Properties

Label 152.4.p.a.45.9
Level $152$
Weight $4$
Character 152.45
Analytic conductor $8.968$
Analytic rank $0$
Dimension $116$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [152,4,Mod(45,152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(152, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("152.45");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 152.p (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.96829032087\)
Analytic rank: \(0\)
Dimension: \(116\)
Relative dimension: \(58\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 45.9
Character \(\chi\) \(=\) 152.45
Dual form 152.4.p.a.125.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.55889 + 1.20502i) q^{2} +(-4.74696 + 2.74066i) q^{3} +(5.09583 - 6.16705i) q^{4} +(2.75286 - 1.58936i) q^{5} +(8.84438 - 12.7332i) q^{6} +6.39182 q^{7} +(-5.60823 + 21.9214i) q^{8} +(1.52239 - 2.63686i) q^{9} +O(q^{10})\) \(q+(-2.55889 + 1.20502i) q^{2} +(-4.74696 + 2.74066i) q^{3} +(5.09583 - 6.16705i) q^{4} +(2.75286 - 1.58936i) q^{5} +(8.84438 - 12.7332i) q^{6} +6.39182 q^{7} +(-5.60823 + 21.9214i) q^{8} +(1.52239 - 2.63686i) q^{9} +(-5.12904 + 7.38426i) q^{10} +61.8197i q^{11} +(-7.28793 + 43.2406i) q^{12} +(-48.9939 - 28.2866i) q^{13} +(-16.3560 + 7.70229i) q^{14} +(-8.71179 + 15.0893i) q^{15} +(-12.0650 - 62.8525i) q^{16} +(-3.16069 - 5.47448i) q^{17} +(-0.718153 + 8.58197i) q^{18} +(50.2899 - 65.8022i) q^{19} +(4.22642 - 25.0761i) q^{20} +(-30.3417 + 17.5178i) q^{21} +(-74.4942 - 158.190i) q^{22} +(36.5338 - 63.2785i) q^{23} +(-33.4570 - 119.430i) q^{24} +(-57.4479 + 99.5026i) q^{25} +(159.456 + 13.3435i) q^{26} -131.306i q^{27} +(32.5716 - 39.4186i) q^{28} +(-226.243 - 130.622i) q^{29} +(4.10958 - 49.1097i) q^{30} -112.649 q^{31} +(106.612 + 146.294i) q^{32} +(-169.426 - 293.455i) q^{33} +(14.6847 + 10.1999i) q^{34} +(17.5957 - 10.1589i) q^{35} +(-8.50380 - 22.8257i) q^{36} -227.883i q^{37} +(-49.3930 + 228.981i) q^{38} +310.096 q^{39} +(19.4024 + 69.2600i) q^{40} +(-25.3562 - 43.9183i) q^{41} +(56.5316 - 81.3885i) q^{42} +(-407.779 + 235.431i) q^{43} +(381.245 + 315.023i) q^{44} -9.67854i q^{45} +(-17.2340 + 205.947i) q^{46} +(67.6767 - 117.219i) q^{47} +(229.529 + 265.292i) q^{48} -302.145 q^{49} +(27.0997 - 323.842i) q^{50} +(30.0073 + 17.3247i) q^{51} +(-424.110 + 158.004i) q^{52} +(-364.115 - 210.222i) q^{53} +(158.227 + 335.998i) q^{54} +(98.2539 + 170.181i) q^{55} +(-35.8468 + 140.118i) q^{56} +(-58.3826 + 450.187i) q^{57} +(736.334 + 61.6177i) q^{58} +(330.020 - 190.537i) q^{59} +(48.6624 + 130.618i) q^{60} +(291.562 + 168.333i) q^{61} +(288.255 - 135.744i) q^{62} +(9.73086 - 16.8543i) q^{63} +(-449.096 - 245.880i) q^{64} -179.831 q^{65} +(787.164 + 546.757i) q^{66} +(-469.568 - 271.105i) q^{67} +(-49.8677 - 8.40488i) q^{68} +400.507i q^{69} +(-32.7838 + 47.1988i) q^{70} +(513.735 + 889.815i) q^{71} +(49.2658 + 48.1611i) q^{72} +(-335.367 - 580.873i) q^{73} +(274.604 + 583.126i) q^{74} -629.779i q^{75} +(-149.537 - 645.457i) q^{76} +395.140i q^{77} +(-793.501 + 373.673i) q^{78} +(83.2056 + 144.116i) q^{79} +(-133.109 - 153.848i) q^{80} +(400.969 + 694.499i) q^{81} +(117.806 + 81.8271i) q^{82} -213.128i q^{83} +(-46.5831 + 276.386i) q^{84} +(-17.4018 - 10.0470i) q^{85} +(759.761 - 1093.83i) q^{86} +1431.96 q^{87} +(-1355.17 - 346.699i) q^{88} +(-315.321 + 546.152i) q^{89} +(11.6629 + 24.7663i) q^{90} +(-313.160 - 180.803i) q^{91} +(-204.071 - 547.763i) q^{92} +(534.738 - 308.731i) q^{93} +(-31.9249 + 381.504i) q^{94} +(33.8573 - 261.073i) q^{95} +(-907.023 - 402.265i) q^{96} +(-320.342 - 554.849i) q^{97} +(773.155 - 364.092i) q^{98} +(163.010 + 94.1139i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 116 q - q^{2} - 7 q^{4} - 11 q^{6} - 8 q^{7} - 46 q^{8} + 484 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 116 q - q^{2} - 7 q^{4} - 11 q^{6} - 8 q^{7} - 46 q^{8} + 484 q^{9} - 44 q^{10} - 58 q^{12} + 24 q^{14} - 230 q^{15} - 67 q^{16} - 2 q^{17} + 196 q^{18} - 840 q^{20} + 137 q^{22} - 2 q^{23} + 77 q^{24} + 1248 q^{25} + 492 q^{26} - 96 q^{28} - 904 q^{30} + 208 q^{31} - 431 q^{32} - 180 q^{33} + 224 q^{34} - 84 q^{36} + 1552 q^{38} - 116 q^{39} - 58 q^{40} - 22 q^{41} - 568 q^{42} - 89 q^{44} - 1852 q^{46} + 202 q^{47} - 89 q^{48} + 5220 q^{49} - 942 q^{50} + 232 q^{52} - 231 q^{54} + 248 q^{55} - 2296 q^{56} - 398 q^{57} - 3620 q^{58} - 1378 q^{60} + 614 q^{62} - 796 q^{63} + 1550 q^{64} - 508 q^{65} - 797 q^{66} + 1860 q^{68} - 2968 q^{70} + 1986 q^{71} - 1596 q^{72} - 218 q^{73} + 2490 q^{74} - 4697 q^{76} + 1254 q^{78} + 1250 q^{79} + 3136 q^{80} - 3810 q^{81} - 169 q^{82} + 4136 q^{84} - 2360 q^{86} - 1404 q^{87} + 4434 q^{88} - 2 q^{89} + 1378 q^{90} - 1958 q^{92} - 4608 q^{94} + 438 q^{95} + 3410 q^{96} - 1586 q^{97} + 55 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/152\mathbb{Z}\right)^\times\).

\(n\) \(39\) \(77\) \(97\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.55889 + 1.20502i −0.904704 + 0.426040i
\(3\) −4.74696 + 2.74066i −0.913552 + 0.527440i −0.881572 0.472049i \(-0.843515\pi\)
−0.0319798 + 0.999489i \(0.510181\pi\)
\(4\) 5.09583 6.16705i 0.636979 0.770881i
\(5\) 2.75286 1.58936i 0.246223 0.142157i −0.371811 0.928309i \(-0.621263\pi\)
0.618034 + 0.786152i \(0.287930\pi\)
\(6\) 8.84438 12.7332i 0.601784 0.866387i
\(7\) 6.39182 0.345126 0.172563 0.984999i \(-0.444795\pi\)
0.172563 + 0.984999i \(0.444795\pi\)
\(8\) −5.60823 + 21.9214i −0.247851 + 0.968798i
\(9\) 1.52239 2.63686i 0.0563850 0.0976616i
\(10\) −5.12904 + 7.38426i −0.162194 + 0.233511i
\(11\) 61.8197i 1.69448i 0.531206 + 0.847242i \(0.321739\pi\)
−0.531206 + 0.847242i \(0.678261\pi\)
\(12\) −7.28793 + 43.2406i −0.175320 + 1.04021i
\(13\) −48.9939 28.2866i −1.04527 0.603485i −0.123946 0.992289i \(-0.539555\pi\)
−0.921320 + 0.388804i \(0.872888\pi\)
\(14\) −16.3560 + 7.70229i −0.312237 + 0.147037i
\(15\) −8.71179 + 15.0893i −0.149958 + 0.259735i
\(16\) −12.0650 62.8525i −0.188515 0.982070i
\(17\) −3.16069 5.47448i −0.0450929 0.0781033i 0.842598 0.538543i \(-0.181025\pi\)
−0.887691 + 0.460440i \(0.847692\pi\)
\(18\) −0.718153 + 8.58197i −0.00940391 + 0.112377i
\(19\) 50.2899 65.8022i 0.607226 0.794529i
\(20\) 4.22642 25.0761i 0.0472528 0.280360i
\(21\) −30.3417 + 17.5178i −0.315290 + 0.182033i
\(22\) −74.4942 158.190i −0.721919 1.53301i
\(23\) 36.5338 63.2785i 0.331210 0.573673i −0.651539 0.758615i \(-0.725876\pi\)
0.982749 + 0.184942i \(0.0592098\pi\)
\(24\) −33.4570 119.430i −0.284558 1.01577i
\(25\) −57.4479 + 99.5026i −0.459583 + 0.796021i
\(26\) 159.456 + 13.3435i 1.20277 + 0.100649i
\(27\) 131.306i 0.935920i
\(28\) 32.5716 39.4186i 0.219838 0.266051i
\(29\) −226.243 130.622i −1.44870 0.836408i −0.450297 0.892879i \(-0.648682\pi\)
−0.998404 + 0.0564711i \(0.982015\pi\)
\(30\) 4.10958 49.1097i 0.0250101 0.298872i
\(31\) −112.649 −0.652654 −0.326327 0.945257i \(-0.605811\pi\)
−0.326327 + 0.945257i \(0.605811\pi\)
\(32\) 106.612 + 146.294i 0.588952 + 0.808168i
\(33\) −169.426 293.455i −0.893738 1.54800i
\(34\) 14.6847 + 10.1999i 0.0740709 + 0.0514489i
\(35\) 17.5957 10.1589i 0.0849778 0.0490620i
\(36\) −8.50380 22.8257i −0.0393695 0.105675i
\(37\) 227.883i 1.01253i −0.862378 0.506266i \(-0.831026\pi\)
0.862378 0.506266i \(-0.168974\pi\)
\(38\) −49.3930 + 228.981i −0.210858 + 0.977517i
\(39\) 310.096 1.27321
\(40\) 19.4024 + 69.2600i 0.0766947 + 0.273774i
\(41\) −25.3562 43.9183i −0.0965848 0.167290i 0.813684 0.581307i \(-0.197459\pi\)
−0.910269 + 0.414017i \(0.864125\pi\)
\(42\) 56.5316 81.3885i 0.207691 0.299012i
\(43\) −407.779 + 235.431i −1.44618 + 0.834953i −0.998251 0.0591165i \(-0.981172\pi\)
−0.447929 + 0.894069i \(0.647838\pi\)
\(44\) 381.245 + 315.023i 1.30625 + 1.07935i
\(45\) 9.67854i 0.0320620i
\(46\) −17.2340 + 205.947i −0.0552394 + 0.660113i
\(47\) 67.6767 117.219i 0.210035 0.363792i −0.741690 0.670743i \(-0.765975\pi\)
0.951725 + 0.306951i \(0.0993088\pi\)
\(48\) 229.529 + 265.292i 0.690201 + 0.797742i
\(49\) −302.145 −0.880888
\(50\) 27.0997 323.842i 0.0766494 0.915964i
\(51\) 30.0073 + 17.3247i 0.0823895 + 0.0475676i
\(52\) −424.110 + 158.004i −1.13103 + 0.421369i
\(53\) −364.115 210.222i −0.943680 0.544834i −0.0525679 0.998617i \(-0.516741\pi\)
−0.891112 + 0.453784i \(0.850074\pi\)
\(54\) 158.227 + 335.998i 0.398740 + 0.846731i
\(55\) 98.2539 + 170.181i 0.240883 + 0.417221i
\(56\) −35.8468 + 140.118i −0.0855397 + 0.334357i
\(57\) −58.3826 + 450.187i −0.135666 + 1.04612i
\(58\) 736.334 + 61.6177i 1.66699 + 0.139496i
\(59\) 330.020 190.537i 0.728219 0.420437i −0.0895512 0.995982i \(-0.528543\pi\)
0.817770 + 0.575545i \(0.195210\pi\)
\(60\) 48.6624 + 130.618i 0.104705 + 0.281046i
\(61\) 291.562 + 168.333i 0.611978 + 0.353326i 0.773739 0.633504i \(-0.218384\pi\)
−0.161761 + 0.986830i \(0.551717\pi\)
\(62\) 288.255 135.744i 0.590459 0.278057i
\(63\) 9.73086 16.8543i 0.0194599 0.0337055i
\(64\) −449.096 245.880i −0.877140 0.480235i
\(65\) −179.831 −0.343158
\(66\) 787.164 + 546.757i 1.46808 + 1.01971i
\(67\) −469.568 271.105i −0.856223 0.494340i 0.00652287 0.999979i \(-0.497924\pi\)
−0.862746 + 0.505638i \(0.831257\pi\)
\(68\) −49.8677 8.40488i −0.0889316 0.0149888i
\(69\) 400.507i 0.698773i
\(70\) −32.7838 + 47.1988i −0.0559774 + 0.0805906i
\(71\) 513.735 + 889.815i 0.858720 + 1.48735i 0.873151 + 0.487450i \(0.162073\pi\)
−0.0144309 + 0.999896i \(0.504594\pi\)
\(72\) 49.2658 + 48.1611i 0.0806393 + 0.0788312i
\(73\) −335.367 580.873i −0.537696 0.931316i −0.999028 0.0440884i \(-0.985962\pi\)
0.461332 0.887228i \(-0.347372\pi\)
\(74\) 274.604 + 583.126i 0.431379 + 0.916041i
\(75\) 629.779i 0.969609i
\(76\) −149.537 645.457i −0.225698 0.974197i
\(77\) 395.140i 0.584810i
\(78\) −793.501 + 373.673i −1.15188 + 0.542438i
\(79\) 83.2056 + 144.116i 0.118498 + 0.205245i 0.919173 0.393855i \(-0.128859\pi\)
−0.800674 + 0.599100i \(0.795525\pi\)
\(80\) −133.109 153.848i −0.186025 0.215009i
\(81\) 400.969 + 694.499i 0.550026 + 0.952674i
\(82\) 117.806 + 81.8271i 0.158653 + 0.110199i
\(83\) 213.128i 0.281854i −0.990020 0.140927i \(-0.954992\pi\)
0.990020 0.140927i \(-0.0450083\pi\)
\(84\) −46.5831 + 276.386i −0.0605076 + 0.359002i
\(85\) −17.4018 10.0470i −0.0222058 0.0128205i
\(86\) 759.761 1093.83i 0.952642 1.37152i
\(87\) 1431.96 1.76462
\(88\) −1355.17 346.699i −1.64161 0.419980i
\(89\) −315.321 + 546.152i −0.375550 + 0.650471i −0.990409 0.138165i \(-0.955879\pi\)
0.614859 + 0.788637i \(0.289213\pi\)
\(90\) 11.6629 + 24.7663i 0.0136597 + 0.0290067i
\(91\) −313.160 180.803i −0.360748 0.208278i
\(92\) −204.071 547.763i −0.231260 0.620741i
\(93\) 534.738 308.731i 0.596233 0.344235i
\(94\) −31.9249 + 381.504i −0.0350298 + 0.418607i
\(95\) 33.8573 261.073i 0.0365651 0.281953i
\(96\) −907.023 402.265i −0.964298 0.427667i
\(97\) −320.342 554.849i −0.335317 0.580787i 0.648228 0.761446i \(-0.275510\pi\)
−0.983546 + 0.180659i \(0.942177\pi\)
\(98\) 773.155 364.092i 0.796943 0.375294i
\(99\) 163.010 + 94.1139i 0.165486 + 0.0955435i
\(100\) 320.893 + 861.332i 0.320893 + 0.861332i
\(101\) 863.815 + 498.724i 0.851018 + 0.491336i 0.860994 0.508615i \(-0.169842\pi\)
−0.00997612 + 0.999950i \(0.503176\pi\)
\(102\) −97.6621 8.17253i −0.0948038 0.00793334i
\(103\) −706.149 −0.675523 −0.337762 0.941232i \(-0.609670\pi\)
−0.337762 + 0.941232i \(0.609670\pi\)
\(104\) 894.851 915.377i 0.843725 0.863077i
\(105\) −55.6842 + 96.4478i −0.0517545 + 0.0896414i
\(106\) 1185.05 + 99.1672i 1.08587 + 0.0908676i
\(107\) 1358.71i 1.22758i 0.789469 + 0.613791i \(0.210356\pi\)
−0.789469 + 0.613791i \(0.789644\pi\)
\(108\) −809.771 669.113i −0.721483 0.596162i
\(109\) 383.566 221.452i 0.337055 0.194599i −0.321914 0.946769i \(-0.604326\pi\)
0.658969 + 0.752170i \(0.270993\pi\)
\(110\) −456.493 317.075i −0.395681 0.274836i
\(111\) 624.548 + 1081.75i 0.534049 + 0.925000i
\(112\) −77.1171 401.742i −0.0650615 0.338938i
\(113\) −1241.51 −1.03355 −0.516776 0.856121i \(-0.672868\pi\)
−0.516776 + 0.856121i \(0.672868\pi\)
\(114\) −393.092 1222.33i −0.322951 1.00423i
\(115\) 232.262i 0.188335i
\(116\) −1958.45 + 729.627i −1.56756 + 0.584002i
\(117\) −149.176 + 86.1268i −0.117875 + 0.0680549i
\(118\) −614.883 + 885.245i −0.479699 + 0.690622i
\(119\) −20.2025 34.9918i −0.0155627 0.0269554i
\(120\) −281.920 275.599i −0.214464 0.209655i
\(121\) −2490.67 −1.87128
\(122\) −948.921 79.4073i −0.704191 0.0589278i
\(123\) 240.730 + 138.985i 0.176470 + 0.101885i
\(124\) −574.038 + 694.709i −0.415727 + 0.503119i
\(125\) 762.562i 0.545645i
\(126\) −4.59030 + 54.8543i −0.00324553 + 0.0387842i
\(127\) 938.410 1625.37i 0.655673 1.13566i −0.326052 0.945352i \(-0.605718\pi\)
0.981725 0.190307i \(-0.0609483\pi\)
\(128\) 1445.48 + 88.0100i 0.998152 + 0.0607739i
\(129\) 1290.47 2235.17i 0.880774 1.52555i
\(130\) 460.167 216.701i 0.310456 0.146199i
\(131\) −110.321 + 63.6936i −0.0735783 + 0.0424804i −0.536338 0.844003i \(-0.680193\pi\)
0.462760 + 0.886484i \(0.346859\pi\)
\(132\) −2673.12 450.538i −1.76262 0.297078i
\(133\) 321.444 420.595i 0.209569 0.274212i
\(134\) 1528.26 + 127.888i 0.985237 + 0.0824463i
\(135\) −208.693 361.467i −0.133048 0.230445i
\(136\) 137.734 38.5846i 0.0868426 0.0243280i
\(137\) 933.960 1617.67i 0.582435 1.00881i −0.412755 0.910842i \(-0.635433\pi\)
0.995190 0.0979652i \(-0.0312334\pi\)
\(138\) −482.621 1024.85i −0.297706 0.632183i
\(139\) 1560.88 + 901.173i 0.952460 + 0.549903i 0.893844 0.448378i \(-0.147998\pi\)
0.0586157 + 0.998281i \(0.481331\pi\)
\(140\) 27.0145 160.282i 0.0163082 0.0967593i
\(141\) 741.914i 0.443123i
\(142\) −2386.84 1657.87i −1.41056 0.979759i
\(143\) 1748.67 3028.79i 1.02260 1.77119i
\(144\) −184.101 63.8726i −0.106540 0.0369633i
\(145\) −830.420 −0.475605
\(146\) 1558.13 + 1082.26i 0.883234 + 0.613485i
\(147\) 1434.27 828.075i 0.804737 0.464615i
\(148\) −1405.36 1161.25i −0.780541 0.644961i
\(149\) −1.35824 + 0.784180i −0.000746788 + 0.000431158i −0.500373 0.865810i \(-0.666804\pi\)
0.499627 + 0.866241i \(0.333471\pi\)
\(150\) 758.899 + 1611.54i 0.413093 + 0.877209i
\(151\) −2598.55 −1.40044 −0.700221 0.713926i \(-0.746915\pi\)
−0.700221 + 0.713926i \(0.746915\pi\)
\(152\) 1160.44 + 1471.46i 0.619237 + 0.785204i
\(153\) −19.2473 −0.0101703
\(154\) −476.153 1011.12i −0.249153 0.529080i
\(155\) −310.105 + 179.039i −0.160698 + 0.0927793i
\(156\) 1580.20 1912.38i 0.811006 0.981491i
\(157\) −2111.46 + 1219.05i −1.07333 + 0.619689i −0.929090 0.369854i \(-0.879408\pi\)
−0.144242 + 0.989542i \(0.546074\pi\)
\(158\) −386.578 268.513i −0.194649 0.135201i
\(159\) 2304.58 1.14947
\(160\) 526.001 + 233.282i 0.259900 + 0.115266i
\(161\) 233.518 404.464i 0.114309 0.197989i
\(162\) −1862.92 1293.97i −0.903489 0.627554i
\(163\) 966.960i 0.464651i 0.972638 + 0.232326i \(0.0746335\pi\)
−0.972638 + 0.232326i \(0.925366\pi\)
\(164\) −400.057 67.4271i −0.190483 0.0321047i
\(165\) −932.814 538.560i −0.440118 0.254102i
\(166\) 256.825 + 545.372i 0.120081 + 0.254995i
\(167\) −1541.94 + 2670.72i −0.714485 + 1.23752i 0.248672 + 0.968588i \(0.420006\pi\)
−0.963158 + 0.268937i \(0.913328\pi\)
\(168\) −213.851 763.375i −0.0982081 0.350570i
\(169\) 501.767 + 869.086i 0.228387 + 0.395578i
\(170\) 56.6362 + 4.73942i 0.0255518 + 0.00213822i
\(171\) −96.9504 232.784i −0.0433566 0.104102i
\(172\) −626.058 + 3714.51i −0.277537 + 1.64668i
\(173\) 311.262 179.707i 0.136791 0.0789762i −0.430043 0.902808i \(-0.641502\pi\)
0.566834 + 0.823832i \(0.308168\pi\)
\(174\) −3664.22 + 1725.54i −1.59646 + 0.751799i
\(175\) −367.196 + 636.002i −0.158614 + 0.274727i
\(176\) 3885.52 745.853i 1.66410 0.319436i
\(177\) −1044.39 + 1808.94i −0.443511 + 0.768183i
\(178\) 148.745 1777.51i 0.0626344 0.748484i
\(179\) 3379.39i 1.41110i 0.708658 + 0.705552i \(0.249301\pi\)
−0.708658 + 0.705552i \(0.750699\pi\)
\(180\) −59.6881 49.3202i −0.0247160 0.0204229i
\(181\) 4023.87 + 2323.18i 1.65244 + 0.954039i 0.976064 + 0.217485i \(0.0697854\pi\)
0.676380 + 0.736553i \(0.263548\pi\)
\(182\) 1019.21 + 85.2895i 0.415105 + 0.0347367i
\(183\) −1845.38 −0.745432
\(184\) 1182.26 + 1155.75i 0.473682 + 0.463061i
\(185\) −362.188 627.328i −0.143938 0.249308i
\(186\) −996.306 + 1434.38i −0.392757 + 0.565451i
\(187\) 338.430 195.393i 0.132345 0.0764093i
\(188\) −378.029 1014.70i −0.146652 0.393640i
\(189\) 839.284i 0.323010i
\(190\) 227.962 + 708.855i 0.0870427 + 0.270662i
\(191\) 1388.26 0.525923 0.262961 0.964806i \(-0.415301\pi\)
0.262961 + 0.964806i \(0.415301\pi\)
\(192\) 2805.71 63.6327i 1.05461 0.0239182i
\(193\) 1038.65 + 1798.99i 0.387376 + 0.670956i 0.992096 0.125483i \(-0.0400481\pi\)
−0.604719 + 0.796439i \(0.706715\pi\)
\(194\) 1488.33 + 1033.78i 0.550802 + 0.382582i
\(195\) 853.649 492.854i 0.313493 0.180995i
\(196\) −1539.68 + 1863.34i −0.561107 + 0.679060i
\(197\) 2552.51i 0.923140i −0.887104 0.461570i \(-0.847286\pi\)
0.887104 0.461570i \(-0.152714\pi\)
\(198\) −530.534 44.3960i −0.190421 0.0159348i
\(199\) −44.5813 + 77.2171i −0.0158808 + 0.0275064i −0.873857 0.486184i \(-0.838389\pi\)
0.857976 + 0.513690i \(0.171722\pi\)
\(200\) −1859.06 1817.37i −0.657275 0.642538i
\(201\) 2972.03 1.04294
\(202\) −2811.38 235.261i −0.979248 0.0819451i
\(203\) −1446.11 834.909i −0.499984 0.288666i
\(204\) 259.755 96.7726i 0.0891493 0.0332129i
\(205\) −139.604 80.6005i −0.0475628 0.0274604i
\(206\) 1806.96 850.926i 0.611149 0.287800i
\(207\) −111.238 192.670i −0.0373505 0.0646930i
\(208\) −1186.78 + 3420.67i −0.395616 + 1.14029i
\(209\) 4067.87 + 3108.90i 1.34632 + 1.02893i
\(210\) 26.2677 313.900i 0.00863163 0.103148i
\(211\) 143.613 82.9147i 0.0468564 0.0270525i −0.476389 0.879235i \(-0.658055\pi\)
0.523245 + 0.852182i \(0.324721\pi\)
\(212\) −3151.92 + 1174.26i −1.02111 + 0.380417i
\(213\) −4877.35 2815.94i −1.56897 0.905846i
\(214\) −1637.28 3476.78i −0.522999 1.11060i
\(215\) −748.372 + 1296.22i −0.237389 + 0.411169i
\(216\) 2878.41 + 736.394i 0.906718 + 0.231969i
\(217\) −720.029 −0.225248
\(218\) −714.648 + 1028.88i −0.222028 + 0.319653i
\(219\) 3183.95 + 1838.25i 0.982426 + 0.567204i
\(220\) 1550.20 + 261.276i 0.475065 + 0.0800692i
\(221\) 357.621i 0.108852i
\(222\) −2901.68 2015.48i −0.877244 0.609325i
\(223\) 1649.50 + 2857.01i 0.495330 + 0.857937i 0.999986 0.00538423i \(-0.00171386\pi\)
−0.504656 + 0.863321i \(0.668381\pi\)
\(224\) 681.443 + 935.084i 0.203262 + 0.278919i
\(225\) 174.917 + 302.964i 0.0518271 + 0.0897672i
\(226\) 3176.88 1496.05i 0.935058 0.440335i
\(227\) 2190.15i 0.640377i −0.947354 0.320188i \(-0.896254\pi\)
0.947354 0.320188i \(-0.103746\pi\)
\(228\) 2478.82 + 2654.13i 0.720017 + 0.770938i
\(229\) 5275.55i 1.52235i −0.648547 0.761175i \(-0.724623\pi\)
0.648547 0.761175i \(-0.275377\pi\)
\(230\) 279.881 + 594.333i 0.0802384 + 0.170388i
\(231\) −1082.94 1875.71i −0.308452 0.534254i
\(232\) 4132.23 4227.01i 1.16937 1.19619i
\(233\) 351.609 + 609.005i 0.0988612 + 0.171233i 0.911214 0.411934i \(-0.135147\pi\)
−0.812352 + 0.583167i \(0.801813\pi\)
\(234\) 277.940 400.150i 0.0776475 0.111789i
\(235\) 430.251i 0.119432i
\(236\) 506.675 3006.19i 0.139753 0.829180i
\(237\) −789.947 456.076i −0.216509 0.125001i
\(238\) 93.8621 + 65.1957i 0.0255638 + 0.0177563i
\(239\) −3283.69 −0.888721 −0.444361 0.895848i \(-0.646569\pi\)
−0.444361 + 0.895848i \(0.646569\pi\)
\(240\) 1053.51 + 365.506i 0.283348 + 0.0983055i
\(241\) −463.112 + 802.133i −0.123783 + 0.214398i −0.921256 0.388956i \(-0.872836\pi\)
0.797474 + 0.603354i \(0.206169\pi\)
\(242\) 6373.35 3001.32i 1.69295 0.797240i
\(243\) −736.480 425.207i −0.194425 0.112251i
\(244\) 2523.87 940.278i 0.662190 0.246701i
\(245\) −831.761 + 480.217i −0.216895 + 0.125224i
\(246\) −783.482 65.5631i −0.203061 0.0169925i
\(247\) −4325.22 + 1801.37i −1.11420 + 0.464043i
\(248\) 631.759 2469.41i 0.161761 0.632290i
\(249\) 584.112 + 1011.71i 0.148661 + 0.257488i
\(250\) −918.906 1951.31i −0.232467 0.493648i
\(251\) −5566.76 3213.97i −1.39988 0.808223i −0.405504 0.914093i \(-0.632904\pi\)
−0.994380 + 0.105870i \(0.966237\pi\)
\(252\) −54.3547 145.898i −0.0135874 0.0364710i
\(253\) 3911.85 + 2258.51i 0.972080 + 0.561231i
\(254\) −442.673 + 5289.96i −0.109353 + 1.30678i
\(255\) 110.141 0.0270482
\(256\) −3804.87 + 1516.63i −0.928924 + 0.370271i
\(257\) 621.051 1075.69i 0.150740 0.261089i −0.780760 0.624831i \(-0.785168\pi\)
0.931500 + 0.363742i \(0.118501\pi\)
\(258\) −608.750 + 7274.59i −0.146896 + 1.75541i
\(259\) 1456.58i 0.349450i
\(260\) −916.388 + 1109.03i −0.218584 + 0.264534i
\(261\) −688.863 + 397.715i −0.163370 + 0.0943217i
\(262\) 205.546 295.924i 0.0484682 0.0697795i
\(263\) 1023.95 + 1773.53i 0.240074 + 0.415820i 0.960735 0.277467i \(-0.0894950\pi\)
−0.720661 + 0.693287i \(0.756162\pi\)
\(264\) 7383.13 2068.30i 1.72121 0.482179i
\(265\) −1336.47 −0.309808
\(266\) −315.711 + 1463.60i −0.0727725 + 0.337366i
\(267\) 3456.74i 0.792319i
\(268\) −4064.76 + 1514.34i −0.926474 + 0.345161i
\(269\) −1938.16 + 1119.00i −0.439300 + 0.253630i −0.703301 0.710893i \(-0.748291\pi\)
0.264001 + 0.964522i \(0.414958\pi\)
\(270\) 969.598 + 673.473i 0.218548 + 0.151801i
\(271\) −3298.44 5713.07i −0.739359 1.28061i −0.952784 0.303648i \(-0.901795\pi\)
0.213426 0.976959i \(-0.431538\pi\)
\(272\) −305.951 + 264.707i −0.0682022 + 0.0590081i
\(273\) 1982.07 0.439416
\(274\) −440.574 + 5264.88i −0.0971388 + 1.16081i
\(275\) −6151.22 3551.41i −1.34885 0.778756i
\(276\) 2469.95 + 2040.92i 0.538671 + 0.445104i
\(277\) 1603.05i 0.347718i −0.984771 0.173859i \(-0.944376\pi\)
0.984771 0.173859i \(-0.0556237\pi\)
\(278\) −5080.05 425.107i −1.09598 0.0917131i
\(279\) −171.495 + 297.039i −0.0367999 + 0.0637392i
\(280\) 124.017 + 442.697i 0.0264693 + 0.0944864i
\(281\) 857.822 1485.79i 0.182112 0.315427i −0.760488 0.649352i \(-0.775040\pi\)
0.942599 + 0.333926i \(0.108373\pi\)
\(282\) −894.024 1898.48i −0.188789 0.400896i
\(283\) 395.275 228.212i 0.0830271 0.0479357i −0.457912 0.888998i \(-0.651402\pi\)
0.540939 + 0.841062i \(0.318069\pi\)
\(284\) 8105.44 + 1366.12i 1.69355 + 0.285438i
\(285\) 554.792 + 1332.09i 0.115309 + 0.276864i
\(286\) −824.894 + 9857.52i −0.170549 + 2.03807i
\(287\) −162.072 280.717i −0.0333339 0.0577360i
\(288\) 548.062 58.4035i 0.112135 0.0119495i
\(289\) 2436.52 4220.18i 0.495933 0.858982i
\(290\) 2124.95 1000.68i 0.430281 0.202627i
\(291\) 3041.30 + 1755.89i 0.612660 + 0.353719i
\(292\) −5291.25 891.806i −1.06043 0.178729i
\(293\) 8541.68i 1.70311i 0.524268 + 0.851553i \(0.324339\pi\)
−0.524268 + 0.851553i \(0.675661\pi\)
\(294\) −2672.28 + 3847.28i −0.530104 + 0.763190i
\(295\) 605.665 1049.04i 0.119536 0.207043i
\(296\) 4995.50 + 1278.02i 0.980938 + 0.250957i
\(297\) 8117.29 1.58590
\(298\) 2.53063 3.64334i 0.000491931 0.000708232i
\(299\) −3579.87 + 2066.84i −0.692405 + 0.399760i
\(300\) −3883.88 3209.25i −0.747453 0.617620i
\(301\) −2606.45 + 1504.83i −0.499114 + 0.288163i
\(302\) 6649.39 3131.31i 1.26699 0.596645i
\(303\) −5467.32 −1.03660
\(304\) −4742.58 2366.94i −0.894755 0.446557i
\(305\) 1070.17 0.200911
\(306\) 49.2516 23.1934i 0.00920107 0.00433294i
\(307\) −7852.60 + 4533.70i −1.45984 + 0.842840i −0.999003 0.0446434i \(-0.985785\pi\)
−0.460839 + 0.887484i \(0.652451\pi\)
\(308\) 2436.85 + 2013.57i 0.450819 + 0.372512i
\(309\) 3352.06 1935.31i 0.617126 0.356298i
\(310\) 577.778 831.826i 0.105857 0.152402i
\(311\) −8924.69 −1.62724 −0.813622 0.581395i \(-0.802507\pi\)
−0.813622 + 0.581395i \(0.802507\pi\)
\(312\) −1739.09 + 6797.73i −0.315566 + 1.23348i
\(313\) −2712.33 + 4697.89i −0.489808 + 0.848373i −0.999931 0.0117286i \(-0.996267\pi\)
0.510123 + 0.860102i \(0.329600\pi\)
\(314\) 3934.01 5663.79i 0.707036 1.01792i
\(315\) 61.8635i 0.0110654i
\(316\) 1312.77 + 221.260i 0.233700 + 0.0393887i
\(317\) −4881.35 2818.25i −0.864870 0.499333i 0.000770037 1.00000i \(-0.499755\pi\)
−0.865640 + 0.500667i \(0.833088\pi\)
\(318\) −5897.17 + 2777.08i −1.03993 + 0.489720i
\(319\) 8074.99 13986.3i 1.41728 2.45480i
\(320\) −1627.09 + 36.9019i −0.284241 + 0.00644649i
\(321\) −3723.75 6449.73i −0.647475 1.12146i
\(322\) −110.156 + 1316.37i −0.0190645 + 0.227822i
\(323\) −519.183 67.3303i −0.0894369 0.0115986i
\(324\) 6326.28 + 1066.25i 1.08475 + 0.182828i
\(325\) 5629.19 3250.01i 0.960773 0.554702i
\(326\) −1165.21 2474.34i −0.197960 0.420372i
\(327\) −1213.85 + 2102.44i −0.205278 + 0.355552i
\(328\) 1104.95 309.540i 0.186009 0.0521082i
\(329\) 432.577 749.245i 0.0724885 0.125554i
\(330\) 3035.94 + 254.053i 0.506434 + 0.0423793i
\(331\) 3650.02i 0.606112i 0.952973 + 0.303056i \(0.0980069\pi\)
−0.952973 + 0.303056i \(0.901993\pi\)
\(332\) −1314.37 1086.07i −0.217276 0.179535i
\(333\) −600.895 346.927i −0.0988855 0.0570915i
\(334\) 727.375 8692.16i 0.119162 1.42399i
\(335\) −1723.54 −0.281096
\(336\) 1467.11 + 1695.70i 0.238206 + 0.275321i
\(337\) 134.374 + 232.742i 0.0217205 + 0.0376210i 0.876681 0.481072i \(-0.159752\pi\)
−0.854961 + 0.518693i \(0.826419\pi\)
\(338\) −2331.24 1619.25i −0.375155 0.260579i
\(339\) 5893.39 3402.55i 0.944203 0.545136i
\(340\) −150.637 + 56.1204i −0.0240278 + 0.00895164i
\(341\) 6963.89i 1.10591i
\(342\) 528.596 + 478.842i 0.0835767 + 0.0757100i
\(343\) −4123.65 −0.649143
\(344\) −2874.07 10259.4i −0.450463 1.60800i
\(345\) 636.551 + 1102.54i 0.0993355 + 0.172054i
\(346\) −579.934 + 834.929i −0.0901082 + 0.129729i
\(347\) −5735.95 + 3311.65i −0.887383 + 0.512331i −0.873085 0.487567i \(-0.837884\pi\)
−0.0142971 + 0.999898i \(0.504551\pi\)
\(348\) 7297.01 8830.94i 1.12402 1.36031i
\(349\) 5975.97i 0.916580i 0.888803 + 0.458290i \(0.151538\pi\)
−0.888803 + 0.458290i \(0.848462\pi\)
\(350\) 173.216 2069.94i 0.0264537 0.316123i
\(351\) −3714.20 + 6433.19i −0.564814 + 0.978286i
\(352\) −9043.85 + 6590.70i −1.36943 + 0.997971i
\(353\) 1584.14 0.238854 0.119427 0.992843i \(-0.461894\pi\)
0.119427 + 0.992843i \(0.461894\pi\)
\(354\) 492.668 5887.40i 0.0739689 0.883932i
\(355\) 2828.48 + 1633.02i 0.422873 + 0.244146i
\(356\) 1761.32 + 4727.70i 0.262219 + 0.703841i
\(357\) 191.801 + 110.736i 0.0284347 + 0.0164168i
\(358\) −4072.25 8647.49i −0.601187 1.27663i
\(359\) 3969.58 + 6875.51i 0.583583 + 1.01080i 0.995050 + 0.0993707i \(0.0316830\pi\)
−0.411468 + 0.911424i \(0.634984\pi\)
\(360\) 212.167 + 54.2795i 0.0310617 + 0.00794661i
\(361\) −1800.86 6618.37i −0.262554 0.964917i
\(362\) −13096.1 1095.91i −1.90143 0.159115i
\(363\) 11823.1 6826.08i 1.70951 0.986986i
\(364\) −2710.83 + 1009.93i −0.390347 + 0.145425i
\(365\) −1846.44 1066.04i −0.264786 0.152874i
\(366\) 4722.11 2223.72i 0.674396 0.317584i
\(367\) 2360.44 4088.40i 0.335733 0.581506i −0.647893 0.761732i \(-0.724349\pi\)
0.983625 + 0.180226i \(0.0576828\pi\)
\(368\) −4417.99 1532.79i −0.625825 0.217126i
\(369\) −154.409 −0.0217837
\(370\) 1682.74 + 1168.82i 0.236437 + 0.164227i
\(371\) −2327.36 1343.70i −0.325688 0.188036i
\(372\) 820.975 4870.99i 0.114424 0.678896i
\(373\) 5353.86i 0.743197i −0.928394 0.371598i \(-0.878810\pi\)
0.928394 0.371598i \(-0.121190\pi\)
\(374\) −630.553 + 907.805i −0.0871794 + 0.125512i
\(375\) −2089.92 3619.85i −0.287795 0.498475i
\(376\) 2190.07 + 2140.96i 0.300383 + 0.293648i
\(377\) 7389.69 + 12799.3i 1.00952 + 1.74854i
\(378\) 1011.36 + 2147.63i 0.137615 + 0.292229i
\(379\) 11268.1i 1.52719i −0.645698 0.763593i \(-0.723434\pi\)
0.645698 0.763593i \(-0.276566\pi\)
\(380\) −1437.52 1539.18i −0.194061 0.207785i
\(381\) 10287.4i 1.38331i
\(382\) −3552.41 + 1672.89i −0.475804 + 0.224064i
\(383\) 1046.07 + 1811.85i 0.139561 + 0.241727i 0.927331 0.374243i \(-0.122098\pi\)
−0.787770 + 0.615970i \(0.788764\pi\)
\(384\) −7102.82 + 3543.78i −0.943918 + 0.470945i
\(385\) 628.021 + 1087.76i 0.0831348 + 0.143994i
\(386\) −4825.62 3351.83i −0.636315 0.441978i
\(387\) 1433.68i 0.188315i
\(388\) −5054.19 851.851i −0.661308 0.111459i
\(389\) −4810.82 2777.53i −0.627039 0.362021i 0.152565 0.988293i \(-0.451247\pi\)
−0.779605 + 0.626272i \(0.784580\pi\)
\(390\) −1590.49 + 2289.83i −0.206507 + 0.297308i
\(391\) −461.889 −0.0597410
\(392\) 1694.50 6623.43i 0.218329 0.853403i
\(393\) 349.125 604.702i 0.0448117 0.0776162i
\(394\) 3075.83 + 6531.58i 0.393295 + 0.835169i
\(395\) 458.106 + 264.488i 0.0583540 + 0.0336907i
\(396\) 1411.08 525.702i 0.179064 0.0667109i
\(397\) 12606.1 7278.16i 1.59366 0.920102i 0.600992 0.799255i \(-0.294773\pi\)
0.992671 0.120846i \(-0.0385608\pi\)
\(398\) 21.0302 251.312i 0.00264861 0.0316511i
\(399\) −373.171 + 2877.51i −0.0468218 + 0.361042i
\(400\) 6947.09 + 2410.24i 0.868387 + 0.301281i
\(401\) −2718.61 4708.78i −0.338556 0.586397i 0.645605 0.763671i \(-0.276605\pi\)
−0.984161 + 0.177275i \(0.943272\pi\)
\(402\) −7605.09 + 3581.37i −0.943551 + 0.444334i
\(403\) 5519.09 + 3186.45i 0.682197 + 0.393867i
\(404\) 7477.51 2785.78i 0.920842 0.343063i
\(405\) 2207.62 + 1274.57i 0.270858 + 0.156380i
\(406\) 4706.51 + 393.849i 0.575321 + 0.0481438i
\(407\) 14087.6 1.71572
\(408\) −548.070 + 560.641i −0.0665037 + 0.0680291i
\(409\) −2336.00 + 4046.08i −0.282415 + 0.489158i −0.971979 0.235067i \(-0.924469\pi\)
0.689564 + 0.724225i \(0.257802\pi\)
\(410\) 454.357 + 38.0214i 0.0547295 + 0.00457986i
\(411\) 10238.7i 1.22880i
\(412\) −3598.42 + 4354.85i −0.430294 + 0.520748i
\(413\) 2109.43 1217.88i 0.251327 0.145104i
\(414\) 516.817 + 358.976i 0.0613531 + 0.0426152i
\(415\) −338.738 586.712i −0.0400675 0.0693989i
\(416\) −1085.16 10183.2i −0.127895 1.20017i
\(417\) −9879.23 −1.16016
\(418\) −14155.5 3053.46i −1.65639 0.357296i
\(419\) 10426.9i 1.21572i 0.794045 + 0.607859i \(0.207972\pi\)
−0.794045 + 0.607859i \(0.792028\pi\)
\(420\) 311.041 + 834.889i 0.0361363 + 0.0969962i
\(421\) −3703.90 + 2138.44i −0.428781 + 0.247557i −0.698827 0.715291i \(-0.746294\pi\)
0.270046 + 0.962847i \(0.412961\pi\)
\(422\) −267.574 + 385.226i −0.0308657 + 0.0444372i
\(423\) −206.061 356.908i −0.0236857 0.0410248i
\(424\) 6650.40 6802.94i 0.761726 0.779198i
\(425\) 726.299 0.0828958
\(426\) 15873.9 + 1328.35i 1.80538 + 0.151077i
\(427\) 1863.61 + 1075.96i 0.211209 + 0.121942i
\(428\) 8379.22 + 6923.75i 0.946319 + 0.781944i
\(429\) 19170.0i 2.15743i
\(430\) 353.027 4218.69i 0.0395918 0.473123i
\(431\) −3000.72 + 5197.39i −0.335358 + 0.580858i −0.983554 0.180617i \(-0.942191\pi\)
0.648195 + 0.761474i \(0.275524\pi\)
\(432\) −8252.91 + 1584.20i −0.919140 + 0.176435i
\(433\) −6833.50 + 11836.0i −0.758423 + 1.31363i 0.185231 + 0.982695i \(0.440697\pi\)
−0.943654 + 0.330932i \(0.892637\pi\)
\(434\) 1842.47 867.652i 0.203782 0.0959646i
\(435\) 3941.97 2275.90i 0.434490 0.250853i
\(436\) 588.883 3493.95i 0.0646844 0.383784i
\(437\) −2326.58 5586.27i −0.254681 0.611505i
\(438\) −10362.5 867.152i −1.13046 0.0945985i
\(439\) 8156.07 + 14126.7i 0.886715 + 1.53584i 0.843735 + 0.536760i \(0.180352\pi\)
0.0429802 + 0.999076i \(0.486315\pi\)
\(440\) −4281.63 + 1199.45i −0.463906 + 0.129958i
\(441\) −459.983 + 796.714i −0.0496689 + 0.0860290i
\(442\) −430.942 915.113i −0.0463752 0.0984785i
\(443\) 13879.7 + 8013.44i 1.48859 + 0.859436i 0.999915 0.0130319i \(-0.00414829\pi\)
0.488672 + 0.872468i \(0.337482\pi\)
\(444\) 9853.78 + 1660.79i 1.05324 + 0.177517i
\(445\) 2004.64i 0.213548i
\(446\) −7663.66 5323.10i −0.813643 0.565148i
\(447\) 4.29834 7.44494i 0.000454820 0.000787771i
\(448\) −2870.54 1571.62i −0.302723 0.165741i
\(449\) 13840.3 1.45471 0.727355 0.686261i \(-0.240749\pi\)
0.727355 + 0.686261i \(0.240749\pi\)
\(450\) −812.672 564.474i −0.0851327 0.0591323i
\(451\) 2715.01 1567.51i 0.283470 0.163661i
\(452\) −6326.52 + 7656.44i −0.658350 + 0.796745i
\(453\) 12335.2 7121.72i 1.27938 0.738648i
\(454\) 2639.19 + 5604.36i 0.272826 + 0.579352i
\(455\) −1149.45 −0.118433
\(456\) −9541.31 3804.58i −0.979853 0.390715i
\(457\) 5522.47 0.565274 0.282637 0.959227i \(-0.408791\pi\)
0.282637 + 0.959227i \(0.408791\pi\)
\(458\) 6357.16 + 13499.5i 0.648582 + 1.37728i
\(459\) −718.831 + 415.018i −0.0730984 + 0.0422034i
\(460\) −1432.37 1183.57i −0.145184 0.119966i
\(461\) −14990.7 + 8654.86i −1.51450 + 0.874397i −0.514644 + 0.857404i \(0.672076\pi\)
−0.999856 + 0.0169930i \(0.994591\pi\)
\(462\) 5031.41 + 3494.77i 0.506672 + 0.351929i
\(463\) 8476.57 0.850842 0.425421 0.904996i \(-0.360126\pi\)
0.425421 + 0.904996i \(0.360126\pi\)
\(464\) −5480.27 + 15795.9i −0.548309 + 1.58040i
\(465\) 981.370 1699.78i 0.0978709 0.169517i
\(466\) −1633.59 1134.68i −0.162392 0.112796i
\(467\) 5033.78i 0.498792i 0.968402 + 0.249396i \(0.0802320\pi\)
−0.968402 + 0.249396i \(0.919768\pi\)
\(468\) −229.028 + 1358.86i −0.0226214 + 0.134217i
\(469\) −3001.39 1732.86i −0.295504 0.170610i
\(470\) 518.463 + 1100.96i 0.0508828 + 0.108050i
\(471\) 6682.02 11573.6i 0.653697 1.13224i
\(472\) 2326.01 + 8303.07i 0.226829 + 0.809703i
\(473\) −14554.3 25208.8i −1.41481 2.45053i
\(474\) 2570.97 + 215.143i 0.249132 + 0.0208478i
\(475\) 3658.44 + 8784.17i 0.353391 + 0.848516i
\(476\) −318.745 53.7225i −0.0306926 0.00517303i
\(477\) −1108.65 + 640.081i −0.106419 + 0.0614409i
\(478\) 8402.61 3956.93i 0.804030 0.378631i
\(479\) −751.425 + 1301.51i −0.0716774 + 0.124149i −0.899637 0.436640i \(-0.856169\pi\)
0.827959 + 0.560788i \(0.189502\pi\)
\(480\) −3136.25 + 334.210i −0.298228 + 0.0317803i
\(481\) −6446.03 + 11164.8i −0.611047 + 1.05836i
\(482\) 218.462 2610.63i 0.0206445 0.246703i
\(483\) 2559.97i 0.241165i
\(484\) −12692.0 + 15360.1i −1.19197 + 1.44253i
\(485\) −1763.71 1018.28i −0.165126 0.0953354i
\(486\) 2396.96 + 200.581i 0.223720 + 0.0187213i
\(487\) 9650.47 0.897956 0.448978 0.893543i \(-0.351788\pi\)
0.448978 + 0.893543i \(0.351788\pi\)
\(488\) −5325.25 + 5447.39i −0.493981 + 0.505311i
\(489\) −2650.11 4590.12i −0.245075 0.424483i
\(490\) 1549.71 2231.12i 0.142875 0.205697i
\(491\) −10592.0 + 6115.29i −0.973544 + 0.562076i −0.900315 0.435239i \(-0.856664\pi\)
−0.0732292 + 0.997315i \(0.523330\pi\)
\(492\) 2083.85 776.346i 0.190949 0.0711390i
\(493\) 1651.42i 0.150864i
\(494\) 8897.06 9821.51i 0.810319 0.894515i
\(495\) 598.324 0.0543287
\(496\) 1359.10 + 7080.24i 0.123035 + 0.640952i
\(497\) 3283.70 + 5687.53i 0.296366 + 0.513321i
\(498\) −2713.81 1884.99i −0.244195 0.169615i
\(499\) 13405.5 7739.69i 1.20263 0.694341i 0.241494 0.970402i \(-0.422363\pi\)
0.961140 + 0.276061i \(0.0890292\pi\)
\(500\) 4702.76 + 3885.89i 0.420628 + 0.347565i
\(501\) 16903.7i 1.50739i
\(502\) 18117.6 + 1516.11i 1.61082 + 0.134796i
\(503\) 7682.63 13306.7i 0.681017 1.17956i −0.293653 0.955912i \(-0.594871\pi\)
0.974671 0.223645i \(-0.0717955\pi\)
\(504\) 314.898 + 307.837i 0.0278307 + 0.0272067i
\(505\) 3170.61 0.279387
\(506\) −12731.6 1065.40i −1.11855 0.0936023i
\(507\) −4763.73 2750.34i −0.417287 0.240921i
\(508\) −5241.78 14069.9i −0.457808 1.22884i
\(509\) 5526.47 + 3190.71i 0.481251 + 0.277850i 0.720938 0.693000i \(-0.243711\pi\)
−0.239687 + 0.970850i \(0.577045\pi\)
\(510\) −281.839 + 132.723i −0.0244707 + 0.0115236i
\(511\) −2143.61 3712.83i −0.185572 0.321421i
\(512\) 7908.68 8465.85i 0.682651 0.730744i
\(513\) −8640.22 6603.36i −0.743616 0.568315i
\(514\) −292.966 + 3500.96i −0.0251404 + 0.300429i
\(515\) −1943.93 + 1122.33i −0.166329 + 0.0960303i
\(516\) −7208.34 19348.4i −0.614979 1.65071i
\(517\) 7246.46 + 4183.75i 0.616439 + 0.355901i
\(518\) 1755.22 + 3727.24i 0.148880 + 0.316149i
\(519\) −985.032 + 1706.12i −0.0833104 + 0.144298i
\(520\) 1008.53 3942.14i 0.0850521 0.332451i
\(521\) −18913.6 −1.59044 −0.795220 0.606321i \(-0.792645\pi\)
−0.795220 + 0.606321i \(0.792645\pi\)
\(522\) 1283.47 1847.81i 0.107617 0.154935i
\(523\) −4850.23 2800.28i −0.405517 0.234126i 0.283345 0.959018i \(-0.408556\pi\)
−0.688862 + 0.724893i \(0.741889\pi\)
\(524\) −169.374 + 1004.92i −0.0141205 + 0.0837792i
\(525\) 4025.43i 0.334637i
\(526\) −4757.33 3304.39i −0.394352 0.273913i
\(527\) 356.047 + 616.692i 0.0294301 + 0.0509744i
\(528\) −16400.3 + 14189.4i −1.35176 + 1.16954i
\(529\) 3414.06 + 5913.32i 0.280600 + 0.486013i
\(530\) 3419.89 1610.48i 0.280284 0.131991i
\(531\) 1160.29i 0.0948254i
\(532\) −955.810 4125.64i −0.0778940 0.336220i
\(533\) 2868.97i 0.233150i
\(534\) 4165.46 + 8845.43i 0.337560 + 0.716815i
\(535\) 2159.48 + 3740.33i 0.174509 + 0.302259i
\(536\) 8576.46 8773.18i 0.691132 0.706984i
\(537\) −9261.75 16041.8i −0.744272 1.28912i
\(538\) 3611.12 5198.92i 0.289380 0.416620i
\(539\) 18678.5i 1.49265i
\(540\) −3292.65 554.954i −0.262394 0.0442249i
\(541\) 322.475 + 186.181i 0.0256272 + 0.0147959i 0.512759 0.858533i \(-0.328623\pi\)
−0.487132 + 0.873329i \(0.661957\pi\)
\(542\) 15324.7 + 10644.4i 1.21449 + 0.843574i
\(543\) −25468.2 −2.01279
\(544\) 463.916 1046.03i 0.0365630 0.0824417i
\(545\) 703.934 1219.25i 0.0553270 0.0958292i
\(546\) −5071.91 + 2388.45i −0.397542 + 0.187209i
\(547\) −17836.0 10297.6i −1.39417 0.804924i −0.400395 0.916343i \(-0.631127\pi\)
−0.993774 + 0.111419i \(0.964460\pi\)
\(548\) −5216.92 14003.1i −0.406672 1.09158i
\(549\) 887.744 512.539i 0.0690128 0.0398445i
\(550\) 20019.8 + 1675.29i 1.55209 + 0.129881i
\(551\) −19972.9 + 8318.36i −1.54424 + 0.643147i
\(552\) −8779.67 2246.13i −0.676970 0.173192i
\(553\) 531.835 + 921.165i 0.0408968 + 0.0708353i
\(554\) 1931.71 + 4102.03i 0.148142 + 0.314582i
\(555\) 3438.58 + 1985.27i 0.262990 + 0.151837i
\(556\) 13511.6 5033.78i 1.03061 0.383957i
\(557\) 11170.9 + 6449.52i 0.849777 + 0.490619i 0.860576 0.509323i \(-0.170104\pi\)
−0.0107985 + 0.999942i \(0.503437\pi\)
\(558\) 80.8989 966.746i 0.00613750 0.0733434i
\(559\) 26638.3 2.01552
\(560\) −850.805 983.370i −0.0642019 0.0742053i
\(561\) −1071.01 + 1855.04i −0.0806026 + 0.139608i
\(562\) −404.657 + 4835.67i −0.0303727 + 0.362955i
\(563\) 7425.42i 0.555851i −0.960603 0.277926i \(-0.910353\pi\)
0.960603 0.277926i \(-0.0896469\pi\)
\(564\) 4575.42 + 3780.67i 0.341596 + 0.282260i
\(565\) −3417.69 + 1973.21i −0.254484 + 0.146926i
\(566\) −736.465 + 1060.29i −0.0546924 + 0.0787406i
\(567\) 2562.92 + 4439.11i 0.189828 + 0.328792i
\(568\) −22387.1 + 6271.50i −1.65377 + 0.463286i
\(569\) 1865.19 0.137421 0.0687106 0.997637i \(-0.478111\pi\)
0.0687106 + 0.997637i \(0.478111\pi\)
\(570\) −3024.86 2740.14i −0.222276 0.201354i
\(571\) 10029.2i 0.735044i −0.930015 0.367522i \(-0.880206\pi\)
0.930015 0.367522i \(-0.119794\pi\)
\(572\) −9767.74 26218.3i −0.714003 1.91651i
\(573\) −6590.03 + 3804.75i −0.480458 + 0.277392i
\(574\) 752.996 + 523.024i 0.0547552 + 0.0380324i
\(575\) 4197.58 + 7270.43i 0.304437 + 0.527300i
\(576\) −1332.05 + 809.877i −0.0963581 + 0.0585848i
\(577\) −17785.1 −1.28320 −0.641599 0.767040i \(-0.721729\pi\)
−0.641599 + 0.767040i \(0.721729\pi\)
\(578\) −1149.37 + 13735.0i −0.0827120 + 0.988412i
\(579\) −9860.85 5693.16i −0.707777 0.408635i
\(580\) −4231.68 + 5121.24i −0.302950 + 0.366635i
\(581\) 1362.28i 0.0972750i
\(582\) −9898.24 828.301i −0.704975 0.0589935i
\(583\) 12995.8 22509.5i 0.923213 1.59905i
\(584\) 14614.4 4094.05i 1.03553 0.290091i
\(585\) −273.773 + 474.189i −0.0193490 + 0.0335134i
\(586\) −10292.9 21857.2i −0.725592 1.54081i
\(587\) −6144.71 + 3547.65i −0.432060 + 0.249450i −0.700224 0.713923i \(-0.746916\pi\)
0.268164 + 0.963373i \(0.413583\pi\)
\(588\) 2202.01 13064.9i 0.154438 0.916307i
\(589\) −5665.08 + 7412.52i −0.396308 + 0.518553i
\(590\) −285.708 + 3414.22i −0.0199363 + 0.238240i
\(591\) 6995.54 + 12116.6i 0.486901 + 0.843336i
\(592\) −14323.0 + 2749.40i −0.994377 + 0.190878i
\(593\) 1904.63 3298.91i 0.131895 0.228448i −0.792512 0.609856i \(-0.791227\pi\)
0.924407 + 0.381408i \(0.124561\pi\)
\(594\) −20771.3 + 9781.54i −1.43477 + 0.675659i
\(595\) −111.229 64.2183i −0.00766380 0.00442470i
\(596\) −2.08529 + 12.3724i −0.000143317 + 0.000850323i
\(597\) 488.728i 0.0335047i
\(598\) 6669.90 9602.64i 0.456108 0.656658i
\(599\) 6335.15 10972.8i 0.432132 0.748474i −0.564925 0.825142i \(-0.691095\pi\)
0.997057 + 0.0766680i \(0.0244281\pi\)
\(600\) 13805.6 + 3531.95i 0.939355 + 0.240319i
\(601\) 4805.35 0.326147 0.163073 0.986614i \(-0.447859\pi\)
0.163073 + 0.986614i \(0.447859\pi\)
\(602\) 4856.25 6991.54i 0.328781 0.473345i
\(603\) −1429.74 + 825.459i −0.0965562 + 0.0557467i
\(604\) −13241.8 + 16025.4i −0.892052 + 1.07957i
\(605\) −6856.46 + 3958.58i −0.460752 + 0.266015i
\(606\) 13990.3 6588.26i 0.937816 0.441633i
\(607\) 9703.21 0.648832 0.324416 0.945915i \(-0.394832\pi\)
0.324416 + 0.945915i \(0.394832\pi\)
\(608\) 14988.0 + 341.821i 0.999740 + 0.0228004i
\(609\) 9152.80 0.609015
\(610\) −2738.45 + 1289.58i −0.181765 + 0.0855961i
\(611\) −6631.48 + 3828.69i −0.439085 + 0.253506i
\(612\) −98.0808 + 118.699i −0.00647824 + 0.00784006i
\(613\) 13966.3 8063.43i 0.920216 0.531287i 0.0365118 0.999333i \(-0.488375\pi\)
0.883704 + 0.468046i \(0.155042\pi\)
\(614\) 14630.7 21063.8i 0.961641 1.38447i
\(615\) 883.593 0.0579348
\(616\) −8662.02 2216.04i −0.566563 0.144946i
\(617\) −4323.51 + 7488.54i −0.282104 + 0.488618i −0.971903 0.235383i \(-0.924366\pi\)
0.689799 + 0.724001i \(0.257699\pi\)
\(618\) −6245.45 + 8991.56i −0.406519 + 0.585264i
\(619\) 3788.37i 0.245989i −0.992407 0.122995i \(-0.960750\pi\)
0.992407 0.122995i \(-0.0392498\pi\)
\(620\) −476.100 + 2824.79i −0.0308397 + 0.182978i
\(621\) −8308.84 4797.11i −0.536912 0.309986i
\(622\) 22837.3 10754.5i 1.47217 0.693271i
\(623\) −2015.47 + 3490.90i −0.129612 + 0.224494i
\(624\) −3741.30 19490.3i −0.240019 1.25038i
\(625\) −5968.99 10338.6i −0.382016 0.661670i
\(626\) 1279.48 15289.8i 0.0816904 0.976205i
\(627\) −27830.4 3609.19i −1.77263 0.229884i
\(628\) −3241.70 + 19233.6i −0.205984 + 1.22214i
\(629\) −1247.54 + 720.266i −0.0790820 + 0.0456580i
\(630\) 74.5470 + 158.302i 0.00471432 + 0.0100109i
\(631\) −4423.47 + 7661.68i −0.279074 + 0.483370i −0.971155 0.238450i \(-0.923361\pi\)
0.692081 + 0.721820i \(0.256694\pi\)
\(632\) −3625.87 + 1015.75i −0.228211 + 0.0639307i
\(633\) −454.482 + 787.185i −0.0285372 + 0.0494278i
\(634\) 15886.9 + 1329.44i 0.995188 + 0.0832790i
\(635\) 5965.90i 0.372834i
\(636\) 11743.8 14212.5i 0.732187 0.886103i
\(637\) 14803.2 + 8546.66i 0.920763 + 0.531603i
\(638\) −3809.18 + 45519.9i −0.236375 + 2.82469i
\(639\) 3128.43 0.193676
\(640\) 4119.07 2055.11i 0.254407 0.126930i
\(641\) −9320.92 16144.3i −0.574344 0.994792i −0.996113 0.0880891i \(-0.971924\pi\)
0.421769 0.906703i \(-0.361409\pi\)
\(642\) 17300.7 + 12016.9i 1.06356 + 0.738739i
\(643\) 13897.4 8023.65i 0.852346 0.492102i −0.00909547 0.999959i \(-0.502895\pi\)
0.861442 + 0.507856i \(0.169562\pi\)
\(644\) −1304.38 3501.20i −0.0798136 0.214234i
\(645\) 8204.12i 0.500832i
\(646\) 1409.67 453.337i 0.0858554 0.0276104i
\(647\) −7100.80 −0.431470 −0.215735 0.976452i \(-0.569215\pi\)
−0.215735 + 0.976452i \(0.569215\pi\)
\(648\) −17473.1 + 4894.90i −1.05927 + 0.296743i
\(649\) 11778.9 + 20401.7i 0.712425 + 1.23396i
\(650\) −10488.1 + 15099.7i −0.632889 + 0.911169i
\(651\) 3417.94 1973.35i 0.205775 0.118804i
\(652\) 5963.29 + 4927.47i 0.358191 + 0.295973i
\(653\) 23545.3i 1.41103i 0.708696 + 0.705514i \(0.249284\pi\)
−0.708696 + 0.705514i \(0.750716\pi\)
\(654\) 572.603 6842.64i 0.0342363 0.409126i
\(655\) −202.464 + 350.679i −0.0120778 + 0.0209193i
\(656\) −2454.45 + 2123.57i −0.146083 + 0.126390i
\(657\) −2042.24 −0.121272
\(658\) −204.058 + 2438.50i −0.0120897 + 0.144472i
\(659\) 3758.22 + 2169.81i 0.222154 + 0.128261i 0.606947 0.794742i \(-0.292394\pi\)
−0.384793 + 0.923003i \(0.625727\pi\)
\(660\) −8074.79 + 3008.29i −0.476228 + 0.177421i
\(661\) −18725.6 10811.2i −1.10188 0.636169i −0.165164 0.986266i \(-0.552815\pi\)
−0.936713 + 0.350097i \(0.886149\pi\)
\(662\) −4398.36 9339.99i −0.258228 0.548352i
\(663\) −980.116 1697.61i −0.0574126 0.0994416i
\(664\) 4672.07 + 1195.27i 0.273060 + 0.0698578i
\(665\) 216.409 1668.73i 0.0126195 0.0973091i
\(666\) 1955.68 + 163.655i 0.113785 + 0.00952175i
\(667\) −16531.1 + 9544.22i −0.959649 + 0.554054i
\(668\) 8612.99 + 23118.8i 0.498872 + 1.33906i
\(669\) −15660.2 9041.41i −0.905019 0.522513i
\(670\) 4410.35 2076.91i 0.254308 0.119758i
\(671\) −10406.3 + 18024.3i −0.598705 + 1.03699i
\(672\) −5797.52 2571.20i −0.332804 0.147599i
\(673\) −17333.9 −0.992827 −0.496413 0.868086i \(-0.665350\pi\)
−0.496413 + 0.868086i \(0.665350\pi\)
\(674\) −624.308 433.638i −0.0356787 0.0247821i
\(675\) 13065.3 + 7543.25i 0.745012 + 0.430133i
\(676\) 7916.62 + 1334.29i 0.450422 + 0.0759157i
\(677\) 14293.2i 0.811421i −0.914002 0.405711i \(-0.867024\pi\)
0.914002 0.405711i \(-0.132976\pi\)
\(678\) −10980.4 + 15808.4i −0.621974 + 0.895455i
\(679\) −2047.57 3546.49i −0.115727 0.200444i
\(680\) 317.837 325.127i 0.0179243 0.0183354i
\(681\) 6002.46 + 10396.6i 0.337760 + 0.585018i
\(682\) 8391.66 + 17819.8i 0.471163 + 1.00052i
\(683\) 18942.7i 1.06123i 0.847613 + 0.530615i \(0.178039\pi\)
−0.847613 + 0.530615i \(0.821961\pi\)
\(684\) −1929.64 588.332i −0.107868 0.0328881i
\(685\) 5937.61i 0.331189i
\(686\) 10552.0 4969.09i 0.587282 0.276561i
\(687\) 14458.5 + 25042.8i 0.802947 + 1.39075i
\(688\) 19717.3 + 22789.5i 1.09261 + 1.26285i
\(689\) 11892.9 + 20599.2i 0.657598 + 1.13899i
\(690\) −2957.45 2054.21i −0.163171 0.113337i
\(691\) 2165.53i 0.119220i −0.998222 0.0596098i \(-0.981014\pi\)
0.998222 0.0596098i \(-0.0189856\pi\)
\(692\) 477.876 2835.33i 0.0262516 0.155756i
\(693\) 1041.93 + 601.559i 0.0571135 + 0.0329745i
\(694\) 10687.0 15386.1i 0.584545 0.841568i
\(695\) 5729.16 0.312690
\(696\) −8030.74 + 31390.5i −0.437363 + 1.70956i
\(697\) −160.286 + 277.624i −0.00871058 + 0.0150872i
\(698\) −7201.19 15291.9i −0.390500 0.829234i
\(699\) −3338.14 1927.28i −0.180630 0.104287i
\(700\) 2051.09 + 5505.48i 0.110748 + 0.297268i
\(701\) −10719.2 + 6188.71i −0.577542 + 0.333444i −0.760156 0.649741i \(-0.774877\pi\)
0.182614 + 0.983185i \(0.441544\pi\)
\(702\) 1752.09 20937.5i 0.0941998 1.12569i
\(703\) −14995.2 11460.2i −0.804486 0.614835i
\(704\) 15200.3 27762.9i 0.813751 1.48630i
\(705\) 1179.17 + 2042.38i 0.0629931 + 0.109107i
\(706\) −4053.65 + 1908.93i −0.216092 + 0.101761i
\(707\) 5521.35 + 3187.75i 0.293708 + 0.169572i
\(708\) 5833.78 + 15658.9i 0.309671 + 0.831211i
\(709\) −30096.3 17376.1i −1.59421 0.920415i −0.992574 0.121641i \(-0.961184\pi\)
−0.601632 0.798774i \(-0.705482\pi\)
\(710\) −9205.59 770.339i −0.486591 0.0407188i
\(711\) 506.687 0.0267261
\(712\) −10204.0 9975.22i −0.537095 0.525052i
\(713\) −4115.48 + 7128.23i −0.216166 + 0.374410i
\(714\) −624.238 52.2373i −0.0327192 0.00273800i
\(715\) 11117.1i 0.581476i
\(716\) 20840.9 + 17220.8i 1.08779 + 0.898844i
\(717\) 15587.5 8999.47i 0.811893 0.468747i
\(718\) −18442.9 12810.2i −0.958609 0.665841i
\(719\) 986.626 + 1708.89i 0.0511752 + 0.0886380i 0.890478 0.455026i \(-0.150370\pi\)
−0.839303 + 0.543664i \(0.817037\pi\)
\(720\) −608.321 + 116.771i −0.0314872 + 0.00604419i
\(721\) −4513.57 −0.233140
\(722\) 12583.5 + 14765.6i 0.648627 + 0.761106i
\(723\) 5076.92i 0.261152i
\(724\) 34832.2 12976.9i 1.78802 0.666135i
\(725\) 25994.4 15007.9i 1.33160 0.768797i
\(726\) −22028.4 + 31714.3i −1.12611 + 1.62125i
\(727\) −11470.7 19867.9i −0.585180 1.01356i −0.994853 0.101329i \(-0.967691\pi\)
0.409673 0.912232i \(-0.365643\pi\)
\(728\) 5719.73 5850.92i 0.291191 0.297870i
\(729\) −16991.0 −0.863230
\(730\) 6009.43 + 502.879i 0.304684 + 0.0254964i
\(731\) 2577.73 + 1488.25i 0.130425 + 0.0753009i
\(732\) −9403.73 + 11380.5i −0.474825 + 0.574640i
\(733\) 25024.7i 1.26100i 0.776191 + 0.630498i \(0.217149\pi\)
−0.776191 + 0.630498i \(0.782851\pi\)
\(734\) −1113.48 + 13306.1i −0.0559936 + 0.669126i
\(735\) 2632.22 4559.14i 0.132097 0.228798i
\(736\) 13152.2 1401.55i 0.658691 0.0701925i
\(737\) 16759.7 29028.6i 0.837652 1.45086i
\(738\) 395.115 186.066i 0.0197078 0.00928075i
\(739\) 10350.8 5976.04i 0.515237 0.297473i −0.219746 0.975557i \(-0.570523\pi\)
0.734984 + 0.678085i \(0.237190\pi\)
\(740\) −5714.41 963.127i −0.283873 0.0478449i
\(741\) 15594.7 20405.0i 0.773124 1.01160i
\(742\) 7574.64 + 633.858i 0.374762 + 0.0313607i
\(743\) 777.408 + 1346.51i 0.0383854 + 0.0664854i 0.884580 0.466389i \(-0.154445\pi\)
−0.846194 + 0.532874i \(0.821112\pi\)
\(744\) 3768.88 + 13453.6i 0.185718 + 0.662949i
\(745\) −2.49269 + 4.31747i −0.000122584 + 0.000212322i
\(746\) 6451.53 + 13699.9i 0.316632 + 0.672373i
\(747\) −561.991 324.465i −0.0275263 0.0158923i
\(748\) 519.587 3082.80i 0.0253984 0.150693i
\(749\) 8684.61i 0.423670i
\(750\) 9709.89 + 6744.39i 0.472740 + 0.328360i
\(751\) 15585.9 26995.6i 0.757307 1.31169i −0.186912 0.982377i \(-0.559848\pi\)
0.944219 0.329317i \(-0.106819\pi\)
\(752\) −8184.05 2839.40i −0.396864 0.137689i
\(753\) 35233.6 1.70516
\(754\) −34332.9 23847.3i −1.65826 1.15181i
\(755\) −7153.43 + 4130.03i −0.344821 + 0.199082i
\(756\) −5175.90 4276.85i −0.249002 0.205751i
\(757\) 17756.7 10251.9i 0.852549 0.492219i −0.00896105 0.999960i \(-0.502852\pi\)
0.861510 + 0.507740i \(0.169519\pi\)
\(758\) 13578.3 + 28833.8i 0.650643 + 1.38165i
\(759\) −24759.2 −1.18406
\(760\) 5533.20 + 2206.35i 0.264093 + 0.105306i
\(761\) 30533.3 1.45444 0.727222 0.686403i \(-0.240811\pi\)
0.727222 + 0.686403i \(0.240811\pi\)
\(762\) −12396.6 26324.4i −0.589347 1.25149i
\(763\) 2451.68 1415.48i 0.116326 0.0671609i
\(764\) 7074.36 8561.49i 0.335002 0.405424i
\(765\) −52.9849 + 30.5909i −0.00250415 + 0.00144577i
\(766\) −4860.11 3375.79i −0.229247 0.159232i
\(767\) −21558.6 −1.01491
\(768\) 13905.0 17627.2i 0.653325 0.828213i
\(769\) 8105.11 14038.5i 0.380075 0.658309i −0.610997 0.791633i \(-0.709231\pi\)
0.991073 + 0.133323i \(0.0425648\pi\)
\(770\) −2917.82 2026.69i −0.136560 0.0948529i
\(771\) 6808.35i 0.318024i
\(772\) 16387.3 + 2761.97i 0.763978 + 0.128764i
\(773\) −21339.9 12320.6i −0.992942 0.573275i −0.0867894 0.996227i \(-0.527661\pi\)
−0.906152 + 0.422951i \(0.860994\pi\)
\(774\) −1727.62 3668.62i −0.0802298 0.170369i
\(775\) 6471.42 11208.8i 0.299949 0.519526i
\(776\) 13959.6 3910.63i 0.645774 0.180906i
\(777\) 3991.99 + 6914.34i 0.184314 + 0.319241i
\(778\) 15657.3 + 1310.23i 0.721521 + 0.0603781i
\(779\) −4165.08 540.149i −0.191565 0.0248432i
\(780\) 1310.59 7776.00i 0.0601626 0.356956i
\(781\) −55008.1 + 31758.9i −2.52029 + 1.45509i
\(782\) 1181.92 556.587i 0.0540479 0.0254521i
\(783\) −17151.4 + 29707.1i −0.782811 + 1.35587i
\(784\) 3645.37 + 18990.5i 0.166061 + 0.865094i
\(785\) −3875.04 + 6711.76i −0.176186 + 0.305163i
\(786\) −164.691 + 1968.07i −0.00747372 + 0.0893113i
\(787\) 16195.9i 0.733570i 0.930306 + 0.366785i \(0.119542\pi\)
−0.930306 + 0.366785i \(0.880458\pi\)
\(788\) −15741.4 13007.1i −0.711631 0.588021i
\(789\) −9721.29 5612.59i −0.438640 0.253249i
\(790\) −1490.96 124.766i −0.0671467 0.00561895i
\(791\) −7935.49 −0.356705
\(792\) −2977.31 + 3045.60i −0.133578 + 0.136642i
\(793\) −9523.17 16494.6i −0.426453 0.738639i
\(794\) −23487.4 + 33814.7i −1.04979 + 1.51138i
\(795\) 6344.19 3662.82i 0.283025 0.163405i
\(796\) 249.023 + 668.421i 0.0110884 + 0.0297633i
\(797\) 13372.3i 0.594319i 0.954828 + 0.297160i \(0.0960393\pi\)
−0.954828 + 0.297160i \(0.903961\pi\)
\(798\) −2512.57 7812.92i −0.111459 0.346585i
\(799\) −855.620 −0.0378844
\(800\) −20681.3 + 2203.87i −0.913991 + 0.0973982i
\(801\) 960.085 + 1662.92i 0.0423507 + 0.0733536i
\(802\) 12630.8 + 8773.24i 0.556122 + 0.386277i
\(803\) 35909.4 20732.3i 1.57810 0.911117i
\(804\) 15145.0 18328.6i 0.664330 0.803982i
\(805\) 1484.58i 0.0649993i
\(806\) −17962.5 1503.13i −0.784989 0.0656892i
\(807\) 6133.57 10623.7i 0.267549 0.463408i
\(808\) −15777.2 + 16139.1i −0.686931 + 0.702687i
\(809\) −31075.8 −1.35052 −0.675259 0.737581i \(-0.735968\pi\)
−0.675259 + 0.737581i \(0.735968\pi\)
\(810\) −7184.95 601.249i −0.311671 0.0260811i
\(811\) 38107.1 + 22001.2i 1.64997 + 0.952608i 0.977083 + 0.212860i \(0.0682778\pi\)
0.672884 + 0.739748i \(0.265055\pi\)
\(812\) −12518.0 + 4663.64i −0.541006 + 0.201554i
\(813\) 31315.1 + 18079.8i 1.35089 + 0.779934i
\(814\) −36048.7 + 16975.9i −1.55222 + 0.730966i
\(815\) 1536.85 + 2661.90i 0.0660534 + 0.114408i
\(816\) 726.865 2095.06i 0.0311830 0.0898795i
\(817\) −5015.26 + 38672.6i −0.214763 + 1.65604i
\(818\) 1101.95 13168.4i 0.0471014 0.562864i
\(819\) −953.505 + 550.507i −0.0406815 + 0.0234875i
\(820\) −1208.47 + 450.219i −0.0514652 + 0.0191736i
\(821\) 12045.0 + 6954.20i 0.512027 + 0.295619i 0.733666 0.679510i \(-0.237807\pi\)
−0.221640 + 0.975129i \(0.571141\pi\)
\(822\) −12337.8 26199.6i −0.523517 1.11170i
\(823\) −3643.46 + 6310.66i −0.154317 + 0.267285i −0.932810 0.360368i \(-0.882651\pi\)
0.778493 + 0.627653i \(0.215984\pi\)
\(824\) 3960.24 15479.8i 0.167429 0.654446i
\(825\) 38932.8 1.64299
\(826\) −3930.22 + 5658.32i −0.165557 + 0.238351i
\(827\) −3443.56 1988.14i −0.144794 0.0835967i 0.425853 0.904792i \(-0.359974\pi\)
−0.570647 + 0.821196i \(0.693307\pi\)
\(828\) −1755.05 295.803i −0.0736622 0.0124153i
\(829\) 36952.6i 1.54815i −0.633094 0.774075i \(-0.718215\pi\)
0.633094 0.774075i \(-0.281785\pi\)
\(830\) 1573.80 + 1093.14i 0.0658160 + 0.0457151i
\(831\) 4393.41 + 7609.61i 0.183400 + 0.317659i
\(832\) 15047.8 + 24750.0i 0.627030 + 1.03131i
\(833\) 954.986 + 1654.08i 0.0397218 + 0.0688002i
\(834\) 25279.8 11904.7i 1.04960 0.494276i
\(835\) 9802.82i 0.406276i
\(836\) 39901.9 9244.30i 1.65076 0.382441i
\(837\) 14791.4i 0.610832i
\(838\) −12564.6 26681.2i −0.517945 1.09987i
\(839\) 10745.5 + 18611.8i 0.442166 + 0.765854i 0.997850 0.0655394i \(-0.0208768\pi\)
−0.555684 + 0.831394i \(0.687543\pi\)
\(840\) −1801.98 1761.58i −0.0740170 0.0723573i
\(841\) 21929.5 + 37983.0i 0.899156 + 1.55738i
\(842\) 6900.98 9935.33i 0.282451 0.406644i
\(843\) 9403.99i 0.384212i
\(844\) 220.486 1308.18i 0.00899224 0.0533526i
\(845\) 2762.58 + 1594.98i 0.112468 + 0.0649337i
\(846\) 957.371 + 664.980i 0.0389067 + 0.0270242i
\(847\) −15919.9 −0.645826
\(848\) −8819.93 + 25421.9i −0.357167 + 1.02947i
\(849\) −1250.90 + 2166.63i −0.0505664 + 0.0875836i
\(850\) −1858.52 + 875.208i −0.0749961 + 0.0353169i
\(851\) −14420.1 8325.43i −0.580862 0.335361i
\(852\) −42220.2 + 15729.3i −1.69770 + 0.632485i
\(853\) 27559.1 15911.3i 1.10622 0.638677i 0.168372 0.985723i \(-0.446149\pi\)
0.937848 + 0.347047i \(0.112816\pi\)
\(854\) −6065.33 507.557i −0.243034 0.0203375i
\(855\) −636.869 486.733i −0.0254742 0.0194689i
\(856\) −29784.8 7619.94i −1.18928 0.304257i
\(857\) −11832.5 20494.5i −0.471633 0.816893i 0.527840 0.849344i \(-0.323002\pi\)
−0.999473 + 0.0324509i \(0.989669\pi\)
\(858\) −23100.3 49054.0i −0.919152 1.95184i
\(859\) 25238.7 + 14571.5i 1.00248 + 0.578783i 0.908982 0.416836i \(-0.136861\pi\)
0.0935000 + 0.995619i \(0.470194\pi\)
\(860\) 4180.26 + 11220.6i 0.165751 + 0.444904i
\(861\) 1538.70 + 888.369i 0.0609045 + 0.0351632i
\(862\) 1415.52 16915.5i 0.0559312 0.668380i
\(863\) −49067.9 −1.93545 −0.967724 0.252014i \(-0.918907\pi\)
−0.967724 + 0.252014i \(0.918907\pi\)
\(864\) 19209.3 13998.8i 0.756381 0.551212i
\(865\) 571.240 989.417i 0.0224540 0.0388915i
\(866\) 3223.54 38521.5i 0.126490 1.51156i
\(867\) 26710.7i 1.04630i
\(868\) −3669.14 + 4440.45i −0.143478 + 0.173639i
\(869\) −8909.22 + 5143.74i −0.347785 + 0.200793i
\(870\) −7344.55 + 10573.9i −0.286211 + 0.412058i
\(871\) 15337.3 + 26565.0i 0.596654 + 1.03343i
\(872\) 2703.41 + 9650.25i 0.104987 + 0.374769i
\(873\) −1950.75 −0.0756275
\(874\) 12685.1 + 11491.1i 0.490937 + 0.444727i
\(875\) 4874.16i 0.188316i
\(876\) 27561.5 10268.1i 1.06303 0.396036i
\(877\) 6393.42 3691.24i 0.246169 0.142126i −0.371840 0.928297i \(-0.621273\pi\)
0.618009 + 0.786171i \(0.287940\pi\)
\(878\) −37893.5 26320.5i −1.45654 1.01170i
\(879\) −23409.8 40547.0i −0.898286 1.55588i
\(880\) 9510.85 8228.73i 0.364330 0.315216i
\(881\) 22901.8 0.875802 0.437901 0.899023i \(-0.355722\pi\)
0.437901 + 0.899023i \(0.355722\pi\)
\(882\) 216.986 2593.00i 0.00828379 0.0989917i
\(883\) −4238.68 2447.20i −0.161543 0.0932671i 0.417049 0.908884i \(-0.363064\pi\)
−0.578592 + 0.815617i \(0.696398\pi\)
\(884\) 2205.47 + 1822.38i 0.0839116 + 0.0693362i
\(885\) 6639.68i 0.252192i
\(886\) −45173.0 3780.15i −1.71288 0.143337i
\(887\) 20720.0 35888.1i 0.784341 1.35852i −0.145052 0.989424i \(-0.546335\pi\)
0.929392 0.369094i \(-0.120332\pi\)
\(888\) −27216.0 + 7624.27i −1.02850 + 0.288123i
\(889\) 5998.15 10389.1i 0.226289 0.391945i
\(890\) −2415.64 5129.64i −0.0909801 0.193198i
\(891\) −42933.7 + 24787.8i −1.61429 + 0.932011i
\(892\) 26024.9 + 4386.33i 0.976882 + 0.164647i
\(893\) −4309.84 10348.2i −0.161504 0.387783i
\(894\) −2.02764 + 24.2304i −7.58550e−5 + 0.000906471i
\(895\) 5371.08 + 9302.98i 0.200598 + 0.347446i
\(896\) 9239.23 + 562.544i 0.344488 + 0.0209746i
\(897\) 11329.0 19622.4i 0.421699 0.730404i
\(898\) −35415.8 + 16677.9i −1.31608 + 0.619765i
\(899\) 25486.0 + 14714.3i 0.945500 + 0.545885i
\(900\) 2759.74 + 465.137i 0.102213 + 0.0172273i
\(901\) 2657.78i 0.0982726i
\(902\) −5058.53 + 7282.75i −0.186730 + 0.268835i
\(903\) 8248.47 14286.8i 0.303978 0.526505i
\(904\) 6962.66 27215.6i 0.256167 1.00130i
\(905\) 14769.5 0.542493
\(906\) −22982.5 + 33087.9i −0.842763 + 1.21332i
\(907\) −12042.1 + 6952.48i −0.440849 + 0.254524i −0.703958 0.710242i \(-0.748585\pi\)
0.263109 + 0.964766i \(0.415252\pi\)
\(908\) −13506.8 11160.7i −0.493654 0.407907i
\(909\) 2630.13 1518.51i 0.0959693 0.0554079i
\(910\) 2941.30 1385.11i 0.107146 0.0504571i
\(911\) −47260.7 −1.71879 −0.859395 0.511313i \(-0.829159\pi\)
−0.859395 + 0.511313i \(0.829159\pi\)
\(912\) 28999.8 1762.01i 1.05294 0.0639758i
\(913\) 13175.5 0.477597
\(914\) −14131.4 + 6654.71i −0.511406 + 0.240829i
\(915\) −5080.05 + 2932.97i −0.183543 + 0.105968i
\(916\) −32534.6 26883.3i −1.17355 0.969705i
\(917\) −705.149 + 407.118i −0.0253937 + 0.0146611i
\(918\) 1339.30 1928.19i 0.0481521 0.0693245i
\(919\) 22188.4 0.796438 0.398219 0.917290i \(-0.369628\pi\)
0.398219 + 0.917290i \(0.369628\pi\)
\(920\) 5091.51 + 1302.58i 0.182459 + 0.0466791i
\(921\) 24850.6 43042.6i 0.889095 1.53996i
\(922\) 27930.1 40210.9i 0.997646 1.43631i
\(923\) 58127.3i 2.07290i
\(924\) −17086.1 2879.75i −0.608324 0.102529i
\(925\) 22674.9 + 13091.4i 0.805996 + 0.465342i
\(926\) −21690.6 + 10214.5i −0.769760 + 0.362493i
\(927\) −1075.04 + 1862.02i −0.0380894 + 0.0659727i
\(928\) −5011.03 47023.8i −0.177258 1.66340i
\(929\) −15325.1 26543.9i −0.541228 0.937435i −0.998834 0.0482796i \(-0.984626\pi\)
0.457606 0.889155i \(-0.348707\pi\)
\(930\) −462.938 + 5532.13i −0.0163229 + 0.195060i
\(931\) −15194.8 + 19881.8i −0.534898 + 0.699892i
\(932\) 5547.50 + 934.996i 0.194973 + 0.0328614i
\(933\) 42365.1 24459.5i 1.48657 0.858273i
\(934\) −6065.83 12880.9i −0.212505 0.451259i
\(935\) 621.100 1075.78i 0.0217242 0.0376274i
\(936\) −1051.41 3753.17i −0.0367161 0.131064i
\(937\) −25506.0 + 44177.7i −0.889268 + 1.54026i −0.0485257 + 0.998822i \(0.515452\pi\)
−0.840742 + 0.541435i \(0.817881\pi\)
\(938\) 9768.37 + 817.434i 0.340031 + 0.0284543i
\(939\) 29734.3i 1.03338i
\(940\) −2653.38 2192.49i −0.0920677 0.0760756i
\(941\) −9061.27 5231.53i −0.313910 0.181236i 0.334765 0.942302i \(-0.391343\pi\)
−0.648675 + 0.761066i \(0.724676\pi\)
\(942\) −3152.08 + 37667.5i −0.109024 + 1.30284i
\(943\) −3705.44 −0.127959
\(944\) −15957.4 18443.7i −0.550180 0.635903i
\(945\) −1333.93 2310.43i −0.0459181 0.0795325i
\(946\) 67620.0 + 46968.2i 2.32401 + 1.61424i
\(947\) −3818.37 + 2204.54i −0.131025 + 0.0756471i −0.564080 0.825720i \(-0.690769\pi\)
0.433055 + 0.901368i \(0.357436\pi\)
\(948\) −6838.08 + 2547.55i −0.234273 + 0.0872792i
\(949\) 37945.6i 1.29796i
\(950\) −19946.7 18069.2i −0.681217 0.617097i
\(951\) 30895.4 1.05347
\(952\) 880.370 246.626i 0.0299716 0.00839621i
\(953\) 19342.4 + 33502.1i 0.657464 + 1.13876i 0.981270 + 0.192637i \(0.0617041\pi\)
−0.323806 + 0.946123i \(0.604963\pi\)
\(954\) 2065.61 2973.85i 0.0701012 0.100924i
\(955\) 3821.69 2206.45i 0.129494 0.0747635i
\(956\) −16733.1 + 20250.7i −0.566097 + 0.685098i
\(957\) 88523.1i 2.99012i
\(958\) 354.467 4235.89i 0.0119544 0.142855i
\(959\) 5969.70 10339.8i 0.201013 0.348165i
\(960\) 7622.58 4634.46i 0.256269 0.155809i
\(961\) −17101.3 −0.574043
\(962\) 3040.76 36337.2i 0.101911 1.21784i
\(963\) 3582.73 + 2068.49i 0.119888 + 0.0692171i
\(964\) 2586.85 + 6943.57i 0.0864284 + 0.231989i
\(965\) 5718.51 + 3301.58i 0.190762 + 0.110136i
\(966\) −3084.82 6550.67i −0.102746 0.218183i
\(967\) −18421.0 31906.1i −0.612595 1.06105i −0.990801 0.135325i \(-0.956792\pi\)
0.378206 0.925721i \(-0.376541\pi\)
\(968\) 13968.3 54599.0i 0.463798 1.81289i
\(969\) 2649.07 1103.29i 0.0878229 0.0365766i
\(970\) 5740.19 + 480.349i 0.190007 + 0.0159001i
\(971\) 26691.1 15410.1i 0.882140 0.509304i 0.0107765 0.999942i \(-0.496570\pi\)
0.871363 + 0.490638i \(0.163236\pi\)
\(972\) −6375.25 + 2375.12i −0.210377 + 0.0783767i
\(973\) 9976.84 + 5760.13i 0.328718 + 0.189786i
\(974\) −24694.5 + 11629.0i −0.812384 + 0.382565i
\(975\) −17814.3 + 30855.3i −0.585144 + 1.01350i
\(976\) 7062.48 20356.3i 0.231624 0.667613i
\(977\) 13392.6 0.438555 0.219278 0.975662i \(-0.429630\pi\)
0.219278 + 0.975662i \(0.429630\pi\)
\(978\) 12312.5 + 8552.16i 0.402568 + 0.279620i
\(979\) −33762.9 19493.0i −1.10221 0.636364i
\(980\) −1276.99 + 7576.62i −0.0416245 + 0.246965i
\(981\) 1348.55i 0.0438897i
\(982\) 19734.7 28412.0i 0.641302 0.923281i
\(983\) 2753.68 + 4769.51i 0.0893476 + 0.154754i 0.907236 0.420623i \(-0.138188\pi\)
−0.817888 + 0.575378i \(0.804855\pi\)
\(984\) −4396.82 + 4497.67i −0.142445 + 0.145712i
\(985\) −4056.86 7026.68i −0.131231 0.227298i
\(986\) −1990.00 4225.80i −0.0642743 0.136488i
\(987\) 4742.18i 0.152933i
\(988\) −10931.4 + 35853.3i −0.351999 + 1.15450i
\(989\) 34404.9i 1.10618i
\(990\) −1531.05 + 720.995i −0.0491514 + 0.0231462i
\(991\) −13422.3 23248.1i −0.430245 0.745206i 0.566649 0.823959i \(-0.308239\pi\)
−0.996894 + 0.0787530i \(0.974906\pi\)
\(992\) −12009.7 16479.8i −0.384382 0.527454i
\(993\) −10003.4 17326.5i −0.319687 0.553715i
\(994\) −15256.2 10596.8i −0.486819 0.338140i
\(995\) 283.424i 0.00903028i
\(996\) 9215.81 + 1553.27i 0.293187 + 0.0494148i
\(997\) −2888.90 1667.91i −0.0917676 0.0529821i 0.453414 0.891300i \(-0.350206\pi\)
−0.545182 + 0.838318i \(0.683539\pi\)
\(998\) −24976.8 + 35959.0i −0.792211 + 1.14054i
\(999\) −29922.3 −0.947649
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 152.4.p.a.45.9 116
8.5 even 2 inner 152.4.p.a.45.48 yes 116
19.11 even 3 inner 152.4.p.a.125.48 yes 116
152.125 even 6 inner 152.4.p.a.125.9 yes 116
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.4.p.a.45.9 116 1.1 even 1 trivial
152.4.p.a.45.48 yes 116 8.5 even 2 inner
152.4.p.a.125.9 yes 116 152.125 even 6 inner
152.4.p.a.125.48 yes 116 19.11 even 3 inner