Properties

Label 152.4.b.b.75.15
Level $152$
Weight $4$
Character 152.75
Analytic conductor $8.968$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [152,4,Mod(75,152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(152, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("152.75");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 152.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.96829032087\)
Analytic rank: \(0\)
Dimension: \(56\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 75.15
Character \(\chi\) \(=\) 152.75
Dual form 152.4.b.b.75.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.78669 - 2.19266i) q^{2} +7.28174i q^{3} +(-1.61551 + 7.83519i) q^{4} -9.90745i q^{5} +(15.9664 - 13.0102i) q^{6} -14.2544i q^{7} +(20.0663 - 10.4568i) q^{8} -26.0237 q^{9} +(-21.7237 + 17.7015i) q^{10} -42.8010 q^{11} +(-57.0538 - 11.7637i) q^{12} +72.8693 q^{13} +(-31.2551 + 25.4682i) q^{14} +72.1434 q^{15} +(-58.7803 - 25.3156i) q^{16} +107.131 q^{17} +(46.4961 + 57.0611i) q^{18} +(54.6939 + 62.1899i) q^{19} +(77.6267 + 16.0055i) q^{20} +103.797 q^{21} +(76.4720 + 93.8481i) q^{22} -86.2463i q^{23} +(76.1434 + 146.117i) q^{24} +26.8425 q^{25} +(-130.195 - 159.777i) q^{26} +7.10930i q^{27} +(111.686 + 23.0281i) q^{28} +87.1812 q^{29} +(-128.898 - 158.186i) q^{30} -171.057 q^{31} +(49.5134 + 174.116i) q^{32} -311.666i q^{33} +(-191.410 - 234.902i) q^{34} -141.225 q^{35} +(42.0414 - 203.900i) q^{36} +268.839 q^{37} +(38.6404 - 231.039i) q^{38} +530.615i q^{39} +(-103.600 - 198.806i) q^{40} -136.338i q^{41} +(-185.452 - 227.591i) q^{42} +396.761 q^{43} +(69.1454 - 335.354i) q^{44} +257.828i q^{45} +(-189.109 + 154.095i) q^{46} -290.768i q^{47} +(184.341 - 428.022i) q^{48} +139.812 q^{49} +(-47.9591 - 58.8565i) q^{50} +780.100i q^{51} +(-117.721 + 570.944i) q^{52} -402.495 q^{53} +(15.5883 - 12.7021i) q^{54} +424.049i q^{55} +(-149.055 - 286.033i) q^{56} +(-452.850 + 398.266i) q^{57} +(-155.765 - 191.159i) q^{58} -542.405i q^{59} +(-116.548 + 565.257i) q^{60} +343.061i q^{61} +(305.625 + 375.070i) q^{62} +370.952i q^{63} +(293.312 - 419.657i) q^{64} -721.948i q^{65} +(-683.377 + 556.849i) q^{66} +70.0165i q^{67} +(-173.071 + 839.392i) q^{68} +628.023 q^{69} +(252.324 + 309.658i) q^{70} +324.254 q^{71} +(-522.199 + 272.123i) q^{72} -882.046 q^{73} +(-480.332 - 589.473i) q^{74} +195.460i q^{75} +(-575.628 + 328.068i) q^{76} +610.104i q^{77} +(1163.46 - 948.042i) q^{78} -99.7629 q^{79} +(-250.813 + 582.362i) q^{80} -754.407 q^{81} +(-298.943 + 243.594i) q^{82} +949.915 q^{83} +(-167.685 + 813.268i) q^{84} -1061.39i q^{85} +(-708.887 - 869.961i) q^{86} +634.831i q^{87} +(-858.858 + 447.560i) q^{88} +658.793i q^{89} +(565.329 - 460.658i) q^{90} -1038.71i q^{91} +(675.756 + 139.332i) q^{92} -1245.59i q^{93} +(-637.556 + 519.512i) q^{94} +(616.143 - 541.877i) q^{95} +(-1267.87 + 360.544i) q^{96} -216.956i q^{97} +(-249.799 - 306.559i) q^{98} +1113.84 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 2 q^{4} - 14 q^{6} - 528 q^{9} - 40 q^{11} - 262 q^{16} - 184 q^{17} - 84 q^{19} - 12 q^{20} + 238 q^{24} - 1504 q^{25} + 378 q^{26} - 382 q^{28} + 512 q^{30} + 40 q^{35} + 1464 q^{36} + 958 q^{38}+ \cdots - 6152 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/152\mathbb{Z}\right)^\times\).

\(n\) \(39\) \(77\) \(97\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.78669 2.19266i −0.631689 0.775222i
\(3\) 7.28174i 1.40137i 0.713470 + 0.700685i \(0.247122\pi\)
−0.713470 + 0.700685i \(0.752878\pi\)
\(4\) −1.61551 + 7.83519i −0.201938 + 0.979398i
\(5\) 9.90745i 0.886149i −0.896485 0.443074i \(-0.853888\pi\)
0.896485 0.443074i \(-0.146112\pi\)
\(6\) 15.9664 13.0102i 1.08637 0.885230i
\(7\) 14.2544i 0.769666i −0.922986 0.384833i \(-0.874259\pi\)
0.922986 0.384833i \(-0.125741\pi\)
\(8\) 20.0663 10.4568i 0.886813 0.462128i
\(9\) −26.0237 −0.963840
\(10\) −21.7237 + 17.7015i −0.686962 + 0.559770i
\(11\) −42.8010 −1.17318 −0.586591 0.809883i \(-0.699530\pi\)
−0.586591 + 0.809883i \(0.699530\pi\)
\(12\) −57.0538 11.7637i −1.37250 0.282991i
\(13\) 72.8693 1.55464 0.777319 0.629106i \(-0.216579\pi\)
0.777319 + 0.629106i \(0.216579\pi\)
\(14\) −31.2551 + 25.4682i −0.596662 + 0.486189i
\(15\) 72.1434 1.24182
\(16\) −58.7803 25.3156i −0.918442 0.395556i
\(17\) 107.131 1.52842 0.764209 0.644969i \(-0.223130\pi\)
0.764209 + 0.644969i \(0.223130\pi\)
\(18\) 46.4961 + 57.0611i 0.608847 + 0.747190i
\(19\) 54.6939 + 62.1899i 0.660402 + 0.750912i
\(20\) 77.6267 + 16.0055i 0.867893 + 0.178947i
\(21\) 103.797 1.07859
\(22\) 76.4720 + 93.8481i 0.741086 + 0.909476i
\(23\) 86.2463i 0.781896i −0.920413 0.390948i \(-0.872147\pi\)
0.920413 0.390948i \(-0.127853\pi\)
\(24\) 76.1434 + 146.117i 0.647613 + 1.24275i
\(25\) 26.8425 0.214740
\(26\) −130.195 159.777i −0.982048 1.20519i
\(27\) 7.10930i 0.0506735i
\(28\) 111.686 + 23.0281i 0.753810 + 0.155425i
\(29\) 87.1812 0.558246 0.279123 0.960255i \(-0.409956\pi\)
0.279123 + 0.960255i \(0.409956\pi\)
\(30\) −128.898 158.186i −0.784446 0.962689i
\(31\) −171.057 −0.991056 −0.495528 0.868592i \(-0.665025\pi\)
−0.495528 + 0.868592i \(0.665025\pi\)
\(32\) 49.5134 + 174.116i 0.273526 + 0.961865i
\(33\) 311.666i 1.64406i
\(34\) −191.410 234.902i −0.965484 1.18486i
\(35\) −141.225 −0.682039
\(36\) 42.0414 203.900i 0.194636 0.943983i
\(37\) 268.839 1.19451 0.597256 0.802051i \(-0.296258\pi\)
0.597256 + 0.802051i \(0.296258\pi\)
\(38\) 38.6404 231.039i 0.164955 0.986301i
\(39\) 530.615i 2.17862i
\(40\) −103.600 198.806i −0.409514 0.785849i
\(41\) 136.338i 0.519328i −0.965699 0.259664i \(-0.916388\pi\)
0.965699 0.259664i \(-0.0836119\pi\)
\(42\) −185.452 227.591i −0.681332 0.836145i
\(43\) 396.761 1.40710 0.703552 0.710644i \(-0.251596\pi\)
0.703552 + 0.710644i \(0.251596\pi\)
\(44\) 69.1454 335.354i 0.236910 1.14901i
\(45\) 257.828i 0.854106i
\(46\) −189.109 + 154.095i −0.606143 + 0.493915i
\(47\) 290.768i 0.902403i −0.892422 0.451201i \(-0.850996\pi\)
0.892422 0.451201i \(-0.149004\pi\)
\(48\) 184.341 428.022i 0.554321 1.28708i
\(49\) 139.812 0.407614
\(50\) −47.9591 58.8565i −0.135649 0.166471i
\(51\) 780.100i 2.14188i
\(52\) −117.721 + 570.944i −0.313941 + 1.52261i
\(53\) −402.495 −1.04315 −0.521575 0.853206i \(-0.674655\pi\)
−0.521575 + 0.853206i \(0.674655\pi\)
\(54\) 15.5883 12.7021i 0.0392832 0.0320099i
\(55\) 424.049i 1.03961i
\(56\) −149.055 286.033i −0.355684 0.682550i
\(57\) −452.850 + 398.266i −1.05231 + 0.925468i
\(58\) −155.765 191.159i −0.352638 0.432765i
\(59\) 542.405i 1.19687i −0.801173 0.598433i \(-0.795790\pi\)
0.801173 0.598433i \(-0.204210\pi\)
\(60\) −116.548 + 565.257i −0.250772 + 1.21624i
\(61\) 343.061i 0.720074i 0.932938 + 0.360037i \(0.117236\pi\)
−0.932938 + 0.360037i \(0.882764\pi\)
\(62\) 305.625 + 375.070i 0.626039 + 0.768289i
\(63\) 370.952i 0.741835i
\(64\) 293.312 419.657i 0.572876 0.819642i
\(65\) 721.948i 1.37764i
\(66\) −683.377 + 556.849i −1.27451 + 1.03854i
\(67\) 70.0165i 0.127670i 0.997960 + 0.0638349i \(0.0203331\pi\)
−0.997960 + 0.0638349i \(0.979667\pi\)
\(68\) −173.071 + 839.392i −0.308646 + 1.49693i
\(69\) 628.023 1.09573
\(70\) 252.324 + 309.658i 0.430836 + 0.528732i
\(71\) 324.254 0.541998 0.270999 0.962580i \(-0.412646\pi\)
0.270999 + 0.962580i \(0.412646\pi\)
\(72\) −522.199 + 272.123i −0.854746 + 0.445417i
\(73\) −882.046 −1.41419 −0.707094 0.707120i \(-0.749994\pi\)
−0.707094 + 0.707120i \(0.749994\pi\)
\(74\) −480.332 589.473i −0.754560 0.926012i
\(75\) 195.460i 0.300930i
\(76\) −575.628 + 328.068i −0.868803 + 0.495158i
\(77\) 610.104i 0.902958i
\(78\) 1163.46 948.042i 1.68892 1.37621i
\(79\) −99.7629 −0.142079 −0.0710393 0.997474i \(-0.522632\pi\)
−0.0710393 + 0.997474i \(0.522632\pi\)
\(80\) −250.813 + 582.362i −0.350522 + 0.813876i
\(81\) −754.407 −1.03485
\(82\) −298.943 + 243.594i −0.402595 + 0.328054i
\(83\) 949.915 1.25623 0.628113 0.778122i \(-0.283828\pi\)
0.628113 + 0.778122i \(0.283828\pi\)
\(84\) −167.685 + 813.268i −0.217808 + 1.05637i
\(85\) 1061.39i 1.35441i
\(86\) −708.887 869.961i −0.888851 1.09082i
\(87\) 634.831i 0.782310i
\(88\) −858.858 + 447.560i −1.04039 + 0.542160i
\(89\) 658.793i 0.784628i 0.919831 + 0.392314i \(0.128325\pi\)
−0.919831 + 0.392314i \(0.871675\pi\)
\(90\) 565.329 460.658i 0.662122 0.539529i
\(91\) 1038.71i 1.19655i
\(92\) 675.756 + 139.332i 0.765787 + 0.157895i
\(93\) 1245.59i 1.38884i
\(94\) −637.556 + 519.512i −0.699562 + 0.570038i
\(95\) 616.143 541.877i 0.665420 0.585214i
\(96\) −1267.87 + 360.544i −1.34793 + 0.383311i
\(97\) 216.956i 0.227098i −0.993532 0.113549i \(-0.963778\pi\)
0.993532 0.113549i \(-0.0362219\pi\)
\(98\) −249.799 306.559i −0.257485 0.315991i
\(99\) 1113.84 1.13076
\(100\) −43.3642 + 210.316i −0.0433642 + 0.210316i
\(101\) 1810.79i 1.78396i −0.452071 0.891982i \(-0.649314\pi\)
0.452071 0.891982i \(-0.350686\pi\)
\(102\) 1710.49 1393.79i 1.66043 1.35300i
\(103\) −1365.15 −1.30595 −0.652973 0.757381i \(-0.726479\pi\)
−0.652973 + 0.757381i \(0.726479\pi\)
\(104\) 1462.22 761.977i 1.37867 0.718442i
\(105\) 1028.36i 0.955789i
\(106\) 719.132 + 882.534i 0.658946 + 0.808672i
\(107\) 1191.78i 1.07676i 0.842701 + 0.538382i \(0.180964\pi\)
−0.842701 + 0.538382i \(0.819036\pi\)
\(108\) −55.7027 11.4851i −0.0496296 0.0102329i
\(109\) 504.702 0.443502 0.221751 0.975103i \(-0.428823\pi\)
0.221751 + 0.975103i \(0.428823\pi\)
\(110\) 929.795 757.642i 0.805931 0.656712i
\(111\) 1957.62i 1.67395i
\(112\) −360.859 + 837.878i −0.304446 + 0.706894i
\(113\) 702.188i 0.584569i −0.956331 0.292285i \(-0.905585\pi\)
0.956331 0.292285i \(-0.0944154\pi\)
\(114\) 1682.36 + 281.369i 1.38217 + 0.231164i
\(115\) −854.481 −0.692876
\(116\) −140.842 + 683.081i −0.112731 + 0.546746i
\(117\) −1896.33 −1.49842
\(118\) −1189.31 + 969.107i −0.927837 + 0.756047i
\(119\) 1527.09i 1.17637i
\(120\) 1447.65 754.386i 1.10127 0.573881i
\(121\) 500.928 0.376355
\(122\) 752.217 612.943i 0.558217 0.454863i
\(123\) 992.779 0.727772
\(124\) 276.344 1340.26i 0.200132 0.970639i
\(125\) 1504.37i 1.07644i
\(126\) 813.372 662.775i 0.575087 0.468609i
\(127\) −1836.45 −1.28314 −0.641570 0.767064i \(-0.721717\pi\)
−0.641570 + 0.767064i \(0.721717\pi\)
\(128\) −1444.22 + 106.661i −0.997284 + 0.0736531i
\(129\) 2889.11i 1.97187i
\(130\) −1582.99 + 1289.90i −1.06798 + 0.870241i
\(131\) 1190.57 0.794053 0.397027 0.917807i \(-0.370042\pi\)
0.397027 + 0.917807i \(0.370042\pi\)
\(132\) 2441.96 + 503.498i 1.61019 + 0.331999i
\(133\) 886.480 779.629i 0.577952 0.508289i
\(134\) 153.522 125.097i 0.0989724 0.0806476i
\(135\) 70.4350 0.0449043
\(136\) 2149.72 1120.24i 1.35542 0.706324i
\(137\) −32.2263 −0.0200969 −0.0100484 0.999950i \(-0.503199\pi\)
−0.0100484 + 0.999950i \(0.503199\pi\)
\(138\) −1122.08 1377.04i −0.692158 0.849431i
\(139\) −1852.07 −1.13015 −0.565073 0.825041i \(-0.691152\pi\)
−0.565073 + 0.825041i \(0.691152\pi\)
\(140\) 228.150 1106.52i 0.137730 0.667988i
\(141\) 2117.30 1.26460
\(142\) −579.340 710.978i −0.342374 0.420169i
\(143\) −3118.88 −1.82387
\(144\) 1529.68 + 658.805i 0.885231 + 0.381253i
\(145\) 863.743i 0.494689i
\(146\) 1575.94 + 1934.03i 0.893327 + 1.09631i
\(147\) 1018.07i 0.571218i
\(148\) −434.312 + 2106.41i −0.241218 + 1.16990i
\(149\) 2816.04i 1.54832i 0.632992 + 0.774158i \(0.281827\pi\)
−0.632992 + 0.774158i \(0.718173\pi\)
\(150\) 428.577 349.226i 0.233288 0.190094i
\(151\) 2736.17 1.47461 0.737306 0.675559i \(-0.236098\pi\)
0.737306 + 0.675559i \(0.236098\pi\)
\(152\) 1747.81 + 676.000i 0.932671 + 0.360729i
\(153\) −2787.94 −1.47315
\(154\) 1337.75 1090.06i 0.699993 0.570389i
\(155\) 1694.74i 0.878224i
\(156\) −4157.47 857.212i −2.13374 0.439948i
\(157\) 1945.58i 0.989008i 0.869175 + 0.494504i \(0.164650\pi\)
−0.869175 + 0.494504i \(0.835350\pi\)
\(158\) 178.245 + 218.746i 0.0897494 + 0.110142i
\(159\) 2930.86i 1.46184i
\(160\) 1725.05 490.552i 0.852355 0.242384i
\(161\) −1229.39 −0.601799
\(162\) 1347.89 + 1654.16i 0.653705 + 0.802240i
\(163\) 46.5980 0.0223916 0.0111958 0.999937i \(-0.496436\pi\)
0.0111958 + 0.999937i \(0.496436\pi\)
\(164\) 1068.24 + 220.255i 0.508629 + 0.104872i
\(165\) −3087.81 −1.45688
\(166\) −1697.20 2082.84i −0.793544 0.973854i
\(167\) 1520.68 0.704633 0.352317 0.935881i \(-0.385394\pi\)
0.352317 + 0.935881i \(0.385394\pi\)
\(168\) 2082.82 1085.38i 0.956506 0.498445i
\(169\) 3112.93 1.41690
\(170\) −2327.28 + 1896.38i −1.04996 + 0.855563i
\(171\) −1423.34 1618.41i −0.636522 0.723759i
\(172\) −640.970 + 3108.69i −0.284148 + 1.37811i
\(173\) −1070.45 −0.470431 −0.235216 0.971943i \(-0.575580\pi\)
−0.235216 + 0.971943i \(0.575580\pi\)
\(174\) 1391.97 1134.24i 0.606464 0.494177i
\(175\) 382.624i 0.165278i
\(176\) 2515.86 + 1083.53i 1.07750 + 0.464059i
\(177\) 3949.65 1.67725
\(178\) 1444.51 1177.06i 0.608261 0.495641i
\(179\) 3859.44i 1.61156i 0.592218 + 0.805778i \(0.298252\pi\)
−0.592218 + 0.805778i \(0.701748\pi\)
\(180\) −2020.13 416.523i −0.836510 0.172477i
\(181\) −367.347 −0.150855 −0.0754273 0.997151i \(-0.524032\pi\)
−0.0754273 + 0.997151i \(0.524032\pi\)
\(182\) −2277.53 + 1855.85i −0.927594 + 0.755849i
\(183\) −2498.08 −1.00909
\(184\) −901.857 1730.64i −0.361336 0.693395i
\(185\) 2663.51i 1.05852i
\(186\) −2731.16 + 2225.48i −1.07666 + 0.877313i
\(187\) −4585.32 −1.79311
\(188\) 2278.22 + 469.738i 0.883812 + 0.182230i
\(189\) 101.339 0.0390017
\(190\) −2289.00 382.828i −0.874010 0.146175i
\(191\) 1920.84i 0.727683i −0.931461 0.363841i \(-0.881465\pi\)
0.931461 0.363841i \(-0.118535\pi\)
\(192\) 3055.83 + 2135.82i 1.14862 + 0.802811i
\(193\) 2434.65i 0.908031i −0.890994 0.454016i \(-0.849991\pi\)
0.890994 0.454016i \(-0.150009\pi\)
\(194\) −475.710 + 387.632i −0.176051 + 0.143455i
\(195\) 5257.04 1.93059
\(196\) −225.867 + 1095.45i −0.0823129 + 0.399217i
\(197\) 1965.33i 0.710783i −0.934717 0.355392i \(-0.884347\pi\)
0.934717 0.355392i \(-0.115653\pi\)
\(198\) −1990.08 2442.27i −0.714288 0.876590i
\(199\) 848.281i 0.302176i 0.988520 + 0.151088i \(0.0482777\pi\)
−0.988520 + 0.151088i \(0.951722\pi\)
\(200\) 538.630 280.686i 0.190434 0.0992374i
\(201\) −509.841 −0.178913
\(202\) −3970.45 + 3235.31i −1.38297 + 1.12691i
\(203\) 1242.72i 0.429663i
\(204\) −6112.23 1260.26i −2.09775 0.432528i
\(205\) −1350.76 −0.460202
\(206\) 2439.10 + 2993.31i 0.824952 + 1.01240i
\(207\) 2244.45i 0.753622i
\(208\) −4283.28 1844.73i −1.42784 0.614947i
\(209\) −2340.95 2661.79i −0.774771 0.880957i
\(210\) −2254.85 + 1837.36i −0.740949 + 0.603761i
\(211\) 2395.01i 0.781418i 0.920514 + 0.390709i \(0.127770\pi\)
−0.920514 + 0.390709i \(0.872230\pi\)
\(212\) 650.233 3153.62i 0.210652 1.02166i
\(213\) 2361.13i 0.759540i
\(214\) 2613.17 2129.34i 0.834731 0.680180i
\(215\) 3930.89i 1.24690i
\(216\) 74.3402 + 142.657i 0.0234176 + 0.0449380i
\(217\) 2438.32i 0.762782i
\(218\) −901.744 1106.64i −0.280155 0.343812i
\(219\) 6422.83i 1.98180i
\(220\) −3322.50 685.054i −1.01820 0.209938i
\(221\) 7806.56 2.37614
\(222\) 4292.39 3497.65i 1.29769 1.05742i
\(223\) 3049.80 0.915828 0.457914 0.888996i \(-0.348597\pi\)
0.457914 + 0.888996i \(0.348597\pi\)
\(224\) 2481.92 705.785i 0.740315 0.210523i
\(225\) −698.541 −0.206975
\(226\) −1539.66 + 1254.59i −0.453171 + 0.369266i
\(227\) 26.0021i 0.00760273i 0.999993 + 0.00380137i \(0.00121002\pi\)
−0.999993 + 0.00380137i \(0.998790\pi\)
\(228\) −2388.91 4191.57i −0.693900 1.21751i
\(229\) 2738.75i 0.790314i 0.918614 + 0.395157i \(0.129310\pi\)
−0.918614 + 0.395157i \(0.870690\pi\)
\(230\) 1526.69 + 1873.59i 0.437682 + 0.537133i
\(231\) −4442.61 −1.26538
\(232\) 1749.40 911.633i 0.495060 0.257981i
\(233\) 2509.81 0.705679 0.352839 0.935684i \(-0.385216\pi\)
0.352839 + 0.935684i \(0.385216\pi\)
\(234\) 3388.14 + 4158.00i 0.946537 + 1.16161i
\(235\) −2880.77 −0.799663
\(236\) 4249.84 + 876.259i 1.17221 + 0.241693i
\(237\) 726.447i 0.199105i
\(238\) −3348.39 + 2728.43i −0.911949 + 0.743100i
\(239\) 466.657i 0.126299i 0.998004 + 0.0631496i \(0.0201145\pi\)
−0.998004 + 0.0631496i \(0.979885\pi\)
\(240\) −4240.61 1826.35i −1.14054 0.491211i
\(241\) 1674.77i 0.447642i −0.974630 0.223821i \(-0.928147\pi\)
0.974630 0.223821i \(-0.0718530\pi\)
\(242\) −895.002 1098.37i −0.237739 0.291759i
\(243\) 5301.44i 1.39954i
\(244\) −2687.95 554.218i −0.705239 0.145411i
\(245\) 1385.18i 0.361207i
\(246\) −1773.78 2176.83i −0.459725 0.564185i
\(247\) 3985.50 + 4531.73i 1.02669 + 1.16740i
\(248\) −3432.48 + 1788.70i −0.878882 + 0.457995i
\(249\) 6917.03i 1.76044i
\(250\) −3298.57 + 2687.84i −0.834480 + 0.679976i
\(251\) −5302.62 −1.33346 −0.666730 0.745300i \(-0.732306\pi\)
−0.666730 + 0.745300i \(0.732306\pi\)
\(252\) −2906.48 599.276i −0.726552 0.149805i
\(253\) 3691.43i 0.917306i
\(254\) 3281.16 + 4026.71i 0.810545 + 0.994719i
\(255\) 7728.80 1.89802
\(256\) 2814.24 + 2976.12i 0.687071 + 0.726591i
\(257\) 7550.79i 1.83271i 0.400371 + 0.916353i \(0.368881\pi\)
−0.400371 + 0.916353i \(0.631119\pi\)
\(258\) 6334.83 5161.93i 1.52864 1.24561i
\(259\) 3832.15i 0.919375i
\(260\) 5656.60 + 1166.31i 1.34926 + 0.278199i
\(261\) −2268.78 −0.538060
\(262\) −2127.18 2610.52i −0.501595 0.615568i
\(263\) 1856.33i 0.435232i 0.976034 + 0.217616i \(0.0698281\pi\)
−0.976034 + 0.217616i \(0.930172\pi\)
\(264\) −3259.01 6253.98i −0.759767 1.45798i
\(265\) 3987.70i 0.924386i
\(266\) −3293.32 550.796i −0.759122 0.126961i
\(267\) −4797.16 −1.09956
\(268\) −548.592 113.112i −0.125040 0.0257814i
\(269\) −7331.90 −1.66184 −0.830918 0.556394i \(-0.812184\pi\)
−0.830918 + 0.556394i \(0.812184\pi\)
\(270\) −125.845 154.440i −0.0283655 0.0348108i
\(271\) 3630.22i 0.813728i 0.913489 + 0.406864i \(0.133378\pi\)
−0.913489 + 0.406864i \(0.866622\pi\)
\(272\) −6297.19 2712.09i −1.40376 0.604575i
\(273\) 7563.60 1.67681
\(274\) 57.5782 + 70.6612i 0.0126950 + 0.0155796i
\(275\) −1148.89 −0.251929
\(276\) −1014.58 + 4920.68i −0.221269 + 1.07315i
\(277\) 7384.85i 1.60185i 0.598764 + 0.800925i \(0.295659\pi\)
−0.598764 + 0.800925i \(0.704341\pi\)
\(278\) 3309.06 + 4060.95i 0.713900 + 0.876114i
\(279\) 4451.53 0.955220
\(280\) −2833.86 + 1476.75i −0.604841 + 0.315189i
\(281\) 201.071i 0.0426865i −0.999772 0.0213432i \(-0.993206\pi\)
0.999772 0.0213432i \(-0.00679428\pi\)
\(282\) −3782.95 4642.51i −0.798834 0.980346i
\(283\) 5149.79 1.08171 0.540853 0.841117i \(-0.318101\pi\)
0.540853 + 0.841117i \(0.318101\pi\)
\(284\) −523.834 + 2540.59i −0.109450 + 0.530832i
\(285\) 3945.80 + 4486.59i 0.820102 + 0.932500i
\(286\) 5572.46 + 6838.64i 1.15212 + 1.41391i
\(287\) −1943.42 −0.399709
\(288\) −1288.52 4531.14i −0.263635 0.927084i
\(289\) 6564.06 1.33606
\(290\) −1893.89 + 1543.24i −0.383494 + 0.312490i
\(291\) 1579.81 0.318248
\(292\) 1424.95 6911.00i 0.285579 1.38505i
\(293\) 292.103 0.0582418 0.0291209 0.999576i \(-0.490729\pi\)
0.0291209 + 0.999576i \(0.490729\pi\)
\(294\) 2232.28 1818.97i 0.442821 0.360832i
\(295\) −5373.85 −1.06060
\(296\) 5394.61 2811.19i 1.05931 0.552017i
\(297\) 304.285i 0.0594492i
\(298\) 6174.62 5031.38i 1.20029 0.978054i
\(299\) 6284.71i 1.21557i
\(300\) −1531.47 315.767i −0.294731 0.0607694i
\(301\) 5655.59i 1.08300i
\(302\) −4888.67 5999.49i −0.931495 1.14315i
\(303\) 13185.7 2.50000
\(304\) −1640.55 5040.15i −0.309513 0.950895i
\(305\) 3398.86 0.638093
\(306\) 4981.18 + 6113.01i 0.930572 + 1.14202i
\(307\) 4822.33i 0.896498i 0.893909 + 0.448249i \(0.147952\pi\)
−0.893909 + 0.448249i \(0.852048\pi\)
\(308\) −4780.28 985.627i −0.884356 0.182342i
\(309\) 9940.68i 1.83012i
\(310\) 3715.98 3027.96i 0.680818 0.554764i
\(311\) 4727.15i 0.861904i −0.902375 0.430952i \(-0.858178\pi\)
0.902375 0.430952i \(-0.141822\pi\)
\(312\) 5548.51 + 10647.5i 1.00680 + 1.93203i
\(313\) −6851.59 −1.23730 −0.618650 0.785667i \(-0.712320\pi\)
−0.618650 + 0.785667i \(0.712320\pi\)
\(314\) 4266.00 3476.14i 0.766701 0.624745i
\(315\) 3675.19 0.657376
\(316\) 161.168 781.661i 0.0286911 0.139151i
\(317\) −9219.19 −1.63344 −0.816721 0.577032i \(-0.804211\pi\)
−0.816721 + 0.577032i \(0.804211\pi\)
\(318\) −6426.38 + 5236.53i −1.13325 + 0.923428i
\(319\) −3731.45 −0.654924
\(320\) −4157.73 2905.98i −0.726325 0.507653i
\(321\) −8678.23 −1.50894
\(322\) 2196.54 + 2695.63i 0.380149 + 0.466528i
\(323\) 5859.41 + 6662.47i 1.00937 + 1.14771i
\(324\) 1218.75 5910.92i 0.208976 1.01353i
\(325\) 1955.99 0.333843
\(326\) −83.2560 102.174i −0.0141446 0.0173585i
\(327\) 3675.11i 0.621511i
\(328\) −1425.66 2735.80i −0.239996 0.460547i
\(329\) −4144.73 −0.694549
\(330\) 5516.95 + 6770.52i 0.920297 + 1.12941i
\(331\) 8965.19i 1.48874i −0.667770 0.744368i \(-0.732751\pi\)
0.667770 0.744368i \(-0.267249\pi\)
\(332\) −1534.59 + 7442.76i −0.253680 + 1.23035i
\(333\) −6996.19 −1.15132
\(334\) −2716.98 3334.33i −0.445109 0.546247i
\(335\) 693.684 0.113134
\(336\) −6101.21 2627.68i −0.990620 0.426642i
\(337\) 2639.82i 0.426707i −0.976975 0.213354i \(-0.931561\pi\)
0.976975 0.213354i \(-0.0684386\pi\)
\(338\) −5561.83 6825.60i −0.895040 1.09841i
\(339\) 5113.15 0.819198
\(340\) 8316.23 + 1714.69i 1.32650 + 0.273506i
\(341\) 7321.42 1.16269
\(342\) −1005.57 + 6012.48i −0.158991 + 0.950636i
\(343\) 6882.20i 1.08339i
\(344\) 7961.52 4148.83i 1.24784 0.650262i
\(345\) 6222.10i 0.970976i
\(346\) 1912.55 + 2347.13i 0.297166 + 0.364689i
\(347\) −4777.88 −0.739164 −0.369582 0.929198i \(-0.620499\pi\)
−0.369582 + 0.929198i \(0.620499\pi\)
\(348\) −4974.02 1025.57i −0.766193 0.157978i
\(349\) 11641.2i 1.78550i 0.450550 + 0.892751i \(0.351228\pi\)
−0.450550 + 0.892751i \(0.648772\pi\)
\(350\) −838.964 + 683.629i −0.128127 + 0.104404i
\(351\) 518.049i 0.0787790i
\(352\) −2119.23 7452.35i −0.320895 1.12844i
\(353\) 1779.01 0.268236 0.134118 0.990965i \(-0.457180\pi\)
0.134118 + 0.990965i \(0.457180\pi\)
\(354\) −7056.78 8660.23i −1.05950 1.30024i
\(355\) 3212.53i 0.480291i
\(356\) −5161.77 1064.28i −0.768464 0.158447i
\(357\) 11119.9 1.64853
\(358\) 8462.45 6895.62i 1.24931 1.01800i
\(359\) 1707.24i 0.250989i −0.992094 0.125494i \(-0.959948\pi\)
0.992094 0.125494i \(-0.0400517\pi\)
\(360\) 2696.05 + 5173.66i 0.394706 + 0.757432i
\(361\) −876.161 + 6802.81i −0.127739 + 0.991808i
\(362\) 656.334 + 805.467i 0.0952932 + 0.116946i
\(363\) 3647.63i 0.527413i
\(364\) 8138.48 + 1678.04i 1.17190 + 0.241630i
\(365\) 8738.83i 1.25318i
\(366\) 4463.29 + 5477.44i 0.637431 + 0.782269i
\(367\) 9578.39i 1.36237i −0.732113 0.681183i \(-0.761466\pi\)
0.732113 0.681183i \(-0.238534\pi\)
\(368\) −2183.38 + 5069.58i −0.309284 + 0.718126i
\(369\) 3548.02i 0.500549i
\(370\) −5840.17 + 4758.86i −0.820584 + 0.668652i
\(371\) 5737.33i 0.802877i
\(372\) 9759.44 + 2012.26i 1.36022 + 0.280460i
\(373\) −1627.47 −0.225917 −0.112958 0.993600i \(-0.536033\pi\)
−0.112958 + 0.993600i \(0.536033\pi\)
\(374\) 8192.52 + 10054.0i 1.13269 + 1.39006i
\(375\) 10954.4 1.50849
\(376\) −3040.50 5834.64i −0.417025 0.800263i
\(377\) 6352.83 0.867871
\(378\) −181.061 222.202i −0.0246369 0.0302350i
\(379\) 2854.97i 0.386940i 0.981106 + 0.193470i \(0.0619742\pi\)
−0.981106 + 0.193470i \(0.938026\pi\)
\(380\) 3250.32 + 5703.00i 0.438784 + 0.769889i
\(381\) 13372.6i 1.79816i
\(382\) −4211.76 + 3431.94i −0.564116 + 0.459669i
\(383\) −8623.58 −1.15051 −0.575253 0.817975i \(-0.695097\pi\)
−0.575253 + 0.817975i \(0.695097\pi\)
\(384\) −776.678 10516.4i −0.103215 1.39756i
\(385\) 6044.57 0.800155
\(386\) −5338.36 + 4349.96i −0.703926 + 0.573593i
\(387\) −10325.2 −1.35622
\(388\) 1699.89 + 350.493i 0.222419 + 0.0458598i
\(389\) 11430.5i 1.48984i −0.667152 0.744922i \(-0.732487\pi\)
0.667152 0.744922i \(-0.267513\pi\)
\(390\) −9392.68 11526.9i −1.21953 1.49663i
\(391\) 9239.66i 1.19506i
\(392\) 2805.50 1461.98i 0.361478 0.188370i
\(393\) 8669.45i 1.11276i
\(394\) −4309.31 + 3511.44i −0.551015 + 0.448994i
\(395\) 988.396i 0.125903i
\(396\) −1799.42 + 8727.15i −0.228344 + 1.10746i
\(397\) 8090.70i 1.02282i 0.859336 + 0.511411i \(0.170877\pi\)
−0.859336 + 0.511411i \(0.829123\pi\)
\(398\) 1859.99 1515.61i 0.234253 0.190881i
\(399\) 5677.05 + 6455.12i 0.712301 + 0.809925i
\(400\) −1577.81 679.534i −0.197226 0.0849417i
\(401\) 6511.41i 0.810884i −0.914121 0.405442i \(-0.867118\pi\)
0.914121 0.405442i \(-0.132882\pi\)
\(402\) 910.927 + 1117.91i 0.113017 + 0.138697i
\(403\) −12464.8 −1.54073
\(404\) 14187.9 + 2925.34i 1.74721 + 0.360251i
\(405\) 7474.25i 0.917033i
\(406\) −2724.86 + 2220.35i −0.333084 + 0.271414i
\(407\) −11506.6 −1.40138
\(408\) 8157.32 + 15653.7i 0.989822 + 1.89945i
\(409\) 1849.75i 0.223629i −0.993729 0.111815i \(-0.964334\pi\)
0.993729 0.111815i \(-0.0356663\pi\)
\(410\) 2413.39 + 2961.77i 0.290705 + 0.356759i
\(411\) 234.663i 0.0281632i
\(412\) 2205.41 10696.2i 0.263721 1.27904i
\(413\) −7731.66 −0.921187
\(414\) 4921.31 4010.12i 0.584225 0.476055i
\(415\) 9411.24i 1.11320i
\(416\) 3608.01 + 12687.7i 0.425233 + 1.49535i
\(417\) 13486.3i 1.58375i
\(418\) −1653.85 + 9888.70i −0.193523 + 1.15711i
\(419\) −575.596 −0.0671114 −0.0335557 0.999437i \(-0.510683\pi\)
−0.0335557 + 0.999437i \(0.510683\pi\)
\(420\) 8057.41 + 1661.33i 0.936098 + 0.193011i
\(421\) −14246.3 −1.64922 −0.824608 0.565704i \(-0.808604\pi\)
−0.824608 + 0.565704i \(0.808604\pi\)
\(422\) 5251.44 4279.13i 0.605772 0.493613i
\(423\) 7566.86i 0.869772i
\(424\) −8076.58 + 4208.79i −0.925079 + 0.482068i
\(425\) 2875.67 0.328212
\(426\) 5177.15 4218.60i 0.588812 0.479793i
\(427\) 4890.14 0.554216
\(428\) −9337.82 1925.33i −1.05458 0.217440i
\(429\) 22710.9i 2.55592i
\(430\) −8619.09 + 7023.26i −0.966627 + 0.787655i
\(431\) −6957.39 −0.777554 −0.388777 0.921332i \(-0.627102\pi\)
−0.388777 + 0.921332i \(0.627102\pi\)
\(432\) 179.976 417.886i 0.0200442 0.0465407i
\(433\) 10987.2i 1.21943i −0.792621 0.609715i \(-0.791284\pi\)
0.792621 0.609715i \(-0.208716\pi\)
\(434\) 5346.40 4356.51i 0.591326 0.481841i
\(435\) 6289.55 0.693243
\(436\) −815.350 + 3954.44i −0.0895600 + 0.434365i
\(437\) 5363.65 4717.15i 0.587135 0.516365i
\(438\) −14083.1 + 11475.6i −1.53634 + 1.25188i
\(439\) −1573.06 −0.171021 −0.0855106 0.996337i \(-0.527252\pi\)
−0.0855106 + 0.996337i \(0.527252\pi\)
\(440\) 4434.18 + 8509.09i 0.480434 + 0.921943i
\(441\) −3638.41 −0.392875
\(442\) −13947.9 17117.1i −1.50098 1.84203i
\(443\) −12176.2 −1.30589 −0.652944 0.757406i \(-0.726466\pi\)
−0.652944 + 0.757406i \(0.726466\pi\)
\(444\) −15338.3 3162.54i −1.63947 0.338035i
\(445\) 6526.96 0.695298
\(446\) −5449.03 6687.17i −0.578519 0.709970i
\(447\) −20505.7 −2.16977
\(448\) −5981.96 4181.00i −0.630851 0.440923i
\(449\) 1879.79i 0.197579i 0.995108 + 0.0987894i \(0.0314970\pi\)
−0.995108 + 0.0987894i \(0.968503\pi\)
\(450\) 1248.07 + 1531.66i 0.130744 + 0.160452i
\(451\) 5835.42i 0.609266i
\(452\) 5501.77 + 1134.39i 0.572526 + 0.118047i
\(453\) 19924.1i 2.06648i
\(454\) 57.0137 46.4576i 0.00589381 0.00480256i
\(455\) −10291.0 −1.06032
\(456\) −4922.45 + 12727.1i −0.505515 + 1.30702i
\(457\) 6672.76 0.683017 0.341508 0.939879i \(-0.389062\pi\)
0.341508 + 0.939879i \(0.389062\pi\)
\(458\) 6005.15 4893.29i 0.612669 0.499232i
\(459\) 761.626i 0.0774503i
\(460\) 1380.42 6695.02i 0.139918 0.678602i
\(461\) 11778.7i 1.18999i −0.803728 0.594996i \(-0.797153\pi\)
0.803728 0.594996i \(-0.202847\pi\)
\(462\) 7937.56 + 9741.14i 0.799326 + 0.980950i
\(463\) 15021.8i 1.50782i 0.656975 + 0.753912i \(0.271836\pi\)
−0.656975 + 0.753912i \(0.728164\pi\)
\(464\) −5124.54 2207.04i −0.512717 0.220818i
\(465\) −12340.6 −1.23072
\(466\) −4484.24 5503.16i −0.445769 0.547058i
\(467\) −2045.28 −0.202664 −0.101332 0.994853i \(-0.532310\pi\)
−0.101332 + 0.994853i \(0.532310\pi\)
\(468\) 3063.53 14858.1i 0.302589 1.46755i
\(469\) 998.044 0.0982631
\(470\) 5147.04 + 6316.55i 0.505138 + 0.619917i
\(471\) −14167.2 −1.38597
\(472\) −5671.80 10884.1i −0.553105 1.06140i
\(473\) −16981.8 −1.65079
\(474\) −1592.85 + 1297.93i −0.154350 + 0.125772i
\(475\) 1468.12 + 1669.33i 0.141815 + 0.161251i
\(476\) 11965.0 + 2467.02i 1.15214 + 0.237554i
\(477\) 10474.4 1.00543
\(478\) 1023.22 833.769i 0.0979099 0.0797818i
\(479\) 6193.04i 0.590746i 0.955382 + 0.295373i \(0.0954439\pi\)
−0.955382 + 0.295373i \(0.904556\pi\)
\(480\) 3572.07 + 12561.3i 0.339670 + 1.19447i
\(481\) 19590.1 1.85703
\(482\) −3672.21 + 2992.29i −0.347022 + 0.282770i
\(483\) 8952.10i 0.843343i
\(484\) −809.253 + 3924.87i −0.0760005 + 0.368601i
\(485\) −2149.48 −0.201243
\(486\) −11624.3 + 9472.02i −1.08495 + 0.884073i
\(487\) 6791.18 0.631905 0.315952 0.948775i \(-0.397676\pi\)
0.315952 + 0.948775i \(0.397676\pi\)
\(488\) 3587.31 + 6883.97i 0.332766 + 0.638571i
\(489\) 339.314i 0.0313790i
\(490\) −3037.22 + 2474.88i −0.280015 + 0.228170i
\(491\) 18711.0 1.71979 0.859896 0.510470i \(-0.170528\pi\)
0.859896 + 0.510470i \(0.170528\pi\)
\(492\) −1603.84 + 7778.61i −0.146965 + 0.712778i
\(493\) 9339.81 0.853233
\(494\) 2815.70 16835.6i 0.256446 1.53334i
\(495\) 11035.3i 1.00202i
\(496\) 10054.8 + 4330.41i 0.910228 + 0.392018i
\(497\) 4622.05i 0.417157i
\(498\) 15166.7 12358.6i 1.36473 1.11205i
\(499\) 9749.81 0.874672 0.437336 0.899298i \(-0.355922\pi\)
0.437336 + 0.899298i \(0.355922\pi\)
\(500\) 11787.0 + 2430.32i 1.05426 + 0.217375i
\(501\) 11073.2i 0.987452i
\(502\) 9474.11 + 11626.8i 0.842331 + 1.03373i
\(503\) 11464.6i 1.01626i 0.861280 + 0.508131i \(0.169664\pi\)
−0.861280 + 0.508131i \(0.830336\pi\)
\(504\) 3878.96 + 7443.64i 0.342823 + 0.657869i
\(505\) −17940.3 −1.58086
\(506\) 8094.05 6595.43i 0.711115 0.579452i
\(507\) 22667.5i 1.98560i
\(508\) 2966.80 14388.9i 0.259115 1.25671i
\(509\) −13690.4 −1.19218 −0.596088 0.802919i \(-0.703279\pi\)
−0.596088 + 0.802919i \(0.703279\pi\)
\(510\) −13808.9 16946.6i −1.19896 1.47139i
\(511\) 12573.1i 1.08845i
\(512\) 1497.44 11488.1i 0.129254 0.991612i
\(513\) −442.126 + 388.835i −0.0380514 + 0.0334649i
\(514\) 16556.3 13490.9i 1.42075 1.15770i
\(515\) 13525.2i 1.15726i
\(516\) −22636.7 4667.37i −1.93125 0.398197i
\(517\) 12445.2i 1.05868i
\(518\) −8402.60 + 6846.85i −0.712720 + 0.580759i
\(519\) 7794.72i 0.659249i
\(520\) −7549.24 14486.8i −0.636646 1.22171i
\(521\) 22247.2i 1.87076i 0.353640 + 0.935381i \(0.384944\pi\)
−0.353640 + 0.935381i \(0.615056\pi\)
\(522\) 4053.59 + 4974.65i 0.339887 + 0.417116i
\(523\) 11278.1i 0.942941i −0.881882 0.471470i \(-0.843723\pi\)
0.881882 0.471470i \(-0.156277\pi\)
\(524\) −1923.38 + 9328.37i −0.160350 + 0.777694i
\(525\) 2786.17 0.231616
\(526\) 4070.29 3316.67i 0.337401 0.274931i
\(527\) −18325.5 −1.51475
\(528\) −7890.01 + 18319.8i −0.650319 + 1.50998i
\(529\) 4728.57 0.388639
\(530\) 8743.66 7124.76i 0.716604 0.583924i
\(531\) 14115.4i 1.15359i
\(532\) 4676.42 + 8205.23i 0.381107 + 0.668688i
\(533\) 9934.87i 0.807368i
\(534\) 8571.01 + 10518.5i 0.694577 + 0.852400i
\(535\) 11807.5 0.954173
\(536\) 732.145 + 1404.97i 0.0589998 + 0.113219i
\(537\) −28103.5 −2.25839
\(538\) 13099.8 + 16076.4i 1.04976 + 1.28829i
\(539\) −5984.08 −0.478205
\(540\) −113.788 + 551.871i −0.00906790 + 0.0439792i
\(541\) 20390.1i 1.62040i −0.586150 0.810202i \(-0.699357\pi\)
0.586150 0.810202i \(-0.300643\pi\)
\(542\) 7959.84 6486.07i 0.630820 0.514023i
\(543\) 2674.92i 0.211403i
\(544\) 5304.42 + 18653.2i 0.418061 + 1.47013i
\(545\) 5000.31i 0.393009i
\(546\) −13513.8 16584.4i −1.05922 1.29990i
\(547\) 3898.90i 0.304762i −0.988322 0.152381i \(-0.951306\pi\)
0.988322 0.152381i \(-0.0486941\pi\)
\(548\) 52.0617 252.499i 0.00405833 0.0196829i
\(549\) 8927.72i 0.694036i
\(550\) 2052.70 + 2519.12i 0.159141 + 0.195301i
\(551\) 4768.28 + 5421.79i 0.368667 + 0.419194i
\(552\) 12602.1 6567.09i 0.971704 0.506365i
\(553\) 1422.06i 0.109353i
\(554\) 16192.5 13194.4i 1.24179 1.01187i
\(555\) 19395.0 1.48337
\(556\) 2992.03 14511.3i 0.228220 1.10686i
\(557\) 4336.92i 0.329912i 0.986301 + 0.164956i \(0.0527483\pi\)
−0.986301 + 0.164956i \(0.947252\pi\)
\(558\) −7953.49 9760.69i −0.603402 0.740507i
\(559\) 28911.7 2.18754
\(560\) 8301.24 + 3575.19i 0.626413 + 0.269785i
\(561\) 33389.1i 2.51281i
\(562\) −440.880 + 359.251i −0.0330915 + 0.0269646i
\(563\) 11853.1i 0.887301i −0.896200 0.443650i \(-0.853683\pi\)
0.896200 0.443650i \(-0.146317\pi\)
\(564\) −3420.51 + 16589.4i −0.255371 + 1.23855i
\(565\) −6956.89 −0.518015
\(566\) −9201.05 11291.7i −0.683302 0.838563i
\(567\) 10753.6i 0.796491i
\(568\) 6506.57 3390.64i 0.480651 0.250472i
\(569\) 12678.9i 0.934146i −0.884219 0.467073i \(-0.845309\pi\)
0.884219 0.467073i \(-0.154691\pi\)
\(570\) 2787.65 16667.9i 0.204845 1.22481i
\(571\) −6720.50 −0.492547 −0.246273 0.969200i \(-0.579206\pi\)
−0.246273 + 0.969200i \(0.579206\pi\)
\(572\) 5038.57 24437.0i 0.368310 1.78630i
\(573\) 13987.1 1.01975
\(574\) 3472.29 + 4261.26i 0.252492 + 0.309864i
\(575\) 2315.07i 0.167904i
\(576\) −7633.07 + 10921.0i −0.552160 + 0.790004i
\(577\) 12184.7 0.879124 0.439562 0.898212i \(-0.355134\pi\)
0.439562 + 0.898212i \(0.355134\pi\)
\(578\) −11727.9 14392.7i −0.843974 1.03574i
\(579\) 17728.5 1.27249
\(580\) 6767.59 + 1395.38i 0.484498 + 0.0998968i
\(581\) 13540.5i 0.966875i
\(582\) −2822.63 3463.99i −0.201034 0.246713i
\(583\) 17227.2 1.22380
\(584\) −17699.4 + 9223.35i −1.25412 + 0.653536i
\(585\) 18787.8i 1.32783i
\(586\) −521.897 640.483i −0.0367907 0.0451504i
\(587\) 12526.6 0.880798 0.440399 0.897802i \(-0.354837\pi\)
0.440399 + 0.897802i \(0.354837\pi\)
\(588\) −7976.78 1644.70i −0.559450 0.115351i
\(589\) −9355.77 10638.0i −0.654495 0.744196i
\(590\) 9601.38 + 11783.0i 0.669970 + 0.822202i
\(591\) 14311.1 0.996071
\(592\) −15802.5 6805.83i −1.09709 0.472496i
\(593\) 11384.6 0.788380 0.394190 0.919029i \(-0.371025\pi\)
0.394190 + 0.919029i \(0.371025\pi\)
\(594\) −667.194 + 543.662i −0.0460864 + 0.0375534i
\(595\) −15129.6 −1.04244
\(596\) −22064.2 4549.34i −1.51642 0.312664i
\(597\) −6176.96 −0.423461
\(598\) −13780.2 + 11228.8i −0.942333 + 0.767859i
\(599\) 9074.12 0.618963 0.309481 0.950906i \(-0.399845\pi\)
0.309481 + 0.950906i \(0.399845\pi\)
\(600\) 2043.88 + 3922.16i 0.139068 + 0.266869i
\(601\) 11309.7i 0.767607i 0.923415 + 0.383803i \(0.125386\pi\)
−0.923415 + 0.383803i \(0.874614\pi\)
\(602\) −12400.8 + 10104.8i −0.839565 + 0.684119i
\(603\) 1822.09i 0.123053i
\(604\) −4420.30 + 21438.4i −0.297781 + 1.44423i
\(605\) 4962.92i 0.333506i
\(606\) −23558.7 28911.7i −1.57922 1.93805i
\(607\) −11693.5 −0.781920 −0.390960 0.920408i \(-0.627857\pi\)
−0.390960 + 0.920408i \(0.627857\pi\)
\(608\) −8120.18 + 12602.3i −0.541639 + 0.840611i
\(609\) 9049.14 0.602118
\(610\) −6072.70 7452.55i −0.403076 0.494664i
\(611\) 21188.1i 1.40291i
\(612\) 4503.94 21844.1i 0.297485 1.44280i
\(613\) 8416.15i 0.554527i 0.960794 + 0.277264i \(0.0894275\pi\)
−0.960794 + 0.277264i \(0.910572\pi\)
\(614\) 10573.7 8615.99i 0.694985 0.566308i
\(615\) 9835.91i 0.644914i
\(616\) 6379.71 + 12242.5i 0.417282 + 0.800755i
\(617\) −11821.9 −0.771365 −0.385682 0.922632i \(-0.626034\pi\)
−0.385682 + 0.922632i \(0.626034\pi\)
\(618\) −21796.5 + 17760.9i −1.41875 + 1.15606i
\(619\) 22219.6 1.44278 0.721392 0.692527i \(-0.243503\pi\)
0.721392 + 0.692527i \(0.243503\pi\)
\(620\) −13278.6 2737.86i −0.860131 0.177347i
\(621\) 613.151 0.0396214
\(622\) −10365.0 + 8445.93i −0.668167 + 0.544455i
\(623\) 9390.71 0.603902
\(624\) 13432.8 31189.7i 0.861768 2.00094i
\(625\) −11549.2 −0.739147
\(626\) 12241.6 + 15023.2i 0.781589 + 0.959182i
\(627\) 19382.5 17046.2i 1.23455 1.08574i
\(628\) −15244.0 3143.10i −0.968633 0.199719i
\(629\) 28801.0 1.82571
\(630\) −6566.41 8058.44i −0.415257 0.509613i
\(631\) 10500.3i 0.662460i −0.943550 0.331230i \(-0.892536\pi\)
0.943550 0.331230i \(-0.107464\pi\)
\(632\) −2001.87 + 1043.20i −0.125997 + 0.0656585i
\(633\) −17439.8 −1.09506
\(634\) 16471.8 + 20214.5i 1.03183 + 1.26628i
\(635\) 18194.6i 1.13705i
\(636\) 22963.8 + 4734.83i 1.43172 + 0.295201i
\(637\) 10188.0 0.633693
\(638\) 6666.92 + 8181.79i 0.413708 + 0.507712i
\(639\) −8438.28 −0.522399
\(640\) 1056.74 + 14308.5i 0.0652676 + 0.883742i
\(641\) 12781.2i 0.787559i −0.919205 0.393779i \(-0.871167\pi\)
0.919205 0.393779i \(-0.128833\pi\)
\(642\) 15505.3 + 19028.4i 0.953184 + 1.16977i
\(643\) −2586.87 −0.158656 −0.0793282 0.996849i \(-0.525278\pi\)
−0.0793282 + 0.996849i \(0.525278\pi\)
\(644\) 1986.09 9632.51i 0.121526 0.589400i
\(645\) 28623.7 1.74737
\(646\) 4139.59 24751.4i 0.252121 1.50748i
\(647\) 11344.9i 0.689356i −0.938721 0.344678i \(-0.887988\pi\)
0.938721 0.344678i \(-0.112012\pi\)
\(648\) −15138.2 + 7888.66i −0.917721 + 0.478234i
\(649\) 23215.5i 1.40414i
\(650\) −3494.75 4288.83i −0.210885 0.258803i
\(651\) −17755.2 −1.06894
\(652\) −75.2794 + 365.104i −0.00452173 + 0.0219303i
\(653\) 16800.8i 1.00684i 0.864041 + 0.503421i \(0.167926\pi\)
−0.864041 + 0.503421i \(0.832074\pi\)
\(654\) 8058.26 6566.26i 0.481809 0.392601i
\(655\) 11795.6i 0.703650i
\(656\) −3451.48 + 8014.00i −0.205424 + 0.476973i
\(657\) 22954.1 1.36305
\(658\) 7405.34 + 9087.99i 0.438739 + 0.538429i
\(659\) 12346.9i 0.729844i −0.931038 0.364922i \(-0.881096\pi\)
0.931038 0.364922i \(-0.118904\pi\)
\(660\) 4988.38 24193.6i 0.294201 1.42687i
\(661\) 8268.34 0.486537 0.243269 0.969959i \(-0.421780\pi\)
0.243269 + 0.969959i \(0.421780\pi\)
\(662\) −19657.6 + 16018.0i −1.15410 + 0.940418i
\(663\) 56845.3i 3.32985i
\(664\) 19061.3 9933.04i 1.11404 0.580537i
\(665\) −7724.13 8782.76i −0.450420 0.512151i
\(666\) 12500.0 + 15340.3i 0.727275 + 0.892527i
\(667\) 7519.06i 0.436490i
\(668\) −2456.67 + 11914.8i −0.142292 + 0.690116i
\(669\) 22207.8i 1.28341i
\(670\) −1239.40 1521.01i −0.0714657 0.0877043i
\(671\) 14683.4i 0.844777i
\(672\) 5139.34 + 18072.7i 0.295021 + 1.03746i
\(673\) 12669.1i 0.725646i 0.931858 + 0.362823i \(0.118187\pi\)
−0.931858 + 0.362823i \(0.881813\pi\)
\(674\) −5788.23 + 4716.53i −0.330793 + 0.269546i
\(675\) 190.831i 0.0108816i
\(676\) −5028.96 + 24390.4i −0.286127 + 1.38771i
\(677\) −23085.0 −1.31053 −0.655265 0.755399i \(-0.727443\pi\)
−0.655265 + 0.755399i \(0.727443\pi\)
\(678\) −9135.59 11211.4i −0.517478 0.635060i
\(679\) −3092.58 −0.174790
\(680\) −11098.8 21298.3i −0.625908 1.20110i
\(681\) −189.340 −0.0106542
\(682\) −13081.1 16053.4i −0.734458 0.901342i
\(683\) 24240.5i 1.35803i 0.734124 + 0.679016i \(0.237593\pi\)
−0.734124 + 0.679016i \(0.762407\pi\)
\(684\) 14979.9 8537.55i 0.837387 0.477253i
\(685\) 319.280i 0.0178088i
\(686\) −15090.3 + 12296.3i −0.839870 + 0.684367i
\(687\) −19942.9 −1.10752
\(688\) −23321.7 10044.2i −1.29234 0.556588i
\(689\) −29329.5 −1.62172
\(690\) −13643.0 + 11116.9i −0.752722 + 0.613355i
\(691\) −18790.3 −1.03447 −0.517234 0.855844i \(-0.673038\pi\)
−0.517234 + 0.855844i \(0.673038\pi\)
\(692\) 1729.32 8387.15i 0.0949981 0.460740i
\(693\) 15877.1i 0.870307i
\(694\) 8536.57 + 10476.3i 0.466922 + 0.573016i
\(695\) 18349.3i 1.00148i
\(696\) 6638.27 + 12738.7i 0.361527 + 0.693763i
\(697\) 14606.1i 0.793750i
\(698\) 25525.2 20799.2i 1.38416 1.12788i
\(699\) 18275.8i 0.988917i
\(700\) 2997.93 + 618.132i 0.161873 + 0.0333760i
\(701\) 5686.73i 0.306398i 0.988195 + 0.153199i \(0.0489575\pi\)
−0.988195 + 0.153199i \(0.951042\pi\)
\(702\) 1135.91 925.592i 0.0610712 0.0497638i
\(703\) 14703.9 + 16719.1i 0.788858 + 0.896974i
\(704\) −12554.1 + 17961.7i −0.672087 + 0.961589i
\(705\) 20977.0i 1.12062i
\(706\) −3178.54 3900.77i −0.169442 0.207942i
\(707\) −25811.8 −1.37306
\(708\) −6380.69 + 30946.2i −0.338702 + 1.64270i
\(709\) 33718.4i 1.78607i −0.449991 0.893033i \(-0.648573\pi\)
0.449991 0.893033i \(-0.351427\pi\)
\(710\) −7043.97 + 5739.78i −0.372332 + 0.303394i
\(711\) 2596.20 0.136941
\(712\) 6888.84 + 13219.5i 0.362599 + 0.695819i
\(713\) 14753.0i 0.774903i
\(714\) −19867.7 24382.1i −1.04136 1.27798i
\(715\) 30900.1i 1.61622i
\(716\) −30239.5 6234.96i −1.57835 0.325435i
\(717\) −3398.07 −0.176992
\(718\) −3743.41 + 3050.31i −0.194572 + 0.158547i
\(719\) 35646.4i 1.84894i 0.381259 + 0.924468i \(0.375491\pi\)
−0.381259 + 0.924468i \(0.624509\pi\)
\(720\) 6527.07 15155.2i 0.337847 0.784447i
\(721\) 19459.5i 1.00514i
\(722\) 16481.7 10233.4i 0.849562 0.527488i
\(723\) 12195.3 0.627312
\(724\) 593.452 2878.23i 0.0304633 0.147747i
\(725\) 2340.16 0.119878
\(726\) 7998.00 6517.17i 0.408862 0.333161i
\(727\) 3524.47i 0.179801i 0.995951 + 0.0899005i \(0.0286549\pi\)
−0.995951 + 0.0899005i \(0.971345\pi\)
\(728\) −10861.5 20843.0i −0.552960 1.06112i
\(729\) 18234.7 0.926420
\(730\) 19161.3 15613.5i 0.971494 0.791621i
\(731\) 42505.4 2.15064
\(732\) 4035.67 19572.9i 0.203774 0.988301i
\(733\) 32875.8i 1.65661i 0.560277 + 0.828305i \(0.310695\pi\)
−0.560277 + 0.828305i \(0.689305\pi\)
\(734\) −21002.2 + 17113.6i −1.05614 + 0.860591i
\(735\) 10086.5 0.506185
\(736\) 15016.9 4270.35i 0.752078 0.213869i
\(737\) 2996.78i 0.149780i
\(738\) 7779.61 6339.20i 0.388037 0.316192i
\(739\) −29318.3 −1.45939 −0.729695 0.683773i \(-0.760338\pi\)
−0.729695 + 0.683773i \(0.760338\pi\)
\(740\) 20869.1 + 4302.92i 1.03671 + 0.213755i
\(741\) −32998.9 + 29021.4i −1.63596 + 1.43877i
\(742\) 12580.0 10250.8i 0.622408 0.507168i
\(743\) −20387.4 −1.00665 −0.503324 0.864098i \(-0.667890\pi\)
−0.503324 + 0.864098i \(0.667890\pi\)
\(744\) −13024.9 24994.4i −0.641820 1.23164i
\(745\) 27899.8 1.37204
\(746\) 2907.77 + 3568.48i 0.142709 + 0.175136i
\(747\) −24720.3 −1.21080
\(748\) 7407.61 35926.8i 0.362098 1.75617i
\(749\) 16988.1 0.828748
\(750\) −19572.1 24019.3i −0.952898 1.16942i
\(751\) 10697.4 0.519780 0.259890 0.965638i \(-0.416314\pi\)
0.259890 + 0.965638i \(0.416314\pi\)
\(752\) −7360.97 + 17091.4i −0.356951 + 0.828804i
\(753\) 38612.3i 1.86867i
\(754\) −11350.5 13929.6i −0.548225 0.672793i
\(755\) 27108.4i 1.30673i
\(756\) −163.714 + 794.009i −0.00787594 + 0.0381982i
\(757\) 12218.5i 0.586642i 0.956014 + 0.293321i \(0.0947604\pi\)
−0.956014 + 0.293321i \(0.905240\pi\)
\(758\) 6259.98 5100.94i 0.299964 0.244425i
\(759\) −26880.0 −1.28549
\(760\) 6697.43 17316.3i 0.319660 0.826485i
\(761\) 3279.14 0.156201 0.0781004 0.996945i \(-0.475115\pi\)
0.0781004 + 0.996945i \(0.475115\pi\)
\(762\) −29321.5 + 23892.6i −1.39397 + 1.13587i
\(763\) 7194.23i 0.341348i
\(764\) 15050.2 + 3103.14i 0.712691 + 0.146947i
\(765\) 27621.4i 1.30543i
\(766\) 15407.6 + 18908.6i 0.726762 + 0.891898i
\(767\) 39524.6i 1.86069i
\(768\) −21671.3 + 20492.6i −1.01822 + 0.962841i
\(769\) 14364.1 0.673581 0.336790 0.941580i \(-0.390659\pi\)
0.336790 + 0.941580i \(0.390659\pi\)
\(770\) −10799.7 13253.7i −0.505449 0.620298i
\(771\) −54982.9 −2.56830
\(772\) 19075.9 + 3933.20i 0.889324 + 0.183366i
\(773\) 10804.4 0.502724 0.251362 0.967893i \(-0.419122\pi\)
0.251362 + 0.967893i \(0.419122\pi\)
\(774\) 18447.8 + 22639.6i 0.856711 + 1.05137i
\(775\) −4591.60 −0.212819
\(776\) −2268.65 4353.50i −0.104948 0.201394i
\(777\) 27904.7 1.28839
\(778\) −25063.2 + 20422.7i −1.15496 + 0.941118i
\(779\) 8478.86 7456.87i 0.389970 0.342965i
\(780\) −8492.78 + 41189.9i −0.389859 + 1.89081i
\(781\) −13878.4 −0.635862
\(782\) −20259.4 + 16508.4i −0.926439 + 0.754908i
\(783\) 619.797i 0.0282883i
\(784\) −8218.17 3539.41i −0.374370 0.161234i
\(785\) 19275.7 0.876408
\(786\) 19009.1 15489.6i 0.862638 0.702920i
\(787\) 32576.6i 1.47552i −0.675066 0.737758i \(-0.735885\pi\)
0.675066 0.737758i \(-0.264115\pi\)
\(788\) 15398.8 + 3175.01i 0.696140 + 0.143534i
\(789\) −13517.3 −0.609922
\(790\) 2167.21 1765.95i 0.0976026 0.0795314i
\(791\) −10009.3 −0.449923
\(792\) 22350.6 11647.2i 1.00277 0.522555i
\(793\) 24998.6i 1.11945i
\(794\) 17740.1 14455.5i 0.792914 0.646105i
\(795\) −29037.4 −1.29541
\(796\) −6646.44 1370.40i −0.295951 0.0610209i
\(797\) −30962.7 −1.37610 −0.688051 0.725662i \(-0.741534\pi\)
−0.688051 + 0.725662i \(0.741534\pi\)
\(798\) 4010.75 23981.1i 0.177919 1.06381i
\(799\) 31150.3i 1.37925i
\(800\) 1329.06 + 4673.71i 0.0587369 + 0.206551i
\(801\) 17144.2i 0.756256i
\(802\) −14277.3 + 11633.8i −0.628615 + 0.512226i
\(803\) 37752.5 1.65910
\(804\) 823.652 3994.70i 0.0361293 0.175227i
\(805\) 12180.1i 0.533283i
\(806\) 22270.7 + 27331.1i 0.973265 + 1.19441i
\(807\) 53389.0i 2.32885i
\(808\) −18935.0 36335.9i −0.824420 1.58204i
\(809\) −25634.5 −1.11404 −0.557021 0.830498i \(-0.688056\pi\)
−0.557021 + 0.830498i \(0.688056\pi\)
\(810\) 16388.5 13354.1i 0.710904 0.579280i
\(811\) 40267.9i 1.74352i −0.489929 0.871762i \(-0.662977\pi\)
0.489929 0.871762i \(-0.337023\pi\)
\(812\) 9736.92 + 2007.62i 0.420812 + 0.0867655i
\(813\) −26434.3 −1.14034
\(814\) 20558.7 + 25230.1i 0.885235 + 1.08638i
\(815\) 461.667i 0.0198423i
\(816\) 19748.7 45854.5i 0.847233 1.96719i
\(817\) 21700.4 + 24674.5i 0.929253 + 1.05661i
\(818\) −4055.88 + 3304.93i −0.173363 + 0.141264i
\(819\) 27031.0i 1.15329i
\(820\) 2182.17 10583.5i 0.0929325 0.450721i
\(821\) 14671.6i 0.623679i 0.950135 + 0.311840i \(0.100945\pi\)
−0.950135 + 0.311840i \(0.899055\pi\)
\(822\) −514.536 + 419.269i −0.0218327 + 0.0177904i
\(823\) 42398.3i 1.79576i −0.440240 0.897880i \(-0.645107\pi\)
0.440240 0.897880i \(-0.354893\pi\)
\(824\) −27393.6 + 14275.1i −1.15813 + 0.603514i
\(825\) 8365.89i 0.353046i
\(826\) 13814.1 + 16952.9i 0.581904 + 0.714125i
\(827\) 26090.0i 1.09702i 0.836143 + 0.548512i \(0.184806\pi\)
−0.836143 + 0.548512i \(0.815194\pi\)
\(828\) −17585.7 3625.92i −0.738096 0.152185i
\(829\) 7077.21 0.296504 0.148252 0.988950i \(-0.452635\pi\)
0.148252 + 0.988950i \(0.452635\pi\)
\(830\) −20635.6 + 16814.9i −0.862980 + 0.703198i
\(831\) −53774.5 −2.24479
\(832\) 21373.5 30580.1i 0.890614 1.27425i
\(833\) 14978.2 0.623004
\(834\) −29570.8 + 24095.7i −1.22776 + 1.00044i
\(835\) 15066.1i 0.624410i
\(836\) 24637.5 14041.7i 1.01926 0.580911i
\(837\) 1216.10i 0.0502203i
\(838\) 1028.41 + 1262.09i 0.0423936 + 0.0520263i
\(839\) 31328.5 1.28913 0.644565 0.764549i \(-0.277038\pi\)
0.644565 + 0.764549i \(0.277038\pi\)
\(840\) −10753.3 20635.4i −0.441697 0.847607i
\(841\) −16788.4 −0.688361
\(842\) 25453.6 + 31237.2i 1.04179 + 1.27851i
\(843\) 1464.15 0.0598196
\(844\) −18765.3 3869.15i −0.765319 0.157798i
\(845\) 30841.2i 1.25559i
\(846\) 16591.6 13519.6i 0.674266 0.549425i
\(847\) 7140.44i 0.289668i
\(848\) 23658.8 + 10189.4i 0.958072 + 0.412624i
\(849\) 37499.4i 1.51587i
\(850\) −5137.91 6305.35i −0.207328 0.254437i
\(851\) 23186.4i 0.933983i
\(852\) −18499.9 3814.42i −0.743892 0.153380i
\(853\) 19939.9i 0.800386i −0.916431 0.400193i \(-0.868943\pi\)
0.916431 0.400193i \(-0.131057\pi\)
\(854\) −8737.14 10722.4i −0.350092 0.429641i
\(855\) −16034.3 + 14101.6i −0.641359 + 0.564053i
\(856\) 12462.2 + 23914.6i 0.497602 + 0.954888i
\(857\) 38989.7i 1.55410i −0.629441 0.777049i \(-0.716716\pi\)
0.629441 0.777049i \(-0.283284\pi\)
\(858\) −49797.2 + 40577.2i −1.98141 + 1.61455i
\(859\) 21977.0 0.872927 0.436463 0.899722i \(-0.356231\pi\)
0.436463 + 0.899722i \(0.356231\pi\)
\(860\) 30799.2 + 6350.37i 1.22121 + 0.251798i
\(861\) 14151.5i 0.560141i
\(862\) 12430.7 + 15255.2i 0.491172 + 0.602777i
\(863\) 4308.24 0.169935 0.0849676 0.996384i \(-0.472921\pi\)
0.0849676 + 0.996384i \(0.472921\pi\)
\(864\) −1237.84 + 352.006i −0.0487411 + 0.0138605i
\(865\) 10605.4i 0.416872i
\(866\) −24091.3 + 19630.7i −0.945328 + 0.770300i
\(867\) 47797.7i 1.87231i
\(868\) −19104.7 3939.12i −0.747068 0.154035i
\(869\) 4269.96 0.166684
\(870\) −11237.5 13790.8i −0.437914 0.537418i
\(871\) 5102.05i 0.198480i
\(872\) 10127.5 5277.55i 0.393303 0.204955i
\(873\) 5645.98i 0.218886i
\(874\) −19926.2 3332.59i −0.771185 0.128978i
\(875\) −21443.9 −0.828500
\(876\) 50324.1 + 10376.1i 1.94097 + 0.400202i
\(877\) 47047.8 1.81151 0.905754 0.423805i \(-0.139306\pi\)
0.905754 + 0.423805i \(0.139306\pi\)
\(878\) 2810.57 + 3449.19i 0.108032 + 0.132579i
\(879\) 2127.02i 0.0816184i
\(880\) 10735.1 24925.7i 0.411226 0.954825i
\(881\) −27789.0 −1.06269 −0.531347 0.847154i \(-0.678314\pi\)
−0.531347 + 0.847154i \(0.678314\pi\)
\(882\) 6500.70 + 7977.80i 0.248175 + 0.304565i
\(883\) −50322.7 −1.91789 −0.958943 0.283597i \(-0.908472\pi\)
−0.958943 + 0.283597i \(0.908472\pi\)
\(884\) −12611.6 + 61165.9i −0.479833 + 2.32718i
\(885\) 39130.9i 1.48630i
\(886\) 21755.0 + 26698.2i 0.824915 + 1.01235i
\(887\) 30005.2 1.13582 0.567911 0.823090i \(-0.307752\pi\)
0.567911 + 0.823090i \(0.307752\pi\)
\(888\) 20470.3 + 39282.1i 0.773581 + 1.48448i
\(889\) 26177.6i 0.987590i
\(890\) −11661.6 14311.4i −0.439212 0.539010i
\(891\) 32289.4 1.21407
\(892\) −4926.97 + 23895.7i −0.184941 + 0.896961i
\(893\) 18082.8 15903.2i 0.677625 0.595948i
\(894\) 36637.2 + 44962.0i 1.37062 + 1.68205i
\(895\) 38237.2 1.42808
\(896\) 1520.39 + 20586.5i 0.0566883 + 0.767576i
\(897\) 45763.6 1.70346
\(898\) 4121.74 3358.60i 0.153167 0.124808i
\(899\) −14913.0 −0.553254
\(900\) 1128.50 5473.20i 0.0417962 0.202711i
\(901\) −43119.7 −1.59437
\(902\) 12795.1 10426.1i 0.472317 0.384867i
\(903\) 41182.5 1.51768
\(904\) −7342.61 14090.3i −0.270146 0.518404i
\(905\) 3639.47i 0.133680i
\(906\) 43686.7 35598.0i 1.60198 1.30537i
\(907\) 16074.6i 0.588477i 0.955732 + 0.294238i \(0.0950660\pi\)
−0.955732 + 0.294238i \(0.904934\pi\)
\(908\) −203.731 42.0066i −0.00744610 0.00153528i
\(909\) 47123.4i 1.71946i
\(910\) 18386.7 + 22564.6i 0.669795 + 0.821986i
\(911\) −4574.55 −0.166368 −0.0831842 0.996534i \(-0.526509\pi\)
−0.0831842 + 0.996534i \(0.526509\pi\)
\(912\) 36701.0 11946.0i 1.33256 0.433742i
\(913\) −40657.4 −1.47378
\(914\) −11922.1 14631.1i −0.431454 0.529490i
\(915\) 24749.6i 0.894205i
\(916\) −21458.6 4424.47i −0.774032 0.159595i
\(917\) 16970.9i 0.611156i
\(918\) 1669.99 1360.79i 0.0600412 0.0489245i
\(919\) 18889.7i 0.678035i −0.940780 0.339017i \(-0.889905\pi\)
0.940780 0.339017i \(-0.110095\pi\)
\(920\) −17146.3 + 8935.10i −0.614452 + 0.320197i
\(921\) −35114.9 −1.25633
\(922\) −25826.6 + 21044.8i −0.922509 + 0.751705i
\(923\) 23628.1 0.842610
\(924\) 7177.07 34808.7i 0.255529 1.23931i
\(925\) 7216.32 0.256509
\(926\) 32937.7 26839.2i 1.16890 0.952476i
\(927\) 35526.3 1.25872
\(928\) 4316.64 + 15179.7i 0.152695 + 0.536958i
\(929\) 5207.30 0.183903 0.0919515 0.995763i \(-0.470690\pi\)
0.0919515 + 0.995763i \(0.470690\pi\)
\(930\) 22048.8 + 27058.8i 0.777430 + 0.954079i
\(931\) 7646.84 + 8694.87i 0.269189 + 0.306082i
\(932\) −4054.61 + 19664.8i −0.142504 + 0.691140i
\(933\) 34421.9 1.20785
\(934\) 3654.27 + 4484.60i 0.128021 + 0.157110i
\(935\) 45428.8i 1.58896i
\(936\) −38052.2 + 19829.4i −1.32882 + 0.692463i
\(937\) 48123.8 1.67784 0.838920 0.544255i \(-0.183188\pi\)
0.838920 + 0.544255i \(0.183188\pi\)
\(938\) −1783.19 2188.37i −0.0620717 0.0761757i
\(939\) 49891.5i 1.73392i
\(940\) 4653.91 22571.4i 0.161483 0.783189i
\(941\) −15197.0 −0.526469 −0.263235 0.964732i \(-0.584789\pi\)
−0.263235 + 0.964732i \(0.584789\pi\)
\(942\) 25312.3 + 31063.9i 0.875500 + 1.07443i
\(943\) −11758.7 −0.406061
\(944\) −13731.3 + 31882.7i −0.473428 + 1.09925i
\(945\) 1004.01i 0.0345613i
\(946\) 30341.1 + 37235.2i 1.04278 + 1.27973i
\(947\) −26103.9 −0.895736 −0.447868 0.894100i \(-0.647817\pi\)
−0.447868 + 0.894100i \(0.647817\pi\)
\(948\) 5691.85 + 1173.58i 0.195003 + 0.0402069i
\(949\) −64274.1 −2.19855
\(950\) 1037.21 6201.66i 0.0354225 0.211798i
\(951\) 67131.7i 2.28906i
\(952\) −15968.4 30643.0i −0.543634 1.04322i
\(953\) 17945.0i 0.609962i 0.952358 + 0.304981i \(0.0986502\pi\)
−0.952358 + 0.304981i \(0.901350\pi\)
\(954\) −18714.5 22966.8i −0.635118 0.779431i
\(955\) −19030.7 −0.644835
\(956\) −3656.34 753.887i −0.123697 0.0255047i
\(957\) 27171.4i 0.917792i
\(958\) 13579.2 11065.0i 0.457959 0.373167i
\(959\) 459.366i 0.0154679i
\(960\) 21160.6 30275.5i 0.711410 1.01785i
\(961\) −530.500 −0.0178074
\(962\) −35001.4 42954.5i −1.17307 1.43961i
\(963\) 31014.5i 1.03783i
\(964\) 13122.2 + 2705.61i 0.438419 + 0.0903960i
\(965\) −24121.2 −0.804651
\(966\) −19628.9 + 15994.6i −0.653778 + 0.532730i
\(967\) 33819.1i 1.12466i −0.826912 0.562331i \(-0.809905\pi\)
0.826912 0.562331i \(-0.190095\pi\)
\(968\) 10051.8 5238.09i 0.333757 0.173924i
\(969\) −48514.3 + 42666.7i −1.60836 + 1.41450i
\(970\) 3840.44 + 4713.07i 0.127123 + 0.156008i
\(971\) 53698.0i 1.77472i 0.461080 + 0.887359i \(0.347462\pi\)
−0.461080 + 0.887359i \(0.652538\pi\)
\(972\) 41537.8 + 8564.52i 1.37071 + 0.282620i
\(973\) 26400.1i 0.869835i
\(974\) −12133.7 14890.7i −0.399167 0.489867i
\(975\) 14243.0i 0.467838i
\(976\) 8684.80 20165.2i 0.284830 0.661346i
\(977\) 14240.0i 0.466302i −0.972441 0.233151i \(-0.925096\pi\)
0.972441 0.233151i \(-0.0749037\pi\)
\(978\) 744.001 606.248i 0.0243257 0.0198218i
\(979\) 28197.0i 0.920512i
\(980\) 10853.1 + 2237.76i 0.353765 + 0.0729415i
\(981\) −13134.2 −0.427465
\(982\) −33430.8 41026.9i −1.08637 1.33322i
\(983\) 23381.6 0.758655 0.379328 0.925262i \(-0.376155\pi\)
0.379328 + 0.925262i \(0.376155\pi\)
\(984\) 19921.4 10381.3i 0.645397 0.336324i
\(985\) −19471.5 −0.629860
\(986\) −16687.3 20479.0i −0.538978 0.661445i
\(987\) 30180.9i 0.973320i
\(988\) −41945.6 + 23906.1i −1.35067 + 0.769792i
\(989\) 34219.1i 1.10021i
\(990\) −24196.7 + 19716.6i −0.776789 + 0.632966i
\(991\) −39954.8 −1.28073 −0.640367 0.768069i \(-0.721218\pi\)
−0.640367 + 0.768069i \(0.721218\pi\)
\(992\) −8469.62 29783.8i −0.271079 0.953262i
\(993\) 65282.2 2.08627
\(994\) −10134.6 + 8258.15i −0.323389 + 0.263514i
\(995\) 8404.29 0.267773
\(996\) −54196.2 11174.5i −1.72417 0.355500i
\(997\) 24468.8i 0.777265i −0.921393 0.388633i \(-0.872948\pi\)
0.921393 0.388633i \(-0.127052\pi\)
\(998\) −17419.9 21378.0i −0.552521 0.678065i
\(999\) 1911.26i 0.0605301i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 152.4.b.b.75.15 56
4.3 odd 2 608.4.b.b.303.7 56
8.3 odd 2 inner 152.4.b.b.75.41 yes 56
8.5 even 2 608.4.b.b.303.8 56
19.18 odd 2 inner 152.4.b.b.75.42 yes 56
76.75 even 2 608.4.b.b.303.49 56
152.37 odd 2 608.4.b.b.303.50 56
152.75 even 2 inner 152.4.b.b.75.16 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.4.b.b.75.15 56 1.1 even 1 trivial
152.4.b.b.75.16 yes 56 152.75 even 2 inner
152.4.b.b.75.41 yes 56 8.3 odd 2 inner
152.4.b.b.75.42 yes 56 19.18 odd 2 inner
608.4.b.b.303.7 56 4.3 odd 2
608.4.b.b.303.8 56 8.5 even 2
608.4.b.b.303.49 56 76.75 even 2
608.4.b.b.303.50 56 152.37 odd 2