\)
\(270\) 0 0
\(271\) −2.13859e8 −0.652731 −0.326366 0.945244i \(-0.605824\pi\)
−0.326366 + 0.945244i \(0.605824\pi\)
\(272\) 1.71295e7 0.0516123
\(273\) 0 0
\(274\) −8.72435e7 −0.256216
\(275\) 0 0
\(276\) 0 0
\(277\) −2.94664e8 −0.833007 −0.416503 0.909134i \(-0.636745\pi\)
−0.416503 + 0.909134i \(0.636745\pi\)
\(278\) −4.25930e8 −1.18900
\(279\) 0 0
\(280\) 0 0
\(281\) 2.81001e8 0.755503 0.377752 0.925907i \(-0.376697\pi\)
0.377752 + 0.925907i \(0.376697\pi\)
\(282\) 0 0
\(283\) 5.81465e8 1.52500 0.762502 0.646986i \(-0.223971\pi\)
0.762502 + 0.646986i \(0.223971\pi\)
\(284\) −7.94112e6 −0.0205716
\(285\) 0 0
\(286\) 1.19177e7 0.0301239
\(287\) 8.88797e7 0.221930
\(288\) 0 0
\(289\) −3.92850e8 −0.957379
\(290\) 0 0
\(291\) 0 0
\(292\) 2.53929e8 0.596859
\(293\) 7.92049e8 1.83957 0.919783 0.392427i \(-0.128365\pi\)
0.919783 + 0.392427i \(0.128365\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −1.18443e8 −0.265453
\(297\) 0 0
\(298\) 2.71953e8 0.595302
\(299\) 4.46326e7 0.0965614
\(300\) 0 0
\(301\) 1.38149e8 0.291987
\(302\) 2.50728e8 0.523815
\(303\) 0 0
\(304\) −6.39386e6 −0.0130528
\(305\) 0 0
\(306\) 0 0
\(307\) 2.03330e8 0.401067 0.200533 0.979687i \(-0.435732\pi\)
0.200533 + 0.979687i \(0.435732\pi\)
\(308\) −1.73858e8 −0.339053
\(309\) 0 0
\(310\) 0 0
\(311\) −3.29428e8 −0.621011 −0.310505 0.950572i \(-0.600498\pi\)
−0.310505 + 0.950572i \(0.600498\pi\)
\(312\) 0 0
\(313\) 1.61495e8 0.297684 0.148842 0.988861i \(-0.452445\pi\)
0.148842 + 0.988861i \(0.452445\pi\)
\(314\) −5.46788e8 −0.996702
\(315\) 0 0
\(316\) 4.54911e8 0.811002
\(317\) −6.39147e8 −1.12692 −0.563460 0.826143i \(-0.690530\pi\)
−0.563460 + 0.826143i \(0.690530\pi\)
\(318\) 0 0
\(319\) −3.17045e8 −0.546832
\(320\) 0 0
\(321\) 0 0
\(322\) −6.51112e8 −1.08683
\(323\) −6.52810e6 −0.0107790
\(324\) 0 0
\(325\) 0 0
\(326\) 3.70221e8 0.591834
\(327\) 0 0
\(328\) 6.38239e7 0.0998676
\(329\) −2.27654e8 −0.352443
\(330\) 0 0
\(331\) −5.39401e8 −0.817548 −0.408774 0.912636i \(-0.634044\pi\)
−0.408774 + 0.912636i \(0.634044\pi\)
\(332\) −5.19532e8 −0.779165
\(333\) 0 0
\(334\) 3.19711e8 0.469510
\(335\) 0 0
\(336\) 0 0
\(337\) 7.72336e8 1.09926 0.549632 0.835407i \(-0.314768\pi\)
0.549632 + 0.835407i \(0.314768\pi\)
\(338\) −5.00765e8 −0.705384
\(339\) 0 0
\(340\) 0 0
\(341\) 3.16866e8 0.432749
\(342\) 0 0
\(343\) −8.11905e8 −1.08637
\(344\) 9.92036e7 0.131393
\(345\) 0 0
\(346\) 7.25849e8 0.942063
\(347\) −5.21028e8 −0.669435 −0.334717 0.942319i \(-0.608641\pi\)
−0.334717 + 0.942319i \(0.608641\pi\)
\(348\) 0 0
\(349\) 5.22374e8 0.657798 0.328899 0.944365i \(-0.393322\pi\)
0.328899 + 0.944365i \(0.393322\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.24846e8 −0.152572
\(353\) 1.02256e9 1.23731 0.618656 0.785662i \(-0.287677\pi\)
0.618656 + 0.785662i \(0.287677\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −4.30584e8 −0.505805
\(357\) 0 0
\(358\) −1.04456e9 −1.20322
\(359\) 1.17896e9 1.34484 0.672418 0.740171i \(-0.265256\pi\)
0.672418 + 0.740171i \(0.265256\pi\)
\(360\) 0 0
\(361\) −8.91435e8 −0.997274
\(362\) 8.90244e8 0.986346
\(363\) 0 0
\(364\) −1.78421e7 −0.0193906
\(365\) 0 0
\(366\) 0 0
\(367\) −7.85348e8 −0.829337 −0.414668 0.909973i \(-0.636102\pi\)
−0.414668 + 0.909973i \(0.636102\pi\)
\(368\) −4.67558e8 −0.489067
\(369\) 0 0
\(370\) 0 0
\(371\) −1.17319e9 −1.19278
\(372\) 0 0
\(373\) −7.41463e8 −0.739791 −0.369895 0.929073i \(-0.620606\pi\)
−0.369895 + 0.929073i \(0.620606\pi\)
\(374\) −1.27467e8 −0.125994
\(375\) 0 0
\(376\) −1.63476e8 −0.158598
\(377\) −3.25367e7 −0.0312736
\(378\) 0 0
\(379\) −4.13198e8 −0.389871 −0.194936 0.980816i \(-0.562450\pi\)
−0.194936 + 0.980816i \(0.562450\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −1.11533e9 −1.02372
\(383\) 2.07784e9 1.88980 0.944899 0.327361i \(-0.106159\pi\)
0.944899 + 0.327361i \(0.106159\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −1.90314e8 −0.168428
\(387\) 0 0
\(388\) −9.13195e8 −0.793693
\(389\) 1.62801e9 1.40227 0.701137 0.713027i \(-0.252676\pi\)
0.701137 + 0.713027i \(0.252676\pi\)
\(390\) 0 0
\(391\) −4.77375e8 −0.403870
\(392\) −1.61369e8 −0.135307
\(393\) 0 0
\(394\) −3.74331e8 −0.308332
\(395\) 0 0
\(396\) 0 0
\(397\) 6.54372e8 0.524877 0.262439 0.964949i \(-0.415473\pi\)
0.262439 + 0.964949i \(0.415473\pi\)
\(398\) −9.34830e8 −0.743262
\(399\) 0 0
\(400\) 0 0
\(401\) −1.91730e9 −1.48486 −0.742430 0.669924i \(-0.766327\pi\)
−0.742430 + 0.669924i \(0.766327\pi\)
\(402\) 0 0
\(403\) 3.25183e7 0.0247491
\(404\) −4.43596e8 −0.334698
\(405\) 0 0
\(406\) 4.74653e8 0.351994
\(407\) 8.81383e8 0.648013
\(408\) 0 0
\(409\) 1.46590e9 1.05943 0.529717 0.848175i \(-0.322298\pi\)
0.529717 + 0.848175i \(0.322298\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 8.62124e8 0.607337
\(413\) 2.75289e7 0.0192293
\(414\) 0 0
\(415\) 0 0
\(416\) −1.28123e7 −0.00872570
\(417\) 0 0
\(418\) 4.75793e7 0.0318640
\(419\) 1.87001e9 1.24192 0.620961 0.783841i \(-0.286742\pi\)
0.620961 + 0.783841i \(0.286742\pi\)
\(420\) 0 0
\(421\) 1.79884e9 1.17491 0.587456 0.809256i \(-0.300129\pi\)
0.587456 + 0.809256i \(0.300129\pi\)
\(422\) −1.46640e9 −0.949859
\(423\) 0 0
\(424\) −8.42459e8 −0.536745
\(425\) 0 0
\(426\) 0 0
\(427\) −1.40739e9 −0.874819
\(428\) −6.75999e8 −0.416767
\(429\) 0 0
\(430\) 0 0
\(431\) −3.61421e7 −0.0217442 −0.0108721 0.999941i \(-0.503461\pi\)
−0.0108721 + 0.999941i \(0.503461\pi\)
\(432\) 0 0
\(433\) −1.54727e9 −0.915924 −0.457962 0.888972i \(-0.651420\pi\)
−0.457962 + 0.888972i \(0.651420\pi\)
\(434\) −4.74385e8 −0.278559
\(435\) 0 0
\(436\) 4.31870e8 0.249546
\(437\) 1.78188e8 0.102140
\(438\) 0 0
\(439\) −5.66134e8 −0.319370 −0.159685 0.987168i \(-0.551048\pi\)
−0.159685 + 0.987168i \(0.551048\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −1.30813e7 −0.00720564
\(443\) −9.51833e8 −0.520173 −0.260087 0.965585i \(-0.583751\pi\)
−0.260087 + 0.965585i \(0.583751\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 1.53320e9 0.818326
\(447\) 0 0
\(448\) 1.86909e8 0.0982102
\(449\) 1.12013e9 0.583989 0.291995 0.956420i \(-0.405681\pi\)
0.291995 + 0.956420i \(0.405681\pi\)
\(450\) 0 0
\(451\) −4.74939e8 −0.243792
\(452\) −4.67689e7 −0.0238217
\(453\) 0 0
\(454\) 8.88955e8 0.445845
\(455\) 0 0
\(456\) 0 0
\(457\) 2.91044e9 1.42644 0.713218 0.700943i \(-0.247237\pi\)
0.713218 + 0.700943i \(0.247237\pi\)
\(458\) −7.13776e8 −0.347162
\(459\) 0 0
\(460\) 0 0
\(461\) −4.59640e8 −0.218507 −0.109253 0.994014i \(-0.534846\pi\)
−0.109253 + 0.994014i \(0.534846\pi\)
\(462\) 0 0
\(463\) 5.60051e8 0.262237 0.131118 0.991367i \(-0.458143\pi\)
0.131118 + 0.991367i \(0.458143\pi\)
\(464\) 3.40845e8 0.158396
\(465\) 0 0
\(466\) 4.03736e8 0.184819
\(467\) 3.70796e9 1.68471 0.842356 0.538921i \(-0.181168\pi\)
0.842356 + 0.538921i \(0.181168\pi\)
\(468\) 0 0
\(469\) 3.14415e9 1.40734
\(470\) 0 0
\(471\) 0 0
\(472\) 1.97683e7 0.00865312
\(473\) −7.38214e8 −0.320751
\(474\) 0 0
\(475\) 0 0
\(476\) 1.90833e8 0.0811016
\(477\) 0 0
\(478\) −6.53251e8 −0.273579
\(479\) 3.96322e9 1.64768 0.823842 0.566820i \(-0.191826\pi\)
0.823842 + 0.566820i \(0.191826\pi\)
\(480\) 0 0
\(481\) 9.04516e7 0.0370603
\(482\) −1.92259e9 −0.782026
\(483\) 0 0
\(484\) −3.18149e8 −0.127547
\(485\) 0 0
\(486\) 0 0
\(487\) 1.33008e9 0.521825 0.260913 0.965362i \(-0.415977\pi\)
0.260913 + 0.965362i \(0.415977\pi\)
\(488\) −1.01064e9 −0.393665
\(489\) 0 0
\(490\) 0 0
\(491\) 2.55785e9 0.975191 0.487596 0.873070i \(-0.337874\pi\)
0.487596 + 0.873070i \(0.337874\pi\)
\(492\) 0 0
\(493\) 3.48001e8 0.130803
\(494\) 4.88281e6 0.00182232
\(495\) 0 0
\(496\) −3.40652e8 −0.125350
\(497\) −8.84690e7 −0.0323254
\(498\) 0 0
\(499\) 4.31855e9 1.55592 0.777959 0.628316i \(-0.216255\pi\)
0.777959 + 0.628316i \(0.216255\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 2.58993e9 0.913745
\(503\) −6.29536e8 −0.220563 −0.110281 0.993900i \(-0.535175\pi\)
−0.110281 + 0.993900i \(0.535175\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 3.47929e9 1.19389
\(507\) 0 0
\(508\) −2.26535e9 −0.766676
\(509\) −5.79723e9 −1.94853 −0.974267 0.225397i \(-0.927632\pi\)
−0.974267 + 0.225397i \(0.927632\pi\)
\(510\) 0 0
\(511\) 2.82892e9 0.937882
\(512\) 1.34218e8 0.0441942
\(513\) 0 0
\(514\) 6.48308e8 0.210577
\(515\) 0 0
\(516\) 0 0
\(517\) 1.21649e9 0.387163
\(518\) −1.31953e9 −0.417124
\(519\) 0 0
\(520\) 0 0
\(521\) −1.39059e9 −0.430790 −0.215395 0.976527i \(-0.569104\pi\)
−0.215395 + 0.976527i \(0.569104\pi\)
\(522\) 0 0
\(523\) 1.35994e9 0.415684 0.207842 0.978162i \(-0.433356\pi\)
0.207842 + 0.978162i \(0.433356\pi\)
\(524\) −1.65158e9 −0.501464
\(525\) 0 0
\(526\) −1.69010e9 −0.506363
\(527\) −3.47804e8 −0.103514
\(528\) 0 0
\(529\) 9.62540e9 2.82699
\(530\) 0 0
\(531\) 0 0
\(532\) −7.12316e7 −0.0205108
\(533\) −4.87405e7 −0.0139426
\(534\) 0 0
\(535\) 0 0
\(536\) 2.25779e9 0.633297
\(537\) 0 0
\(538\) −3.36666e9 −0.932097
\(539\) 1.20081e9 0.330305
\(540\) 0 0
\(541\) 6.15055e8 0.167003 0.0835013 0.996508i \(-0.473390\pi\)
0.0835013 + 0.996508i \(0.473390\pi\)
\(542\) −1.71087e9 −0.461551
\(543\) 0 0
\(544\) 1.37036e8 0.0364954
\(545\) 0 0
\(546\) 0 0
\(547\) 3.38341e8 0.0883890 0.0441945 0.999023i \(-0.485928\pi\)
0.0441945 + 0.999023i \(0.485928\pi\)
\(548\) −6.97948e8 −0.181172
\(549\) 0 0
\(550\) 0 0
\(551\) −1.29897e8 −0.0330802
\(552\) 0 0
\(553\) 5.06800e9 1.27438
\(554\) −2.35732e9 −0.589025
\(555\) 0 0
\(556\) −3.40744e9 −0.840748
\(557\) −1.09577e9 −0.268674 −0.134337 0.990936i \(-0.542890\pi\)
−0.134337 + 0.990936i \(0.542890\pi\)
\(558\) 0 0
\(559\) −7.57590e7 −0.0183439
\(560\) 0 0
\(561\) 0 0
\(562\) 2.24801e9 0.534222
\(563\) −7.36019e8 −0.173824 −0.0869119 0.996216i \(-0.527700\pi\)
−0.0869119 + 0.996216i \(0.527700\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 4.65172e9 1.07834
\(567\) 0 0
\(568\) −6.35290e7 −0.0145463
\(569\) −9.08142e8 −0.206662 −0.103331 0.994647i \(-0.532950\pi\)
−0.103331 + 0.994647i \(0.532950\pi\)
\(570\) 0 0
\(571\) 1.02179e9 0.229685 0.114843 0.993384i \(-0.463364\pi\)
0.114843 + 0.993384i \(0.463364\pi\)
\(572\) 9.53414e7 0.0213008
\(573\) 0 0
\(574\) 7.11038e8 0.156928
\(575\) 0 0
\(576\) 0 0
\(577\) 9.10202e8 0.197253 0.0986263 0.995125i \(-0.468555\pi\)
0.0986263 + 0.995125i \(0.468555\pi\)
\(578\) −3.14280e9 −0.676969
\(579\) 0 0
\(580\) 0 0
\(581\) −5.78792e9 −1.22435
\(582\) 0 0
\(583\) 6.26908e9 1.31028
\(584\) 2.03143e9 0.422043
\(585\) 0 0
\(586\) 6.33639e9 1.30077
\(587\) 7.80594e9 1.59291 0.796456 0.604697i \(-0.206706\pi\)
0.796456 + 0.604697i \(0.206706\pi\)
\(588\) 0 0
\(589\) 1.29824e8 0.0261788
\(590\) 0 0
\(591\) 0 0
\(592\) −9.47544e8 −0.187704
\(593\) 5.90086e9 1.16205 0.581024 0.813886i \(-0.302652\pi\)
0.581024 + 0.813886i \(0.302652\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 2.17562e9 0.420942
\(597\) 0 0
\(598\) 3.57061e8 0.0682792
\(599\) 3.05005e9 0.579847 0.289924 0.957050i \(-0.406370\pi\)
0.289924 + 0.957050i \(0.406370\pi\)
\(600\) 0 0
\(601\) 6.80081e8 0.127791 0.0638954 0.997957i \(-0.479648\pi\)
0.0638954 + 0.997957i \(0.479648\pi\)
\(602\) 1.10519e9 0.206466
\(603\) 0 0
\(604\) 2.00582e9 0.370393
\(605\) 0 0
\(606\) 0 0
\(607\) 7.79549e9 1.41476 0.707381 0.706833i \(-0.249877\pi\)
0.707381 + 0.706833i \(0.249877\pi\)
\(608\) −5.11508e7 −0.00922976
\(609\) 0 0
\(610\) 0 0
\(611\) 1.24842e8 0.0221421
\(612\) 0 0
\(613\) −9.21168e9 −1.61520 −0.807602 0.589728i \(-0.799235\pi\)
−0.807602 + 0.589728i \(0.799235\pi\)
\(614\) 1.62664e9 0.283597
\(615\) 0 0
\(616\) −1.39086e9 −0.239746
\(617\) 5.26863e9 0.903024 0.451512 0.892265i \(-0.350885\pi\)
0.451512 + 0.892265i \(0.350885\pi\)
\(618\) 0 0
\(619\) −5.84901e9 −0.991208 −0.495604 0.868548i \(-0.665053\pi\)
−0.495604 + 0.868548i \(0.665053\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −2.63542e9 −0.439121
\(623\) −4.79697e9 −0.794802
\(624\) 0 0
\(625\) 0 0
\(626\) 1.29196e9 0.210494
\(627\) 0 0
\(628\) −4.37430e9 −0.704775
\(629\) −9.67439e8 −0.155005
\(630\) 0 0
\(631\) 2.65927e9 0.421366 0.210683 0.977554i \(-0.432431\pi\)
0.210683 + 0.977554i \(0.432431\pi\)
\(632\) 3.63929e9 0.573465
\(633\) 0 0
\(634\) −5.11318e9 −0.796853
\(635\) 0 0
\(636\) 0 0
\(637\) 1.23233e8 0.0188903
\(638\) −2.53636e9 −0.386669
\(639\) 0 0
\(640\) 0 0
\(641\) −4.97659e8 −0.0746327 −0.0373163 0.999304i \(-0.511881\pi\)
−0.0373163 + 0.999304i \(0.511881\pi\)
\(642\) 0 0
\(643\) 2.59642e9 0.385156 0.192578 0.981282i \(-0.438315\pi\)
0.192578 + 0.981282i \(0.438315\pi\)
\(644\) −5.20889e9 −0.768502
\(645\) 0 0
\(646\) −5.22248e7 −0.00762190
\(647\) 4.44711e9 0.645525 0.322762 0.946480i \(-0.395389\pi\)
0.322762 + 0.946480i \(0.395389\pi\)
\(648\) 0 0
\(649\) −1.47104e8 −0.0211236
\(650\) 0 0
\(651\) 0 0
\(652\) 2.96177e9 0.418490
\(653\) 1.83971e9 0.258556 0.129278 0.991608i \(-0.458734\pi\)
0.129278 + 0.991608i \(0.458734\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 5.10591e8 0.0706171
\(657\) 0 0
\(658\) −1.82123e9 −0.249215
\(659\) 3.41580e9 0.464936 0.232468 0.972604i \(-0.425320\pi\)
0.232468 + 0.972604i \(0.425320\pi\)
\(660\) 0 0
\(661\) −4.71690e9 −0.635260 −0.317630 0.948215i \(-0.602887\pi\)
−0.317630 + 0.948215i \(0.602887\pi\)
\(662\) −4.31521e9 −0.578094
\(663\) 0 0
\(664\) −4.15626e9 −0.550953
\(665\) 0 0
\(666\) 0 0
\(667\) −9.49888e9 −1.23946
\(668\) 2.55769e9 0.331994
\(669\) 0 0
\(670\) 0 0
\(671\) 7.52058e9 0.960998
\(672\) 0 0
\(673\) −5.83430e9 −0.737796 −0.368898 0.929470i \(-0.620265\pi\)
−0.368898 + 0.929470i \(0.620265\pi\)
\(674\) 6.17869e9 0.777297
\(675\) 0 0
\(676\) −4.00612e9 −0.498782
\(677\) −1.34655e8 −0.0166787 −0.00833935 0.999965i \(-0.502655\pi\)
−0.00833935 + 0.999965i \(0.502655\pi\)
\(678\) 0 0
\(679\) −1.01736e10 −1.24718
\(680\) 0 0
\(681\) 0 0
\(682\) 2.53493e9 0.305999
\(683\) 1.33536e10 1.60371 0.801853 0.597521i \(-0.203848\pi\)
0.801853 + 0.597521i \(0.203848\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −6.49524e9 −0.768176
\(687\) 0 0
\(688\) 7.93629e8 0.0929090
\(689\) 6.43362e8 0.0749356
\(690\) 0 0
\(691\) −3.26642e9 −0.376616 −0.188308 0.982110i \(-0.560300\pi\)
−0.188308 + 0.982110i \(0.560300\pi\)
\(692\) 5.80679e9 0.666139
\(693\) 0 0
\(694\) −4.16823e9 −0.473362
\(695\) 0 0
\(696\) 0 0
\(697\) 5.21311e8 0.0583153
\(698\) 4.17899e9 0.465134
\(699\) 0 0
\(700\) 0 0
\(701\) −7.82925e9 −0.858434 −0.429217 0.903201i \(-0.641211\pi\)
−0.429217 + 0.903201i \(0.641211\pi\)
\(702\) 0 0
\(703\) 3.61112e8 0.0392011
\(704\) −9.98769e8 −0.107885
\(705\) 0 0
\(706\) 8.18052e9 0.874912
\(707\) −4.94194e9 −0.525932
\(708\) 0 0
\(709\) −3.26880e9 −0.344450 −0.172225 0.985058i \(-0.555096\pi\)
−0.172225 + 0.985058i \(0.555096\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −3.44467e9 −0.357658
\(713\) 9.49351e9 0.980875
\(714\) 0 0
\(715\) 0 0
\(716\) −8.35649e9 −0.850802
\(717\) 0 0
\(718\) 9.43170e9 0.950943
\(719\) 4.69765e9 0.471335 0.235668 0.971834i \(-0.424272\pi\)
0.235668 + 0.971834i \(0.424272\pi\)
\(720\) 0 0
\(721\) 9.60460e9 0.954346
\(722\) −7.13148e9 −0.705179
\(723\) 0 0
\(724\) 7.12195e9 0.697452
\(725\) 0 0
\(726\) 0 0
\(727\) −1.10503e10 −1.06661 −0.533304 0.845924i \(-0.679050\pi\)
−0.533304 + 0.845924i \(0.679050\pi\)
\(728\) −1.42737e8 −0.0137112
\(729\) 0 0
\(730\) 0 0
\(731\) 8.10292e8 0.0767239
\(732\) 0 0
\(733\) −1.52446e10 −1.42972 −0.714860 0.699268i \(-0.753509\pi\)
−0.714860 + 0.699268i \(0.753509\pi\)
\(734\) −6.28279e9 −0.586430
\(735\) 0 0
\(736\) −3.74047e9 −0.345823
\(737\) −1.68012e10 −1.54598
\(738\) 0 0
\(739\) −1.54738e10 −1.41039 −0.705197 0.709012i \(-0.749141\pi\)
−0.705197 + 0.709012i \(0.749141\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −9.38552e9 −0.843422
\(743\) −1.25550e9 −0.112294 −0.0561471 0.998423i \(-0.517882\pi\)
−0.0561471 + 0.998423i \(0.517882\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −5.93171e9 −0.523111
\(747\) 0 0
\(748\) −1.01974e9 −0.0890909
\(749\) −7.53105e9 −0.654891
\(750\) 0 0
\(751\) −1.75101e10 −1.50851 −0.754257 0.656580i \(-0.772003\pi\)
−0.754257 + 0.656580i \(0.772003\pi\)
\(752\) −1.30781e9 −0.112146
\(753\) 0 0
\(754\) −2.60293e8 −0.0221138
\(755\) 0 0
\(756\) 0 0
\(757\) 1.55877e9 0.130601 0.0653005 0.997866i \(-0.479199\pi\)
0.0653005 + 0.997866i \(0.479199\pi\)
\(758\) −3.30559e9 −0.275681
\(759\) 0 0
\(760\) 0 0
\(761\) −8.14586e9 −0.670025 −0.335012 0.942214i \(-0.608740\pi\)
−0.335012 + 0.942214i \(0.608740\pi\)
\(762\) 0 0
\(763\) 4.81130e9 0.392127
\(764\) −8.92264e9 −0.723880
\(765\) 0 0
\(766\) 1.66227e10 1.33629
\(767\) −1.50965e7 −0.00120807
\(768\) 0 0
\(769\) 1.61934e10 1.28409 0.642046 0.766666i \(-0.278086\pi\)
0.642046 + 0.766666i \(0.278086\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1.52251e9 −0.119097
\(773\) 3.85870e9 0.300478 0.150239 0.988650i \(-0.451996\pi\)
0.150239 + 0.988650i \(0.451996\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −7.30556e9 −0.561226
\(777\) 0 0
\(778\) 1.30241e10 0.991557
\(779\) −1.94588e8 −0.0147481
\(780\) 0 0
\(781\) 4.72745e8 0.0355098
\(782\) −3.81900e9 −0.285579
\(783\) 0 0
\(784\) −1.29095e9 −0.0956762
\(785\) 0 0
\(786\) 0 0
\(787\) −9.76950e9 −0.714431 −0.357216 0.934022i \(-0.616274\pi\)
−0.357216 + 0.934022i \(0.616274\pi\)
\(788\) −2.99465e9 −0.218024
\(789\) 0 0
\(790\) 0 0
\(791\) −5.21035e8 −0.0374325
\(792\) 0 0
\(793\) 7.71797e8 0.0549600
\(794\) 5.23498e9 0.371144
\(795\) 0 0
\(796\) −7.47864e9 −0.525566
\(797\) −1.86704e10 −1.30632 −0.653159 0.757221i \(-0.726557\pi\)
−0.653159 + 0.757221i \(0.726557\pi\)
\(798\) 0 0
\(799\) −1.33527e9 −0.0926095
\(800\) 0 0
\(801\) 0 0
\(802\) −1.53384e10 −1.04995
\(803\) −1.51167e10 −1.03027
\(804\) 0 0
\(805\) 0 0
\(806\) 2.60146e8 0.0175003
\(807\) 0 0
\(808\) −3.54877e9 −0.236667
\(809\) 7.97985e9 0.529877 0.264938 0.964265i \(-0.414648\pi\)
0.264938 + 0.964265i \(0.414648\pi\)
\(810\) 0 0
\(811\) −1.70481e10 −1.12228 −0.561141 0.827720i \(-0.689638\pi\)
−0.561141 + 0.827720i \(0.689638\pi\)
\(812\) 3.79722e9 0.248897
\(813\) 0 0
\(814\) 7.05106e9 0.458215
\(815\) 0 0
\(816\) 0 0
\(817\) −3.02455e8 −0.0194036
\(818\) 1.17272e10 0.749132
\(819\) 0 0
\(820\) 0 0
\(821\) 6.64028e9 0.418779 0.209390 0.977832i \(-0.432852\pi\)
0.209390 + 0.977832i \(0.432852\pi\)
\(822\) 0 0
\(823\) 2.99586e10 1.87336 0.936682 0.350180i \(-0.113880\pi\)
0.936682 + 0.350180i \(0.113880\pi\)
\(824\) 6.89699e9 0.429452
\(825\) 0 0
\(826\) 2.20231e8 0.0135972
\(827\) −3.07056e9 −0.188777 −0.0943883 0.995535i \(-0.530090\pi\)
−0.0943883 + 0.995535i \(0.530090\pi\)
\(828\) 0 0
\(829\) −2.10442e10 −1.28289 −0.641447 0.767167i \(-0.721666\pi\)
−0.641447 + 0.767167i \(0.721666\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −1.02498e8 −0.00617000
\(833\) −1.31806e9 −0.0790091
\(834\) 0 0
\(835\) 0 0
\(836\) 3.80634e8 0.0225313
\(837\) 0 0
\(838\) 1.49601e10 0.878172
\(839\) −1.16048e10 −0.678377 −0.339189 0.940718i \(-0.610152\pi\)
−0.339189 + 0.940718i \(0.610152\pi\)
\(840\) 0 0
\(841\) −1.03253e10 −0.598573
\(842\) 1.43907e10 0.830789
\(843\) 0 0
\(844\) −1.17312e10 −0.671651
\(845\) 0 0
\(846\) 0 0
\(847\) −3.54437e9 −0.200423
\(848\) −6.73967e9 −0.379536
\(849\) 0 0
\(850\) 0 0
\(851\) 2.64068e10 1.46880
\(852\) 0 0
\(853\) 3.08015e10 1.69922 0.849610 0.527411i \(-0.176837\pi\)
0.849610 + 0.527411i \(0.176837\pi\)
\(854\) −1.12592e10 −0.618590
\(855\) 0 0
\(856\) −5.40799e9 −0.294698
\(857\) −2.03442e10 −1.10410 −0.552050 0.833811i \(-0.686154\pi\)
−0.552050 + 0.833811i \(0.686154\pi\)
\(858\) 0 0
\(859\) −5.51078e9 −0.296645 −0.148323 0.988939i \(-0.547387\pi\)
−0.148323 + 0.988939i \(0.547387\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −2.89137e8 −0.0153755
\(863\) −2.54712e10 −1.34900 −0.674501 0.738274i \(-0.735641\pi\)
−0.674501 + 0.738274i \(0.735641\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −1.23782e10 −0.647656
\(867\) 0 0
\(868\) −3.79508e9 −0.196971
\(869\) −2.70814e10 −1.39992
\(870\) 0 0
\(871\) −1.72421e9 −0.0884153
\(872\) 3.45496e9 0.176455
\(873\) 0 0
\(874\) 1.42551e9 0.0722235
\(875\) 0 0
\(876\) 0 0
\(877\) −1.83885e9 −0.0920549 −0.0460275 0.998940i \(-0.514656\pi\)
−0.0460275 + 0.998940i \(0.514656\pi\)
\(878\) −4.52907e9 −0.225828
\(879\) 0 0
\(880\) 0 0
\(881\) 3.40718e10 1.67873 0.839363 0.543571i \(-0.182928\pi\)
0.839363 + 0.543571i \(0.182928\pi\)
\(882\) 0 0
\(883\) −2.54935e10 −1.24614 −0.623071 0.782165i \(-0.714115\pi\)
−0.623071 + 0.782165i \(0.714115\pi\)
\(884\) −1.04650e8 −0.00509516
\(885\) 0 0
\(886\) −7.61467e9 −0.367818
\(887\) −2.29613e10 −1.10475 −0.552374 0.833596i \(-0.686278\pi\)
−0.552374 + 0.833596i \(0.686278\pi\)
\(888\) 0 0
\(889\) −2.52374e10 −1.20473
\(890\) 0 0
\(891\) 0 0
\(892\) 1.22656e10 0.578644
\(893\) 4.98412e8 0.0234211
\(894\) 0 0
\(895\) 0 0
\(896\) 1.49527e9 0.0694451
\(897\) 0 0
\(898\) 8.96101e9 0.412943
\(899\) −6.92066e9 −0.317679
\(900\) 0 0
\(901\) −6.88118e9 −0.313420
\(902\) −3.79951e9 −0.172387
\(903\) 0 0
\(904\) −3.74151e8 −0.0168445
\(905\) 0 0
\(906\) 0 0
\(907\) 5.32481e9 0.236962 0.118481 0.992956i \(-0.462198\pi\)
0.118481 + 0.992956i \(0.462198\pi\)
\(908\) 7.11164e9 0.315260
\(909\) 0 0
\(910\) 0 0
\(911\) −2.29502e10 −1.00571 −0.502853 0.864372i \(-0.667716\pi\)
−0.502853 + 0.864372i \(0.667716\pi\)
\(912\) 0 0
\(913\) 3.09284e10 1.34496
\(914\) 2.32835e10 1.00864
\(915\) 0 0
\(916\) −5.71021e9 −0.245481
\(917\) −1.83996e10 −0.787982
\(918\) 0 0
\(919\) −2.49309e10 −1.05958 −0.529790 0.848129i \(-0.677729\pi\)
−0.529790 + 0.848129i \(0.677729\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −3.67712e9 −0.154507
\(923\) 4.85153e7 0.00203083
\(924\) 0 0
\(925\) 0 0
\(926\) 4.48040e9 0.185429
\(927\) 0 0
\(928\) 2.72676e9 0.112003
\(929\) −1.04115e10 −0.426049 −0.213024 0.977047i \(-0.568331\pi\)
−0.213024 + 0.977047i \(0.568331\pi\)
\(930\) 0 0
\(931\) 4.91987e8 0.0199816
\(932\) 3.22989e9 0.130687
\(933\) 0 0
\(934\) 2.96637e10 1.19127
\(935\) 0 0
\(936\) 0 0
\(937\) −7.28154e9 −0.289158 −0.144579 0.989493i \(-0.546183\pi\)
−0.144579 + 0.989493i \(0.546183\pi\)
\(938\) 2.51532e10 0.995139
\(939\) 0 0
\(940\) 0 0
\(941\) −2.30278e10 −0.900927 −0.450464 0.892795i \(-0.648741\pi\)
−0.450464 + 0.892795i \(0.648741\pi\)
\(942\) 0 0
\(943\) −1.42295e10 −0.552584
\(944\) 1.58147e8 0.00611868
\(945\) 0 0
\(946\) −5.90571e9 −0.226805
\(947\) 4.69600e10 1.79681 0.898407 0.439164i \(-0.144725\pi\)
0.898407 + 0.439164i \(0.144725\pi\)
\(948\) 0 0
\(949\) −1.55134e9 −0.0589219
\(950\) 0 0
\(951\) 0 0
\(952\) 1.52666e9 0.0573475
\(953\) −3.43809e10 −1.28674 −0.643372 0.765553i \(-0.722465\pi\)
−0.643372 + 0.765553i \(0.722465\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −5.22600e9 −0.193449
\(957\) 0 0
\(958\) 3.17058e10 1.16509
\(959\) −7.77558e9 −0.284687
\(960\) 0 0
\(961\) −2.05959e10 −0.748597
\(962\) 7.23613e8 0.0262056
\(963\) 0 0
\(964\) −1.53807e10 −0.552976
\(965\) 0 0
\(966\) 0 0
\(967\) 1.14483e10 0.407146 0.203573 0.979060i \(-0.434745\pi\)
0.203573 + 0.979060i \(0.434745\pi\)
\(968\) −2.54519e9 −0.0901895
\(969\) 0 0
\(970\) 0 0
\(971\) −1.85255e8 −0.00649385 −0.00324693 0.999995i \(-0.501034\pi\)
−0.00324693 + 0.999995i \(0.501034\pi\)
\(972\) 0 0
\(973\) −3.79610e10 −1.32112
\(974\) 1.06406e10 0.368986
\(975\) 0 0
\(976\) −8.08511e9 −0.278363
\(977\) 3.06849e10 1.05267 0.526337 0.850276i \(-0.323565\pi\)
0.526337 + 0.850276i \(0.323565\pi\)
\(978\) 0 0
\(979\) 2.56332e10 0.873099
\(980\) 0 0
\(981\) 0 0
\(982\) 2.04628e10 0.689564
\(983\) 1.00287e9 0.0336751 0.0168376 0.999858i \(-0.494640\pi\)
0.0168376 + 0.999858i \(0.494640\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 2.78401e9 0.0924914
\(987\) 0 0
\(988\) 3.90625e7 0.00128858
\(989\) −2.21174e10 −0.727020
\(990\) 0 0
\(991\) 4.82282e10 1.57414 0.787070 0.616864i \(-0.211597\pi\)
0.787070 + 0.616864i \(0.211597\pi\)
\(992\) −2.72522e9 −0.0886360
\(993\) 0 0
\(994\) −7.07752e8 −0.0228575
\(995\) 0 0
\(996\) 0 0
\(997\) −4.68836e10 −1.49826 −0.749132 0.662421i \(-0.769529\pi\)
−0.749132 + 0.662421i \(0.769529\pi\)
\(998\) 3.45484e10 1.10020
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 450.8.a.w.1.1 1
3.2 odd 2 150.8.a.h.1.1 1
5.2 odd 4 450.8.c.e.199.2 2
5.3 odd 4 450.8.c.e.199.1 2
5.4 even 2 450.8.a.d.1.1 1
15.2 even 4 150.8.c.c.49.1 2
15.8 even 4 150.8.c.c.49.2 2
15.14 odd 2 150.8.a.j.1.1 yes 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.8.a.h.1.1 1 3.2 odd 2
150.8.a.j.1.1 yes 1 15.14 odd 2
150.8.c.c.49.1 2 15.2 even 4
150.8.c.c.49.2 2 15.8 even 4
450.8.a.d.1.1 1 5.4 even 2
450.8.a.w.1.1 1 1.1 even 1 trivial
450.8.c.e.199.1 2 5.3 odd 4
450.8.c.e.199.2 2 5.2 odd 4