Properties

Label 152.4.p.a.45.15
Level $152$
Weight $4$
Character 152.45
Analytic conductor $8.968$
Analytic rank $0$
Dimension $116$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [152,4,Mod(45,152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(152, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("152.45");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 152.p (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.96829032087\)
Analytic rank: \(0\)
Dimension: \(116\)
Relative dimension: \(58\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 45.15
Character \(\chi\) \(=\) 152.45
Dual form 152.4.p.a.125.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.95037 - 2.04843i) q^{2} +(-0.706252 + 0.407755i) q^{3} +(-0.392134 + 7.99038i) q^{4} +(-12.8180 + 7.40046i) q^{5} +(2.21271 + 0.651437i) q^{6} +26.8247 q^{7} +(17.1326 - 14.7809i) q^{8} +(-13.1675 + 22.8067i) q^{9} +O(q^{10})\) \(q+(-1.95037 - 2.04843i) q^{2} +(-0.706252 + 0.407755i) q^{3} +(-0.392134 + 7.99038i) q^{4} +(-12.8180 + 7.40046i) q^{5} +(2.21271 + 0.651437i) q^{6} +26.8247 q^{7} +(17.1326 - 14.7809i) q^{8} +(-13.1675 + 22.8067i) q^{9} +(40.1591 + 11.8231i) q^{10} -49.8833i q^{11} +(-2.98117 - 5.80312i) q^{12} +(-38.4561 - 22.2026i) q^{13} +(-52.3180 - 54.9485i) q^{14} +(6.03515 - 10.4532i) q^{15} +(-63.6925 - 6.26661i) q^{16} +(-17.0158 - 29.4722i) q^{17} +(72.3994 - 17.5089i) q^{18} +(-47.2126 + 68.0439i) q^{19} +(-54.1062 - 105.323i) q^{20} +(-18.9450 + 10.9379i) q^{21} +(-102.182 + 97.2908i) q^{22} +(92.5634 - 160.324i) q^{23} +(-6.07291 + 17.4249i) q^{24} +(47.0337 - 81.4647i) q^{25} +(29.5229 + 122.078i) q^{26} -43.4952i q^{27} +(-10.5189 + 214.339i) q^{28} +(-18.4731 - 10.6654i) q^{29} +(-33.1834 + 8.02497i) q^{30} -336.831 q^{31} +(111.387 + 142.692i) q^{32} +(20.3402 + 35.2302i) q^{33} +(-27.1847 + 92.3372i) q^{34} +(-343.838 + 198.515i) q^{35} +(-177.071 - 114.156i) q^{36} -330.438i q^{37} +(231.465 - 35.9987i) q^{38} +36.2129 q^{39} +(-110.219 + 316.250i) q^{40} +(-86.7691 - 150.289i) q^{41} +(59.3552 + 17.4746i) q^{42} +(-84.5716 + 48.8274i) q^{43} +(398.587 + 19.5610i) q^{44} -389.782i q^{45} +(-508.946 + 123.082i) q^{46} +(156.165 - 270.486i) q^{47} +(47.5382 - 21.5451i) q^{48} +376.563 q^{49} +(-258.608 + 62.5409i) q^{50} +(24.0348 + 13.8765i) q^{51} +(192.487 - 298.572i) q^{52} +(-503.418 - 290.649i) q^{53} +(-89.0968 + 84.8315i) q^{54} +(369.159 + 639.403i) q^{55} +(459.575 - 396.493i) q^{56} +(5.59880 - 67.3073i) q^{57} +(14.1819 + 58.6424i) q^{58} +(172.474 - 99.5777i) q^{59} +(81.1584 + 52.3222i) q^{60} +(661.860 + 382.125i) q^{61} +(656.945 + 689.975i) q^{62} +(-353.213 + 611.783i) q^{63} +(75.0486 - 506.470i) q^{64} +657.239 q^{65} +(32.4958 - 110.377i) q^{66} +(135.307 + 78.1194i) q^{67} +(242.166 - 124.405i) q^{68} +150.973i q^{69} +(1077.25 + 317.151i) q^{70} +(-234.750 - 406.599i) q^{71} +(111.512 + 585.365i) q^{72} +(138.974 + 240.709i) q^{73} +(-676.880 + 644.476i) q^{74} +76.7128i q^{75} +(-525.183 - 403.929i) q^{76} -1338.10i q^{77} +(-70.6285 - 74.1796i) q^{78} +(-115.717 - 200.427i) q^{79} +(862.784 - 391.028i) q^{80} +(-337.786 - 585.063i) q^{81} +(-138.624 + 470.858i) q^{82} +273.136i q^{83} +(-79.9690 - 155.667i) q^{84} +(436.215 + 251.849i) q^{85} +(264.965 + 78.0076i) q^{86} +17.3955 q^{87} +(-737.321 - 854.628i) q^{88} +(-667.690 + 1156.47i) q^{89} +(-798.440 + 760.217i) q^{90} +(-1031.57 - 595.578i) q^{91} +(1244.76 + 802.486i) q^{92} +(237.888 - 137.345i) q^{93} +(-858.651 + 207.654i) q^{94} +(101.614 - 1221.58i) q^{95} +(-136.851 - 55.3578i) q^{96} +(222.145 + 384.767i) q^{97} +(-734.437 - 771.363i) q^{98} +(1137.67 + 656.837i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 116 q - q^{2} - 7 q^{4} - 11 q^{6} - 8 q^{7} - 46 q^{8} + 484 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 116 q - q^{2} - 7 q^{4} - 11 q^{6} - 8 q^{7} - 46 q^{8} + 484 q^{9} - 44 q^{10} - 58 q^{12} + 24 q^{14} - 230 q^{15} - 67 q^{16} - 2 q^{17} + 196 q^{18} - 840 q^{20} + 137 q^{22} - 2 q^{23} + 77 q^{24} + 1248 q^{25} + 492 q^{26} - 96 q^{28} - 904 q^{30} + 208 q^{31} - 431 q^{32} - 180 q^{33} + 224 q^{34} - 84 q^{36} + 1552 q^{38} - 116 q^{39} - 58 q^{40} - 22 q^{41} - 568 q^{42} - 89 q^{44} - 1852 q^{46} + 202 q^{47} - 89 q^{48} + 5220 q^{49} - 942 q^{50} + 232 q^{52} - 231 q^{54} + 248 q^{55} - 2296 q^{56} - 398 q^{57} - 3620 q^{58} - 1378 q^{60} + 614 q^{62} - 796 q^{63} + 1550 q^{64} - 508 q^{65} - 797 q^{66} + 1860 q^{68} - 2968 q^{70} + 1986 q^{71} - 1596 q^{72} - 218 q^{73} + 2490 q^{74} - 4697 q^{76} + 1254 q^{78} + 1250 q^{79} + 3136 q^{80} - 3810 q^{81} - 169 q^{82} + 4136 q^{84} - 2360 q^{86} - 1404 q^{87} + 4434 q^{88} - 2 q^{89} + 1378 q^{90} - 1958 q^{92} - 4608 q^{94} + 438 q^{95} + 3410 q^{96} - 1586 q^{97} + 55 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/152\mathbb{Z}\right)^\times\).

\(n\) \(39\) \(77\) \(97\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.95037 2.04843i −0.689559 0.724230i
\(3\) −0.706252 + 0.407755i −0.135918 + 0.0784725i −0.566417 0.824119i \(-0.691671\pi\)
0.430499 + 0.902591i \(0.358338\pi\)
\(4\) −0.392134 + 7.99038i −0.0490168 + 0.998798i
\(5\) −12.8180 + 7.40046i −1.14647 + 0.661917i −0.948026 0.318194i \(-0.896924\pi\)
−0.198449 + 0.980111i \(0.563590\pi\)
\(6\) 2.21271 + 0.651437i 0.150556 + 0.0443246i
\(7\) 26.8247 1.44840 0.724198 0.689592i \(-0.242210\pi\)
0.724198 + 0.689592i \(0.242210\pi\)
\(8\) 17.1326 14.7809i 0.757159 0.653231i
\(9\) −13.1675 + 22.8067i −0.487684 + 0.844694i
\(10\) 40.1591 + 11.8231i 1.26994 + 0.373880i
\(11\) 49.8833i 1.36731i −0.729807 0.683654i \(-0.760390\pi\)
0.729807 0.683654i \(-0.239610\pi\)
\(12\) −2.98117 5.80312i −0.0717158 0.139601i
\(13\) −38.4561 22.2026i −0.820446 0.473685i 0.0301244 0.999546i \(-0.490410\pi\)
−0.850570 + 0.525862i \(0.823743\pi\)
\(14\) −52.3180 54.9485i −0.998755 1.04897i
\(15\) 6.03515 10.4532i 0.103885 0.179933i
\(16\) −63.6925 6.26661i −0.995195 0.0979157i
\(17\) −17.0158 29.4722i −0.242761 0.420474i 0.718739 0.695280i \(-0.244720\pi\)
−0.961500 + 0.274806i \(0.911386\pi\)
\(18\) 72.3994 17.5089i 0.948039 0.229271i
\(19\) −47.2126 + 68.0439i −0.570069 + 0.821596i
\(20\) −54.1062 105.323i −0.604925 1.17754i
\(21\) −18.9450 + 10.9379i −0.196864 + 0.113659i
\(22\) −102.182 + 97.2908i −0.990244 + 0.942839i
\(23\) 92.5634 160.324i 0.839165 1.45348i −0.0514285 0.998677i \(-0.516377\pi\)
0.890594 0.454800i \(-0.150289\pi\)
\(24\) −6.07291 + 17.4249i −0.0516511 + 0.148202i
\(25\) 47.0337 81.4647i 0.376269 0.651718i
\(26\) 29.5229 + 122.078i 0.222689 + 0.920824i
\(27\) 43.4952i 0.310024i
\(28\) −10.5189 + 214.339i −0.0709957 + 1.44666i
\(29\) −18.4731 10.6654i −0.118289 0.0682939i 0.439688 0.898150i \(-0.355089\pi\)
−0.557977 + 0.829856i \(0.688422\pi\)
\(30\) −33.1834 + 8.02497i −0.201948 + 0.0488384i
\(31\) −336.831 −1.95151 −0.975753 0.218876i \(-0.929761\pi\)
−0.975753 + 0.218876i \(0.929761\pi\)
\(32\) 111.387 + 142.692i 0.615332 + 0.788268i
\(33\) 20.3402 + 35.2302i 0.107296 + 0.185842i
\(34\) −27.1847 + 92.3372i −0.137122 + 0.465756i
\(35\) −343.838 + 198.515i −1.66055 + 0.958719i
\(36\) −177.071 114.156i −0.819774 0.528502i
\(37\) 330.438i 1.46821i −0.679036 0.734105i \(-0.737602\pi\)
0.679036 0.734105i \(-0.262398\pi\)
\(38\) 231.465 35.9987i 0.988121 0.153678i
\(39\) 36.2129 0.148685
\(40\) −110.219 + 316.250i −0.435679 + 1.25009i
\(41\) −86.7691 150.289i −0.330514 0.572467i 0.652099 0.758134i \(-0.273889\pi\)
−0.982613 + 0.185667i \(0.940555\pi\)
\(42\) 59.3552 + 17.4746i 0.218064 + 0.0641996i
\(43\) −84.5716 + 48.8274i −0.299931 + 0.173165i −0.642412 0.766359i \(-0.722066\pi\)
0.342481 + 0.939525i \(0.388733\pi\)
\(44\) 398.587 + 19.5610i 1.36566 + 0.0670210i
\(45\) 389.782i 1.29123i
\(46\) −508.946 + 123.082i −1.63130 + 0.394510i
\(47\) 156.165 270.486i 0.484660 0.839456i −0.515184 0.857079i \(-0.672277\pi\)
0.999845 + 0.0176230i \(0.00560988\pi\)
\(48\) 47.5382 21.5451i 0.142949 0.0647868i
\(49\) 376.563 1.09785
\(50\) −258.608 + 62.5409i −0.731453 + 0.176892i
\(51\) 24.0348 + 13.8765i 0.0659912 + 0.0381000i
\(52\) 192.487 298.572i 0.513331 0.796241i
\(53\) −503.418 290.649i −1.30471 0.753277i −0.323505 0.946226i \(-0.604861\pi\)
−0.981209 + 0.192950i \(0.938195\pi\)
\(54\) −89.0968 + 84.8315i −0.224529 + 0.213780i
\(55\) 369.159 + 639.403i 0.905045 + 1.56758i
\(56\) 459.575 396.493i 1.09667 0.946137i
\(57\) 5.59880 67.3073i 0.0130102 0.156405i
\(58\) 14.1819 + 58.6424i 0.0321064 + 0.132761i
\(59\) 172.474 99.5777i 0.380579 0.219727i −0.297491 0.954725i \(-0.596150\pi\)
0.678070 + 0.734997i \(0.262817\pi\)
\(60\) 81.1584 + 52.3222i 0.174625 + 0.112579i
\(61\) 661.860 + 382.125i 1.38922 + 0.802067i 0.993227 0.116187i \(-0.0370671\pi\)
0.395993 + 0.918254i \(0.370400\pi\)
\(62\) 656.945 + 689.975i 1.34568 + 1.41334i
\(63\) −353.213 + 611.783i −0.706360 + 1.22345i
\(64\) 75.0486 506.470i 0.146579 0.989199i
\(65\) 657.239 1.25416
\(66\) 32.4958 110.377i 0.0606054 0.205856i
\(67\) 135.307 + 78.1194i 0.246722 + 0.142445i 0.618262 0.785972i \(-0.287837\pi\)
−0.371540 + 0.928417i \(0.621170\pi\)
\(68\) 242.166 124.405i 0.431868 0.221859i
\(69\) 150.973i 0.263405i
\(70\) 1077.25 + 317.151i 1.83938 + 0.541526i
\(71\) −234.750 406.599i −0.392391 0.679640i 0.600374 0.799720i \(-0.295019\pi\)
−0.992764 + 0.120079i \(0.961685\pi\)
\(72\) 111.512 + 585.365i 0.182525 + 0.958138i
\(73\) 138.974 + 240.709i 0.222817 + 0.385930i 0.955662 0.294465i \(-0.0951415\pi\)
−0.732845 + 0.680395i \(0.761808\pi\)
\(74\) −676.880 + 644.476i −1.06332 + 1.01242i
\(75\) 76.7128i 0.118107i
\(76\) −525.183 403.929i −0.792666 0.609656i
\(77\) 1338.10i 1.98040i
\(78\) −70.6285 74.1796i −0.102527 0.107682i
\(79\) −115.717 200.427i −0.164799 0.285441i 0.771785 0.635884i \(-0.219364\pi\)
−0.936584 + 0.350443i \(0.886031\pi\)
\(80\) 862.784 391.028i 1.20578 0.546479i
\(81\) −337.786 585.063i −0.463356 0.802556i
\(82\) −138.624 + 470.858i −0.186688 + 0.634117i
\(83\) 273.136i 0.361212i 0.983556 + 0.180606i \(0.0578059\pi\)
−0.983556 + 0.180606i \(0.942194\pi\)
\(84\) −79.9690 155.667i −0.103873 0.202198i
\(85\) 436.215 + 251.849i 0.556638 + 0.321375i
\(86\) 264.965 + 78.0076i 0.332232 + 0.0978114i
\(87\) 17.3955 0.0214368
\(88\) −737.321 854.628i −0.893167 1.03527i
\(89\) −667.690 + 1156.47i −0.795225 + 1.37737i 0.127472 + 0.991842i \(0.459314\pi\)
−0.922696 + 0.385527i \(0.874020\pi\)
\(90\) −798.440 + 760.217i −0.935144 + 0.890377i
\(91\) −1031.57 595.578i −1.18833 0.686083i
\(92\) 1244.76 + 802.486i 1.41060 + 0.909401i
\(93\) 237.888 137.345i 0.265245 0.153139i
\(94\) −858.651 + 207.654i −0.942161 + 0.227849i
\(95\) 101.614 1221.58i 0.109741 1.31928i
\(96\) −136.851 55.3578i −0.145492 0.0588534i
\(97\) 222.145 + 384.767i 0.232530 + 0.402754i 0.958552 0.284917i \(-0.0919662\pi\)
−0.726022 + 0.687672i \(0.758633\pi\)
\(98\) −734.437 771.363i −0.757034 0.795097i
\(99\) 1137.67 + 656.837i 1.15496 + 0.666814i
\(100\) 632.491 + 407.762i 0.632491 + 0.407762i
\(101\) −892.297 515.168i −0.879078 0.507536i −0.00872382 0.999962i \(-0.502777\pi\)
−0.870354 + 0.492426i \(0.836110\pi\)
\(102\) −18.4517 76.2980i −0.0179117 0.0740650i
\(103\) 385.091 0.368390 0.184195 0.982890i \(-0.441032\pi\)
0.184195 + 0.982890i \(0.441032\pi\)
\(104\) −987.026 + 188.029i −0.930633 + 0.177286i
\(105\) 161.891 280.403i 0.150466 0.260615i
\(106\) 386.477 + 1598.09i 0.354132 + 1.46434i
\(107\) 1502.54i 1.35753i 0.734354 + 0.678767i \(0.237485\pi\)
−0.734354 + 0.678767i \(0.762515\pi\)
\(108\) 347.543 + 17.0559i 0.309651 + 0.0151964i
\(109\) 647.980 374.111i 0.569406 0.328746i −0.187506 0.982263i \(-0.560041\pi\)
0.756912 + 0.653517i \(0.226707\pi\)
\(110\) 589.776 2003.27i 0.511208 1.73640i
\(111\) 134.738 + 233.373i 0.115214 + 0.199556i
\(112\) −1708.53 168.100i −1.44144 0.141821i
\(113\) −305.728 −0.254517 −0.127259 0.991870i \(-0.540618\pi\)
−0.127259 + 0.991870i \(0.540618\pi\)
\(114\) −148.794 + 119.805i −0.122244 + 0.0984279i
\(115\) 2740.05i 2.22183i
\(116\) 92.4649 143.425i 0.0740099 0.114799i
\(117\) 1012.74 584.705i 0.800237 0.462017i
\(118\) −540.365 159.087i −0.421565 0.124111i
\(119\) −456.443 790.582i −0.351614 0.609013i
\(120\) −51.1102 268.295i −0.0388809 0.204099i
\(121\) −1157.34 −0.869529
\(122\) −508.113 2101.06i −0.377069 1.55919i
\(123\) 122.562 + 70.7611i 0.0898457 + 0.0518724i
\(124\) 132.083 2691.41i 0.0956565 1.94916i
\(125\) 457.832i 0.327598i
\(126\) 1942.09 469.669i 1.37314 0.332075i
\(127\) −288.254 + 499.271i −0.201405 + 0.348843i −0.948981 0.315332i \(-0.897884\pi\)
0.747576 + 0.664176i \(0.231217\pi\)
\(128\) −1183.84 + 834.070i −0.817482 + 0.575954i
\(129\) 39.8193 68.9690i 0.0271774 0.0470727i
\(130\) −1281.86 1346.31i −0.864817 0.908300i
\(131\) −2249.35 + 1298.67i −1.50021 + 0.866144i −0.500206 + 0.865907i \(0.666742\pi\)
−1.00000 0.000237637i \(0.999924\pi\)
\(132\) −289.479 + 148.711i −0.190878 + 0.0980576i
\(133\) −1266.46 + 1825.25i −0.825687 + 1.19000i
\(134\) −103.876 429.528i −0.0669664 0.276907i
\(135\) 321.884 + 557.520i 0.205210 + 0.355435i
\(136\) −727.150 253.425i −0.458475 0.159787i
\(137\) −824.045 + 1427.29i −0.513890 + 0.890084i 0.485980 + 0.873970i \(0.338463\pi\)
−0.999870 + 0.0161138i \(0.994871\pi\)
\(138\) 309.257 294.452i 0.190766 0.181634i
\(139\) 519.840 + 300.130i 0.317210 + 0.183142i 0.650149 0.759807i \(-0.274707\pi\)
−0.332938 + 0.942949i \(0.608040\pi\)
\(140\) −1451.38 2825.24i −0.876172 1.70555i
\(141\) 254.708i 0.152130i
\(142\) −375.041 + 1273.89i −0.221639 + 0.752833i
\(143\) −1107.54 + 1918.32i −0.647672 + 1.12180i
\(144\) 981.590 1370.10i 0.568049 0.792883i
\(145\) 315.717 0.180820
\(146\) 222.027 754.149i 0.125857 0.427492i
\(147\) −265.949 + 153.545i −0.149218 + 0.0861511i
\(148\) 2640.33 + 129.576i 1.46644 + 0.0719669i
\(149\) 1743.53 1006.62i 0.958625 0.553462i 0.0628755 0.998021i \(-0.479973\pi\)
0.895750 + 0.444559i \(0.146640\pi\)
\(150\) 157.141 149.618i 0.0855367 0.0814418i
\(151\) −2131.55 −1.14876 −0.574380 0.818589i \(-0.694757\pi\)
−0.574380 + 0.818589i \(0.694757\pi\)
\(152\) 196.878 + 1863.61i 0.105059 + 0.994466i
\(153\) 896.219 0.473562
\(154\) −2741.01 + 2609.79i −1.43427 + 1.36560i
\(155\) 4317.49 2492.71i 2.23735 1.29174i
\(156\) −14.2003 + 289.355i −0.00728805 + 0.148506i
\(157\) −346.742 + 200.192i −0.176261 + 0.101765i −0.585535 0.810647i \(-0.699116\pi\)
0.409274 + 0.912412i \(0.365782\pi\)
\(158\) −184.871 + 627.944i −0.0930858 + 0.316181i
\(159\) 474.054 0.236446
\(160\) −2483.74 1004.70i −1.22723 0.496430i
\(161\) 2482.98 4300.65i 1.21544 2.10521i
\(162\) −539.654 + 1833.02i −0.261723 + 0.888986i
\(163\) 242.009i 0.116292i 0.998308 + 0.0581461i \(0.0185189\pi\)
−0.998308 + 0.0581461i \(0.981481\pi\)
\(164\) 1234.89 634.385i 0.587979 0.302056i
\(165\) −521.439 301.053i −0.246024 0.142042i
\(166\) 559.500 532.716i 0.261600 0.249077i
\(167\) 487.319 844.061i 0.225808 0.391110i −0.730754 0.682641i \(-0.760831\pi\)
0.956561 + 0.291531i \(0.0941646\pi\)
\(168\) −162.904 + 467.418i −0.0748113 + 0.214655i
\(169\) −112.587 195.007i −0.0512459 0.0887605i
\(170\) −334.885 1384.76i −0.151085 0.624741i
\(171\) −930.187 1972.73i −0.415984 0.882214i
\(172\) −356.987 694.907i −0.158256 0.308059i
\(173\) −1282.26 + 740.312i −0.563516 + 0.325346i −0.754556 0.656236i \(-0.772147\pi\)
0.191039 + 0.981582i \(0.438814\pi\)
\(174\) −33.9277 35.6336i −0.0147819 0.0155251i
\(175\) 1261.66 2185.26i 0.544987 0.943946i
\(176\) −312.599 + 3177.19i −0.133881 + 1.36074i
\(177\) −81.2066 + 140.654i −0.0344851 + 0.0597299i
\(178\) 3671.20 887.831i 1.54589 0.373852i
\(179\) 1304.74i 0.544810i −0.962183 0.272405i \(-0.912181\pi\)
0.962183 0.272405i \(-0.0878190\pi\)
\(180\) 3114.50 + 152.847i 1.28967 + 0.0632918i
\(181\) 2278.68 + 1315.59i 0.935761 + 0.540262i 0.888629 0.458627i \(-0.151659\pi\)
0.0471318 + 0.998889i \(0.484992\pi\)
\(182\) 791.943 + 3274.70i 0.322542 + 1.33372i
\(183\) −623.253 −0.251761
\(184\) −783.897 4114.94i −0.314074 1.64868i
\(185\) 2445.40 + 4235.55i 0.971833 + 1.68326i
\(186\) −745.309 219.424i −0.293810 0.0864998i
\(187\) −1470.17 + 848.803i −0.574917 + 0.331928i
\(188\) 2100.05 + 1353.89i 0.814691 + 0.525225i
\(189\) 1166.74i 0.449038i
\(190\) −2700.51 + 2174.38i −1.03113 + 0.830243i
\(191\) −621.184 −0.235326 −0.117663 0.993054i \(-0.537540\pi\)
−0.117663 + 0.993054i \(0.537540\pi\)
\(192\) 153.512 + 388.297i 0.0577021 + 0.145953i
\(193\) −2475.00 4286.83i −0.923080 1.59882i −0.794620 0.607107i \(-0.792330\pi\)
−0.128460 0.991715i \(-0.541004\pi\)
\(194\) 354.903 1205.49i 0.131343 0.446128i
\(195\) −464.176 + 267.992i −0.170463 + 0.0984170i
\(196\) −147.663 + 3008.88i −0.0538132 + 1.09653i
\(197\) 4451.74i 1.61002i 0.593263 + 0.805009i \(0.297840\pi\)
−0.593263 + 0.805009i \(0.702160\pi\)
\(198\) −873.399 3611.52i −0.313484 1.29626i
\(199\) −1942.08 + 3363.78i −0.691812 + 1.19825i 0.279432 + 0.960165i \(0.409854\pi\)
−0.971244 + 0.238087i \(0.923480\pi\)
\(200\) −398.317 2090.90i −0.140826 0.739245i
\(201\) −127.414 −0.0447120
\(202\) 685.022 + 2832.58i 0.238604 + 0.986630i
\(203\) −495.535 286.097i −0.171329 0.0989166i
\(204\) −120.304 + 186.606i −0.0412889 + 0.0640443i
\(205\) 2224.41 + 1284.26i 0.757851 + 0.437546i
\(206\) −751.070 788.833i −0.254027 0.266799i
\(207\) 2437.65 + 4222.14i 0.818495 + 1.41768i
\(208\) 2310.23 + 1655.13i 0.770122 + 0.551743i
\(209\) 3394.25 + 2355.12i 1.12337 + 0.779460i
\(210\) −890.133 + 215.267i −0.292500 + 0.0707373i
\(211\) 2481.68 1432.80i 0.809696 0.467478i −0.0371540 0.999310i \(-0.511829\pi\)
0.846850 + 0.531831i \(0.178496\pi\)
\(212\) 2519.80 3908.53i 0.816324 1.26622i
\(213\) 331.586 + 191.441i 0.106666 + 0.0615837i
\(214\) 3077.85 2930.51i 0.983166 0.936100i
\(215\) 722.691 1251.74i 0.229242 0.397060i
\(216\) −642.899 745.183i −0.202517 0.234737i
\(217\) −9035.39 −2.82655
\(218\) −2030.14 597.687i −0.630727 0.185690i
\(219\) −196.301 113.334i −0.0605698 0.0349700i
\(220\) −5253.83 + 2698.99i −1.61006 + 0.827119i
\(221\) 1511.18i 0.459968i
\(222\) 215.260 731.164i 0.0650778 0.221047i
\(223\) −813.524 1409.06i −0.244294 0.423130i 0.717639 0.696416i \(-0.245223\pi\)
−0.961933 + 0.273286i \(0.911890\pi\)
\(224\) 2987.92 + 3827.66i 0.891245 + 1.14172i
\(225\) 1238.63 + 2145.37i 0.367001 + 0.635665i
\(226\) 596.282 + 626.262i 0.175505 + 0.184329i
\(227\) 4840.48i 1.41530i −0.706561 0.707652i \(-0.749754\pi\)
0.706561 0.707652i \(-0.250246\pi\)
\(228\) 535.616 + 71.1301i 0.155579 + 0.0206610i
\(229\) 5337.23i 1.54015i −0.637954 0.770075i \(-0.720219\pi\)
0.637954 0.770075i \(-0.279781\pi\)
\(230\) 5612.80 5344.10i 1.60912 1.53208i
\(231\) 545.618 + 945.038i 0.155407 + 0.269173i
\(232\) −474.136 + 90.3231i −0.134175 + 0.0255603i
\(233\) −793.666 1374.67i −0.223153 0.386513i 0.732610 0.680648i \(-0.238302\pi\)
−0.955764 + 0.294135i \(0.904968\pi\)
\(234\) −3172.94 934.135i −0.886417 0.260967i
\(235\) 4622.78i 1.28322i
\(236\) 728.031 + 1417.18i 0.200808 + 0.390892i
\(237\) 163.450 + 94.3681i 0.0447985 + 0.0258644i
\(238\) −729.221 + 2476.92i −0.198607 + 0.674599i
\(239\) 3527.03 0.954579 0.477290 0.878746i \(-0.341619\pi\)
0.477290 + 0.878746i \(0.341619\pi\)
\(240\) −449.899 + 627.969i −0.121004 + 0.168897i
\(241\) −1378.06 + 2386.87i −0.368335 + 0.637975i −0.989305 0.145859i \(-0.953405\pi\)
0.620971 + 0.783834i \(0.286739\pi\)
\(242\) 2257.24 + 2370.74i 0.599592 + 0.629739i
\(243\) 1494.16 + 862.653i 0.394446 + 0.227733i
\(244\) −3312.86 + 5138.67i −0.869198 + 1.34824i
\(245\) −4826.78 + 2786.74i −1.25866 + 0.726687i
\(246\) −94.0914 389.069i −0.0243864 0.100838i
\(247\) 3326.36 1568.46i 0.856889 0.404042i
\(248\) −5770.78 + 4978.68i −1.47760 + 1.27478i
\(249\) −111.373 192.903i −0.0283452 0.0490953i
\(250\) −937.837 + 892.940i −0.237256 + 0.225898i
\(251\) −642.083 370.707i −0.161466 0.0932224i 0.417090 0.908865i \(-0.363050\pi\)
−0.578556 + 0.815643i \(0.696383\pi\)
\(252\) −4749.87 3062.21i −1.18736 0.765480i
\(253\) −7997.51 4617.37i −1.98735 1.14740i
\(254\) 1584.92 383.293i 0.391523 0.0946848i
\(255\) −410.771 −0.100876
\(256\) 4017.46 + 798.271i 0.980825 + 0.194890i
\(257\) −402.191 + 696.615i −0.0976186 + 0.169080i −0.910698 0.413072i \(-0.864456\pi\)
0.813080 + 0.582152i \(0.197789\pi\)
\(258\) −218.940 + 52.9479i −0.0528319 + 0.0127767i
\(259\) 8863.90i 2.12655i
\(260\) −257.726 + 5251.59i −0.0614749 + 1.25265i
\(261\) 486.488 280.874i 0.115375 0.0666117i
\(262\) 7047.29 + 2074.77i 1.66177 + 0.489236i
\(263\) −1572.55 2723.74i −0.368699 0.638606i 0.620663 0.784077i \(-0.286863\pi\)
−0.989362 + 0.145472i \(0.953530\pi\)
\(264\) 869.213 + 302.937i 0.202638 + 0.0706230i
\(265\) 8603.74 1.99443
\(266\) 6208.98 965.655i 1.43119 0.222587i
\(267\) 1089.02i 0.249613i
\(268\) −677.263 + 1050.52i −0.154367 + 0.239443i
\(269\) 1182.47 682.699i 0.268017 0.154739i −0.359969 0.932964i \(-0.617213\pi\)
0.627986 + 0.778225i \(0.283880\pi\)
\(270\) 514.248 1746.73i 0.115912 0.393713i
\(271\) 475.560 + 823.693i 0.106598 + 0.184634i 0.914390 0.404834i \(-0.132671\pi\)
−0.807792 + 0.589468i \(0.799337\pi\)
\(272\) 899.086 + 1983.79i 0.200423 + 0.442223i
\(273\) 971.399 0.215354
\(274\) 4530.89 1095.74i 0.998982 0.241591i
\(275\) −4063.73 2346.19i −0.891098 0.514476i
\(276\) −1206.33 59.2016i −0.263089 0.0129113i
\(277\) 6409.36i 1.39026i 0.718886 + 0.695128i \(0.244652\pi\)
−0.718886 + 0.695128i \(0.755348\pi\)
\(278\) −399.084 1650.22i −0.0860988 0.356020i
\(279\) 4435.22 7682.02i 0.951718 1.64842i
\(280\) −2956.59 + 8483.31i −0.631035 + 1.81062i
\(281\) 1207.33 2091.16i 0.256311 0.443944i −0.708940 0.705269i \(-0.750826\pi\)
0.965251 + 0.261325i \(0.0841595\pi\)
\(282\) 521.753 496.775i 0.110177 0.104903i
\(283\) 2595.56 1498.55i 0.545195 0.314768i −0.201987 0.979388i \(-0.564740\pi\)
0.747182 + 0.664620i \(0.231407\pi\)
\(284\) 3340.94 1716.30i 0.698057 0.358605i
\(285\) 426.340 + 904.177i 0.0886112 + 0.187926i
\(286\) 6089.65 1472.70i 1.25905 0.304485i
\(287\) −2327.55 4031.44i −0.478715 0.829159i
\(288\) −4721.02 + 661.483i −0.965933 + 0.135341i
\(289\) 1877.43 3251.80i 0.382135 0.661876i
\(290\) −615.764 646.724i −0.124686 0.130955i
\(291\) −313.781 181.162i −0.0632102 0.0364944i
\(292\) −1977.86 + 1016.06i −0.396388 + 0.203632i
\(293\) 2533.64i 0.505176i −0.967574 0.252588i \(-0.918718\pi\)
0.967574 0.252588i \(-0.0812818\pi\)
\(294\) 833.225 + 245.307i 0.165288 + 0.0486619i
\(295\) −1473.84 + 2552.77i −0.290883 + 0.503824i
\(296\) −4884.18 5661.25i −0.959079 1.11167i
\(297\) −2169.68 −0.423898
\(298\) −5462.51 1608.20i −1.06186 0.312620i
\(299\) −7119.25 + 4110.30i −1.37698 + 0.794999i
\(300\) −612.965 30.0817i −0.117965 0.00578923i
\(301\) −2268.61 + 1309.78i −0.434420 + 0.250812i
\(302\) 4157.30 + 4366.33i 0.792138 + 0.831966i
\(303\) 840.249 0.159310
\(304\) 3433.49 4038.02i 0.647777 0.761830i
\(305\) −11311.6 −2.12361
\(306\) −1747.96 1835.84i −0.326549 0.342968i
\(307\) 4428.87 2557.01i 0.823352 0.475363i −0.0282189 0.999602i \(-0.508984\pi\)
0.851571 + 0.524239i \(0.175650\pi\)
\(308\) 10692.0 + 524.716i 1.97802 + 0.0970730i
\(309\) −271.972 + 157.023i −0.0500709 + 0.0289085i
\(310\) −13526.8 3982.39i −2.47830 0.729628i
\(311\) 2751.40 0.501664 0.250832 0.968031i \(-0.419296\pi\)
0.250832 + 0.968031i \(0.419296\pi\)
\(312\) 620.419 535.260i 0.112578 0.0971254i
\(313\) −666.367 + 1154.18i −0.120336 + 0.208429i −0.919900 0.392152i \(-0.871731\pi\)
0.799564 + 0.600581i \(0.205064\pi\)
\(314\) 1086.35 + 319.830i 0.195244 + 0.0574810i
\(315\) 10455.8i 1.87021i
\(316\) 1646.87 846.026i 0.293175 0.150610i
\(317\) −1576.42 910.144i −0.279307 0.161258i 0.353803 0.935320i \(-0.384888\pi\)
−0.633110 + 0.774062i \(0.718222\pi\)
\(318\) −924.579 971.066i −0.163043 0.171241i
\(319\) −532.028 + 921.499i −0.0933788 + 0.161737i
\(320\) 2786.14 + 7047.31i 0.486719 + 1.23111i
\(321\) −612.668 1061.17i −0.106529 0.184514i
\(322\) −13652.3 + 3301.63i −2.36278 + 0.571406i
\(323\) 2808.76 + 233.640i 0.483850 + 0.0402480i
\(324\) 4807.34 2469.62i 0.824303 0.423460i
\(325\) −3617.46 + 2088.54i −0.617417 + 0.356466i
\(326\) 495.739 472.007i 0.0842222 0.0801903i
\(327\) −305.091 + 528.434i −0.0515951 + 0.0893653i
\(328\) −3707.98 1292.30i −0.624204 0.217546i
\(329\) 4189.08 7255.70i 0.701980 1.21587i
\(330\) 400.312 + 1655.30i 0.0667771 + 0.276124i
\(331\) 2671.13i 0.443560i −0.975097 0.221780i \(-0.928813\pi\)
0.975097 0.221780i \(-0.0711867\pi\)
\(332\) −2182.46 107.106i −0.360778 0.0177054i
\(333\) 7536.22 + 4351.04i 1.24019 + 0.716022i
\(334\) −2679.45 + 647.990i −0.438961 + 0.106157i
\(335\) −2312.48 −0.377147
\(336\) 1275.20 577.940i 0.207047 0.0938370i
\(337\) 1005.42 + 1741.43i 0.162518 + 0.281489i 0.935771 0.352608i \(-0.114705\pi\)
−0.773253 + 0.634097i \(0.781372\pi\)
\(338\) −179.871 + 610.962i −0.0289459 + 0.0983194i
\(339\) 215.921 124.662i 0.0345936 0.0199726i
\(340\) −2183.43 + 3386.77i −0.348273 + 0.540216i
\(341\) 16802.3i 2.66831i
\(342\) −2226.80 + 5752.97i −0.352080 + 0.909606i
\(343\) 900.322 0.141728
\(344\) −727.213 + 2086.59i −0.113979 + 0.327038i
\(345\) −1117.27 1935.16i −0.174353 0.301988i
\(346\) 4017.35 + 1182.74i 0.624203 + 0.183770i
\(347\) −7659.26 + 4422.08i −1.18493 + 0.684119i −0.957150 0.289593i \(-0.906480\pi\)
−0.227780 + 0.973713i \(0.573147\pi\)
\(348\) −6.82139 + 138.997i −0.00105076 + 0.0214110i
\(349\) 3778.14i 0.579482i −0.957105 0.289741i \(-0.906431\pi\)
0.957105 0.289741i \(-0.0935692\pi\)
\(350\) −6937.07 + 1677.64i −1.05943 + 0.256210i
\(351\) −965.707 + 1672.65i −0.146854 + 0.254358i
\(352\) 7117.94 5556.35i 1.07780 0.841348i
\(353\) −5160.86 −0.778144 −0.389072 0.921207i \(-0.627204\pi\)
−0.389072 + 0.921207i \(0.627204\pi\)
\(354\) 446.502 107.981i 0.0670377 0.0162122i
\(355\) 6018.05 + 3474.52i 0.899732 + 0.519460i
\(356\) −8978.84 5788.59i −1.33673 0.861783i
\(357\) 644.727 + 372.233i 0.0955814 + 0.0551840i
\(358\) −2672.67 + 2544.72i −0.394567 + 0.375678i
\(359\) 5609.92 + 9716.66i 0.824735 + 1.42848i 0.902121 + 0.431482i \(0.142009\pi\)
−0.0773860 + 0.997001i \(0.524657\pi\)
\(360\) −5761.33 6677.95i −0.843469 0.977664i
\(361\) −2400.94 6425.06i −0.350042 0.936734i
\(362\) −1749.35 7233.60i −0.253989 1.05025i
\(363\) 817.376 471.912i 0.118185 0.0682341i
\(364\) 5163.41 8009.11i 0.743506 1.15327i
\(365\) −3562.72 2056.94i −0.510908 0.294973i
\(366\) 1215.57 + 1276.69i 0.173604 + 0.182332i
\(367\) −3139.01 + 5436.93i −0.446472 + 0.773312i −0.998153 0.0607431i \(-0.980653\pi\)
0.551682 + 0.834055i \(0.313986\pi\)
\(368\) −6900.28 + 9631.40i −0.977451 + 1.36432i
\(369\) 4570.12 0.644745
\(370\) 3906.81 13270.1i 0.548933 1.86454i
\(371\) −13504.0 7796.56i −1.88974 1.09104i
\(372\) 1004.15 + 1954.67i 0.139954 + 0.272433i
\(373\) 2569.66i 0.356707i −0.983966 0.178354i \(-0.942923\pi\)
0.983966 0.178354i \(-0.0570771\pi\)
\(374\) 4606.08 + 1356.06i 0.636831 + 0.187488i
\(375\) 186.683 + 323.345i 0.0257074 + 0.0445265i
\(376\) −1322.53 6942.38i −0.181394 0.952197i
\(377\) 473.602 + 820.302i 0.0646995 + 0.112063i
\(378\) −2389.99 + 2275.58i −0.325206 + 0.309638i
\(379\) 9208.57i 1.24805i 0.781403 + 0.624027i \(0.214505\pi\)
−0.781403 + 0.624027i \(0.785495\pi\)
\(380\) 9721.05 + 1290.96i 1.31231 + 0.174276i
\(381\) 470.148i 0.0632189i
\(382\) 1211.54 + 1272.45i 0.162271 + 0.170430i
\(383\) −2079.13 3601.16i −0.277385 0.480445i 0.693349 0.720602i \(-0.256135\pi\)
−0.970734 + 0.240157i \(0.922801\pi\)
\(384\) 495.994 1071.78i 0.0659142 0.142432i
\(385\) 9902.58 + 17151.8i 1.31086 + 2.27048i
\(386\) −3954.11 + 13430.8i −0.521396 + 1.77100i
\(387\) 2571.74i 0.337800i
\(388\) −3161.55 + 1624.15i −0.413668 + 0.212509i
\(389\) −7534.06 4349.79i −0.981985 0.566949i −0.0791161 0.996865i \(-0.525210\pi\)
−0.902869 + 0.429916i \(0.858543\pi\)
\(390\) 1454.28 + 428.149i 0.188821 + 0.0555902i
\(391\) −6300.15 −0.814865
\(392\) 6451.49 5565.95i 0.831248 0.717151i
\(393\) 1059.07 1834.37i 0.135937 0.235450i
\(394\) 9119.09 8682.53i 1.16602 1.11020i
\(395\) 2966.51 + 1712.71i 0.377876 + 0.218167i
\(396\) −5694.50 + 8832.89i −0.722625 + 1.12088i
\(397\) 1605.43 926.893i 0.202957 0.117177i −0.395077 0.918648i \(-0.629282\pi\)
0.598034 + 0.801471i \(0.295949\pi\)
\(398\) 10678.3 2582.40i 1.34486 0.325236i
\(399\) 150.186 1805.50i 0.0188439 0.226536i
\(400\) −3506.20 + 4893.95i −0.438275 + 0.611743i
\(401\) 182.356 + 315.849i 0.0227092 + 0.0393335i 0.877157 0.480204i \(-0.159437\pi\)
−0.854447 + 0.519538i \(0.826104\pi\)
\(402\) 248.505 + 260.999i 0.0308316 + 0.0323817i
\(403\) 12953.2 + 7478.54i 1.60110 + 0.924398i
\(404\) 4466.29 6927.78i 0.550016 0.853144i
\(405\) 8659.48 + 4999.55i 1.06245 + 0.613407i
\(406\) 380.425 + 1573.06i 0.0465029 + 0.192290i
\(407\) −16483.4 −2.00749
\(408\) 616.886 117.517i 0.0748540 0.0142597i
\(409\) 2222.94 3850.25i 0.268746 0.465483i −0.699792 0.714347i \(-0.746724\pi\)
0.968538 + 0.248864i \(0.0800573\pi\)
\(410\) −1707.69 7061.33i −0.205700 0.850572i
\(411\) 1344.03i 0.161305i
\(412\) −151.008 + 3077.03i −0.0180573 + 0.367947i
\(413\) 4626.55 2671.14i 0.551229 0.318252i
\(414\) 3894.44 13228.1i 0.462321 1.57035i
\(415\) −2021.33 3501.05i −0.239092 0.414120i
\(416\) −1115.37 7960.45i −0.131456 0.938204i
\(417\) −489.517 −0.0574863
\(418\) −1795.74 11546.2i −0.210125 1.35106i
\(419\) 932.437i 0.108717i −0.998521 0.0543586i \(-0.982689\pi\)
0.998521 0.0543586i \(-0.0173114\pi\)
\(420\) 2177.05 + 1403.53i 0.252926 + 0.163060i
\(421\) 85.0950 49.1296i 0.00985102 0.00568749i −0.495066 0.868855i \(-0.664856\pi\)
0.504917 + 0.863168i \(0.331523\pi\)
\(422\) −7775.18 2289.07i −0.896895 0.264052i
\(423\) 4112.60 + 7123.24i 0.472722 + 0.818779i
\(424\) −12920.9 + 2461.43i −1.47994 + 0.281929i
\(425\) −3201.26 −0.365374
\(426\) −254.560 1052.61i −0.0289518 0.119716i
\(427\) 17754.2 + 10250.4i 2.01214 + 1.16171i
\(428\) −12005.9 589.198i −1.35590 0.0665419i
\(429\) 1806.42i 0.203298i
\(430\) −3973.61 + 960.966i −0.445639 + 0.107772i
\(431\) 3178.74 5505.75i 0.355255 0.615319i −0.631907 0.775044i \(-0.717728\pi\)
0.987161 + 0.159725i \(0.0510608\pi\)
\(432\) −272.567 + 2770.31i −0.0303562 + 0.308534i
\(433\) −638.237 + 1105.46i −0.0708354 + 0.122690i −0.899268 0.437399i \(-0.855900\pi\)
0.828432 + 0.560089i \(0.189233\pi\)
\(434\) 17622.3 + 18508.4i 1.94908 + 2.04707i
\(435\) −222.976 + 128.735i −0.0245767 + 0.0141894i
\(436\) 2735.20 + 5324.31i 0.300441 + 0.584835i
\(437\) 6538.94 + 13867.7i 0.715789 + 1.51804i
\(438\) 150.701 + 623.152i 0.0164401 + 0.0679803i
\(439\) −642.504 1112.85i −0.0698520 0.120987i 0.828984 0.559272i \(-0.188919\pi\)
−0.898836 + 0.438285i \(0.855586\pi\)
\(440\) 15775.6 + 5498.09i 1.70926 + 0.595707i
\(441\) −4958.39 + 8588.18i −0.535405 + 0.927349i
\(442\) 3095.54 2947.35i 0.333122 0.317175i
\(443\) 6147.35 + 3549.17i 0.659299 + 0.380646i 0.792010 0.610508i \(-0.209035\pi\)
−0.132711 + 0.991155i \(0.542368\pi\)
\(444\) −1917.57 + 985.094i −0.204964 + 0.105294i
\(445\) 19764.9i 2.10549i
\(446\) −1299.70 + 4414.64i −0.137988 + 0.468698i
\(447\) −820.912 + 1421.86i −0.0868631 + 0.150451i
\(448\) 2013.15 13585.9i 0.212305 1.43275i
\(449\) −12286.0 −1.29134 −0.645670 0.763616i \(-0.723422\pi\)
−0.645670 + 0.763616i \(0.723422\pi\)
\(450\) 1978.86 6721.50i 0.207298 0.704122i
\(451\) −7496.89 + 4328.33i −0.782738 + 0.451914i
\(452\) 119.886 2442.88i 0.0124756 0.254211i
\(453\) 1505.41 869.148i 0.156138 0.0901460i
\(454\) −9915.39 + 9440.72i −1.02501 + 0.975936i
\(455\) 17630.2 1.81652
\(456\) −898.942 1235.90i −0.0923176 0.126922i
\(457\) 11604.9 1.18786 0.593931 0.804516i \(-0.297575\pi\)
0.593931 + 0.804516i \(0.297575\pi\)
\(458\) −10932.9 + 10409.6i −1.11542 + 1.06202i
\(459\) −1281.90 + 740.104i −0.130357 + 0.0752616i
\(460\) −21894.0 1074.47i −2.21916 0.108907i
\(461\) 14635.9 8450.01i 1.47865 0.853701i 0.478946 0.877844i \(-0.341019\pi\)
0.999709 + 0.0241430i \(0.00768571\pi\)
\(462\) 871.689 2960.83i 0.0877806 0.298161i
\(463\) 7257.41 0.728467 0.364234 0.931308i \(-0.381331\pi\)
0.364234 + 0.931308i \(0.381331\pi\)
\(464\) 1109.76 + 795.072i 0.111033 + 0.0795480i
\(465\) −2032.83 + 3520.96i −0.202731 + 0.351141i
\(466\) −1267.97 + 4306.88i −0.126047 + 0.428138i
\(467\) 5436.13i 0.538660i 0.963048 + 0.269330i \(0.0868023\pi\)
−0.963048 + 0.269330i \(0.913198\pi\)
\(468\) 4274.89 + 8321.45i 0.422236 + 0.821921i
\(469\) 3629.56 + 2095.53i 0.357351 + 0.206317i
\(470\) 9469.44 9016.12i 0.929346 0.884856i
\(471\) 163.258 282.772i 0.0159714 0.0276633i
\(472\) 1483.06 4255.34i 0.144626 0.414974i
\(473\) 2435.67 + 4218.71i 0.236770 + 0.410098i
\(474\) −125.482 518.869i −0.0121594 0.0502794i
\(475\) 3322.59 + 7046.52i 0.320949 + 0.680666i
\(476\) 6496.04 3337.14i 0.625516 0.321339i
\(477\) 13257.5 7654.22i 1.27258 0.734722i
\(478\) −6879.00 7224.87i −0.658239 0.691334i
\(479\) −2223.51 + 3851.23i −0.212097 + 0.367363i −0.952371 0.304943i \(-0.901363\pi\)
0.740273 + 0.672306i \(0.234696\pi\)
\(480\) 2163.82 303.183i 0.205759 0.0288299i
\(481\) −7336.60 + 12707.4i −0.695468 + 1.20459i
\(482\) 7577.06 1832.41i 0.716029 0.173162i
\(483\) 4049.79i 0.381515i
\(484\) 453.834 9247.62i 0.0426215 0.868484i
\(485\) −5694.91 3287.96i −0.533180 0.307832i
\(486\) −1147.07 4743.17i −0.107062 0.442705i
\(487\) 8171.59 0.760349 0.380174 0.924915i \(-0.375864\pi\)
0.380174 + 0.924915i \(0.375864\pi\)
\(488\) 16987.5 3236.12i 1.57580 0.300189i
\(489\) −98.6804 170.920i −0.00912573 0.0158062i
\(490\) 15122.4 + 4452.15i 1.39421 + 0.410464i
\(491\) 1395.97 805.962i 0.128308 0.0740785i −0.434472 0.900685i \(-0.643065\pi\)
0.562780 + 0.826607i \(0.309732\pi\)
\(492\) −613.469 + 951.568i −0.0562140 + 0.0871951i
\(493\) 725.923i 0.0663163i
\(494\) −9700.50 3754.76i −0.883495 0.341973i
\(495\) −19443.6 −1.76550
\(496\) 21453.6 + 2110.79i 1.94213 + 0.191083i
\(497\) −6297.10 10906.9i −0.568337 0.984389i
\(498\) −177.931 + 604.370i −0.0160106 + 0.0543825i
\(499\) −4969.02 + 2868.86i −0.445779 + 0.257371i −0.706046 0.708166i \(-0.749523\pi\)
0.260267 + 0.965537i \(0.416189\pi\)
\(500\) 3658.25 + 179.532i 0.327204 + 0.0160578i
\(501\) 794.826i 0.0708787i
\(502\) 492.931 + 2038.28i 0.0438259 + 0.181221i
\(503\) 1079.96 1870.55i 0.0957317 0.165812i −0.814182 0.580610i \(-0.802814\pi\)
0.909914 + 0.414797i \(0.136148\pi\)
\(504\) 2991.28 + 15702.2i 0.264369 + 1.38776i
\(505\) 15249.9 1.34379
\(506\) 6139.74 + 25387.9i 0.539416 + 2.23049i
\(507\) 159.030 + 91.8160i 0.0139305 + 0.00804278i
\(508\) −3876.33 2499.04i −0.338552 0.218262i
\(509\) −3820.39 2205.70i −0.332683 0.192075i 0.324349 0.945938i \(-0.394855\pi\)
−0.657032 + 0.753863i \(0.728188\pi\)
\(510\) 801.154 + 841.435i 0.0695602 + 0.0730576i
\(511\) 3727.92 + 6456.95i 0.322727 + 0.558980i
\(512\) −6200.32 9786.41i −0.535191 0.844731i
\(513\) 2959.58 + 2053.52i 0.254715 + 0.176735i
\(514\) 2211.39 534.795i 0.189767 0.0458926i
\(515\) −4936.09 + 2849.85i −0.422350 + 0.243844i
\(516\) 535.474 + 345.216i 0.0456840 + 0.0294521i
\(517\) −13492.7 7790.04i −1.14779 0.662680i
\(518\) −18157.1 + 17287.9i −1.54011 + 1.46638i
\(519\) 603.732 1045.69i 0.0510614 0.0884410i
\(520\) 11260.2 9714.59i 0.949599 0.819256i
\(521\) 688.537 0.0578989 0.0289495 0.999581i \(-0.490784\pi\)
0.0289495 + 0.999581i \(0.490784\pi\)
\(522\) −1524.18 448.729i −0.127800 0.0376252i
\(523\) −12741.0 7356.03i −1.06525 0.615023i −0.138370 0.990381i \(-0.544186\pi\)
−0.926880 + 0.375358i \(0.877520\pi\)
\(524\) −9494.78 18482.5i −0.791568 1.54086i
\(525\) 2057.80i 0.171066i
\(526\) −2512.34 + 8533.57i −0.208257 + 0.707379i
\(527\) 5731.44 + 9927.15i 0.473749 + 0.820557i
\(528\) −1074.74 2371.36i −0.0885835 0.195455i
\(529\) −11052.5 19143.4i −0.908396 1.57339i
\(530\) −16780.4 17624.2i −1.37528 1.44442i
\(531\) 5244.75i 0.428630i
\(532\) −14087.9 10835.3i −1.14809 0.883024i
\(533\) 7706.01i 0.626237i
\(534\) −2230.77 + 2123.98i −0.180777 + 0.172123i
\(535\) −11119.5 19259.5i −0.898575 1.55638i
\(536\) 3472.83 661.575i 0.279857 0.0533128i
\(537\) 532.014 + 921.476i 0.0427525 + 0.0740496i
\(538\) −3704.71 1090.69i −0.296880 0.0874035i
\(539\) 18784.2i 1.50110i
\(540\) −4581.02 + 2353.36i −0.365066 + 0.187541i
\(541\) 2206.31 + 1273.81i 0.175336 + 0.101230i 0.585099 0.810962i \(-0.301056\pi\)
−0.409764 + 0.912192i \(0.634389\pi\)
\(542\) 759.763 2580.66i 0.0602114 0.204518i
\(543\) −2145.76 −0.169583
\(544\) 2310.10 5710.83i 0.182068 0.450091i
\(545\) −5537.19 + 9590.70i −0.435206 + 0.753799i
\(546\) −1894.59 1989.84i −0.148500 0.155966i
\(547\) −1222.88 706.032i −0.0955881 0.0551878i 0.451444 0.892299i \(-0.350909\pi\)
−0.547032 + 0.837112i \(0.684242\pi\)
\(548\) −11081.4 7144.13i −0.863825 0.556901i
\(549\) −17430.0 + 10063.2i −1.35500 + 0.782310i
\(550\) 3119.75 + 12900.2i 0.241866 + 1.00012i
\(551\) 1597.88 753.437i 0.123543 0.0582532i
\(552\) 2231.52 + 2586.55i 0.172064 + 0.199440i
\(553\) −3104.06 5376.39i −0.238695 0.413431i
\(554\) 13129.1 12500.6i 1.00686 0.958663i
\(555\) −3454.13 1994.24i −0.264180 0.152524i
\(556\) −2602.00 + 4036.03i −0.198470 + 0.307852i
\(557\) −14123.1 8153.98i −1.07435 0.620278i −0.144986 0.989434i \(-0.546314\pi\)
−0.929368 + 0.369155i \(0.879647\pi\)
\(558\) −24386.4 + 5897.53i −1.85010 + 0.447423i
\(559\) 4336.39 0.328103
\(560\) 23143.9 10489.2i 1.74644 0.791518i
\(561\) 692.207 1198.94i 0.0520945 0.0902303i
\(562\) −6638.34 + 1605.40i −0.498259 + 0.120497i
\(563\) 23681.5i 1.77275i 0.462972 + 0.886373i \(0.346783\pi\)
−0.462972 + 0.886373i \(0.653217\pi\)
\(564\) −2035.22 99.8799i −0.151947 0.00745692i
\(565\) 3918.81 2262.53i 0.291798 0.168469i
\(566\) −8131.97 2394.11i −0.603908 0.177795i
\(567\) −9061.01 15694.1i −0.671123 1.16242i
\(568\) −10031.8 3496.26i −0.741064 0.258274i
\(569\) 15211.3 1.12072 0.560360 0.828249i \(-0.310663\pi\)
0.560360 + 0.828249i \(0.310663\pi\)
\(570\) 1020.62 2636.80i 0.0749987 0.193761i
\(571\) 1154.32i 0.0846001i −0.999105 0.0423001i \(-0.986531\pi\)
0.999105 0.0423001i \(-0.0134685\pi\)
\(572\) −14893.8 9601.91i −1.08871 0.701881i
\(573\) 438.712 253.291i 0.0319851 0.0184666i
\(574\) −3718.54 + 12630.6i −0.270399 + 0.918453i
\(575\) −8707.19 15081.3i −0.631504 1.09380i
\(576\) 10562.7 + 8380.54i 0.764086 + 0.606231i
\(577\) 22347.7 1.61239 0.806195 0.591650i \(-0.201523\pi\)
0.806195 + 0.591650i \(0.201523\pi\)
\(578\) −10322.8 + 2496.42i −0.742855 + 0.179650i
\(579\) 3495.95 + 2018.39i 0.250927 + 0.144873i
\(580\) −123.803 + 2522.70i −0.00886320 + 0.180602i
\(581\) 7326.79i 0.523178i
\(582\) 240.892 + 996.091i 0.0171568 + 0.0709438i
\(583\) −14498.5 + 25112.2i −1.02996 + 1.78394i
\(584\) 5938.88 + 2069.81i 0.420809 + 0.146660i
\(585\) −8654.17 + 14989.5i −0.611634 + 1.05938i
\(586\) −5189.98 + 4941.52i −0.365864 + 0.348349i
\(587\) −20108.9 + 11609.9i −1.41394 + 0.816340i −0.995757 0.0920214i \(-0.970667\pi\)
−0.418186 + 0.908362i \(0.637334\pi\)
\(588\) −1122.60 2185.24i −0.0787334 0.153262i
\(589\) 15902.7 22919.3i 1.11249 1.60335i
\(590\) 8103.70 1959.77i 0.565465 0.136750i
\(591\) −1815.22 3144.05i −0.126342 0.218831i
\(592\) −2070.73 + 21046.4i −0.143761 + 1.46115i
\(593\) 10187.9 17646.0i 0.705512 1.22198i −0.260995 0.965340i \(-0.584050\pi\)
0.966506 0.256642i \(-0.0826162\pi\)
\(594\) 4231.68 + 4444.44i 0.292303 + 0.306999i
\(595\) 11701.3 + 6755.77i 0.806232 + 0.465478i
\(596\) 7359.62 + 14326.2i 0.505808 + 0.984602i
\(597\) 3167.57i 0.217153i
\(598\) 22304.8 + 6566.69i 1.52527 + 0.449050i
\(599\) 3106.29 5380.25i 0.211885 0.366996i −0.740419 0.672145i \(-0.765373\pi\)
0.952305 + 0.305149i \(0.0987063\pi\)
\(600\) 1133.89 + 1314.29i 0.0771512 + 0.0894259i
\(601\) −14863.1 −1.00878 −0.504392 0.863475i \(-0.668283\pi\)
−0.504392 + 0.863475i \(0.668283\pi\)
\(602\) 7107.61 + 2092.53i 0.481204 + 0.141670i
\(603\) −3563.30 + 2057.27i −0.240645 + 0.138936i
\(604\) 835.853 17031.9i 0.0563085 1.14738i
\(605\) 14834.8 8564.88i 0.996893 0.575557i
\(606\) −1638.79 1721.19i −0.109854 0.115377i
\(607\) 9455.06 0.632239 0.316119 0.948719i \(-0.397620\pi\)
0.316119 + 0.948719i \(0.397620\pi\)
\(608\) −14968.2 + 842.348i −0.998420 + 0.0561870i
\(609\) 466.630 0.0310489
\(610\) 22061.8 + 23171.0i 1.46435 + 1.53798i
\(611\) −12011.0 + 6934.55i −0.795275 + 0.459152i
\(612\) −351.438 + 7161.13i −0.0232125 + 0.472993i
\(613\) −4070.23 + 2349.95i −0.268181 + 0.154834i −0.628061 0.778164i \(-0.716151\pi\)
0.359880 + 0.932999i \(0.382818\pi\)
\(614\) −13875.8 4085.13i −0.912022 0.268505i
\(615\) −2094.66 −0.137341
\(616\) −19778.4 22925.1i −1.29366 1.49948i
\(617\) 13248.8 22947.5i 0.864465 1.49730i −0.00311281 0.999995i \(-0.500991\pi\)
0.867578 0.497302i \(-0.165676\pi\)
\(618\) 852.095 + 250.863i 0.0554632 + 0.0163288i
\(619\) 7288.31i 0.473250i −0.971601 0.236625i \(-0.923959\pi\)
0.971601 0.236625i \(-0.0760413\pi\)
\(620\) 18224.6 + 35475.9i 1.18051 + 2.29798i
\(621\) −6973.34 4026.06i −0.450613 0.260161i
\(622\) −5366.24 5636.05i −0.345927 0.363320i
\(623\) −17910.6 + 31022.0i −1.15180 + 1.99498i
\(624\) −2306.49 226.932i −0.147970 0.0145586i
\(625\) 9267.38 + 16051.6i 0.593112 + 1.02730i
\(626\) 3663.92 886.072i 0.233929 0.0565728i
\(627\) −3357.51 279.287i −0.213853 0.0177889i
\(628\) −1463.64 2849.11i −0.0930025 0.181038i
\(629\) −9738.74 + 5622.66i −0.617343 + 0.356423i
\(630\) −21417.9 + 20392.6i −1.35446 + 1.28962i
\(631\) −3353.51 + 5808.46i −0.211571 + 0.366452i −0.952206 0.305455i \(-0.901191\pi\)
0.740635 + 0.671907i \(0.234525\pi\)
\(632\) −4945.02 1723.43i −0.311238 0.108472i
\(633\) −1168.46 + 2023.83i −0.0733684 + 0.127078i
\(634\) 1210.22 + 5004.30i 0.0758109 + 0.313479i
\(635\) 8532.85i 0.533254i
\(636\) −185.893 + 3787.87i −0.0115898 + 0.236162i
\(637\) −14481.1 8360.69i −0.900728 0.520035i
\(638\) 2925.28 707.440i 0.181525 0.0438994i
\(639\) 12364.3 0.765451
\(640\) 9001.93 19452.1i 0.555989 1.20142i
\(641\) −9533.60 16512.7i −0.587448 1.01749i −0.994565 0.104114i \(-0.966799\pi\)
0.407117 0.913376i \(-0.366534\pi\)
\(642\) −978.810 + 3324.68i −0.0601722 + 0.204384i
\(643\) 11585.7 6688.98i 0.710566 0.410245i −0.100705 0.994916i \(-0.532110\pi\)
0.811270 + 0.584671i \(0.198776\pi\)
\(644\) 33390.2 + 21526.4i 2.04310 + 1.31717i
\(645\) 1178.72i 0.0719569i
\(646\) −4999.52 6209.23i −0.304494 0.378172i
\(647\) −4306.34 −0.261669 −0.130835 0.991404i \(-0.541766\pi\)
−0.130835 + 0.991404i \(0.541766\pi\)
\(648\) −14434.9 5030.83i −0.875088 0.304984i
\(649\) −4967.26 8603.55i −0.300435 0.520368i
\(650\) 11333.6 + 3336.69i 0.683909 + 0.201347i
\(651\) 6381.26 3684.22i 0.384180 0.221807i
\(652\) −1933.75 94.9001i −0.116152 0.00570027i
\(653\) 22299.6i 1.33637i −0.743994 0.668186i \(-0.767071\pi\)
0.743994 0.668186i \(-0.232929\pi\)
\(654\) 1677.50 405.682i 0.100299 0.0242560i
\(655\) 19221.4 33292.5i 1.14663 1.98602i
\(656\) 4584.74 + 10116.0i 0.272872 + 0.602078i
\(657\) −7319.72 −0.434657
\(658\) −23033.0 + 5570.24i −1.36462 + 0.330016i
\(659\) −15364.9 8870.92i −0.908241 0.524373i −0.0283764 0.999597i \(-0.509034\pi\)
−0.879865 + 0.475224i \(0.842367\pi\)
\(660\) 2610.00 4048.45i 0.153931 0.238766i
\(661\) −18223.6 10521.4i −1.07234 0.619115i −0.143519 0.989648i \(-0.545842\pi\)
−0.928820 + 0.370532i \(0.879175\pi\)
\(662\) −5471.62 + 5209.68i −0.321239 + 0.305861i
\(663\) −616.190 1067.27i −0.0360948 0.0625180i
\(664\) 4037.20 + 4679.52i 0.235955 + 0.273495i
\(665\) 2725.77 32768.5i 0.158949 1.91084i
\(666\) −5785.60 23923.5i −0.336618 1.39192i
\(667\) −3419.86 + 1974.46i −0.198527 + 0.114620i
\(668\) 6553.27 + 4224.85i 0.379572 + 0.244707i
\(669\) 1149.11 + 663.437i 0.0664081 + 0.0383407i
\(670\) 4510.18 + 4736.95i 0.260065 + 0.273141i
\(671\) 19061.6 33015.7i 1.09667 1.89949i
\(672\) −3670.97 1484.95i −0.210730 0.0852431i
\(673\) 9188.15 0.526266 0.263133 0.964760i \(-0.415244\pi\)
0.263133 + 0.964760i \(0.415244\pi\)
\(674\) 1606.27 5455.95i 0.0917970 0.311803i
\(675\) −3543.32 2045.74i −0.202048 0.116653i
\(676\) 1602.33 823.147i 0.0911657 0.0468336i
\(677\) 8845.30i 0.502145i −0.967968 0.251073i \(-0.919217\pi\)
0.967968 0.251073i \(-0.0807833\pi\)
\(678\) −676.487 199.162i −0.0383190 0.0112814i
\(679\) 5958.98 + 10321.2i 0.336796 + 0.583348i
\(680\) 11196.0 2132.85i 0.631395 0.120281i
\(681\) 1973.73 + 3418.60i 0.111062 + 0.192366i
\(682\) 34418.2 32770.6i 1.93247 1.83996i
\(683\) 8533.28i 0.478063i 0.971012 + 0.239031i \(0.0768299\pi\)
−0.971012 + 0.239031i \(0.923170\pi\)
\(684\) 16127.6 6658.98i 0.901543 0.372240i
\(685\) 24393.3i 1.36061i
\(686\) −1755.96 1844.25i −0.0977300 0.102644i
\(687\) 2176.28 + 3769.43i 0.120859 + 0.209334i
\(688\) 5692.56 2579.96i 0.315446 0.142965i
\(689\) 12906.3 + 22354.4i 0.713631 + 1.23605i
\(690\) −1784.97 + 6062.92i −0.0984819 + 0.334510i
\(691\) 26014.5i 1.43218i 0.698007 + 0.716091i \(0.254070\pi\)
−0.698007 + 0.716091i \(0.745930\pi\)
\(692\) −5412.56 10536.0i −0.297333 0.578786i
\(693\) 30517.8 + 17619.4i 1.67283 + 0.965811i
\(694\) 23996.7 + 7064.79i 1.31254 + 0.386420i
\(695\) −8884.40 −0.484898
\(696\) 298.030 257.122i 0.0162310 0.0140032i
\(697\) −2952.89 + 5114.55i −0.160471 + 0.277945i
\(698\) −7739.26 + 7368.77i −0.419678 + 0.399587i
\(699\) 1121.06 + 647.242i 0.0606613 + 0.0350228i
\(700\) 16966.4 + 10938.1i 0.916097 + 0.590601i
\(701\) −2867.85 + 1655.75i −0.154518 + 0.0892110i −0.575265 0.817967i \(-0.695101\pi\)
0.420747 + 0.907178i \(0.361768\pi\)
\(702\) 5309.80 1284.10i 0.285478 0.0690391i
\(703\) 22484.3 + 15600.9i 1.20628 + 0.836981i
\(704\) −25264.4 3743.67i −1.35254 0.200419i
\(705\) −1884.96 3264.85i −0.100697 0.174413i
\(706\) 10065.6 + 10571.7i 0.536576 + 0.563555i
\(707\) −23935.6 13819.2i −1.27325 0.735113i
\(708\) −1092.03 704.027i −0.0579678 0.0373714i
\(709\) 17880.2 + 10323.1i 0.947115 + 0.546817i 0.892184 0.451673i \(-0.149173\pi\)
0.0549318 + 0.998490i \(0.482506\pi\)
\(710\) −4620.09 19104.1i −0.244210 1.00981i
\(711\) 6094.78 0.321480
\(712\) 5654.51 + 29682.4i 0.297629 + 1.56235i
\(713\) −31178.2 + 54002.3i −1.63764 + 2.83647i
\(714\) −494.960 2046.67i −0.0259432 0.107275i
\(715\) 32785.2i 1.71482i
\(716\) 10425.4 + 511.634i 0.544155 + 0.0267048i
\(717\) −2490.97 + 1438.16i −0.129745 + 0.0749082i
\(718\) 8962.50 30442.6i 0.465846 1.58232i
\(719\) 6037.01 + 10456.4i 0.313133 + 0.542362i 0.979039 0.203674i \(-0.0652881\pi\)
−0.665906 + 0.746036i \(0.731955\pi\)
\(720\) −2442.61 + 24826.1i −0.126431 + 1.28502i
\(721\) 10330.0 0.533575
\(722\) −8478.58 + 17449.4i −0.437036 + 0.899444i
\(723\) 2247.64i 0.115617i
\(724\) −11405.7 + 17691.6i −0.585480 + 0.908154i
\(725\) −1737.71 + 1003.27i −0.0890167 + 0.0513938i
\(726\) −2560.86 753.936i −0.130913 0.0385416i
\(727\) −2355.14 4079.21i −0.120147 0.208101i 0.799678 0.600429i \(-0.205003\pi\)
−0.919826 + 0.392327i \(0.871670\pi\)
\(728\) −26476.6 + 5043.81i −1.34793 + 0.256780i
\(729\) 16833.5 0.855228
\(730\) 2735.12 + 11309.8i 0.138673 + 0.573416i
\(731\) 2878.10 + 1661.67i 0.145623 + 0.0840755i
\(732\) 244.399 4980.03i 0.0123405 0.251458i
\(733\) 4270.30i 0.215180i −0.994195 0.107590i \(-0.965687\pi\)
0.994195 0.107590i \(-0.0343134\pi\)
\(734\) 17259.4 4173.96i 0.867924 0.209896i
\(735\) 2272.61 3936.28i 0.114050 0.197540i
\(736\) 33187.3 4650.03i 1.66209 0.232884i
\(737\) 3896.85 6749.55i 0.194766 0.337344i
\(738\) −8913.42 9361.58i −0.444590 0.466944i
\(739\) 14637.3 8450.87i 0.728610 0.420663i −0.0893032 0.996004i \(-0.528464\pi\)
0.817914 + 0.575341i \(0.195131\pi\)
\(740\) −34802.6 + 17878.8i −1.72888 + 0.888157i
\(741\) −1709.71 + 2464.07i −0.0847606 + 0.122159i
\(742\) 10367.1 + 42868.2i 0.512923 + 2.12095i
\(743\) −8881.34 15382.9i −0.438526 0.759549i 0.559050 0.829134i \(-0.311166\pi\)
−0.997576 + 0.0695848i \(0.977833\pi\)
\(744\) 2045.54 5869.26i 0.100797 0.289217i
\(745\) −14899.0 + 25805.8i −0.732693 + 1.26906i
\(746\) −5263.77 + 5011.78i −0.258338 + 0.245971i
\(747\) −6229.34 3596.51i −0.305113 0.176157i
\(748\) −6205.76 12080.1i −0.303349 0.590496i
\(749\) 40305.2i 1.96625i
\(750\) 298.248 1013.05i 0.0145207 0.0493217i
\(751\) −6299.31 + 10910.7i −0.306079 + 0.530144i −0.977501 0.210931i \(-0.932350\pi\)
0.671422 + 0.741075i \(0.265684\pi\)
\(752\) −11641.6 + 16249.3i −0.564527 + 0.787967i
\(753\) 604.630 0.0292616
\(754\) 756.635 2570.03i 0.0365451 0.124131i
\(755\) 27322.1 15774.4i 1.31702 0.760385i
\(756\) 9322.73 + 457.520i 0.448498 + 0.0220104i
\(757\) −9955.59 + 5747.86i −0.477995 + 0.275970i −0.719580 0.694409i \(-0.755666\pi\)
0.241586 + 0.970379i \(0.422333\pi\)
\(758\) 18863.1 17960.1i 0.903878 0.860607i
\(759\) 7531.01 0.360156
\(760\) −16315.2 22430.7i −0.778702 1.07059i
\(761\) −739.256 −0.0352142 −0.0176071 0.999845i \(-0.505605\pi\)
−0.0176071 + 0.999845i \(0.505605\pi\)
\(762\) −963.066 + 916.961i −0.0457850 + 0.0435932i
\(763\) 17381.8 10035.4i 0.824725 0.476155i
\(764\) 243.587 4963.50i 0.0115349 0.235043i
\(765\) −11487.7 + 6632.43i −0.542927 + 0.313459i
\(766\) −3321.66 + 11282.5i −0.156679 + 0.532186i
\(767\) −8843.54 −0.416326
\(768\) −3162.84 + 1074.36i −0.148606 + 0.0504786i
\(769\) −17882.2 + 30972.9i −0.838554 + 1.45242i 0.0525495 + 0.998618i \(0.483265\pi\)
−0.891104 + 0.453800i \(0.850068\pi\)
\(770\) 15820.5 53737.0i 0.740432 2.51500i
\(771\) 655.981i 0.0306415i
\(772\) 35223.9 18095.2i 1.64215 0.843602i
\(773\) 15295.4 + 8830.81i 0.711692 + 0.410896i 0.811687 0.584092i \(-0.198549\pi\)
−0.0999952 + 0.994988i \(0.531883\pi\)
\(774\) −5268.02 + 5015.83i −0.244645 + 0.232933i
\(775\) −15842.4 + 27439.9i −0.734292 + 1.27183i
\(776\) 9493.13 + 3308.53i 0.439154 + 0.153053i
\(777\) 3614.30 + 6260.15i 0.166875 + 0.289037i
\(778\) 5783.94 + 23916.7i 0.266535 + 1.10213i
\(779\) 14322.8 + 1191.41i 0.658752 + 0.0547968i
\(780\) −1959.34 3814.03i −0.0899432 0.175082i
\(781\) −20282.5 + 11710.1i −0.929277 + 0.536518i
\(782\) 12287.6 + 12905.4i 0.561898 + 0.590149i
\(783\) −463.895 + 803.490i −0.0211727 + 0.0366723i
\(784\) −23984.2 2359.77i −1.09258 0.107497i
\(785\) 2963.02 5132.11i 0.134720 0.233341i
\(786\) −5823.16 + 1408.26i −0.264256 + 0.0639069i
\(787\) 247.455i 0.0112082i −0.999984 0.00560408i \(-0.998216\pi\)
0.999984 0.00560408i \(-0.00178384\pi\)
\(788\) −35571.1 1745.68i −1.60808 0.0789179i
\(789\) 2221.24 + 1282.43i 0.100226 + 0.0578655i
\(790\) −2277.40 9417.10i −0.102565 0.424108i
\(791\) −8201.05 −0.368642
\(792\) 29199.9 5562.59i 1.31007 0.249568i
\(793\) −16968.3 29390.0i −0.759853 1.31610i
\(794\) −5029.84 1480.82i −0.224814 0.0661868i
\(795\) −6076.41 + 3508.22i −0.271079 + 0.156508i
\(796\) −26116.4 16837.0i −1.16290 0.749715i
\(797\) 3653.15i 0.162360i 0.996699 + 0.0811801i \(0.0258689\pi\)
−0.996699 + 0.0811801i \(0.974131\pi\)
\(798\) −3991.35 + 3213.74i −0.177058 + 0.142563i
\(799\) −10629.1 −0.470626
\(800\) 16863.3 2362.79i 0.745259 0.104422i
\(801\) −17583.6 30455.7i −0.775637 1.34344i
\(802\) 291.335 989.565i 0.0128272 0.0435695i
\(803\) 12007.4 6932.46i 0.527685 0.304659i
\(804\) 49.9635 1018.09i 0.00219164 0.0446583i
\(805\) 73500.9i 3.21809i
\(806\) −9944.25 41119.6i −0.434580 1.79699i
\(807\) −556.748 + 964.315i −0.0242856 + 0.0420638i
\(808\) −22902.0 + 4362.83i −0.997140 + 0.189955i
\(809\) 16249.8 0.706197 0.353099 0.935586i \(-0.385128\pi\)
0.353099 + 0.935586i \(0.385128\pi\)
\(810\) −6647.93 27489.3i −0.288376 1.19244i
\(811\) 13462.2 + 7772.39i 0.582886 + 0.336530i 0.762280 0.647248i \(-0.224080\pi\)
−0.179393 + 0.983777i \(0.557413\pi\)
\(812\) 2480.34 3847.32i 0.107196 0.166274i
\(813\) −671.730 387.823i −0.0289774 0.0167301i
\(814\) 32148.6 + 33765.0i 1.38428 + 1.45389i
\(815\) −1790.98 3102.07i −0.0769758 0.133326i
\(816\) −1443.88 1034.45i −0.0619435 0.0443785i
\(817\) 670.440 8059.85i 0.0287096 0.345139i
\(818\) −12222.5 + 2955.85i −0.522433 + 0.126344i
\(819\) 27166.4 15684.5i 1.15906 0.669184i
\(820\) −11134.0 + 17270.3i −0.474167 + 0.735493i
\(821\) 4550.18 + 2627.05i 0.193426 + 0.111674i 0.593585 0.804771i \(-0.297712\pi\)
−0.400160 + 0.916445i \(0.631045\pi\)
\(822\) −2753.16 + 2621.36i −0.116822 + 0.111229i
\(823\) 18499.3 32041.8i 0.783532 1.35712i −0.146341 0.989234i \(-0.546750\pi\)
0.929872 0.367882i \(-0.119917\pi\)
\(824\) 6597.60 5692.01i 0.278930 0.240644i
\(825\) 3826.69 0.161489
\(826\) −14495.1 4267.46i −0.610593 0.179763i
\(827\) 23632.0 + 13644.0i 0.993672 + 0.573697i 0.906370 0.422485i \(-0.138842\pi\)
0.0873018 + 0.996182i \(0.472176\pi\)
\(828\) −34692.4 + 17822.1i −1.45609 + 0.748021i
\(829\) 43531.5i 1.82378i −0.410436 0.911889i \(-0.634623\pi\)
0.410436 0.911889i \(-0.365377\pi\)
\(830\) −3229.32 + 10968.9i −0.135050 + 0.458718i
\(831\) −2613.45 4526.62i −0.109097 0.188961i
\(832\) −14131.0 + 17810.6i −0.588829 + 0.742152i
\(833\) −6407.51 11098.1i −0.266515 0.461618i
\(834\) 954.739 + 1002.74i 0.0396402 + 0.0416333i
\(835\) 14425.5i 0.597864i
\(836\) −20149.3 + 26197.9i −0.833587 + 1.08382i
\(837\) 14650.5i 0.605013i
\(838\) −1910.03 + 1818.60i −0.0787363 + 0.0749670i
\(839\) 18701.8 + 32392.4i 0.769555 + 1.33291i 0.937804 + 0.347165i \(0.112855\pi\)
−0.168249 + 0.985745i \(0.553811\pi\)
\(840\) −1371.02 7196.92i −0.0563149 0.295616i
\(841\) −11967.0 20727.4i −0.490672 0.849869i
\(842\) −266.605 78.4904i −0.0109119 0.00321254i
\(843\) 1969.18i 0.0804534i
\(844\) 10475.5 + 20391.4i 0.427228 + 0.831637i
\(845\) 2886.28 + 1666.40i 0.117504 + 0.0678411i
\(846\) 6570.37 22317.3i 0.267014 0.906956i
\(847\) −31045.4 −1.25942
\(848\) 30242.6 + 21666.9i 1.22469 + 0.877409i
\(849\) −1222.08 + 2116.71i −0.0494013 + 0.0855655i
\(850\) 6243.63 + 6557.55i 0.251947 + 0.264614i
\(851\) −52977.4 30586.5i −2.13401 1.23207i
\(852\) −1659.71 + 2574.43i −0.0667381 + 0.103519i
\(853\) 15787.9 9115.13i 0.633724 0.365881i −0.148469 0.988917i \(-0.547435\pi\)
0.782193 + 0.623037i \(0.214101\pi\)
\(854\) −13630.0 56360.2i −0.546145 2.25832i
\(855\) 26522.2 + 18402.6i 1.06087 + 0.736089i
\(856\) 22208.9 + 25742.4i 0.886783 + 1.02787i
\(857\) 6496.65 + 11252.5i 0.258951 + 0.448517i 0.965961 0.258687i \(-0.0832897\pi\)
−0.707010 + 0.707204i \(0.749956\pi\)
\(858\) −3700.32 + 3523.18i −0.147234 + 0.140186i
\(859\) −7511.08 4336.52i −0.298341 0.172247i 0.343357 0.939205i \(-0.388436\pi\)
−0.641697 + 0.766958i \(0.721769\pi\)
\(860\) 9718.48 + 6265.43i 0.385346 + 0.248430i
\(861\) 3287.68 + 1898.14i 0.130132 + 0.0751319i
\(862\) −17477.9 + 4226.79i −0.690601 + 0.167013i
\(863\) 127.159 0.00501569 0.00250784 0.999997i \(-0.499202\pi\)
0.00250784 + 0.999997i \(0.499202\pi\)
\(864\) 6206.40 4844.80i 0.244382 0.190768i
\(865\) 10957.3 18978.6i 0.430705 0.746002i
\(866\) 3509.25 848.667i 0.137701 0.0333012i
\(867\) 3062.12i 0.119948i
\(868\) 3543.09 72196.2i 0.138549 2.82316i
\(869\) −9997.97 + 5772.33i −0.390285 + 0.225331i
\(870\) 698.589 + 205.669i 0.0272234 + 0.00801477i
\(871\) −3468.91 6008.33i −0.134948 0.233737i
\(872\) 5571.84 15987.2i 0.216383 0.620867i
\(873\) −11700.4 −0.453605
\(874\) 15653.7 40441.7i 0.605829 1.56517i
\(875\) 12281.2i 0.474491i
\(876\) 982.561 1524.08i 0.0378969 0.0587828i
\(877\) 27231.1 15721.9i 1.04850 0.605349i 0.126268 0.991996i \(-0.459700\pi\)
0.922228 + 0.386647i \(0.126367\pi\)
\(878\) −1026.48 + 3486.59i −0.0394555 + 0.134017i
\(879\) 1033.10 + 1789.39i 0.0396424 + 0.0686627i
\(880\) −19505.8 43038.5i −0.747204 1.64867i
\(881\) 14750.8 0.564095 0.282048 0.959400i \(-0.408986\pi\)
0.282048 + 0.959400i \(0.408986\pi\)
\(882\) 27263.0 6593.19i 1.04081 0.251705i
\(883\) −11147.8 6436.16i −0.424860 0.245293i 0.272294 0.962214i \(-0.412218\pi\)
−0.697155 + 0.716921i \(0.745551\pi\)
\(884\) −12074.9 592.585i −0.459415 0.0225461i
\(885\) 2403.86i 0.0913051i
\(886\) −4719.35 19514.6i −0.178950 0.739962i
\(887\) 10225.0 17710.3i 0.387061 0.670409i −0.604992 0.796232i \(-0.706824\pi\)
0.992053 + 0.125823i \(0.0401570\pi\)
\(888\) 5757.87 + 2006.72i 0.217592 + 0.0758346i
\(889\) −7732.32 + 13392.8i −0.291714 + 0.505264i
\(890\) −40486.9 + 38548.7i −1.52486 + 1.45186i
\(891\) −29184.9 + 16849.9i −1.09734 + 0.633550i
\(892\) 11578.0 5947.83i 0.434596 0.223260i
\(893\) 11031.9 + 23396.4i 0.413404 + 0.876744i
\(894\) 4513.66 1091.57i 0.168859 0.0408362i
\(895\) 9655.69 + 16724.1i 0.360619 + 0.624610i
\(896\) −31756.1 + 22373.7i −1.18404 + 0.834210i
\(897\) 3351.99 5805.81i 0.124771 0.216110i
\(898\) 23962.2 + 25167.0i 0.890456 + 0.935227i
\(899\) 6222.31 + 3592.45i 0.230841 + 0.133276i
\(900\) −17628.0 + 9055.85i −0.652890 + 0.335402i
\(901\) 19782.4i 0.731464i
\(902\) 23488.0 + 6915.02i 0.867033 + 0.255261i
\(903\) 1068.14 1850.07i 0.0393637 0.0681799i
\(904\) −5237.90 + 4518.94i −0.192710 + 0.166259i
\(905\) −38944.0 −1.43043
\(906\) −4716.49 1388.57i −0.172952 0.0509184i
\(907\) 19585.5 11307.7i 0.717006 0.413964i −0.0966437 0.995319i \(-0.530811\pi\)
0.813650 + 0.581355i \(0.197477\pi\)
\(908\) 38677.3 + 1898.12i 1.41360 + 0.0693737i
\(909\) 23498.6 13566.9i 0.857425 0.495035i
\(910\) −34385.4 36114.3i −1.25260 1.31558i
\(911\) 678.360 0.0246708 0.0123354 0.999924i \(-0.496073\pi\)
0.0123354 + 0.999924i \(0.496073\pi\)
\(912\) −778.390 + 4251.88i −0.0282621 + 0.154379i
\(913\) 13624.9 0.493888
\(914\) −22633.8 23771.8i −0.819101 0.860284i
\(915\) 7988.84 4612.36i 0.288637 0.166645i
\(916\) 42646.5 + 2092.91i 1.53830 + 0.0754932i
\(917\) −60338.2 + 34836.3i −2.17289 + 1.25452i
\(918\) 4016.22 + 1182.40i 0.144395 + 0.0425110i
\(919\) −39630.8 −1.42253 −0.711263 0.702926i \(-0.751876\pi\)
−0.711263 + 0.702926i \(0.751876\pi\)
\(920\) 40500.4 + 46944.0i 1.45137 + 1.68228i
\(921\) −2085.27 + 3611.79i −0.0746057 + 0.129221i
\(922\) −45854.6 13499.9i −1.63790 0.482208i
\(923\) 20848.3i 0.743477i
\(924\) −7765.17 + 3989.12i −0.276467 + 0.142026i
\(925\) −26919.1 15541.7i −0.956858 0.552442i
\(926\) −14154.6 14866.3i −0.502321 0.527577i
\(927\) −5070.68 + 8782.68i −0.179658 + 0.311177i
\(928\) −535.791 3823.95i −0.0189528 0.135266i
\(929\) 1695.72 + 2937.07i 0.0598867 + 0.103727i 0.894414 0.447239i \(-0.147593\pi\)
−0.834528 + 0.550966i \(0.814259\pi\)
\(930\) 11177.2 2703.06i 0.394102 0.0953084i
\(931\) −17778.5 + 25622.8i −0.625852 + 0.901991i
\(932\) 11295.4 5802.64i 0.396987 0.203940i
\(933\) −1943.18 + 1121.90i −0.0681853 + 0.0393668i
\(934\) 11135.5 10602.5i 0.390114 0.371438i
\(935\) 12563.1 21759.9i 0.439418 0.761095i
\(936\) 8708.32 24986.7i 0.304103 0.872559i
\(937\) 1964.37 3402.39i 0.0684880 0.118625i −0.829748 0.558138i \(-0.811516\pi\)
0.898236 + 0.439514i \(0.144849\pi\)
\(938\) −2786.43 11522.0i −0.0969939 0.401072i
\(939\) 1086.86i 0.0377724i
\(940\) −36937.8 1812.75i −1.28168 0.0628994i
\(941\) −3196.15 1845.30i −0.110724 0.0639266i 0.443615 0.896217i \(-0.353696\pi\)
−0.554339 + 0.832291i \(0.687029\pi\)
\(942\) −897.652 + 217.085i −0.0310478 + 0.00750852i
\(943\) −32126.6 −1.10942
\(944\) −11609.3 + 5261.52i −0.400265 + 0.181407i
\(945\) 8634.44 + 14955.3i 0.297226 + 0.514810i
\(946\) 3891.28 13217.3i 0.133738 0.454263i
\(947\) 23407.4 13514.3i 0.803209 0.463733i −0.0413833 0.999143i \(-0.513176\pi\)
0.844592 + 0.535411i \(0.179843\pi\)
\(948\) −818.131 + 1269.03i −0.0280292 + 0.0434768i
\(949\) 12342.3i 0.422180i
\(950\) 7954.03 20549.4i 0.271645 0.701800i
\(951\) 1484.46 0.0506173
\(952\) −19505.6 6798.04i −0.664053 0.231435i
\(953\) 25290.2 + 43803.9i 0.859632 + 1.48893i 0.872280 + 0.489006i \(0.162640\pi\)
−0.0126483 + 0.999920i \(0.504026\pi\)
\(954\) −41536.1 12228.5i −1.40962 0.415003i
\(955\) 7962.32 4597.05i 0.269795 0.155766i
\(956\) −1383.07 + 28182.3i −0.0467904 + 0.953432i
\(957\) 867.747i 0.0293106i
\(958\) 12225.6 2956.61i 0.412309 0.0997116i
\(959\) −22104.7 + 38286.5i −0.744316 + 1.28919i
\(960\) −4841.29 3841.12i −0.162763 0.129137i
\(961\) 83664.2 2.80837
\(962\) 40339.2 9755.51i 1.35196 0.326955i
\(963\) −34268.0 19784.7i −1.14670 0.662048i
\(964\) −18531.6 11947.2i −0.619153 0.399164i
\(965\) 63449.0 + 36632.3i 2.11658 + 1.22201i
\(966\) 8295.72 7898.58i 0.276305 0.263077i
\(967\) 27246.7 + 47192.7i 0.906097 + 1.56941i 0.819437 + 0.573169i \(0.194286\pi\)
0.0866603 + 0.996238i \(0.472381\pi\)
\(968\) −19828.2 + 17106.6i −0.658372 + 0.568003i
\(969\) −2078.96 + 980.277i −0.0689224 + 0.0324985i
\(970\) 4372.01 + 18078.3i 0.144718 + 0.598413i
\(971\) −2026.20 + 1169.83i −0.0669658 + 0.0386627i −0.533109 0.846047i \(-0.678976\pi\)
0.466143 + 0.884709i \(0.345643\pi\)
\(972\) −7478.84 + 11600.6i −0.246794 + 0.382809i
\(973\) 13944.5 + 8050.88i 0.459447 + 0.265262i
\(974\) −15937.6 16738.9i −0.524305 0.550667i
\(975\) 1703.23 2950.07i 0.0559455 0.0969005i
\(976\) −39760.8 28486.1i −1.30401 0.934239i
\(977\) −36878.5 −1.20762 −0.603812 0.797127i \(-0.706352\pi\)
−0.603812 + 0.797127i \(0.706352\pi\)
\(978\) −157.654 + 535.496i −0.00515461 + 0.0175085i
\(979\) 57688.7 + 33306.6i 1.88329 + 1.08732i
\(980\) −20374.4 39660.6i −0.664118 1.29277i
\(981\) 19704.4i 0.641298i
\(982\) −4373.61 1287.62i −0.142126 0.0418428i
\(983\) 7851.00 + 13598.3i 0.254739 + 0.441220i 0.964824 0.262895i \(-0.0846772\pi\)
−0.710086 + 0.704115i \(0.751344\pi\)
\(984\) 3145.71 599.259i 0.101912 0.0194143i
\(985\) −32945.0 57062.3i −1.06570 1.84584i
\(986\) 1487.00 1415.82i 0.0480282 0.0457290i
\(987\) 6832.47i 0.220344i
\(988\) 11228.2 + 27194.0i 0.361555 + 0.875663i
\(989\) 18078.5i 0.581258i
\(990\) 37922.1 + 39828.8i 1.21742 + 1.27863i
\(991\) −27763.6 48087.9i −0.889949 1.54144i −0.839934 0.542688i \(-0.817407\pi\)
−0.0500146 0.998748i \(-0.515927\pi\)
\(992\) −37518.6 48063.0i −1.20082 1.53831i
\(993\) 1089.16 + 1886.49i 0.0348072 + 0.0602879i
\(994\) −10060.4 + 34171.6i −0.321021 + 1.09040i
\(995\) 57489.2i 1.83169i
\(996\) 1585.04 814.266i 0.0504257 0.0259046i
\(997\) −38115.6 22006.1i −1.21077 0.699036i −0.247840 0.968801i \(-0.579721\pi\)
−0.962926 + 0.269765i \(0.913054\pi\)
\(998\) 15568.1 + 4583.35i 0.493787 + 0.145374i
\(999\) −14372.5 −0.455180
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 152.4.p.a.45.15 116
8.5 even 2 inner 152.4.p.a.45.24 yes 116
19.11 even 3 inner 152.4.p.a.125.24 yes 116
152.125 even 6 inner 152.4.p.a.125.15 yes 116
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.4.p.a.45.15 116 1.1 even 1 trivial
152.4.p.a.45.24 yes 116 8.5 even 2 inner
152.4.p.a.125.15 yes 116 152.125 even 6 inner
152.4.p.a.125.24 yes 116 19.11 even 3 inner