Properties

Label 152.4.b.b.75.8
Level $152$
Weight $4$
Character 152.75
Analytic conductor $8.968$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [152,4,Mod(75,152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(152, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("152.75");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 152.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.96829032087\)
Analytic rank: \(0\)
Dimension: \(56\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 75.8
Character \(\chi\) \(=\) 152.75
Dual form 152.4.b.b.75.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.58234 + 1.15391i) q^{2} -4.27659i q^{3} +(5.33699 - 5.95958i) q^{4} -5.11676i q^{5} +(4.93480 + 11.0436i) q^{6} +21.0790i q^{7} +(-6.90512 + 21.5481i) q^{8} +8.71076 q^{9} +O(q^{10})\) \(q+(-2.58234 + 1.15391i) q^{2} -4.27659i q^{3} +(5.33699 - 5.95958i) q^{4} -5.11676i q^{5} +(4.93480 + 11.0436i) q^{6} +21.0790i q^{7} +(-6.90512 + 21.5481i) q^{8} +8.71076 q^{9} +(5.90427 + 13.2132i) q^{10} +55.7487 q^{11} +(-25.4867 - 22.8241i) q^{12} -11.9999 q^{13} +(-24.3233 - 54.4333i) q^{14} -21.8823 q^{15} +(-7.03311 - 63.6124i) q^{16} -50.5173 q^{17} +(-22.4942 + 10.0514i) q^{18} +(29.4850 - 77.3927i) q^{19} +(-30.4937 - 27.3081i) q^{20} +90.1464 q^{21} +(-143.962 + 64.3289i) q^{22} -104.189i q^{23} +(92.1523 + 29.5304i) q^{24} +98.8188 q^{25} +(30.9878 - 13.8467i) q^{26} -152.720i q^{27} +(125.622 + 112.499i) q^{28} +231.033 q^{29} +(56.5075 - 25.2502i) q^{30} +16.6216 q^{31} +(91.5648 + 156.153i) q^{32} -238.414i q^{33} +(130.453 - 58.2923i) q^{34} +107.856 q^{35} +(46.4892 - 51.9125i) q^{36} -34.5686 q^{37} +(13.1637 + 233.878i) q^{38} +51.3185i q^{39} +(110.256 + 35.3318i) q^{40} +180.679i q^{41} +(-232.789 + 104.021i) q^{42} -447.129 q^{43} +(297.530 - 332.239i) q^{44} -44.5709i q^{45} +(120.224 + 269.051i) q^{46} -544.335i q^{47} +(-272.044 + 30.0778i) q^{48} -101.326 q^{49} +(-255.184 + 114.028i) q^{50} +216.042i q^{51} +(-64.0431 + 71.5141i) q^{52} +628.395 q^{53} +(176.225 + 394.376i) q^{54} -285.252i q^{55} +(-454.213 - 145.553i) q^{56} +(-330.977 - 126.095i) q^{57} +(-596.606 + 266.591i) q^{58} -391.794i q^{59} +(-116.785 + 130.409i) q^{60} +445.968i q^{61} +(-42.9226 + 19.1798i) q^{62} +183.615i q^{63} +(-416.639 - 297.584i) q^{64} +61.4004i q^{65} +(275.108 + 615.668i) q^{66} +194.432i q^{67} +(-269.610 + 301.061i) q^{68} -445.572 q^{69} +(-278.522 + 124.456i) q^{70} +578.382 q^{71} +(-60.1489 + 187.700i) q^{72} -705.836 q^{73} +(89.2679 - 39.8890i) q^{74} -422.608i q^{75} +(-303.867 - 588.762i) q^{76} +1175.13i q^{77} +(-59.2169 - 132.522i) q^{78} -836.031 q^{79} +(-325.489 + 35.9867i) q^{80} -417.932 q^{81} +(-208.487 - 466.575i) q^{82} +1055.70 q^{83} +(481.110 - 537.235i) q^{84} +258.485i q^{85} +(1154.64 - 515.946i) q^{86} -988.032i q^{87} +(-384.952 + 1201.28i) q^{88} +154.207i q^{89} +(51.4307 + 115.097i) q^{90} -252.946i q^{91} +(-620.920 - 556.053i) q^{92} -71.0836i q^{93} +(628.113 + 1405.66i) q^{94} +(-396.000 - 150.868i) q^{95} +(667.804 - 391.585i) q^{96} -166.782i q^{97} +(261.658 - 116.921i) q^{98} +485.614 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 2 q^{4} - 14 q^{6} - 528 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 2 q^{4} - 14 q^{6} - 528 q^{9} - 40 q^{11} - 262 q^{16} - 184 q^{17} - 84 q^{19} - 12 q^{20} + 238 q^{24} - 1504 q^{25} + 378 q^{26} - 382 q^{28} + 512 q^{30} + 40 q^{35} + 1464 q^{36} + 958 q^{38} + 1030 q^{42} + 576 q^{43} + 316 q^{44} - 3664 q^{49} - 1314 q^{54} - 648 q^{57} - 1166 q^{58} + 928 q^{62} + 3746 q^{64} + 680 q^{66} + 2538 q^{68} - 432 q^{73} - 4020 q^{74} + 3968 q^{76} + 4608 q^{80} + 2296 q^{81} - 192 q^{82} + 5376 q^{83} - 1906 q^{92} - 1962 q^{96} - 6152 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/152\mathbb{Z}\right)^\times\).

\(n\) \(39\) \(77\) \(97\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.58234 + 1.15391i −0.912996 + 0.407968i
\(3\) 4.27659i 0.823030i −0.911403 0.411515i \(-0.865000\pi\)
0.911403 0.411515i \(-0.135000\pi\)
\(4\) 5.33699 5.95958i 0.667124 0.744947i
\(5\) 5.11676i 0.457657i −0.973467 0.228828i \(-0.926511\pi\)
0.973467 0.228828i \(-0.0734894\pi\)
\(6\) 4.93480 + 11.0436i 0.335770 + 0.751424i
\(7\) 21.0790i 1.13816i 0.822282 + 0.569081i \(0.192701\pi\)
−0.822282 + 0.569081i \(0.807299\pi\)
\(8\) −6.90512 + 21.5481i −0.305166 + 0.952299i
\(9\) 8.71076 0.322621
\(10\) 5.90427 + 13.2132i 0.186709 + 0.417839i
\(11\) 55.7487 1.52808 0.764039 0.645170i \(-0.223213\pi\)
0.764039 + 0.645170i \(0.223213\pi\)
\(12\) −25.4867 22.8241i −0.613114 0.549063i
\(13\) −11.9999 −0.256013 −0.128006 0.991773i \(-0.540858\pi\)
−0.128006 + 0.991773i \(0.540858\pi\)
\(14\) −24.3233 54.4333i −0.464334 1.03914i
\(15\) −21.8823 −0.376665
\(16\) −7.03311 63.6124i −0.109892 0.993943i
\(17\) −50.5173 −0.720720 −0.360360 0.932813i \(-0.617346\pi\)
−0.360360 + 0.932813i \(0.617346\pi\)
\(18\) −22.4942 + 10.0514i −0.294552 + 0.131619i
\(19\) 29.4850 77.3927i 0.356017 0.934479i
\(20\) −30.4937 27.3081i −0.340930 0.305314i
\(21\) 90.1464 0.936741
\(22\) −143.962 + 64.3289i −1.39513 + 0.623408i
\(23\) 104.189i 0.944558i −0.881449 0.472279i \(-0.843432\pi\)
0.881449 0.472279i \(-0.156568\pi\)
\(24\) 92.1523 + 29.5304i 0.783771 + 0.251161i
\(25\) 98.8188 0.790550
\(26\) 30.9878 13.8467i 0.233738 0.104445i
\(27\) 152.720i 1.08856i
\(28\) 125.622 + 112.499i 0.847870 + 0.759294i
\(29\) 231.033 1.47937 0.739684 0.672954i \(-0.234975\pi\)
0.739684 + 0.672954i \(0.234975\pi\)
\(30\) 56.5075 25.2502i 0.343894 0.153668i
\(31\) 16.6216 0.0963007 0.0481503 0.998840i \(-0.484667\pi\)
0.0481503 + 0.998840i \(0.484667\pi\)
\(32\) 91.5648 + 156.153i 0.505829 + 0.862634i
\(33\) 238.414i 1.25766i
\(34\) 130.453 58.2923i 0.658014 0.294031i
\(35\) 107.856 0.520887
\(36\) 46.4892 51.9125i 0.215228 0.240335i
\(37\) −34.5686 −0.153596 −0.0767978 0.997047i \(-0.524470\pi\)
−0.0767978 + 0.997047i \(0.524470\pi\)
\(38\) 13.1637 + 233.878i 0.0561958 + 0.998420i
\(39\) 51.3185i 0.210706i
\(40\) 110.256 + 35.3318i 0.435826 + 0.139661i
\(41\) 180.679i 0.688227i 0.938928 + 0.344113i \(0.111820\pi\)
−0.938928 + 0.344113i \(0.888180\pi\)
\(42\) −232.789 + 104.021i −0.855241 + 0.382161i
\(43\) −447.129 −1.58573 −0.792866 0.609396i \(-0.791412\pi\)
−0.792866 + 0.609396i \(0.791412\pi\)
\(44\) 297.530 332.239i 1.01942 1.13834i
\(45\) 44.5709i 0.147650i
\(46\) 120.224 + 269.051i 0.385350 + 0.862377i
\(47\) 544.335i 1.68935i −0.535281 0.844674i \(-0.679794\pi\)
0.535281 0.844674i \(-0.320206\pi\)
\(48\) −272.044 + 30.0778i −0.818046 + 0.0904448i
\(49\) −101.326 −0.295411
\(50\) −255.184 + 114.028i −0.721769 + 0.322520i
\(51\) 216.042i 0.593174i
\(52\) −64.0431 + 71.5141i −0.170792 + 0.190716i
\(53\) 628.395 1.62862 0.814308 0.580432i \(-0.197116\pi\)
0.814308 + 0.580432i \(0.197116\pi\)
\(54\) 176.225 + 394.376i 0.444097 + 0.993848i
\(55\) 285.252i 0.699335i
\(56\) −454.213 145.553i −1.08387 0.347328i
\(57\) −330.977 126.095i −0.769105 0.293013i
\(58\) −596.606 + 266.591i −1.35066 + 0.603536i
\(59\) 391.794i 0.864530i −0.901747 0.432265i \(-0.857714\pi\)
0.901747 0.432265i \(-0.142286\pi\)
\(60\) −116.785 + 130.409i −0.251282 + 0.280596i
\(61\) 445.968i 0.936072i 0.883709 + 0.468036i \(0.155038\pi\)
−0.883709 + 0.468036i \(0.844962\pi\)
\(62\) −42.9226 + 19.1798i −0.0879221 + 0.0392876i
\(63\) 183.615i 0.367195i
\(64\) −416.639 297.584i −0.813747 0.581219i
\(65\) 61.4004i 0.117166i
\(66\) 275.108 + 615.668i 0.513084 + 1.14823i
\(67\) 194.432i 0.354532i 0.984163 + 0.177266i \(0.0567254\pi\)
−0.984163 + 0.177266i \(0.943275\pi\)
\(68\) −269.610 + 301.061i −0.480809 + 0.536898i
\(69\) −445.572 −0.777400
\(70\) −278.522 + 124.456i −0.475568 + 0.212505i
\(71\) 578.382 0.966779 0.483389 0.875406i \(-0.339406\pi\)
0.483389 + 0.875406i \(0.339406\pi\)
\(72\) −60.1489 + 187.700i −0.0984530 + 0.307232i
\(73\) −705.836 −1.13167 −0.565835 0.824518i \(-0.691446\pi\)
−0.565835 + 0.824518i \(0.691446\pi\)
\(74\) 89.2679 39.8890i 0.140232 0.0626622i
\(75\) 422.608i 0.650647i
\(76\) −303.867 588.762i −0.458630 0.888627i
\(77\) 1175.13i 1.73920i
\(78\) −59.2169 132.522i −0.0859614 0.192374i
\(79\) −836.031 −1.19064 −0.595322 0.803488i \(-0.702975\pi\)
−0.595322 + 0.803488i \(0.702975\pi\)
\(80\) −325.489 + 35.9867i −0.454885 + 0.0502930i
\(81\) −417.932 −0.573295
\(82\) −208.487 466.575i −0.280775 0.628348i
\(83\) 1055.70 1.39612 0.698060 0.716040i \(-0.254047\pi\)
0.698060 + 0.716040i \(0.254047\pi\)
\(84\) 481.110 537.235i 0.624922 0.697823i
\(85\) 258.485i 0.329842i
\(86\) 1154.64 515.946i 1.44777 0.646929i
\(87\) 988.032i 1.21757i
\(88\) −384.952 + 1201.28i −0.466318 + 1.45519i
\(89\) 154.207i 0.183662i 0.995775 + 0.0918308i \(0.0292719\pi\)
−0.995775 + 0.0918308i \(0.970728\pi\)
\(90\) 51.4307 + 115.097i 0.0602364 + 0.134803i
\(91\) 252.946i 0.291384i
\(92\) −620.920 556.053i −0.703645 0.630137i
\(93\) 71.0836i 0.0792584i
\(94\) 628.113 + 1405.66i 0.689201 + 1.54237i
\(95\) −396.000 150.868i −0.427671 0.162934i
\(96\) 667.804 391.585i 0.709974 0.416313i
\(97\) 166.782i 0.174579i −0.996183 0.0872893i \(-0.972180\pi\)
0.996183 0.0872893i \(-0.0278204\pi\)
\(98\) 261.658 116.921i 0.269709 0.120518i
\(99\) 485.614 0.492990
\(100\) 527.395 588.918i 0.527395 0.588918i
\(101\) 934.279i 0.920438i 0.887806 + 0.460219i \(0.152229\pi\)
−0.887806 + 0.460219i \(0.847771\pi\)
\(102\) −249.292 557.894i −0.241996 0.541566i
\(103\) 1446.54 1.38380 0.691902 0.721991i \(-0.256773\pi\)
0.691902 + 0.721991i \(0.256773\pi\)
\(104\) 82.8605 258.574i 0.0781264 0.243801i
\(105\) 461.257i 0.428706i
\(106\) −1622.73 + 725.111i −1.48692 + 0.664424i
\(107\) 1519.72i 1.37306i 0.727103 + 0.686529i \(0.240866\pi\)
−0.727103 + 0.686529i \(0.759134\pi\)
\(108\) −910.149 815.067i −0.810918 0.726202i
\(109\) −332.698 −0.292355 −0.146178 0.989258i \(-0.546697\pi\)
−0.146178 + 0.989258i \(0.546697\pi\)
\(110\) 329.155 + 736.620i 0.285307 + 0.638490i
\(111\) 147.836i 0.126414i
\(112\) 1340.89 148.251i 1.13127 0.125075i
\(113\) 813.773i 0.677463i 0.940883 + 0.338732i \(0.109998\pi\)
−0.940883 + 0.338732i \(0.890002\pi\)
\(114\) 1000.20 56.2959i 0.821730 0.0462508i
\(115\) −533.108 −0.432283
\(116\) 1233.02 1376.86i 0.986922 1.10205i
\(117\) −104.528 −0.0825950
\(118\) 452.095 + 1011.75i 0.352701 + 0.789313i
\(119\) 1064.86i 0.820295i
\(120\) 151.100 471.521i 0.114946 0.358698i
\(121\) 1776.92 1.33502
\(122\) −514.607 1151.64i −0.381888 0.854630i
\(123\) 772.690 0.566432
\(124\) 88.7091 99.0575i 0.0642444 0.0717389i
\(125\) 1145.23i 0.819457i
\(126\) −211.874 474.156i −0.149804 0.335247i
\(127\) −1375.82 −0.961295 −0.480647 0.876914i \(-0.659598\pi\)
−0.480647 + 0.876914i \(0.659598\pi\)
\(128\) 1419.29 + 287.701i 0.980067 + 0.198668i
\(129\) 1912.19i 1.30511i
\(130\) −70.8505 158.557i −0.0478000 0.106972i
\(131\) 703.490 0.469192 0.234596 0.972093i \(-0.424623\pi\)
0.234596 + 0.972093i \(0.424623\pi\)
\(132\) −1420.85 1272.41i −0.936886 0.839011i
\(133\) 1631.36 + 621.516i 1.06359 + 0.405205i
\(134\) −224.357 502.091i −0.144638 0.323687i
\(135\) −781.433 −0.498185
\(136\) 348.828 1088.55i 0.219939 0.686341i
\(137\) −57.0084 −0.0355515 −0.0177758 0.999842i \(-0.505658\pi\)
−0.0177758 + 0.999842i \(0.505658\pi\)
\(138\) 1150.62 514.150i 0.709763 0.317154i
\(139\) 40.0574 0.0244433 0.0122217 0.999925i \(-0.496110\pi\)
0.0122217 + 0.999925i \(0.496110\pi\)
\(140\) 575.628 642.778i 0.347496 0.388033i
\(141\) −2327.90 −1.39038
\(142\) −1493.58 + 667.400i −0.882665 + 0.394415i
\(143\) −668.977 −0.391207
\(144\) −61.2638 554.112i −0.0354536 0.320667i
\(145\) 1182.14i 0.677043i
\(146\) 1822.71 814.471i 1.03321 0.461686i
\(147\) 433.329i 0.243132i
\(148\) −184.492 + 206.014i −0.102467 + 0.114421i
\(149\) 1373.58i 0.755223i 0.925964 + 0.377612i \(0.123255\pi\)
−0.925964 + 0.377612i \(0.876745\pi\)
\(150\) 487.651 + 1091.32i 0.265443 + 0.594038i
\(151\) −1472.46 −0.793556 −0.396778 0.917915i \(-0.629872\pi\)
−0.396778 + 0.917915i \(0.629872\pi\)
\(152\) 1464.07 + 1169.75i 0.781259 + 0.624206i
\(153\) −440.044 −0.232519
\(154\) −1355.99 3034.59i −0.709538 1.58788i
\(155\) 85.0485i 0.0440726i
\(156\) 305.837 + 273.886i 0.156965 + 0.140567i
\(157\) 861.331i 0.437845i 0.975742 + 0.218923i \(0.0702542\pi\)
−0.975742 + 0.218923i \(0.929746\pi\)
\(158\) 2158.92 964.703i 1.08705 0.485745i
\(159\) 2687.39i 1.34040i
\(160\) 798.999 468.515i 0.394790 0.231496i
\(161\) 2196.20 1.07506
\(162\) 1079.24 482.255i 0.523416 0.233886i
\(163\) 542.130 0.260509 0.130254 0.991481i \(-0.458421\pi\)
0.130254 + 0.991481i \(0.458421\pi\)
\(164\) 1076.77 + 964.281i 0.512692 + 0.459132i
\(165\) −1219.91 −0.575574
\(166\) −2726.17 + 1218.18i −1.27465 + 0.569573i
\(167\) −3180.11 −1.47356 −0.736779 0.676133i \(-0.763654\pi\)
−0.736779 + 0.676133i \(0.763654\pi\)
\(168\) −622.472 + 1942.48i −0.285862 + 0.892058i
\(169\) −2053.00 −0.934458
\(170\) −298.268 667.496i −0.134565 0.301145i
\(171\) 256.837 674.150i 0.114859 0.301483i
\(172\) −2386.32 + 2664.70i −1.05788 + 1.18129i
\(173\) −1323.55 −0.581661 −0.290830 0.956775i \(-0.593932\pi\)
−0.290830 + 0.956775i \(0.593932\pi\)
\(174\) 1140.10 + 2551.44i 0.496728 + 1.11163i
\(175\) 2083.01i 0.899774i
\(176\) −392.087 3546.31i −0.167924 1.51882i
\(177\) −1675.54 −0.711535
\(178\) −177.940 398.214i −0.0749281 0.167682i
\(179\) 2494.63i 1.04166i −0.853660 0.520831i \(-0.825622\pi\)
0.853660 0.520831i \(-0.174378\pi\)
\(180\) −265.623 237.874i −0.109991 0.0985005i
\(181\) 1016.73 0.417531 0.208765 0.977966i \(-0.433056\pi\)
0.208765 + 0.977966i \(0.433056\pi\)
\(182\) 291.876 + 653.192i 0.118875 + 0.266032i
\(183\) 1907.22 0.770416
\(184\) 2245.06 + 719.435i 0.899501 + 0.288247i
\(185\) 176.879i 0.0702941i
\(186\) 82.0240 + 183.562i 0.0323349 + 0.0723626i
\(187\) −2816.27 −1.10132
\(188\) −3244.00 2905.11i −1.25848 1.12700i
\(189\) 3219.20 1.23895
\(190\) 1196.69 67.3556i 0.456933 0.0257184i
\(191\) 4204.30i 1.59274i 0.604812 + 0.796369i \(0.293248\pi\)
−0.604812 + 0.796369i \(0.706752\pi\)
\(192\) −1272.65 + 1781.79i −0.478361 + 0.669739i
\(193\) 5089.30i 1.89811i 0.315105 + 0.949057i \(0.397960\pi\)
−0.315105 + 0.949057i \(0.602040\pi\)
\(194\) 192.451 + 430.688i 0.0712225 + 0.159390i
\(195\) 262.584 0.0964311
\(196\) −540.775 + 603.859i −0.197075 + 0.220065i
\(197\) 4879.52i 1.76473i −0.470568 0.882364i \(-0.655951\pi\)
0.470568 0.882364i \(-0.344049\pi\)
\(198\) −1254.02 + 560.354i −0.450098 + 0.201124i
\(199\) 2096.05i 0.746657i 0.927699 + 0.373329i \(0.121784\pi\)
−0.927699 + 0.373329i \(0.878216\pi\)
\(200\) −682.356 + 2129.35i −0.241249 + 0.752840i
\(201\) 831.507 0.291791
\(202\) −1078.07 2412.63i −0.375510 0.840356i
\(203\) 4869.95i 1.68376i
\(204\) 1287.52 + 1153.01i 0.441883 + 0.395720i
\(205\) 924.490 0.314972
\(206\) −3735.46 + 1669.18i −1.26341 + 0.564548i
\(207\) 907.562i 0.304734i
\(208\) 84.3964 + 763.340i 0.0281338 + 0.254462i
\(209\) 1643.75 4314.54i 0.544022 1.42796i
\(210\) 532.249 + 1191.12i 0.174898 + 0.391407i
\(211\) 1279.22i 0.417372i 0.977983 + 0.208686i \(0.0669186\pi\)
−0.977983 + 0.208686i \(0.933081\pi\)
\(212\) 3353.74 3744.97i 1.08649 1.21323i
\(213\) 2473.50i 0.795688i
\(214\) −1753.62 3924.45i −0.560164 1.25360i
\(215\) 2287.85i 0.725721i
\(216\) 3290.83 + 1054.55i 1.03663 + 0.332191i
\(217\) 350.367i 0.109606i
\(218\) 859.141 383.903i 0.266919 0.119272i
\(219\) 3018.57i 0.931399i
\(220\) −1699.98 1522.39i −0.520968 0.466543i
\(221\) 606.200 0.184513
\(222\) −170.589 381.762i −0.0515729 0.115415i
\(223\) 5345.37 1.60517 0.802584 0.596538i \(-0.203458\pi\)
0.802584 + 0.596538i \(0.203458\pi\)
\(224\) −3291.56 + 1930.10i −0.981816 + 0.575715i
\(225\) 860.787 0.255048
\(226\) −939.020 2101.44i −0.276384 0.618521i
\(227\) 6621.16i 1.93596i −0.251035 0.967978i \(-0.580771\pi\)
0.251035 0.967978i \(-0.419229\pi\)
\(228\) −2517.90 + 1299.51i −0.731367 + 0.377467i
\(229\) 444.313i 0.128214i −0.997943 0.0641071i \(-0.979580\pi\)
0.997943 0.0641071i \(-0.0204199\pi\)
\(230\) 1376.67 615.158i 0.394673 0.176358i
\(231\) 5025.55 1.43141
\(232\) −1595.31 + 4978.31i −0.451453 + 1.40880i
\(233\) −790.459 −0.222252 −0.111126 0.993806i \(-0.535446\pi\)
−0.111126 + 0.993806i \(0.535446\pi\)
\(234\) 269.927 120.616i 0.0754089 0.0336962i
\(235\) −2785.23 −0.773141
\(236\) −2334.93 2091.00i −0.644029 0.576748i
\(237\) 3575.36i 0.979935i
\(238\) 1228.75 + 2749.82i 0.334654 + 0.748926i
\(239\) 511.943i 0.138556i −0.997597 0.0692779i \(-0.977930\pi\)
0.997597 0.0692779i \(-0.0220695\pi\)
\(240\) 153.901 + 1391.98i 0.0413927 + 0.374384i
\(241\) 3734.92i 0.998288i −0.866519 0.499144i \(-0.833648\pi\)
0.866519 0.499144i \(-0.166352\pi\)
\(242\) −4588.61 + 2050.40i −1.21887 + 0.544647i
\(243\) 2336.13i 0.616718i
\(244\) 2657.78 + 2380.13i 0.697324 + 0.624476i
\(245\) 518.460i 0.135197i
\(246\) −1995.35 + 891.613i −0.517150 + 0.231086i
\(247\) −353.816 + 928.702i −0.0911449 + 0.239238i
\(248\) −114.774 + 358.163i −0.0293877 + 0.0917070i
\(249\) 4514.79i 1.14905i
\(250\) 1321.49 + 2957.37i 0.334313 + 0.748161i
\(251\) −6789.55 −1.70738 −0.853691 0.520780i \(-0.825641\pi\)
−0.853691 + 0.520780i \(0.825641\pi\)
\(252\) 1094.26 + 979.949i 0.273540 + 0.244964i
\(253\) 5808.38i 1.44336i
\(254\) 3552.84 1587.57i 0.877658 0.392178i
\(255\) 1105.43 0.271470
\(256\) −3997.07 + 894.786i −0.975847 + 0.218454i
\(257\) 6272.43i 1.52243i 0.648502 + 0.761213i \(0.275396\pi\)
−0.648502 + 0.761213i \(0.724604\pi\)
\(258\) −2206.49 4937.92i −0.532442 1.19156i
\(259\) 728.672i 0.174817i
\(260\) 365.920 + 327.693i 0.0872824 + 0.0781641i
\(261\) 2012.47 0.477275
\(262\) −1816.65 + 811.763i −0.428371 + 0.191416i
\(263\) 336.071i 0.0787949i −0.999224 0.0393974i \(-0.987456\pi\)
0.999224 0.0393974i \(-0.0125438\pi\)
\(264\) 5137.37 + 1646.28i 1.19766 + 0.383794i
\(265\) 3215.34i 0.745347i
\(266\) −4929.91 + 277.479i −1.13636 + 0.0639599i
\(267\) 659.479 0.151159
\(268\) 1158.73 + 1037.68i 0.264108 + 0.236517i
\(269\) −3931.67 −0.891145 −0.445573 0.895246i \(-0.647000\pi\)
−0.445573 + 0.895246i \(0.647000\pi\)
\(270\) 2017.93 901.702i 0.454841 0.203244i
\(271\) 1231.44i 0.276031i −0.990430 0.138016i \(-0.955928\pi\)
0.990430 0.138016i \(-0.0440724\pi\)
\(272\) 355.294 + 3213.52i 0.0792016 + 0.716355i
\(273\) −1081.74 −0.239818
\(274\) 147.215 65.7825i 0.0324584 0.0145039i
\(275\) 5509.02 1.20802
\(276\) −2378.01 + 2655.42i −0.518622 + 0.579122i
\(277\) 1211.44i 0.262773i 0.991331 + 0.131387i \(0.0419429\pi\)
−0.991331 + 0.131387i \(0.958057\pi\)
\(278\) −103.442 + 46.2226i −0.0223167 + 0.00997211i
\(279\) 144.787 0.0310686
\(280\) −744.761 + 2324.10i −0.158957 + 0.496040i
\(281\) 27.1899i 0.00577229i 0.999996 + 0.00288614i \(0.000918689\pi\)
−0.999996 + 0.00288614i \(0.999081\pi\)
\(282\) 6011.43 2686.18i 1.26942 0.567233i
\(283\) −2053.22 −0.431277 −0.215639 0.976473i \(-0.569183\pi\)
−0.215639 + 0.976473i \(0.569183\pi\)
\(284\) 3086.82 3446.91i 0.644961 0.720199i
\(285\) −645.199 + 1693.53i −0.134099 + 0.351986i
\(286\) 1727.53 771.938i 0.357171 0.159600i
\(287\) −3808.54 −0.783313
\(288\) 797.599 + 1360.22i 0.163191 + 0.278304i
\(289\) −2361.01 −0.480563
\(290\) 1364.08 + 3052.69i 0.276212 + 0.618137i
\(291\) −713.257 −0.143683
\(292\) −3767.04 + 4206.49i −0.754964 + 0.843034i
\(293\) −5631.25 −1.12280 −0.561402 0.827543i \(-0.689738\pi\)
−0.561402 + 0.827543i \(0.689738\pi\)
\(294\) −500.022 1119.00i −0.0991901 0.221978i
\(295\) −2004.72 −0.395658
\(296\) 238.700 744.886i 0.0468722 0.146269i
\(297\) 8513.96i 1.66340i
\(298\) −1584.99 3547.06i −0.308107 0.689516i
\(299\) 1250.25i 0.241819i
\(300\) −2518.56 2255.45i −0.484698 0.434062i
\(301\) 9425.04i 1.80482i
\(302\) 3802.39 1699.08i 0.724514 0.323746i
\(303\) 3995.53 0.757548
\(304\) −5130.51 1331.30i −0.967943 0.251169i
\(305\) 2281.91 0.428400
\(306\) 1136.34 507.771i 0.212289 0.0948605i
\(307\) 3424.31i 0.636598i 0.947990 + 0.318299i \(0.103112\pi\)
−0.947990 + 0.318299i \(0.896888\pi\)
\(308\) 7003.27 + 6271.65i 1.29561 + 1.16026i
\(309\) 6186.26i 1.13891i
\(310\) 98.1382 + 219.624i 0.0179802 + 0.0402381i
\(311\) 3710.72i 0.676578i 0.941042 + 0.338289i \(0.109848\pi\)
−0.941042 + 0.338289i \(0.890152\pi\)
\(312\) −1105.81 354.361i −0.200655 0.0643004i
\(313\) −5146.59 −0.929400 −0.464700 0.885468i \(-0.653838\pi\)
−0.464700 + 0.885468i \(0.653838\pi\)
\(314\) −993.898 2224.25i −0.178627 0.399751i
\(315\) 939.511 0.168049
\(316\) −4461.89 + 4982.39i −0.794306 + 0.886966i
\(317\) 419.787 0.0743772 0.0371886 0.999308i \(-0.488160\pi\)
0.0371886 + 0.999308i \(0.488160\pi\)
\(318\) 3101.00 + 6939.76i 0.546841 + 1.22378i
\(319\) 12879.8 2.26059
\(320\) −1522.67 + 2131.84i −0.265999 + 0.372417i
\(321\) 6499.23 1.13007
\(322\) −5671.33 + 2534.21i −0.981524 + 0.438590i
\(323\) −1489.50 + 3909.67i −0.256589 + 0.673498i
\(324\) −2230.50 + 2490.70i −0.382458 + 0.427074i
\(325\) −1185.81 −0.202391
\(326\) −1399.97 + 625.569i −0.237843 + 0.106279i
\(327\) 1422.81i 0.240617i
\(328\) −3893.28 1247.61i −0.655398 0.210024i
\(329\) 11474.0 1.92275
\(330\) 3150.22 1407.66i 0.525497 0.234816i
\(331\) 7656.50i 1.27142i −0.771929 0.635709i \(-0.780708\pi\)
0.771929 0.635709i \(-0.219292\pi\)
\(332\) 5634.25 6291.51i 0.931384 1.04004i
\(333\) −301.119 −0.0495532
\(334\) 8212.13 3669.56i 1.34535 0.601165i
\(335\) 994.862 0.162254
\(336\) −634.010 5734.43i −0.102941 0.931068i
\(337\) 5037.12i 0.814213i 0.913381 + 0.407106i \(0.133462\pi\)
−0.913381 + 0.407106i \(0.866538\pi\)
\(338\) 5301.56 2368.98i 0.853156 0.381229i
\(339\) 3480.17 0.557573
\(340\) 1540.46 + 1379.53i 0.245715 + 0.220045i
\(341\) 926.630 0.147155
\(342\) 114.666 + 2037.25i 0.0181299 + 0.322111i
\(343\) 5094.26i 0.801936i
\(344\) 3087.48 9634.76i 0.483912 1.51009i
\(345\) 2279.88i 0.355782i
\(346\) 3417.85 1527.25i 0.531054 0.237299i
\(347\) 2791.38 0.431842 0.215921 0.976411i \(-0.430725\pi\)
0.215921 + 0.976411i \(0.430725\pi\)
\(348\) −5888.26 5273.12i −0.907022 0.812267i
\(349\) 7360.51i 1.12894i −0.825455 0.564468i \(-0.809081\pi\)
0.825455 0.564468i \(-0.190919\pi\)
\(350\) −2403.60 5379.03i −0.367079 0.821490i
\(351\) 1832.62i 0.278684i
\(352\) 5104.62 + 8705.35i 0.772946 + 1.31817i
\(353\) −357.382 −0.0538853 −0.0269426 0.999637i \(-0.508577\pi\)
−0.0269426 + 0.999637i \(0.508577\pi\)
\(354\) 4326.83 1933.43i 0.649628 0.290284i
\(355\) 2959.44i 0.442453i
\(356\) 919.007 + 822.999i 0.136818 + 0.122525i
\(357\) −4553.95 −0.675128
\(358\) 2878.58 + 6441.99i 0.424965 + 0.951033i
\(359\) 6628.80i 0.974525i −0.873256 0.487263i \(-0.837995\pi\)
0.873256 0.487263i \(-0.162005\pi\)
\(360\) 960.416 + 307.767i 0.140607 + 0.0450577i
\(361\) −5120.27 4563.85i −0.746503 0.665382i
\(362\) −2625.55 + 1173.22i −0.381204 + 0.170339i
\(363\) 7599.15i 1.09877i
\(364\) −1507.45 1349.97i −0.217065 0.194389i
\(365\) 3611.59i 0.517916i
\(366\) −4925.11 + 2200.76i −0.703387 + 0.314305i
\(367\) 5613.86i 0.798477i 0.916847 + 0.399239i \(0.130726\pi\)
−0.916847 + 0.399239i \(0.869274\pi\)
\(368\) −6627.68 + 732.770i −0.938837 + 0.103800i
\(369\) 1573.85i 0.222036i
\(370\) −204.102 456.762i −0.0286778 0.0641782i
\(371\) 13246.0i 1.85363i
\(372\) −423.628 379.373i −0.0590433 0.0528751i
\(373\) 7877.15 1.09347 0.546733 0.837307i \(-0.315871\pi\)
0.546733 + 0.837307i \(0.315871\pi\)
\(374\) 7272.58 3249.72i 1.00550 0.449302i
\(375\) −4897.67 −0.674438
\(376\) 11729.4 + 3758.70i 1.60876 + 0.515532i
\(377\) −2772.36 −0.378737
\(378\) −8313.07 + 3714.66i −1.13116 + 0.505454i
\(379\) 2289.50i 0.310301i −0.987891 0.155150i \(-0.950414\pi\)
0.987891 0.155150i \(-0.0495862\pi\)
\(380\) −3012.55 + 1554.81i −0.406686 + 0.209895i
\(381\) 5883.83i 0.791175i
\(382\) −4851.38 10857.0i −0.649787 1.45416i
\(383\) −12630.0 −1.68501 −0.842507 0.538685i \(-0.818921\pi\)
−0.842507 + 0.538685i \(0.818921\pi\)
\(384\) 1230.38 6069.72i 0.163509 0.806625i
\(385\) 6012.85 0.795956
\(386\) −5872.59 13142.3i −0.774370 1.73297i
\(387\) −3894.83 −0.511590
\(388\) −993.949 890.112i −0.130052 0.116465i
\(389\) 10479.7i 1.36591i 0.730460 + 0.682956i \(0.239306\pi\)
−0.730460 + 0.682956i \(0.760694\pi\)
\(390\) −678.083 + 302.998i −0.0880412 + 0.0393408i
\(391\) 5263.32i 0.680761i
\(392\) 699.667 2183.38i 0.0901493 0.281319i
\(393\) 3008.54i 0.386159i
\(394\) 5630.52 + 12600.6i 0.719953 + 1.61119i
\(395\) 4277.77i 0.544906i
\(396\) 2591.71 2894.05i 0.328885 0.367251i
\(397\) 337.789i 0.0427032i −0.999772 0.0213516i \(-0.993203\pi\)
0.999772 0.0213516i \(-0.00679693\pi\)
\(398\) −2418.65 5412.71i −0.304613 0.681695i
\(399\) 2657.97 6976.68i 0.333496 0.875365i
\(400\) −695.004 6286.10i −0.0868755 0.785762i
\(401\) 7368.81i 0.917657i 0.888525 + 0.458829i \(0.151731\pi\)
−0.888525 + 0.458829i \(0.848269\pi\)
\(402\) −2147.24 + 959.484i −0.266404 + 0.119042i
\(403\) −199.456 −0.0246542
\(404\) 5567.91 + 4986.23i 0.685677 + 0.614046i
\(405\) 2138.46i 0.262372i
\(406\) −5619.47 12575.9i −0.686921 1.53727i
\(407\) −1927.15 −0.234706
\(408\) −4655.28 1491.79i −0.564879 0.181017i
\(409\) 2518.62i 0.304493i 0.988343 + 0.152246i \(0.0486507\pi\)
−0.988343 + 0.152246i \(0.951349\pi\)
\(410\) −2387.35 + 1066.78i −0.287568 + 0.128498i
\(411\) 243.802i 0.0292600i
\(412\) 7720.17 8620.77i 0.923168 1.03086i
\(413\) 8258.65 0.983975
\(414\) 1047.24 + 2343.64i 0.124322 + 0.278221i
\(415\) 5401.75i 0.638943i
\(416\) −1098.77 1873.82i −0.129499 0.220845i
\(417\) 171.309i 0.0201176i
\(418\) 733.861 + 13038.4i 0.0858716 + 1.52566i
\(419\) 5882.64 0.685885 0.342943 0.939356i \(-0.388576\pi\)
0.342943 + 0.939356i \(0.388576\pi\)
\(420\) −2748.90 2461.73i −0.319363 0.286000i
\(421\) 44.6605 0.00517011 0.00258506 0.999997i \(-0.499177\pi\)
0.00258506 + 0.999997i \(0.499177\pi\)
\(422\) −1476.11 3303.40i −0.170275 0.381059i
\(423\) 4741.57i 0.545019i
\(424\) −4339.15 + 13540.7i −0.496999 + 1.55093i
\(425\) −4992.05 −0.569765
\(426\) 2854.20 + 6387.43i 0.324616 + 0.726460i
\(427\) −9400.58 −1.06540
\(428\) 9056.91 + 8110.74i 1.02286 + 0.915999i
\(429\) 2860.94i 0.321975i
\(430\) −2639.97 5908.01i −0.296071 0.662580i
\(431\) −13681.6 −1.52905 −0.764525 0.644594i \(-0.777026\pi\)
−0.764525 + 0.644594i \(0.777026\pi\)
\(432\) −9714.91 + 1074.10i −1.08196 + 0.119624i
\(433\) 1238.09i 0.137410i 0.997637 + 0.0687052i \(0.0218868\pi\)
−0.997637 + 0.0687052i \(0.978113\pi\)
\(434\) −404.291 904.766i −0.0447157 0.100070i
\(435\) −5055.52 −0.557227
\(436\) −1775.61 + 1982.74i −0.195037 + 0.217789i
\(437\) −8063.44 3072.00i −0.882670 0.336279i
\(438\) −3483.16 7794.99i −0.379981 0.850363i
\(439\) −7072.08 −0.768866 −0.384433 0.923153i \(-0.625603\pi\)
−0.384433 + 0.923153i \(0.625603\pi\)
\(440\) 6146.64 + 1969.70i 0.665976 + 0.213413i
\(441\) −882.625 −0.0953056
\(442\) −1565.42 + 699.500i −0.168460 + 0.0752756i
\(443\) 5116.98 0.548792 0.274396 0.961617i \(-0.411522\pi\)
0.274396 + 0.961617i \(0.411522\pi\)
\(444\) 881.038 + 788.997i 0.0941717 + 0.0843337i
\(445\) 789.038 0.0840539
\(446\) −13803.6 + 6168.07i −1.46551 + 0.654858i
\(447\) 5874.25 0.621572
\(448\) 6272.79 8782.34i 0.661521 0.926175i
\(449\) 17015.0i 1.78839i 0.447676 + 0.894196i \(0.352252\pi\)
−0.447676 + 0.894196i \(0.647748\pi\)
\(450\) −2222.85 + 993.270i −0.232858 + 0.104052i
\(451\) 10072.6i 1.05166i
\(452\) 4849.74 + 4343.10i 0.504674 + 0.451952i
\(453\) 6297.11i 0.653121i
\(454\) 7640.22 + 17098.1i 0.789809 + 1.76752i
\(455\) −1294.26 −0.133354
\(456\) 5002.55 6261.21i 0.513741 0.643000i
\(457\) 12054.5 1.23388 0.616940 0.787010i \(-0.288372\pi\)
0.616940 + 0.787010i \(0.288372\pi\)
\(458\) 512.697 + 1147.37i 0.0523073 + 0.117059i
\(459\) 7715.01i 0.784545i
\(460\) −2845.19 + 3177.10i −0.288386 + 0.322028i
\(461\) 7751.74i 0.783155i 0.920145 + 0.391577i \(0.128071\pi\)
−0.920145 + 0.391577i \(0.871929\pi\)
\(462\) −12977.7 + 5799.02i −1.30688 + 0.583972i
\(463\) 17342.8i 1.74080i 0.492349 + 0.870398i \(0.336138\pi\)
−0.492349 + 0.870398i \(0.663862\pi\)
\(464\) −1624.88 14696.5i −0.162571 1.47041i
\(465\) −363.718 −0.0362731
\(466\) 2041.24 912.118i 0.202915 0.0906718i
\(467\) 195.997 0.0194211 0.00971057 0.999953i \(-0.496909\pi\)
0.00971057 + 0.999953i \(0.496909\pi\)
\(468\) −557.865 + 622.943i −0.0551011 + 0.0615289i
\(469\) −4098.44 −0.403515
\(470\) 7192.41 3213.90i 0.705875 0.315417i
\(471\) 3683.56 0.360360
\(472\) 8442.41 + 2705.39i 0.823291 + 0.263825i
\(473\) −24926.8 −2.42312
\(474\) −4125.64 9232.81i −0.399783 0.894677i
\(475\) 2913.67 7647.86i 0.281450 0.738753i
\(476\) −6346.09 5683.12i −0.611076 0.547238i
\(477\) 5473.80 0.525426
\(478\) 590.736 + 1322.01i 0.0565264 + 0.126501i
\(479\) 1918.69i 0.183021i −0.995804 0.0915106i \(-0.970830\pi\)
0.995804 0.0915106i \(-0.0291695\pi\)
\(480\) −2003.65 3416.99i −0.190528 0.324924i
\(481\) 414.818 0.0393224
\(482\) 4309.76 + 9644.85i 0.407270 + 0.911433i
\(483\) 9392.23i 0.884806i
\(484\) 9483.38 10589.7i 0.890626 0.994522i
\(485\) −853.382 −0.0798970
\(486\) 2695.68 + 6032.68i 0.251602 + 0.563061i
\(487\) −19857.9 −1.84774 −0.923868 0.382711i \(-0.874990\pi\)
−0.923868 + 0.382711i \(0.874990\pi\)
\(488\) −9609.76 3079.47i −0.891421 0.285658i
\(489\) 2318.47i 0.214407i
\(490\) −598.255 1338.84i −0.0551559 0.123434i
\(491\) −76.1156 −0.00699602 −0.00349801 0.999994i \(-0.501113\pi\)
−0.00349801 + 0.999994i \(0.501113\pi\)
\(492\) 4123.84 4604.90i 0.377880 0.421962i
\(493\) −11671.1 −1.06621
\(494\) −157.963 2806.50i −0.0143868 0.255608i
\(495\) 2484.77i 0.225620i
\(496\) −116.901 1057.34i −0.0105827 0.0957174i
\(497\) 12191.7i 1.10035i
\(498\) 5209.66 + 11658.7i 0.468776 + 1.04908i
\(499\) 9612.37 0.862343 0.431171 0.902270i \(-0.358100\pi\)
0.431171 + 0.902270i \(0.358100\pi\)
\(500\) −6825.06 6112.06i −0.610452 0.546679i
\(501\) 13600.0i 1.21278i
\(502\) 17533.0 7834.53i 1.55883 0.696558i
\(503\) 10853.7i 0.962111i −0.876690 0.481056i \(-0.840254\pi\)
0.876690 0.481056i \(-0.159746\pi\)
\(504\) −3956.54 1267.88i −0.349679 0.112055i
\(505\) 4780.48 0.421244
\(506\) 6702.34 + 14999.2i 0.588844 + 1.31778i
\(507\) 8779.86i 0.769087i
\(508\) −7342.75 + 8199.32i −0.641302 + 0.716114i
\(509\) −1888.19 −0.164426 −0.0822129 0.996615i \(-0.526199\pi\)
−0.0822129 + 0.996615i \(0.526199\pi\)
\(510\) −2854.61 + 1275.57i −0.247851 + 0.110751i
\(511\) 14878.4i 1.28802i
\(512\) 9289.30 6922.90i 0.801823 0.597562i
\(513\) −11819.4 4502.96i −1.01723 0.387545i
\(514\) −7237.81 16197.6i −0.621102 1.38997i
\(515\) 7401.60i 0.633307i
\(516\) 11395.8 + 10205.3i 0.972235 + 0.870667i
\(517\) 30345.9i 2.58146i
\(518\) 840.822 + 1881.68i 0.0713197 + 0.159607i
\(519\) 5660.26i 0.478724i
\(520\) −1323.06 423.977i −0.111577 0.0357551i
\(521\) 4008.94i 0.337111i −0.985692 0.168556i \(-0.946090\pi\)
0.985692 0.168556i \(-0.0539103\pi\)
\(522\) −5196.89 + 2322.21i −0.435750 + 0.194713i
\(523\) 1471.81i 0.123055i −0.998105 0.0615275i \(-0.980403\pi\)
0.998105 0.0615275i \(-0.0195972\pi\)
\(524\) 3754.52 4192.50i 0.313009 0.349523i
\(525\) 8908.16 0.740541
\(526\) 387.796 + 867.852i 0.0321458 + 0.0719394i
\(527\) −839.676 −0.0694058
\(528\) −15166.1 + 1676.80i −1.25004 + 0.138207i
\(529\) 1311.74 0.107811
\(530\) 3710.21 + 8303.12i 0.304078 + 0.680499i
\(531\) 3412.83i 0.278916i
\(532\) 12410.5 6405.22i 1.01140 0.521995i
\(533\) 2168.12i 0.176195i
\(534\) −1703.00 + 760.979i −0.138008 + 0.0616681i
\(535\) 7776.05 0.628389
\(536\) −4189.64 1342.58i −0.337621 0.108191i
\(537\) −10668.5 −0.857319
\(538\) 10152.9 4536.79i 0.813612 0.363559i
\(539\) −5648.78 −0.451410
\(540\) −4170.50 + 4657.01i −0.332351 + 0.371122i
\(541\) 13377.9i 1.06314i 0.847013 + 0.531572i \(0.178398\pi\)
−0.847013 + 0.531572i \(0.821602\pi\)
\(542\) 1420.97 + 3179.99i 0.112612 + 0.252015i
\(543\) 4348.14i 0.343640i
\(544\) −4625.60 7888.44i −0.364561 0.621717i
\(545\) 1702.34i 0.133798i
\(546\) 2793.44 1248.24i 0.218952 0.0978380i
\(547\) 8140.50i 0.636312i 0.948038 + 0.318156i \(0.103064\pi\)
−0.948038 + 0.318156i \(0.896936\pi\)
\(548\) −304.253 + 339.746i −0.0237172 + 0.0264840i
\(549\) 3884.73i 0.301996i
\(550\) −14226.2 + 6356.91i −1.10292 + 0.492835i
\(551\) 6812.00 17880.2i 0.526681 1.38244i
\(552\) 3076.73 9601.22i 0.237236 0.740317i
\(553\) 17622.7i 1.35514i
\(554\) −1397.89 3128.34i −0.107203 0.239911i
\(555\) 756.439 0.0578542
\(556\) 213.786 238.725i 0.0163067 0.0182090i
\(557\) 12791.5i 0.973055i 0.873665 + 0.486528i \(0.161737\pi\)
−0.873665 + 0.486528i \(0.838263\pi\)
\(558\) −373.888 + 167.070i −0.0283655 + 0.0126750i
\(559\) 5365.48 0.405967
\(560\) −758.566 6861.00i −0.0572415 0.517732i
\(561\) 12044.0i 0.906417i
\(562\) −31.3746 70.2136i −0.00235491 0.00527007i
\(563\) 17455.4i 1.30667i −0.757069 0.653335i \(-0.773369\pi\)
0.757069 0.653335i \(-0.226631\pi\)
\(564\) −12424.0 + 13873.3i −0.927559 + 1.03576i
\(565\) 4163.88 0.310045
\(566\) 5302.13 2369.23i 0.393754 0.175947i
\(567\) 8809.60i 0.652502i
\(568\) −3993.80 + 12463.0i −0.295028 + 0.920662i
\(569\) 20979.5i 1.54570i −0.634587 0.772852i \(-0.718830\pi\)
0.634587 0.772852i \(-0.281170\pi\)
\(570\) −288.053 5117.77i −0.0211670 0.376070i
\(571\) 16991.3 1.24529 0.622647 0.782503i \(-0.286057\pi\)
0.622647 + 0.782503i \(0.286057\pi\)
\(572\) −3570.32 + 3986.82i −0.260984 + 0.291429i
\(573\) 17980.1 1.31087
\(574\) 9834.95 4394.70i 0.715161 0.319567i
\(575\) 10295.8i 0.746720i
\(576\) −3629.24 2592.19i −0.262532 0.187513i
\(577\) 12042.7 0.868879 0.434439 0.900701i \(-0.356946\pi\)
0.434439 + 0.900701i \(0.356946\pi\)
\(578\) 6096.93 2724.39i 0.438752 0.196055i
\(579\) 21764.9 1.56221
\(580\) −7045.04 6309.06i −0.504361 0.451671i
\(581\) 22253.1i 1.58901i
\(582\) 1841.88 823.034i 0.131182 0.0586183i
\(583\) 35032.2 2.48865
\(584\) 4873.89 15209.4i 0.345347 1.07769i
\(585\) 534.844i 0.0378002i
\(586\) 14541.8 6497.96i 1.02512 0.458068i
\(587\) 15375.9 1.08115 0.540573 0.841297i \(-0.318207\pi\)
0.540573 + 0.841297i \(0.318207\pi\)
\(588\) 2582.46 + 2312.67i 0.181120 + 0.162199i
\(589\) 490.087 1286.39i 0.0342847 0.0899910i
\(590\) 5176.87 2313.26i 0.361234 0.161416i
\(591\) −20867.7 −1.45242
\(592\) 243.125 + 2198.99i 0.0168790 + 0.152665i
\(593\) −10469.5 −0.725008 −0.362504 0.931982i \(-0.618078\pi\)
−0.362504 + 0.931982i \(0.618078\pi\)
\(594\) 9824.33 + 21986.0i 0.678615 + 1.51868i
\(595\) −5448.60 −0.375413
\(596\) 8185.97 + 7330.79i 0.562601 + 0.503827i
\(597\) 8963.94 0.614522
\(598\) −1442.67 3228.57i −0.0986544 0.220779i
\(599\) 12010.9 0.819289 0.409644 0.912245i \(-0.365653\pi\)
0.409644 + 0.912245i \(0.365653\pi\)
\(600\) 9106.38 + 2918.16i 0.619611 + 0.198556i
\(601\) 4217.84i 0.286272i 0.989703 + 0.143136i \(0.0457186\pi\)
−0.989703 + 0.143136i \(0.954281\pi\)
\(602\) 10875.6 + 24338.7i 0.736309 + 1.64779i
\(603\) 1693.65i 0.114380i
\(604\) −7858.50 + 8775.23i −0.529400 + 0.591157i
\(605\) 9092.05i 0.610982i
\(606\) −10317.8 + 4610.48i −0.691639 + 0.309056i
\(607\) −8359.29 −0.558967 −0.279484 0.960150i \(-0.590163\pi\)
−0.279484 + 0.960150i \(0.590163\pi\)
\(608\) 14784.9 2482.26i 0.986197 0.165574i
\(609\) 20826.8 1.38579
\(610\) −5892.68 + 2633.12i −0.391127 + 0.174774i
\(611\) 6531.94i 0.432494i
\(612\) −2348.51 + 2622.48i −0.155119 + 0.173215i
\(613\) 27108.4i 1.78613i 0.449928 + 0.893065i \(0.351449\pi\)
−0.449928 + 0.893065i \(0.648551\pi\)
\(614\) −3951.34 8842.74i −0.259712 0.581212i
\(615\) 3953.66i 0.259231i
\(616\) −25321.8 8114.41i −1.65624 0.530745i
\(617\) 10147.5 0.662110 0.331055 0.943611i \(-0.392595\pi\)
0.331055 + 0.943611i \(0.392595\pi\)
\(618\) 7138.38 + 15975.0i 0.464641 + 1.03982i
\(619\) 4586.59 0.297820 0.148910 0.988851i \(-0.452424\pi\)
0.148910 + 0.988851i \(0.452424\pi\)
\(620\) −506.853 453.903i −0.0328318 0.0294019i
\(621\) −15911.7 −1.02820
\(622\) −4281.83 9582.35i −0.276022 0.617713i
\(623\) −3250.53 −0.209036
\(624\) 3264.49 360.929i 0.209430 0.0231550i
\(625\) 6492.50 0.415520
\(626\) 13290.2 5938.69i 0.848539 0.379166i
\(627\) −18451.5 7029.65i −1.17525 0.447747i
\(628\) 5133.17 + 4596.91i 0.326172 + 0.292097i
\(629\) 1746.31 0.110699
\(630\) −2426.14 + 1084.11i −0.153428 + 0.0685587i
\(631\) 17946.4i 1.13222i −0.824328 0.566112i \(-0.808447\pi\)
0.824328 0.566112i \(-0.191553\pi\)
\(632\) 5772.90 18014.8i 0.363344 1.13385i
\(633\) 5470.72 0.343510
\(634\) −1084.03 + 484.396i −0.0679061 + 0.0303436i
\(635\) 7039.75i 0.439943i
\(636\) −16015.7 14342.6i −0.998528 0.894213i
\(637\) 1215.90 0.0756288
\(638\) −33260.0 + 14862.1i −2.06391 + 0.922250i
\(639\) 5038.15 0.311903
\(640\) 1472.10 7262.15i 0.0909215 0.448534i
\(641\) 13724.0i 0.845653i 0.906211 + 0.422827i \(0.138962\pi\)
−0.906211 + 0.422827i \(0.861038\pi\)
\(642\) −16783.2 + 7499.52i −1.03175 + 0.461032i
\(643\) −27348.3 −1.67731 −0.838655 0.544663i \(-0.816657\pi\)
−0.838655 + 0.544663i \(0.816657\pi\)
\(644\) 11721.1 13088.4i 0.717197 0.800862i
\(645\) 9784.19 0.597290
\(646\) −664.996 11814.9i −0.0405014 0.719581i
\(647\) 13328.5i 0.809889i 0.914341 + 0.404944i \(0.132709\pi\)
−0.914341 + 0.404944i \(0.867291\pi\)
\(648\) 2885.87 9005.63i 0.174950 0.545948i
\(649\) 21842.0i 1.32107i
\(650\) 3062.17 1368.32i 0.184782 0.0825691i
\(651\) 1498.37 0.0902088
\(652\) 2893.34 3230.87i 0.173791 0.194065i
\(653\) 17174.6i 1.02924i −0.857418 0.514620i \(-0.827933\pi\)
0.857418 0.514620i \(-0.172067\pi\)
\(654\) −1641.80 3674.19i −0.0981642 0.219682i
\(655\) 3599.59i 0.214729i
\(656\) 11493.4 1270.73i 0.684058 0.0756309i
\(657\) −6148.37 −0.365100
\(658\) −29629.9 + 13240.0i −1.75546 + 0.784421i
\(659\) 3745.24i 0.221387i −0.993855 0.110693i \(-0.964693\pi\)
0.993855 0.110693i \(-0.0353071\pi\)
\(660\) −6510.64 + 7270.14i −0.383979 + 0.428772i
\(661\) −16368.3 −0.963167 −0.481583 0.876400i \(-0.659938\pi\)
−0.481583 + 0.876400i \(0.659938\pi\)
\(662\) 8834.90 + 19771.7i 0.518698 + 1.16080i
\(663\) 2592.47i 0.151860i
\(664\) −7289.73 + 22748.3i −0.426049 + 1.32952i
\(665\) 3180.15 8347.29i 0.185445 0.486758i
\(666\) 777.592 347.464i 0.0452419 0.0202161i
\(667\) 24071.0i 1.39735i
\(668\) −16972.2 + 18952.1i −0.983045 + 1.09772i
\(669\) 22860.0i 1.32110i
\(670\) −2569.08 + 1147.98i −0.148137 + 0.0661946i
\(671\) 24862.2i 1.43039i
\(672\) 8254.24 + 14076.7i 0.473831 + 0.808065i
\(673\) 33489.6i 1.91817i −0.283115 0.959086i \(-0.591368\pi\)
0.283115 0.959086i \(-0.408632\pi\)
\(674\) −5812.38 13007.6i −0.332173 0.743373i
\(675\) 15091.6i 0.860559i
\(676\) −10956.9 + 12235.0i −0.623399 + 0.696121i
\(677\) 6306.47 0.358017 0.179008 0.983848i \(-0.442711\pi\)
0.179008 + 0.983848i \(0.442711\pi\)
\(678\) −8987.00 + 4015.80i −0.509062 + 0.227472i
\(679\) 3515.60 0.198699
\(680\) −5569.84 1784.87i −0.314108 0.100657i
\(681\) −28316.0 −1.59335
\(682\) −2392.88 + 1069.25i −0.134352 + 0.0600346i
\(683\) 11532.0i 0.646060i 0.946389 + 0.323030i \(0.104701\pi\)
−0.946389 + 0.323030i \(0.895299\pi\)
\(684\) −2646.91 5128.57i −0.147964 0.286690i
\(685\) 291.698i 0.0162704i
\(686\) −5878.31 13155.1i −0.327165 0.732165i
\(687\) −1900.15 −0.105524
\(688\) 3144.71 + 28442.9i 0.174260 + 1.57613i
\(689\) −7540.65 −0.416946
\(690\) −2630.78 5887.44i −0.145148 0.324828i
\(691\) −9591.93 −0.528067 −0.264033 0.964514i \(-0.585053\pi\)
−0.264033 + 0.964514i \(0.585053\pi\)
\(692\) −7063.75 + 7887.77i −0.388040 + 0.433306i
\(693\) 10236.3i 0.561102i
\(694\) −7208.30 + 3221.00i −0.394270 + 0.176178i
\(695\) 204.964i 0.0111867i
\(696\) 21290.2 + 6822.49i 1.15949 + 0.371560i
\(697\) 9127.40i 0.496019i
\(698\) 8493.35 + 19007.3i 0.460570 + 1.03071i
\(699\) 3380.47i 0.182920i
\(700\) 12413.8 + 11117.0i 0.670284 + 0.600260i
\(701\) 17722.6i 0.954883i 0.878664 + 0.477441i \(0.158436\pi\)
−0.878664 + 0.477441i \(0.841564\pi\)
\(702\) −2114.68 4732.46i −0.113694 0.254438i
\(703\) −1019.26 + 2675.36i −0.0546827 + 0.143532i
\(704\) −23227.1 16589.9i −1.24347 0.888148i
\(705\) 11911.3i 0.636319i
\(706\) 922.882 412.386i 0.0491971 0.0219835i
\(707\) −19693.7 −1.04761
\(708\) −8942.36 + 9985.54i −0.474682 + 0.530056i
\(709\) 27938.2i 1.47989i −0.672668 0.739945i \(-0.734852\pi\)
0.672668 0.739945i \(-0.265148\pi\)
\(710\) 3414.92 + 7642.28i 0.180507 + 0.403957i
\(711\) −7282.47 −0.384126
\(712\) −3322.86 1064.82i −0.174901 0.0560473i
\(713\) 1731.78i 0.0909615i
\(714\) 11759.9 5254.84i 0.616389 0.275431i
\(715\) 3422.99i 0.179039i
\(716\) −14866.9 13313.8i −0.775983 0.694917i
\(717\) −2189.37 −0.114036
\(718\) 7649.03 + 17117.8i 0.397575 + 0.889738i
\(719\) 6279.21i 0.325695i −0.986651 0.162848i \(-0.947932\pi\)
0.986651 0.162848i \(-0.0520679\pi\)
\(720\) −2835.26 + 313.472i −0.146755 + 0.0162256i
\(721\) 30491.7i 1.57499i
\(722\) 18488.6 + 5877.11i 0.953009 + 0.302941i
\(723\) −15972.7 −0.821622
\(724\) 5426.28 6059.29i 0.278544 0.311038i
\(725\) 22830.4 1.16952
\(726\) 8768.72 + 19623.6i 0.448261 + 1.00317i
\(727\) 28090.3i 1.43303i 0.697573 + 0.716514i \(0.254263\pi\)
−0.697573 + 0.716514i \(0.745737\pi\)
\(728\) 5450.49 + 1746.62i 0.277484 + 0.0889204i
\(729\) −21274.8 −1.08087
\(730\) −4167.45 9326.37i −0.211293 0.472856i
\(731\) 22587.7 1.14287
\(732\) 10178.8 11366.3i 0.513963 0.573919i
\(733\) 5799.40i 0.292232i −0.989267 0.146116i \(-0.953323\pi\)
0.989267 0.146116i \(-0.0466772\pi\)
\(734\) −6477.89 14496.9i −0.325754 0.729007i
\(735\) 2217.24 0.111271
\(736\) 16269.4 9540.01i 0.814807 0.477784i
\(737\) 10839.3i 0.541753i
\(738\) −1816.08 4064.22i −0.0905838 0.202718i
\(739\) −3497.49 −0.174096 −0.0870482 0.996204i \(-0.527743\pi\)
−0.0870482 + 0.996204i \(0.527743\pi\)
\(740\) 1054.12 + 944.001i 0.0523654 + 0.0468948i
\(741\) 3971.68 + 1513.13i 0.196901 + 0.0750150i
\(742\) −15284.6 34205.6i −0.756222 1.69236i
\(743\) 24794.8 1.22427 0.612136 0.790753i \(-0.290310\pi\)
0.612136 + 0.790753i \(0.290310\pi\)
\(744\) 1531.72 + 490.841i 0.0754777 + 0.0241870i
\(745\) 7028.29 0.345633
\(746\) −20341.5 + 9089.51i −0.998331 + 0.446100i
\(747\) 9195.94 0.450417
\(748\) −15030.4 + 16783.8i −0.734714 + 0.820422i
\(749\) −32034.3 −1.56276
\(750\) 12647.5 5651.46i 0.615759 0.275150i
\(751\) 8303.20 0.403446 0.201723 0.979443i \(-0.435346\pi\)
0.201723 + 0.979443i \(0.435346\pi\)
\(752\) −34626.4 + 3828.37i −1.67912 + 0.185647i
\(753\) 29036.1i 1.40523i
\(754\) 7159.19 3199.05i 0.345785 0.154513i
\(755\) 7534.21i 0.363176i
\(756\) 17180.8 19185.1i 0.826535 0.922955i
\(757\) 27391.6i 1.31514i −0.753392 0.657572i \(-0.771584\pi\)
0.753392 0.657572i \(-0.228416\pi\)
\(758\) 2641.88 + 5912.29i 0.126593 + 0.283303i
\(759\) −24840.1 −1.18793
\(760\) 5985.33 7491.27i 0.285672 0.357549i
\(761\) −35928.5 −1.71144 −0.855720 0.517440i \(-0.826885\pi\)
−0.855720 + 0.517440i \(0.826885\pi\)
\(762\) −6789.40 15194.1i −0.322774 0.722340i
\(763\) 7012.96i 0.332747i
\(764\) 25055.9 + 22438.3i 1.18651 + 1.06255i
\(765\) 2251.60i 0.106414i
\(766\) 32614.9 14573.8i 1.53841 0.687433i
\(767\) 4701.48i 0.221331i
\(768\) 3826.64 + 17093.8i 0.179794 + 0.803152i
\(769\) 21937.0 1.02870 0.514350 0.857581i \(-0.328033\pi\)
0.514350 + 0.857581i \(0.328033\pi\)
\(770\) −15527.2 + 6938.28i −0.726705 + 0.324725i
\(771\) 26824.6 1.25300
\(772\) 30330.1 + 27161.5i 1.41399 + 1.26628i
\(773\) −3440.04 −0.160064 −0.0800321 0.996792i \(-0.525502\pi\)
−0.0800321 + 0.996792i \(0.525502\pi\)
\(774\) 10057.8 4494.28i 0.467080 0.208713i
\(775\) 1642.52 0.0761305
\(776\) 3593.82 + 1151.65i 0.166251 + 0.0532755i
\(777\) −3116.23 −0.143879
\(778\) −12092.6 27062.1i −0.557249 1.24707i
\(779\) 13983.2 + 5327.32i 0.643134 + 0.245021i
\(780\) 1401.41 1564.89i 0.0643314 0.0718360i
\(781\) 32244.0 1.47731
\(782\) −6073.39 13591.7i −0.277729 0.621532i
\(783\) 35283.4i 1.61038i
\(784\) 712.636 + 6445.58i 0.0324634 + 0.293621i
\(785\) 4407.22 0.200383
\(786\) 3471.58 + 7769.08i 0.157541 + 0.352562i
\(787\) 42581.9i 1.92869i 0.264642 + 0.964347i \(0.414746\pi\)
−0.264642 + 0.964347i \(0.585254\pi\)
\(788\) −29079.9 26041.9i −1.31463 1.17729i
\(789\) −1437.24 −0.0648506
\(790\) −4936.15 11046.7i −0.222304 0.497497i
\(791\) −17153.6 −0.771062
\(792\) −3353.22 + 10464.0i −0.150444 + 0.469474i
\(793\) 5351.56i 0.239646i
\(794\) 389.778 + 872.287i 0.0174215 + 0.0389878i
\(795\) −13750.7 −0.613444
\(796\) 12491.6 + 11186.6i 0.556220 + 0.498113i
\(797\) 41337.9 1.83722 0.918609 0.395168i \(-0.129313\pi\)
0.918609 + 0.395168i \(0.129313\pi\)
\(798\) 1186.66 + 21083.2i 0.0526409 + 0.935261i
\(799\) 27498.3i 1.21755i
\(800\) 9048.32 + 15430.9i 0.399883 + 0.681956i
\(801\) 1343.26i 0.0592530i
\(802\) −8502.93 19028.8i −0.374375 0.837818i
\(803\) −39349.5 −1.72928
\(804\) 4437.74 4955.43i 0.194661 0.217369i
\(805\) 11237.4i 0.492008i
\(806\) 515.065 230.155i 0.0225092 0.0100581i
\(807\) 16814.1i 0.733440i
\(808\) −20131.9 6451.31i −0.876532 0.280887i
\(809\) 21651.8 0.940959 0.470480 0.882411i \(-0.344081\pi\)
0.470480 + 0.882411i \(0.344081\pi\)
\(810\) −2467.58 5522.23i −0.107040 0.239545i
\(811\) 24322.0i 1.05310i −0.850145 0.526548i \(-0.823486\pi\)
0.850145 0.526548i \(-0.176514\pi\)
\(812\) 29022.8 + 25990.8i 1.25431 + 1.12328i
\(813\) −5266.35 −0.227182
\(814\) 4976.57 2223.76i 0.214286 0.0957527i
\(815\) 2773.95i 0.119224i
\(816\) 13742.9 1519.45i 0.589582 0.0651853i
\(817\) −13183.6 + 34604.5i −0.564548 + 1.48183i
\(818\) −2906.25 6503.93i −0.124223 0.278001i
\(819\) 2203.35i 0.0940064i
\(820\) 4933.99 5509.57i 0.210125 0.234637i
\(821\) 20218.4i 0.859471i −0.902955 0.429736i \(-0.858607\pi\)
0.902955 0.429736i \(-0.141393\pi\)
\(822\) −281.325 629.579i −0.0119371 0.0267142i
\(823\) 22606.5i 0.957491i 0.877954 + 0.478745i \(0.158908\pi\)
−0.877954 + 0.478745i \(0.841092\pi\)
\(824\) −9988.54 + 31170.1i −0.422290 + 1.31780i
\(825\) 23559.8i 0.994240i
\(826\) −21326.7 + 9529.73i −0.898365 + 0.401431i
\(827\) 19096.5i 0.802965i −0.915867 0.401482i \(-0.868495\pi\)
0.915867 0.401482i \(-0.131505\pi\)
\(828\) −5408.69 4843.65i −0.227011 0.203295i
\(829\) −36258.4 −1.51907 −0.759534 0.650468i \(-0.774573\pi\)
−0.759534 + 0.650468i \(0.774573\pi\)
\(830\) 6233.13 + 13949.2i 0.260669 + 0.583353i
\(831\) 5180.82 0.216270
\(832\) 4999.61 + 3570.97i 0.208329 + 0.148799i
\(833\) 5118.70 0.212908
\(834\) 197.675 + 442.379i 0.00820735 + 0.0183673i
\(835\) 16271.8i 0.674384i
\(836\) −16940.2 32822.7i −0.700823 1.35789i
\(837\) 2538.45i 0.104829i
\(838\) −15191.0 + 6788.04i −0.626211 + 0.279820i
\(839\) −25042.3 −1.03046 −0.515231 0.857052i \(-0.672294\pi\)
−0.515231 + 0.857052i \(0.672294\pi\)
\(840\) 9939.21 + 3185.04i 0.408256 + 0.130827i
\(841\) 28987.1 1.18853
\(842\) −115.329 + 51.5341i −0.00472029 + 0.00210924i
\(843\) 116.280 0.00475077
\(844\) 7623.64 + 6827.21i 0.310920 + 0.278439i
\(845\) 10504.7i 0.427661i
\(846\) 5471.34 + 12244.4i 0.222351 + 0.497600i
\(847\) 37455.7i 1.51947i
\(848\) −4419.57 39973.7i −0.178973 1.61875i
\(849\) 8780.80i 0.354954i
\(850\) 12891.2 5760.38i 0.520193 0.232446i
\(851\) 3601.65i 0.145080i
\(852\) −14741.0 13201.1i −0.592746 0.530822i
\(853\) 30814.2i 1.23688i −0.785832 0.618440i \(-0.787765\pi\)
0.785832 0.618440i \(-0.212235\pi\)
\(854\) 24275.5 10847.4i 0.972707 0.434650i
\(855\) −3449.46 1314.17i −0.137976 0.0525658i
\(856\) −32747.1 10493.9i −1.30756 0.419011i
\(857\) 19271.3i 0.768141i −0.923304 0.384070i \(-0.874522\pi\)
0.923304 0.384070i \(-0.125478\pi\)
\(858\) −3301.26 7387.93i −0.131356 0.293962i
\(859\) −42244.9 −1.67797 −0.838987 0.544152i \(-0.816851\pi\)
−0.838987 + 0.544152i \(0.816851\pi\)
\(860\) 13634.6 + 12210.2i 0.540624 + 0.484145i
\(861\) 16287.6i 0.644690i
\(862\) 35330.6 15787.3i 1.39602 0.623804i
\(863\) 38811.6 1.53090 0.765448 0.643498i \(-0.222517\pi\)
0.765448 + 0.643498i \(0.222517\pi\)
\(864\) 23847.8 13983.8i 0.939026 0.550624i
\(865\) 6772.26i 0.266201i
\(866\) −1428.64 3197.17i −0.0560591 0.125455i
\(867\) 10097.1i 0.395518i
\(868\) 2088.04 + 1869.90i 0.0816504 + 0.0731205i
\(869\) −46607.6 −1.81940
\(870\) 13055.1 5833.61i 0.508746 0.227331i
\(871\) 2333.16i 0.0907648i
\(872\) 2297.32 7169.00i 0.0892169 0.278409i
\(873\) 1452.80i 0.0563227i
\(874\) 24367.4 1371.51i 0.943065 0.0530802i
\(875\) 24140.3 0.932674
\(876\) 17989.4 + 16110.1i 0.693843 + 0.621358i
\(877\) −14647.7 −0.563987 −0.281993 0.959416i \(-0.590996\pi\)
−0.281993 + 0.959416i \(0.590996\pi\)
\(878\) 18262.5 8160.54i 0.701971 0.313673i
\(879\) 24082.6i 0.924101i
\(880\) −18145.6 + 2006.21i −0.695100 + 0.0768516i
\(881\) 43128.6 1.64931 0.824654 0.565637i \(-0.191370\pi\)
0.824654 + 0.565637i \(0.191370\pi\)
\(882\) 2279.24 1018.47i 0.0870136 0.0388817i
\(883\) 33438.7 1.27441 0.637203 0.770696i \(-0.280091\pi\)
0.637203 + 0.770696i \(0.280091\pi\)
\(884\) 3235.28 3612.70i 0.123093 0.137453i
\(885\) 8573.35i 0.325639i
\(886\) −13213.8 + 5904.52i −0.501045 + 0.223890i
\(887\) 24663.4 0.933616 0.466808 0.884359i \(-0.345404\pi\)
0.466808 + 0.884359i \(0.345404\pi\)
\(888\) −3185.57 1020.82i −0.120384 0.0385773i
\(889\) 29001.0i 1.09411i
\(890\) −2037.57 + 910.478i −0.0767409 + 0.0342913i
\(891\) −23299.2 −0.876040
\(892\) 28528.2 31856.2i 1.07085 1.19577i
\(893\) −42127.5 16049.7i −1.57866 0.601437i
\(894\) −15169.3 + 6778.35i −0.567493 + 0.253582i
\(895\) −12764.4 −0.476723
\(896\) −6064.47 + 29917.2i −0.226116 + 1.11547i
\(897\) 5346.80 0.199024
\(898\) −19633.8 43938.6i −0.729607 1.63279i
\(899\) 3840.12 0.142464
\(900\) 4594.01 5129.93i 0.170149 0.189997i
\(901\) −31744.8 −1.17378
\(902\) −11622.9 26010.9i −0.429046 0.960165i
\(903\) −40307.0 −1.48542
\(904\) −17535.2 5619.20i −0.645147 0.206739i
\(905\) 5202.37i 0.191086i
\(906\) −7266.29 16261.3i −0.266453 0.596297i
\(907\) 18754.8i 0.686595i 0.939227 + 0.343298i \(0.111544\pi\)
−0.939227 + 0.343298i \(0.888456\pi\)
\(908\) −39459.3 35337.1i −1.44218 1.29152i
\(909\) 8138.28i 0.296952i
\(910\) 3342.23 1493.46i 0.121751 0.0544041i
\(911\) −51902.7 −1.88761 −0.943805 0.330503i \(-0.892782\pi\)
−0.943805 + 0.330503i \(0.892782\pi\)
\(912\) −5693.43 + 21941.1i −0.206720 + 0.796647i
\(913\) 58853.8 2.13338
\(914\) −31128.7 + 13909.7i −1.12653 + 0.503384i
\(915\) 9758.80i 0.352586i
\(916\) −2647.92 2371.29i −0.0955128 0.0855347i
\(917\) 14828.9i 0.534016i
\(918\) −8902.42 19922.8i −0.320069 0.716286i
\(919\) 15079.5i 0.541271i 0.962682 + 0.270635i \(0.0872337\pi\)
−0.962682 + 0.270635i \(0.912766\pi\)
\(920\) 3681.17 11487.4i 0.131918 0.411663i
\(921\) 14644.4 0.523940
\(922\) −8944.80 20017.6i −0.319502 0.715017i
\(923\) −6940.50 −0.247507
\(924\) 26821.3 29950.1i 0.954930 1.06633i
\(925\) −3416.03 −0.121425
\(926\) −20012.0 44785.1i −0.710190 1.58934i
\(927\) 12600.5 0.446444
\(928\) 21154.5 + 36076.5i 0.748307 + 1.27615i
\(929\) 3324.32 0.117403 0.0587014 0.998276i \(-0.481304\pi\)
0.0587014 + 0.998276i \(0.481304\pi\)
\(930\) 939.244 419.697i 0.0331172 0.0147983i
\(931\) −2987.59 + 7841.88i −0.105171 + 0.276055i
\(932\) −4218.67 + 4710.80i −0.148270 + 0.165566i
\(933\) 15869.2 0.556844
\(934\) −506.132 + 226.163i −0.0177314 + 0.00792321i
\(935\) 14410.2i 0.504025i
\(936\) 721.779 2252.38i 0.0252052 0.0786551i
\(937\) 20991.3 0.731863 0.365931 0.930642i \(-0.380750\pi\)
0.365931 + 0.930642i \(0.380750\pi\)
\(938\) 10583.6 4729.23i 0.368408 0.164621i
\(939\) 22009.8i 0.764925i
\(940\) −14864.7 + 16598.8i −0.515781 + 0.575949i
\(941\) 10831.0 0.375217 0.187609 0.982244i \(-0.439926\pi\)
0.187609 + 0.982244i \(0.439926\pi\)
\(942\) −9512.22 + 4250.49i −0.329007 + 0.147015i
\(943\) 18824.7 0.650070
\(944\) −24923.0 + 2755.53i −0.859294 + 0.0950053i
\(945\) 16471.9i 0.567015i
\(946\) 64369.6 28763.3i 2.21230 0.988557i
\(947\) 8142.15 0.279392 0.139696 0.990194i \(-0.455387\pi\)
0.139696 + 0.990194i \(0.455387\pi\)
\(948\) 21307.6 + 19081.7i 0.730000 + 0.653738i
\(949\) 8469.94 0.289722
\(950\) 1300.82 + 23111.5i 0.0444256 + 0.789301i
\(951\) 1795.26i 0.0612147i
\(952\) 22945.6 + 7352.96i 0.781166 + 0.250326i
\(953\) 13622.2i 0.463029i −0.972831 0.231514i \(-0.925632\pi\)
0.972831 0.231514i \(-0.0743680\pi\)
\(954\) −14135.2 + 6316.27i −0.479712 + 0.214357i
\(955\) 21512.4 0.728927
\(956\) −3050.96 2732.23i −0.103217 0.0924339i
\(957\) 55081.5i 1.86054i
\(958\) 2213.99 + 4954.71i 0.0746669 + 0.167098i
\(959\) 1201.68i 0.0404633i
\(960\) 9117.00 + 6511.82i 0.306510 + 0.218925i
\(961\) −29514.7 −0.990726
\(962\) −1071.20 + 478.663i −0.0359012 + 0.0160423i
\(963\) 13237.9i 0.442977i
\(964\) −22258.6 19933.2i −0.743672 0.665982i
\(965\) 26040.7 0.868684
\(966\) 10837.8 + 24254.0i 0.360973 + 0.807824i
\(967\) 8408.30i 0.279620i −0.990178 0.139810i \(-0.955351\pi\)
0.990178 0.139810i \(-0.0446492\pi\)
\(968\) −12269.8 + 38289.1i −0.407404 + 1.27134i
\(969\) 16720.1 + 6369.99i 0.554309 + 0.211180i
\(970\) 2203.72 984.725i 0.0729457 0.0325955i
\(971\) 32453.2i 1.07258i 0.844034 + 0.536289i \(0.180174\pi\)
−0.844034 + 0.536289i \(0.819826\pi\)
\(972\) −13922.3 12467.9i −0.459422 0.411427i
\(973\) 844.371i 0.0278204i
\(974\) 51279.9 22914.2i 1.68698 0.753818i
\(975\) 5071.23i 0.166574i
\(976\) 28369.1 3136.55i 0.930403 0.102867i
\(977\) 26752.7i 0.876043i 0.898964 + 0.438022i \(0.144321\pi\)
−0.898964 + 0.438022i \(0.855679\pi\)
\(978\) 2675.30 + 5987.08i 0.0874711 + 0.195752i
\(979\) 8596.82i 0.280649i
\(980\) 3089.80 + 2767.01i 0.100714 + 0.0901928i
\(981\) −2898.06 −0.0943199
\(982\) 196.556 87.8304i 0.00638734 0.00285416i
\(983\) 27701.3 0.898813 0.449407 0.893327i \(-0.351635\pi\)
0.449407 + 0.893327i \(0.351635\pi\)
\(984\) −5335.52 + 16650.0i −0.172856 + 0.539412i
\(985\) −24967.3 −0.807639
\(986\) 30138.9 13467.4i 0.973446 0.434980i
\(987\) 49069.8i 1.58248i
\(988\) 3646.36 + 7065.07i 0.117415 + 0.227500i
\(989\) 46585.7i 1.49781i
\(990\) 2867.20 + 6416.52i 0.0920459 + 0.205990i
\(991\) 17325.9 0.555375 0.277688 0.960671i \(-0.410432\pi\)
0.277688 + 0.960671i \(0.410432\pi\)
\(992\) 1521.95 + 2595.51i 0.0487117 + 0.0830722i
\(993\) −32743.7 −1.04642
\(994\) −14068.1 31483.2i −0.448908 1.00461i
\(995\) 10725.0 0.341713
\(996\) −26906.2 24095.4i −0.855981 0.766557i
\(997\) 18.5484i 0.000589201i 1.00000 0.000294600i \(9.37742e-5\pi\)
−1.00000 0.000294600i \(0.999906\pi\)
\(998\) −24822.4 + 11091.8i −0.787315 + 0.351809i
\(999\) 5279.33i 0.167198i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 152.4.b.b.75.8 yes 56
4.3 odd 2 608.4.b.b.303.39 56
8.3 odd 2 inner 152.4.b.b.75.50 yes 56
8.5 even 2 608.4.b.b.303.40 56
19.18 odd 2 inner 152.4.b.b.75.49 yes 56
76.75 even 2 608.4.b.b.303.17 56
152.37 odd 2 608.4.b.b.303.18 56
152.75 even 2 inner 152.4.b.b.75.7 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.4.b.b.75.7 56 152.75 even 2 inner
152.4.b.b.75.8 yes 56 1.1 even 1 trivial
152.4.b.b.75.49 yes 56 19.18 odd 2 inner
152.4.b.b.75.50 yes 56 8.3 odd 2 inner
608.4.b.b.303.17 56 76.75 even 2
608.4.b.b.303.18 56 152.37 odd 2
608.4.b.b.303.39 56 4.3 odd 2
608.4.b.b.303.40 56 8.5 even 2