Properties

Label 152.6.a.b.1.1
Level $152$
Weight $6$
Character 152.1
Self dual yes
Analytic conductor $24.378$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [152,6,Mod(1,152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(152, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("152.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 152.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.3783406116\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.976277.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 267x + 1118 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(4.44154\) of defining polynomial
Character \(\chi\) \(=\) 152.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-24.4044 q^{3} -30.4472 q^{5} +33.8943 q^{7} +352.577 q^{9} +571.898 q^{11} +129.707 q^{13} +743.046 q^{15} -541.255 q^{17} +361.000 q^{19} -827.172 q^{21} -1003.53 q^{23} -2197.97 q^{25} -2674.17 q^{27} +703.497 q^{29} +4148.79 q^{31} -13956.8 q^{33} -1031.99 q^{35} -6961.06 q^{37} -3165.43 q^{39} -14908.2 q^{41} -1794.32 q^{43} -10735.0 q^{45} -2809.37 q^{47} -15658.2 q^{49} +13209.0 q^{51} -17905.9 q^{53} -17412.7 q^{55} -8810.01 q^{57} +23048.5 q^{59} +42078.8 q^{61} +11950.4 q^{63} -3949.21 q^{65} -46086.7 q^{67} +24490.6 q^{69} -29169.5 q^{71} +10368.1 q^{73} +53640.2 q^{75} +19384.1 q^{77} -39465.2 q^{79} -20414.6 q^{81} +74100.3 q^{83} +16479.7 q^{85} -17168.5 q^{87} +49090.3 q^{89} +4396.33 q^{91} -101249. q^{93} -10991.4 q^{95} -57350.4 q^{97} +201638. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 7 q^{3} + 58 q^{5} - 197 q^{7} + 80 q^{9} + 476 q^{11} - 1417 q^{13} + 988 q^{15} - 2427 q^{17} + 1083 q^{19} - 1787 q^{21} - 2407 q^{23} - 93 q^{25} - 8197 q^{27} + 4227 q^{29} + 10692 q^{31} - 19274 q^{33}+ \cdots + 136690 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −24.4044 −1.56555 −0.782773 0.622307i \(-0.786195\pi\)
−0.782773 + 0.622307i \(0.786195\pi\)
\(4\) 0 0
\(5\) −30.4472 −0.544655 −0.272328 0.962205i \(-0.587793\pi\)
−0.272328 + 0.962205i \(0.587793\pi\)
\(6\) 0 0
\(7\) 33.8943 0.261446 0.130723 0.991419i \(-0.458270\pi\)
0.130723 + 0.991419i \(0.458270\pi\)
\(8\) 0 0
\(9\) 352.577 1.45093
\(10\) 0 0
\(11\) 571.898 1.42507 0.712536 0.701636i \(-0.247547\pi\)
0.712536 + 0.701636i \(0.247547\pi\)
\(12\) 0 0
\(13\) 129.707 0.212865 0.106433 0.994320i \(-0.466057\pi\)
0.106433 + 0.994320i \(0.466057\pi\)
\(14\) 0 0
\(15\) 743.046 0.852683
\(16\) 0 0
\(17\) −541.255 −0.454234 −0.227117 0.973867i \(-0.572930\pi\)
−0.227117 + 0.973867i \(0.572930\pi\)
\(18\) 0 0
\(19\) 361.000 0.229416
\(20\) 0 0
\(21\) −827.172 −0.409306
\(22\) 0 0
\(23\) −1003.53 −0.395558 −0.197779 0.980247i \(-0.563373\pi\)
−0.197779 + 0.980247i \(0.563373\pi\)
\(24\) 0 0
\(25\) −2197.97 −0.703350
\(26\) 0 0
\(27\) −2674.17 −0.705959
\(28\) 0 0
\(29\) 703.497 0.155334 0.0776671 0.996979i \(-0.475253\pi\)
0.0776671 + 0.996979i \(0.475253\pi\)
\(30\) 0 0
\(31\) 4148.79 0.775384 0.387692 0.921789i \(-0.373272\pi\)
0.387692 + 0.921789i \(0.373272\pi\)
\(32\) 0 0
\(33\) −13956.8 −2.23101
\(34\) 0 0
\(35\) −1031.99 −0.142398
\(36\) 0 0
\(37\) −6961.06 −0.835932 −0.417966 0.908463i \(-0.637257\pi\)
−0.417966 + 0.908463i \(0.637257\pi\)
\(38\) 0 0
\(39\) −3165.43 −0.333251
\(40\) 0 0
\(41\) −14908.2 −1.38505 −0.692524 0.721395i \(-0.743501\pi\)
−0.692524 + 0.721395i \(0.743501\pi\)
\(42\) 0 0
\(43\) −1794.32 −0.147989 −0.0739945 0.997259i \(-0.523575\pi\)
−0.0739945 + 0.997259i \(0.523575\pi\)
\(44\) 0 0
\(45\) −10735.0 −0.790259
\(46\) 0 0
\(47\) −2809.37 −0.185509 −0.0927545 0.995689i \(-0.529567\pi\)
−0.0927545 + 0.995689i \(0.529567\pi\)
\(48\) 0 0
\(49\) −15658.2 −0.931646
\(50\) 0 0
\(51\) 13209.0 0.711124
\(52\) 0 0
\(53\) −17905.9 −0.875600 −0.437800 0.899072i \(-0.644242\pi\)
−0.437800 + 0.899072i \(0.644242\pi\)
\(54\) 0 0
\(55\) −17412.7 −0.776173
\(56\) 0 0
\(57\) −8810.01 −0.359161
\(58\) 0 0
\(59\) 23048.5 0.862012 0.431006 0.902349i \(-0.358159\pi\)
0.431006 + 0.902349i \(0.358159\pi\)
\(60\) 0 0
\(61\) 42078.8 1.44790 0.723951 0.689852i \(-0.242324\pi\)
0.723951 + 0.689852i \(0.242324\pi\)
\(62\) 0 0
\(63\) 11950.4 0.379341
\(64\) 0 0
\(65\) −3949.21 −0.115938
\(66\) 0 0
\(67\) −46086.7 −1.25426 −0.627132 0.778913i \(-0.715771\pi\)
−0.627132 + 0.778913i \(0.715771\pi\)
\(68\) 0 0
\(69\) 24490.6 0.619264
\(70\) 0 0
\(71\) −29169.5 −0.686726 −0.343363 0.939203i \(-0.611566\pi\)
−0.343363 + 0.939203i \(0.611566\pi\)
\(72\) 0 0
\(73\) 10368.1 0.227716 0.113858 0.993497i \(-0.463679\pi\)
0.113858 + 0.993497i \(0.463679\pi\)
\(74\) 0 0
\(75\) 53640.2 1.10113
\(76\) 0 0
\(77\) 19384.1 0.372579
\(78\) 0 0
\(79\) −39465.2 −0.711454 −0.355727 0.934590i \(-0.615767\pi\)
−0.355727 + 0.934590i \(0.615767\pi\)
\(80\) 0 0
\(81\) −20414.6 −0.345724
\(82\) 0 0
\(83\) 74100.3 1.18066 0.590330 0.807162i \(-0.298998\pi\)
0.590330 + 0.807162i \(0.298998\pi\)
\(84\) 0 0
\(85\) 16479.7 0.247401
\(86\) 0 0
\(87\) −17168.5 −0.243183
\(88\) 0 0
\(89\) 49090.3 0.656932 0.328466 0.944516i \(-0.393468\pi\)
0.328466 + 0.944516i \(0.393468\pi\)
\(90\) 0 0
\(91\) 4396.33 0.0556528
\(92\) 0 0
\(93\) −101249. −1.21390
\(94\) 0 0
\(95\) −10991.4 −0.124953
\(96\) 0 0
\(97\) −57350.4 −0.618880 −0.309440 0.950919i \(-0.600142\pi\)
−0.309440 + 0.950919i \(0.600142\pi\)
\(98\) 0 0
\(99\) 201638. 2.06768
\(100\) 0 0
\(101\) −19098.4 −0.186292 −0.0931458 0.995652i \(-0.529692\pi\)
−0.0931458 + 0.995652i \(0.529692\pi\)
\(102\) 0 0
\(103\) −123041. −1.14276 −0.571382 0.820684i \(-0.693593\pi\)
−0.571382 + 0.820684i \(0.693593\pi\)
\(104\) 0 0
\(105\) 25185.1 0.222931
\(106\) 0 0
\(107\) 82833.7 0.699436 0.349718 0.936855i \(-0.386277\pi\)
0.349718 + 0.936855i \(0.386277\pi\)
\(108\) 0 0
\(109\) −228830. −1.84479 −0.922395 0.386247i \(-0.873771\pi\)
−0.922395 + 0.386247i \(0.873771\pi\)
\(110\) 0 0
\(111\) 169881. 1.30869
\(112\) 0 0
\(113\) −160540. −1.18273 −0.591367 0.806402i \(-0.701412\pi\)
−0.591367 + 0.806402i \(0.701412\pi\)
\(114\) 0 0
\(115\) 30554.6 0.215443
\(116\) 0 0
\(117\) 45731.7 0.308854
\(118\) 0 0
\(119\) −18345.5 −0.118758
\(120\) 0 0
\(121\) 166016. 1.03083
\(122\) 0 0
\(123\) 363826. 2.16836
\(124\) 0 0
\(125\) 162069. 0.927739
\(126\) 0 0
\(127\) −53082.2 −0.292038 −0.146019 0.989282i \(-0.546646\pi\)
−0.146019 + 0.989282i \(0.546646\pi\)
\(128\) 0 0
\(129\) 43789.4 0.231683
\(130\) 0 0
\(131\) −69344.8 −0.353050 −0.176525 0.984296i \(-0.556486\pi\)
−0.176525 + 0.984296i \(0.556486\pi\)
\(132\) 0 0
\(133\) 12235.9 0.0599798
\(134\) 0 0
\(135\) 81420.8 0.384504
\(136\) 0 0
\(137\) −44631.1 −0.203159 −0.101580 0.994827i \(-0.532390\pi\)
−0.101580 + 0.994827i \(0.532390\pi\)
\(138\) 0 0
\(139\) 151826. 0.666512 0.333256 0.942836i \(-0.391853\pi\)
0.333256 + 0.942836i \(0.391853\pi\)
\(140\) 0 0
\(141\) 68561.2 0.290423
\(142\) 0 0
\(143\) 74179.1 0.303348
\(144\) 0 0
\(145\) −21419.5 −0.0846036
\(146\) 0 0
\(147\) 382129. 1.45853
\(148\) 0 0
\(149\) 93033.5 0.343300 0.171650 0.985158i \(-0.445090\pi\)
0.171650 + 0.985158i \(0.445090\pi\)
\(150\) 0 0
\(151\) 346369. 1.23622 0.618111 0.786091i \(-0.287898\pi\)
0.618111 + 0.786091i \(0.287898\pi\)
\(152\) 0 0
\(153\) −190834. −0.659064
\(154\) 0 0
\(155\) −126319. −0.422317
\(156\) 0 0
\(157\) 6828.38 0.0221090 0.0110545 0.999939i \(-0.496481\pi\)
0.0110545 + 0.999939i \(0.496481\pi\)
\(158\) 0 0
\(159\) 436983. 1.37079
\(160\) 0 0
\(161\) −34013.9 −0.103417
\(162\) 0 0
\(163\) −603266. −1.77844 −0.889222 0.457476i \(-0.848754\pi\)
−0.889222 + 0.457476i \(0.848754\pi\)
\(164\) 0 0
\(165\) 424946. 1.21513
\(166\) 0 0
\(167\) −517596. −1.43615 −0.718075 0.695966i \(-0.754976\pi\)
−0.718075 + 0.695966i \(0.754976\pi\)
\(168\) 0 0
\(169\) −354469. −0.954688
\(170\) 0 0
\(171\) 127280. 0.332867
\(172\) 0 0
\(173\) −666652. −1.69349 −0.846747 0.531995i \(-0.821442\pi\)
−0.846747 + 0.531995i \(0.821442\pi\)
\(174\) 0 0
\(175\) −74498.7 −0.183888
\(176\) 0 0
\(177\) −562487. −1.34952
\(178\) 0 0
\(179\) −329846. −0.769446 −0.384723 0.923032i \(-0.625703\pi\)
−0.384723 + 0.923032i \(0.625703\pi\)
\(180\) 0 0
\(181\) 355404. 0.806355 0.403177 0.915122i \(-0.367906\pi\)
0.403177 + 0.915122i \(0.367906\pi\)
\(182\) 0 0
\(183\) −1.02691e6 −2.26676
\(184\) 0 0
\(185\) 211945. 0.455295
\(186\) 0 0
\(187\) −309542. −0.647316
\(188\) 0 0
\(189\) −90639.1 −0.184570
\(190\) 0 0
\(191\) −870721. −1.72701 −0.863506 0.504338i \(-0.831737\pi\)
−0.863506 + 0.504338i \(0.831737\pi\)
\(192\) 0 0
\(193\) −378718. −0.731850 −0.365925 0.930644i \(-0.619247\pi\)
−0.365925 + 0.930644i \(0.619247\pi\)
\(194\) 0 0
\(195\) 96378.3 0.181507
\(196\) 0 0
\(197\) 411889. 0.756162 0.378081 0.925773i \(-0.376584\pi\)
0.378081 + 0.925773i \(0.376584\pi\)
\(198\) 0 0
\(199\) −933002. −1.67013 −0.835064 0.550153i \(-0.814569\pi\)
−0.835064 + 0.550153i \(0.814569\pi\)
\(200\) 0 0
\(201\) 1.12472e6 1.96361
\(202\) 0 0
\(203\) 23844.6 0.0406115
\(204\) 0 0
\(205\) 453912. 0.754374
\(206\) 0 0
\(207\) −353821. −0.573929
\(208\) 0 0
\(209\) 206455. 0.326934
\(210\) 0 0
\(211\) −1.02774e6 −1.58920 −0.794598 0.607136i \(-0.792318\pi\)
−0.794598 + 0.607136i \(0.792318\pi\)
\(212\) 0 0
\(213\) 711866. 1.07510
\(214\) 0 0
\(215\) 54632.0 0.0806030
\(216\) 0 0
\(217\) 140620. 0.202721
\(218\) 0 0
\(219\) −253028. −0.356499
\(220\) 0 0
\(221\) −70204.5 −0.0966907
\(222\) 0 0
\(223\) 328104. 0.441824 0.220912 0.975294i \(-0.429097\pi\)
0.220912 + 0.975294i \(0.429097\pi\)
\(224\) 0 0
\(225\) −774954. −1.02052
\(226\) 0 0
\(227\) 506685. 0.652640 0.326320 0.945259i \(-0.394191\pi\)
0.326320 + 0.945259i \(0.394191\pi\)
\(228\) 0 0
\(229\) −697491. −0.878921 −0.439460 0.898262i \(-0.644830\pi\)
−0.439460 + 0.898262i \(0.644830\pi\)
\(230\) 0 0
\(231\) −473058. −0.583290
\(232\) 0 0
\(233\) −404940. −0.488654 −0.244327 0.969693i \(-0.578567\pi\)
−0.244327 + 0.969693i \(0.578567\pi\)
\(234\) 0 0
\(235\) 85537.5 0.101038
\(236\) 0 0
\(237\) 963127. 1.11381
\(238\) 0 0
\(239\) 1.00621e6 1.13945 0.569726 0.821835i \(-0.307049\pi\)
0.569726 + 0.821835i \(0.307049\pi\)
\(240\) 0 0
\(241\) 487434. 0.540597 0.270298 0.962777i \(-0.412878\pi\)
0.270298 + 0.962777i \(0.412878\pi\)
\(242\) 0 0
\(243\) 1.14803e6 1.24720
\(244\) 0 0
\(245\) 476747. 0.507426
\(246\) 0 0
\(247\) 46824.2 0.0488347
\(248\) 0 0
\(249\) −1.80838e6 −1.84838
\(250\) 0 0
\(251\) 442749. 0.443582 0.221791 0.975094i \(-0.428810\pi\)
0.221791 + 0.975094i \(0.428810\pi\)
\(252\) 0 0
\(253\) −573916. −0.563698
\(254\) 0 0
\(255\) −402177. −0.387318
\(256\) 0 0
\(257\) 1.95848e6 1.84963 0.924817 0.380413i \(-0.124218\pi\)
0.924817 + 0.380413i \(0.124218\pi\)
\(258\) 0 0
\(259\) −235940. −0.218551
\(260\) 0 0
\(261\) 248037. 0.225380
\(262\) 0 0
\(263\) 1.42289e6 1.26848 0.634240 0.773137i \(-0.281313\pi\)
0.634240 + 0.773137i \(0.281313\pi\)
\(264\) 0 0
\(265\) 545183. 0.476900
\(266\) 0 0
\(267\) −1.19802e6 −1.02846
\(268\) 0 0
\(269\) 6218.27 0.00523949 0.00261975 0.999997i \(-0.499166\pi\)
0.00261975 + 0.999997i \(0.499166\pi\)
\(270\) 0 0
\(271\) 1.38862e6 1.14858 0.574290 0.818652i \(-0.305278\pi\)
0.574290 + 0.818652i \(0.305278\pi\)
\(272\) 0 0
\(273\) −107290. −0.0871270
\(274\) 0 0
\(275\) −1.25701e6 −1.00232
\(276\) 0 0
\(277\) 1.61815e6 1.26713 0.633564 0.773690i \(-0.281591\pi\)
0.633564 + 0.773690i \(0.281591\pi\)
\(278\) 0 0
\(279\) 1.46277e6 1.12503
\(280\) 0 0
\(281\) 909534. 0.687152 0.343576 0.939125i \(-0.388362\pi\)
0.343576 + 0.939125i \(0.388362\pi\)
\(282\) 0 0
\(283\) −2.02610e6 −1.50382 −0.751909 0.659266i \(-0.770867\pi\)
−0.751909 + 0.659266i \(0.770867\pi\)
\(284\) 0 0
\(285\) 268240. 0.195619
\(286\) 0 0
\(287\) −505303. −0.362115
\(288\) 0 0
\(289\) −1.12690e6 −0.793672
\(290\) 0 0
\(291\) 1.39960e6 0.968886
\(292\) 0 0
\(293\) −941373. −0.640609 −0.320304 0.947315i \(-0.603785\pi\)
−0.320304 + 0.947315i \(0.603785\pi\)
\(294\) 0 0
\(295\) −701763. −0.469499
\(296\) 0 0
\(297\) −1.52935e6 −1.00604
\(298\) 0 0
\(299\) −130165. −0.0842006
\(300\) 0 0
\(301\) −60817.3 −0.0386911
\(302\) 0 0
\(303\) 466086. 0.291648
\(304\) 0 0
\(305\) −1.28118e6 −0.788607
\(306\) 0 0
\(307\) −2.52468e6 −1.52884 −0.764418 0.644721i \(-0.776974\pi\)
−0.764418 + 0.644721i \(0.776974\pi\)
\(308\) 0 0
\(309\) 3.00275e6 1.78905
\(310\) 0 0
\(311\) 1.94680e6 1.14135 0.570676 0.821175i \(-0.306681\pi\)
0.570676 + 0.821175i \(0.306681\pi\)
\(312\) 0 0
\(313\) −834960. −0.481731 −0.240866 0.970558i \(-0.577431\pi\)
−0.240866 + 0.970558i \(0.577431\pi\)
\(314\) 0 0
\(315\) −363855. −0.206610
\(316\) 0 0
\(317\) 1.73920e6 0.972081 0.486041 0.873936i \(-0.338441\pi\)
0.486041 + 0.873936i \(0.338441\pi\)
\(318\) 0 0
\(319\) 402328. 0.221362
\(320\) 0 0
\(321\) −2.02151e6 −1.09500
\(322\) 0 0
\(323\) −195393. −0.104208
\(324\) 0 0
\(325\) −285092. −0.149719
\(326\) 0 0
\(327\) 5.58447e6 2.88810
\(328\) 0 0
\(329\) −95221.9 −0.0485006
\(330\) 0 0
\(331\) −2.10505e6 −1.05607 −0.528034 0.849224i \(-0.677070\pi\)
−0.528034 + 0.849224i \(0.677070\pi\)
\(332\) 0 0
\(333\) −2.45431e6 −1.21288
\(334\) 0 0
\(335\) 1.40321e6 0.683141
\(336\) 0 0
\(337\) 1.09640e6 0.525888 0.262944 0.964811i \(-0.415307\pi\)
0.262944 + 0.964811i \(0.415307\pi\)
\(338\) 0 0
\(339\) 3.91789e6 1.85162
\(340\) 0 0
\(341\) 2.37268e6 1.10498
\(342\) 0 0
\(343\) −1.10039e6 −0.505021
\(344\) 0 0
\(345\) −745668. −0.337286
\(346\) 0 0
\(347\) 2.41074e6 1.07480 0.537398 0.843328i \(-0.319407\pi\)
0.537398 + 0.843328i \(0.319407\pi\)
\(348\) 0 0
\(349\) 4.17252e6 1.83373 0.916864 0.399199i \(-0.130712\pi\)
0.916864 + 0.399199i \(0.130712\pi\)
\(350\) 0 0
\(351\) −346858. −0.150274
\(352\) 0 0
\(353\) −956427. −0.408522 −0.204261 0.978916i \(-0.565479\pi\)
−0.204261 + 0.978916i \(0.565479\pi\)
\(354\) 0 0
\(355\) 888129. 0.374029
\(356\) 0 0
\(357\) 447711. 0.185921
\(358\) 0 0
\(359\) 781647. 0.320092 0.160046 0.987110i \(-0.448836\pi\)
0.160046 + 0.987110i \(0.448836\pi\)
\(360\) 0 0
\(361\) 130321. 0.0526316
\(362\) 0 0
\(363\) −4.05153e6 −1.61381
\(364\) 0 0
\(365\) −315680. −0.124027
\(366\) 0 0
\(367\) 2.26060e6 0.876110 0.438055 0.898948i \(-0.355668\pi\)
0.438055 + 0.898948i \(0.355668\pi\)
\(368\) 0 0
\(369\) −5.25628e6 −2.00961
\(370\) 0 0
\(371\) −606907. −0.228922
\(372\) 0 0
\(373\) −1.64441e6 −0.611980 −0.305990 0.952035i \(-0.598987\pi\)
−0.305990 + 0.952035i \(0.598987\pi\)
\(374\) 0 0
\(375\) −3.95521e6 −1.45242
\(376\) 0 0
\(377\) 91248.5 0.0330653
\(378\) 0 0
\(379\) −1.02041e6 −0.364904 −0.182452 0.983215i \(-0.558403\pi\)
−0.182452 + 0.983215i \(0.558403\pi\)
\(380\) 0 0
\(381\) 1.29544e6 0.457199
\(382\) 0 0
\(383\) −1.50919e6 −0.525709 −0.262855 0.964835i \(-0.584664\pi\)
−0.262855 + 0.964835i \(0.584664\pi\)
\(384\) 0 0
\(385\) −590190. −0.202927
\(386\) 0 0
\(387\) −632637. −0.214722
\(388\) 0 0
\(389\) 5.57933e6 1.86942 0.934712 0.355405i \(-0.115657\pi\)
0.934712 + 0.355405i \(0.115657\pi\)
\(390\) 0 0
\(391\) 543165. 0.179676
\(392\) 0 0
\(393\) 1.69232e6 0.552716
\(394\) 0 0
\(395\) 1.20160e6 0.387497
\(396\) 0 0
\(397\) −2.89931e6 −0.923249 −0.461625 0.887075i \(-0.652733\pi\)
−0.461625 + 0.887075i \(0.652733\pi\)
\(398\) 0 0
\(399\) −298609. −0.0939012
\(400\) 0 0
\(401\) −2.19254e6 −0.680904 −0.340452 0.940262i \(-0.610580\pi\)
−0.340452 + 0.940262i \(0.610580\pi\)
\(402\) 0 0
\(403\) 538127. 0.165052
\(404\) 0 0
\(405\) 621568. 0.188300
\(406\) 0 0
\(407\) −3.98101e6 −1.19126
\(408\) 0 0
\(409\) −1.43210e6 −0.423317 −0.211658 0.977344i \(-0.567886\pi\)
−0.211658 + 0.977344i \(0.567886\pi\)
\(410\) 0 0
\(411\) 1.08920e6 0.318055
\(412\) 0 0
\(413\) 781215. 0.225370
\(414\) 0 0
\(415\) −2.25614e6 −0.643053
\(416\) 0 0
\(417\) −3.70522e6 −1.04346
\(418\) 0 0
\(419\) 4.93286e6 1.37266 0.686331 0.727290i \(-0.259220\pi\)
0.686331 + 0.727290i \(0.259220\pi\)
\(420\) 0 0
\(421\) 1.71380e6 0.471255 0.235628 0.971843i \(-0.424285\pi\)
0.235628 + 0.971843i \(0.424285\pi\)
\(422\) 0 0
\(423\) −990521. −0.269161
\(424\) 0 0
\(425\) 1.18966e6 0.319486
\(426\) 0 0
\(427\) 1.42623e6 0.378548
\(428\) 0 0
\(429\) −1.81030e6 −0.474906
\(430\) 0 0
\(431\) 3.25703e6 0.844557 0.422278 0.906466i \(-0.361230\pi\)
0.422278 + 0.906466i \(0.361230\pi\)
\(432\) 0 0
\(433\) −6.32543e6 −1.62133 −0.810663 0.585513i \(-0.800893\pi\)
−0.810663 + 0.585513i \(0.800893\pi\)
\(434\) 0 0
\(435\) 522731. 0.132451
\(436\) 0 0
\(437\) −362274. −0.0907472
\(438\) 0 0
\(439\) −2.91464e6 −0.721812 −0.360906 0.932602i \(-0.617532\pi\)
−0.360906 + 0.932602i \(0.617532\pi\)
\(440\) 0 0
\(441\) −5.52071e6 −1.35176
\(442\) 0 0
\(443\) −1.83551e6 −0.444373 −0.222187 0.975004i \(-0.571319\pi\)
−0.222187 + 0.975004i \(0.571319\pi\)
\(444\) 0 0
\(445\) −1.49466e6 −0.357802
\(446\) 0 0
\(447\) −2.27043e6 −0.537452
\(448\) 0 0
\(449\) −6.08239e6 −1.42383 −0.711916 0.702265i \(-0.752172\pi\)
−0.711916 + 0.702265i \(0.752172\pi\)
\(450\) 0 0
\(451\) −8.52595e6 −1.97379
\(452\) 0 0
\(453\) −8.45294e6 −1.93536
\(454\) 0 0
\(455\) −133856. −0.0303116
\(456\) 0 0
\(457\) −3.80437e6 −0.852102 −0.426051 0.904699i \(-0.640096\pi\)
−0.426051 + 0.904699i \(0.640096\pi\)
\(458\) 0 0
\(459\) 1.44741e6 0.320670
\(460\) 0 0
\(461\) 3.33825e6 0.731589 0.365794 0.930696i \(-0.380797\pi\)
0.365794 + 0.930696i \(0.380797\pi\)
\(462\) 0 0
\(463\) −3.14227e6 −0.681226 −0.340613 0.940204i \(-0.610635\pi\)
−0.340613 + 0.940204i \(0.610635\pi\)
\(464\) 0 0
\(465\) 3.08274e6 0.661157
\(466\) 0 0
\(467\) 6.63621e6 1.40808 0.704041 0.710159i \(-0.251377\pi\)
0.704041 + 0.710159i \(0.251377\pi\)
\(468\) 0 0
\(469\) −1.56208e6 −0.327922
\(470\) 0 0
\(471\) −166643. −0.0346126
\(472\) 0 0
\(473\) −1.02617e6 −0.210895
\(474\) 0 0
\(475\) −793467. −0.161360
\(476\) 0 0
\(477\) −6.31320e6 −1.27044
\(478\) 0 0
\(479\) 1.08458e6 0.215984 0.107992 0.994152i \(-0.465558\pi\)
0.107992 + 0.994152i \(0.465558\pi\)
\(480\) 0 0
\(481\) −902898. −0.177941
\(482\) 0 0
\(483\) 830091. 0.161904
\(484\) 0 0
\(485\) 1.74616e6 0.337077
\(486\) 0 0
\(487\) 7.50934e6 1.43476 0.717380 0.696682i \(-0.245341\pi\)
0.717380 + 0.696682i \(0.245341\pi\)
\(488\) 0 0
\(489\) 1.47224e7 2.78424
\(490\) 0 0
\(491\) 4.81580e6 0.901498 0.450749 0.892651i \(-0.351157\pi\)
0.450749 + 0.892651i \(0.351157\pi\)
\(492\) 0 0
\(493\) −380771. −0.0705581
\(494\) 0 0
\(495\) −6.13931e6 −1.12618
\(496\) 0 0
\(497\) −988681. −0.179542
\(498\) 0 0
\(499\) 2.98843e6 0.537269 0.268634 0.963242i \(-0.413428\pi\)
0.268634 + 0.963242i \(0.413428\pi\)
\(500\) 0 0
\(501\) 1.26316e7 2.24836
\(502\) 0 0
\(503\) −547996. −0.0965733 −0.0482867 0.998834i \(-0.515376\pi\)
−0.0482867 + 0.998834i \(0.515376\pi\)
\(504\) 0 0
\(505\) 581492. 0.101465
\(506\) 0 0
\(507\) 8.65062e6 1.49461
\(508\) 0 0
\(509\) −1.14090e7 −1.95187 −0.975937 0.218052i \(-0.930030\pi\)
−0.975937 + 0.218052i \(0.930030\pi\)
\(510\) 0 0
\(511\) 351421. 0.0595354
\(512\) 0 0
\(513\) −965375. −0.161958
\(514\) 0 0
\(515\) 3.74625e6 0.622413
\(516\) 0 0
\(517\) −1.60667e6 −0.264364
\(518\) 0 0
\(519\) 1.62693e7 2.65124
\(520\) 0 0
\(521\) 1.10664e7 1.78612 0.893059 0.449940i \(-0.148554\pi\)
0.893059 + 0.449940i \(0.148554\pi\)
\(522\) 0 0
\(523\) −5.16013e6 −0.824909 −0.412455 0.910978i \(-0.635328\pi\)
−0.412455 + 0.910978i \(0.635328\pi\)
\(524\) 0 0
\(525\) 1.81810e6 0.287885
\(526\) 0 0
\(527\) −2.24555e6 −0.352206
\(528\) 0 0
\(529\) −5.42927e6 −0.843534
\(530\) 0 0
\(531\) 8.12638e6 1.25072
\(532\) 0 0
\(533\) −1.93370e6 −0.294829
\(534\) 0 0
\(535\) −2.52205e6 −0.380951
\(536\) 0 0
\(537\) 8.04970e6 1.20460
\(538\) 0 0
\(539\) −8.95487e6 −1.32766
\(540\) 0 0
\(541\) 3.02590e6 0.444489 0.222244 0.974991i \(-0.428662\pi\)
0.222244 + 0.974991i \(0.428662\pi\)
\(542\) 0 0
\(543\) −8.67344e6 −1.26239
\(544\) 0 0
\(545\) 6.96723e6 1.00478
\(546\) 0 0
\(547\) 5.28748e6 0.755580 0.377790 0.925891i \(-0.376684\pi\)
0.377790 + 0.925891i \(0.376684\pi\)
\(548\) 0 0
\(549\) 1.48360e7 2.10081
\(550\) 0 0
\(551\) 253962. 0.0356361
\(552\) 0 0
\(553\) −1.33765e6 −0.186007
\(554\) 0 0
\(555\) −5.17239e6 −0.712785
\(556\) 0 0
\(557\) −1.42555e7 −1.94691 −0.973454 0.228883i \(-0.926493\pi\)
−0.973454 + 0.228883i \(0.926493\pi\)
\(558\) 0 0
\(559\) −232736. −0.0315017
\(560\) 0 0
\(561\) 7.55421e6 1.01340
\(562\) 0 0
\(563\) −8.00522e6 −1.06439 −0.532197 0.846621i \(-0.678633\pi\)
−0.532197 + 0.846621i \(0.678633\pi\)
\(564\) 0 0
\(565\) 4.88799e6 0.644183
\(566\) 0 0
\(567\) −691940. −0.0903880
\(568\) 0 0
\(569\) 2.92084e6 0.378205 0.189103 0.981957i \(-0.439442\pi\)
0.189103 + 0.981957i \(0.439442\pi\)
\(570\) 0 0
\(571\) 2.94994e6 0.378637 0.189319 0.981916i \(-0.439372\pi\)
0.189319 + 0.981916i \(0.439372\pi\)
\(572\) 0 0
\(573\) 2.12495e7 2.70372
\(574\) 0 0
\(575\) 2.20573e6 0.278216
\(576\) 0 0
\(577\) −1.42530e7 −1.78224 −0.891121 0.453765i \(-0.850081\pi\)
−0.891121 + 0.453765i \(0.850081\pi\)
\(578\) 0 0
\(579\) 9.24239e6 1.14574
\(580\) 0 0
\(581\) 2.51158e6 0.308679
\(582\) 0 0
\(583\) −1.02403e7 −1.24779
\(584\) 0 0
\(585\) −1.39240e6 −0.168219
\(586\) 0 0
\(587\) 1.19711e7 1.43397 0.716983 0.697090i \(-0.245522\pi\)
0.716983 + 0.697090i \(0.245522\pi\)
\(588\) 0 0
\(589\) 1.49771e6 0.177885
\(590\) 0 0
\(591\) −1.00519e7 −1.18381
\(592\) 0 0
\(593\) −1.09738e7 −1.28150 −0.640750 0.767749i \(-0.721377\pi\)
−0.640750 + 0.767749i \(0.721377\pi\)
\(594\) 0 0
\(595\) 558568. 0.0646820
\(596\) 0 0
\(597\) 2.27694e7 2.61466
\(598\) 0 0
\(599\) 1.95514e6 0.222644 0.111322 0.993784i \(-0.464492\pi\)
0.111322 + 0.993784i \(0.464492\pi\)
\(600\) 0 0
\(601\) −4.98555e6 −0.563024 −0.281512 0.959558i \(-0.590836\pi\)
−0.281512 + 0.959558i \(0.590836\pi\)
\(602\) 0 0
\(603\) −1.62491e7 −1.81985
\(604\) 0 0
\(605\) −5.05471e6 −0.561446
\(606\) 0 0
\(607\) −1.50635e7 −1.65941 −0.829706 0.558200i \(-0.811492\pi\)
−0.829706 + 0.558200i \(0.811492\pi\)
\(608\) 0 0
\(609\) −581913. −0.0635792
\(610\) 0 0
\(611\) −364396. −0.0394884
\(612\) 0 0
\(613\) 3.60822e6 0.387830 0.193915 0.981018i \(-0.437881\pi\)
0.193915 + 0.981018i \(0.437881\pi\)
\(614\) 0 0
\(615\) −1.10775e7 −1.18101
\(616\) 0 0
\(617\) −4.12560e6 −0.436289 −0.218144 0.975916i \(-0.570000\pi\)
−0.218144 + 0.975916i \(0.570000\pi\)
\(618\) 0 0
\(619\) −7.18926e6 −0.754150 −0.377075 0.926183i \(-0.623070\pi\)
−0.377075 + 0.926183i \(0.623070\pi\)
\(620\) 0 0
\(621\) 2.68360e6 0.279248
\(622\) 0 0
\(623\) 1.66388e6 0.171752
\(624\) 0 0
\(625\) 1.93410e6 0.198052
\(626\) 0 0
\(627\) −5.03842e6 −0.511830
\(628\) 0 0
\(629\) 3.76771e6 0.379709
\(630\) 0 0
\(631\) −781858. −0.0781726 −0.0390863 0.999236i \(-0.512445\pi\)
−0.0390863 + 0.999236i \(0.512445\pi\)
\(632\) 0 0
\(633\) 2.50814e7 2.48796
\(634\) 0 0
\(635\) 1.61620e6 0.159060
\(636\) 0 0
\(637\) −2.03097e6 −0.198315
\(638\) 0 0
\(639\) −1.02845e7 −0.996394
\(640\) 0 0
\(641\) −7.16700e6 −0.688958 −0.344479 0.938794i \(-0.611944\pi\)
−0.344479 + 0.938794i \(0.611944\pi\)
\(642\) 0 0
\(643\) 7.30767e6 0.697030 0.348515 0.937303i \(-0.386686\pi\)
0.348515 + 0.937303i \(0.386686\pi\)
\(644\) 0 0
\(645\) −1.33326e6 −0.126188
\(646\) 0 0
\(647\) −9.04810e6 −0.849761 −0.424880 0.905250i \(-0.639684\pi\)
−0.424880 + 0.905250i \(0.639684\pi\)
\(648\) 0 0
\(649\) 1.31814e7 1.22843
\(650\) 0 0
\(651\) −3.43176e6 −0.317369
\(652\) 0 0
\(653\) −1.14059e7 −1.04676 −0.523381 0.852099i \(-0.675329\pi\)
−0.523381 + 0.852099i \(0.675329\pi\)
\(654\) 0 0
\(655\) 2.11135e6 0.192290
\(656\) 0 0
\(657\) 3.65556e6 0.330401
\(658\) 0 0
\(659\) −1.24205e7 −1.11410 −0.557050 0.830479i \(-0.688067\pi\)
−0.557050 + 0.830479i \(0.688067\pi\)
\(660\) 0 0
\(661\) 5.96950e6 0.531416 0.265708 0.964054i \(-0.414394\pi\)
0.265708 + 0.964054i \(0.414394\pi\)
\(662\) 0 0
\(663\) 1.71330e6 0.151374
\(664\) 0 0
\(665\) −372547. −0.0326683
\(666\) 0 0
\(667\) −705979. −0.0614437
\(668\) 0 0
\(669\) −8.00719e6 −0.691695
\(670\) 0 0
\(671\) 2.40648e7 2.06336
\(672\) 0 0
\(673\) 9.35412e6 0.796096 0.398048 0.917365i \(-0.369688\pi\)
0.398048 + 0.917365i \(0.369688\pi\)
\(674\) 0 0
\(675\) 5.87774e6 0.496536
\(676\) 0 0
\(677\) −1.16862e7 −0.979946 −0.489973 0.871738i \(-0.662993\pi\)
−0.489973 + 0.871738i \(0.662993\pi\)
\(678\) 0 0
\(679\) −1.94385e6 −0.161804
\(680\) 0 0
\(681\) −1.23654e7 −1.02174
\(682\) 0 0
\(683\) 2.10063e7 1.72305 0.861525 0.507716i \(-0.169510\pi\)
0.861525 + 0.507716i \(0.169510\pi\)
\(684\) 0 0
\(685\) 1.35889e6 0.110652
\(686\) 0 0
\(687\) 1.70219e7 1.37599
\(688\) 0 0
\(689\) −2.32252e6 −0.186385
\(690\) 0 0
\(691\) −2.13781e7 −1.70323 −0.851616 0.524167i \(-0.824377\pi\)
−0.851616 + 0.524167i \(0.824377\pi\)
\(692\) 0 0
\(693\) 6.83438e6 0.540588
\(694\) 0 0
\(695\) −4.62266e6 −0.363020
\(696\) 0 0
\(697\) 8.06913e6 0.629136
\(698\) 0 0
\(699\) 9.88235e6 0.765010
\(700\) 0 0
\(701\) 1.39960e7 1.07574 0.537872 0.843026i \(-0.319228\pi\)
0.537872 + 0.843026i \(0.319228\pi\)
\(702\) 0 0
\(703\) −2.51294e6 −0.191776
\(704\) 0 0
\(705\) −2.08750e6 −0.158180
\(706\) 0 0
\(707\) −647327. −0.0487052
\(708\) 0 0
\(709\) 2.54356e6 0.190032 0.0950158 0.995476i \(-0.469710\pi\)
0.0950158 + 0.995476i \(0.469710\pi\)
\(710\) 0 0
\(711\) −1.39145e7 −1.03227
\(712\) 0 0
\(713\) −4.16343e6 −0.306709
\(714\) 0 0
\(715\) −2.25854e6 −0.165220
\(716\) 0 0
\(717\) −2.45561e7 −1.78386
\(718\) 0 0
\(719\) 2.26551e7 1.63434 0.817172 0.576394i \(-0.195541\pi\)
0.817172 + 0.576394i \(0.195541\pi\)
\(720\) 0 0
\(721\) −4.17039e6 −0.298771
\(722\) 0 0
\(723\) −1.18956e7 −0.846329
\(724\) 0 0
\(725\) −1.54627e6 −0.109254
\(726\) 0 0
\(727\) 1.33692e7 0.938144 0.469072 0.883160i \(-0.344588\pi\)
0.469072 + 0.883160i \(0.344588\pi\)
\(728\) 0 0
\(729\) −2.30563e7 −1.60683
\(730\) 0 0
\(731\) 971185. 0.0672216
\(732\) 0 0
\(733\) −1.62537e7 −1.11736 −0.558679 0.829384i \(-0.688692\pi\)
−0.558679 + 0.829384i \(0.688692\pi\)
\(734\) 0 0
\(735\) −1.16347e7 −0.794399
\(736\) 0 0
\(737\) −2.63569e7 −1.78741
\(738\) 0 0
\(739\) −1.55893e7 −1.05006 −0.525030 0.851084i \(-0.675946\pi\)
−0.525030 + 0.851084i \(0.675946\pi\)
\(740\) 0 0
\(741\) −1.14272e6 −0.0764529
\(742\) 0 0
\(743\) 2.88846e7 1.91953 0.959765 0.280806i \(-0.0906017\pi\)
0.959765 + 0.280806i \(0.0906017\pi\)
\(744\) 0 0
\(745\) −2.83260e6 −0.186980
\(746\) 0 0
\(747\) 2.61261e7 1.71306
\(748\) 0 0
\(749\) 2.80759e6 0.182865
\(750\) 0 0
\(751\) −4.86310e6 −0.314639 −0.157320 0.987548i \(-0.550285\pi\)
−0.157320 + 0.987548i \(0.550285\pi\)
\(752\) 0 0
\(753\) −1.08051e7 −0.694448
\(754\) 0 0
\(755\) −1.05460e7 −0.673315
\(756\) 0 0
\(757\) −1.49268e7 −0.946730 −0.473365 0.880866i \(-0.656961\pi\)
−0.473365 + 0.880866i \(0.656961\pi\)
\(758\) 0 0
\(759\) 1.40061e7 0.882496
\(760\) 0 0
\(761\) −9.73797e6 −0.609547 −0.304773 0.952425i \(-0.598581\pi\)
−0.304773 + 0.952425i \(0.598581\pi\)
\(762\) 0 0
\(763\) −7.75604e6 −0.482313
\(764\) 0 0
\(765\) 5.81036e6 0.358963
\(766\) 0 0
\(767\) 2.98956e6 0.183492
\(768\) 0 0
\(769\) 2.81150e7 1.71444 0.857221 0.514948i \(-0.172189\pi\)
0.857221 + 0.514948i \(0.172189\pi\)
\(770\) 0 0
\(771\) −4.77956e7 −2.89569
\(772\) 0 0
\(773\) −1.68487e7 −1.01419 −0.507094 0.861891i \(-0.669280\pi\)
−0.507094 + 0.861891i \(0.669280\pi\)
\(774\) 0 0
\(775\) −9.11891e6 −0.545367
\(776\) 0 0
\(777\) 5.75800e6 0.342152
\(778\) 0 0
\(779\) −5.38185e6 −0.317752
\(780\) 0 0
\(781\) −1.66820e7 −0.978633
\(782\) 0 0
\(783\) −1.88127e6 −0.109660
\(784\) 0 0
\(785\) −207905. −0.0120418
\(786\) 0 0
\(787\) 2.85828e7 1.64501 0.822505 0.568758i \(-0.192576\pi\)
0.822505 + 0.568758i \(0.192576\pi\)
\(788\) 0 0
\(789\) −3.47250e7 −1.98586
\(790\) 0 0
\(791\) −5.44140e6 −0.309221
\(792\) 0 0
\(793\) 5.45792e6 0.308208
\(794\) 0 0
\(795\) −1.33049e7 −0.746609
\(796\) 0 0
\(797\) −6.38542e6 −0.356077 −0.178039 0.984024i \(-0.556975\pi\)
−0.178039 + 0.984024i \(0.556975\pi\)
\(798\) 0 0
\(799\) 1.52059e6 0.0842645
\(800\) 0 0
\(801\) 1.73081e7 0.953165
\(802\) 0 0
\(803\) 5.92951e6 0.324511
\(804\) 0 0
\(805\) 1.03563e6 0.0563266
\(806\) 0 0
\(807\) −151754. −0.00820267
\(808\) 0 0
\(809\) 2.09935e7 1.12775 0.563875 0.825860i \(-0.309310\pi\)
0.563875 + 0.825860i \(0.309310\pi\)
\(810\) 0 0
\(811\) 1.53184e6 0.0817824 0.0408912 0.999164i \(-0.486980\pi\)
0.0408912 + 0.999164i \(0.486980\pi\)
\(812\) 0 0
\(813\) −3.38886e7 −1.79815
\(814\) 0 0
\(815\) 1.83678e7 0.968639
\(816\) 0 0
\(817\) −647750. −0.0339510
\(818\) 0 0
\(819\) 1.55005e6 0.0807486
\(820\) 0 0
\(821\) −1.40514e7 −0.727549 −0.363775 0.931487i \(-0.618512\pi\)
−0.363775 + 0.931487i \(0.618512\pi\)
\(822\) 0 0
\(823\) 3.17951e7 1.63629 0.818145 0.575012i \(-0.195002\pi\)
0.818145 + 0.575012i \(0.195002\pi\)
\(824\) 0 0
\(825\) 3.06767e7 1.56919
\(826\) 0 0
\(827\) −1.36913e7 −0.696117 −0.348058 0.937473i \(-0.613159\pi\)
−0.348058 + 0.937473i \(0.613159\pi\)
\(828\) 0 0
\(829\) 1.01811e7 0.514526 0.257263 0.966341i \(-0.417179\pi\)
0.257263 + 0.966341i \(0.417179\pi\)
\(830\) 0 0
\(831\) −3.94902e7 −1.98375
\(832\) 0 0
\(833\) 8.47506e6 0.423185
\(834\) 0 0
\(835\) 1.57593e7 0.782207
\(836\) 0 0
\(837\) −1.10946e7 −0.547389
\(838\) 0 0
\(839\) 3.91248e7 1.91888 0.959438 0.281921i \(-0.0909717\pi\)
0.959438 + 0.281921i \(0.0909717\pi\)
\(840\) 0 0
\(841\) −2.00162e7 −0.975871
\(842\) 0 0
\(843\) −2.21967e7 −1.07577
\(844\) 0 0
\(845\) 1.07926e7 0.519976
\(846\) 0 0
\(847\) 5.62700e6 0.269506
\(848\) 0 0
\(849\) 4.94459e7 2.35430
\(850\) 0 0
\(851\) 6.98562e6 0.330660
\(852\) 0 0
\(853\) 1.33752e7 0.629399 0.314700 0.949191i \(-0.398096\pi\)
0.314700 + 0.949191i \(0.398096\pi\)
\(854\) 0 0
\(855\) −3.87532e6 −0.181298
\(856\) 0 0
\(857\) −2.76888e6 −0.128781 −0.0643905 0.997925i \(-0.520510\pi\)
−0.0643905 + 0.997925i \(0.520510\pi\)
\(858\) 0 0
\(859\) −2.16792e7 −1.00244 −0.501222 0.865319i \(-0.667116\pi\)
−0.501222 + 0.865319i \(0.667116\pi\)
\(860\) 0 0
\(861\) 1.23316e7 0.566908
\(862\) 0 0
\(863\) −1.80747e7 −0.826122 −0.413061 0.910703i \(-0.635540\pi\)
−0.413061 + 0.910703i \(0.635540\pi\)
\(864\) 0 0
\(865\) 2.02977e7 0.922371
\(866\) 0 0
\(867\) 2.75014e7 1.24253
\(868\) 0 0
\(869\) −2.25701e7 −1.01387
\(870\) 0 0
\(871\) −5.97777e6 −0.266989
\(872\) 0 0
\(873\) −2.02204e7 −0.897955
\(874\) 0 0
\(875\) 5.49323e6 0.242554
\(876\) 0 0
\(877\) 3.29573e7 1.44695 0.723474 0.690352i \(-0.242544\pi\)
0.723474 + 0.690352i \(0.242544\pi\)
\(878\) 0 0
\(879\) 2.29737e7 1.00290
\(880\) 0 0
\(881\) −1.79044e7 −0.777175 −0.388588 0.921412i \(-0.627037\pi\)
−0.388588 + 0.921412i \(0.627037\pi\)
\(882\) 0 0
\(883\) 2.41771e7 1.04352 0.521761 0.853092i \(-0.325275\pi\)
0.521761 + 0.853092i \(0.325275\pi\)
\(884\) 0 0
\(885\) 1.71261e7 0.735023
\(886\) 0 0
\(887\) 3.43324e7 1.46519 0.732597 0.680662i \(-0.238308\pi\)
0.732597 + 0.680662i \(0.238308\pi\)
\(888\) 0 0
\(889\) −1.79918e6 −0.0763521
\(890\) 0 0
\(891\) −1.16751e7 −0.492681
\(892\) 0 0
\(893\) −1.01418e6 −0.0425587
\(894\) 0 0
\(895\) 1.00429e7 0.419083
\(896\) 0 0
\(897\) 3.17660e6 0.131820
\(898\) 0 0
\(899\) 2.91866e6 0.120444
\(900\) 0 0
\(901\) 9.69164e6 0.397727
\(902\) 0 0
\(903\) 1.48421e6 0.0605727
\(904\) 0 0
\(905\) −1.08211e7 −0.439186
\(906\) 0 0
\(907\) −1.21213e7 −0.489250 −0.244625 0.969618i \(-0.578665\pi\)
−0.244625 + 0.969618i \(0.578665\pi\)
\(908\) 0 0
\(909\) −6.73366e6 −0.270297
\(910\) 0 0
\(911\) −5.70879e6 −0.227902 −0.113951 0.993486i \(-0.536351\pi\)
−0.113951 + 0.993486i \(0.536351\pi\)
\(912\) 0 0
\(913\) 4.23778e7 1.68252
\(914\) 0 0
\(915\) 3.12665e7 1.23460
\(916\) 0 0
\(917\) −2.35040e6 −0.0923034
\(918\) 0 0
\(919\) 5.01516e7 1.95883 0.979414 0.201862i \(-0.0646994\pi\)
0.979414 + 0.201862i \(0.0646994\pi\)
\(920\) 0 0
\(921\) 6.16135e7 2.39346
\(922\) 0 0
\(923\) −3.78349e6 −0.146180
\(924\) 0 0
\(925\) 1.53002e7 0.587953
\(926\) 0 0
\(927\) −4.33814e7 −1.65808
\(928\) 0 0
\(929\) −1.93147e6 −0.0734257 −0.0367128 0.999326i \(-0.511689\pi\)
−0.0367128 + 0.999326i \(0.511689\pi\)
\(930\) 0 0
\(931\) −5.65260e6 −0.213734
\(932\) 0 0
\(933\) −4.75105e7 −1.78684
\(934\) 0 0
\(935\) 9.42469e6 0.352564
\(936\) 0 0
\(937\) −85219.9 −0.00317097 −0.00158548 0.999999i \(-0.500505\pi\)
−0.00158548 + 0.999999i \(0.500505\pi\)
\(938\) 0 0
\(939\) 2.03767e7 0.754172
\(940\) 0 0
\(941\) 3.94849e6 0.145364 0.0726821 0.997355i \(-0.476844\pi\)
0.0726821 + 0.997355i \(0.476844\pi\)
\(942\) 0 0
\(943\) 1.49608e7 0.547867
\(944\) 0 0
\(945\) 2.75970e6 0.100527
\(946\) 0 0
\(947\) −2.41655e7 −0.875630 −0.437815 0.899065i \(-0.644248\pi\)
−0.437815 + 0.899065i \(0.644248\pi\)
\(948\) 0 0
\(949\) 1.34482e6 0.0484728
\(950\) 0 0
\(951\) −4.24443e7 −1.52184
\(952\) 0 0
\(953\) −7.02709e6 −0.250636 −0.125318 0.992117i \(-0.539995\pi\)
−0.125318 + 0.992117i \(0.539995\pi\)
\(954\) 0 0
\(955\) 2.65110e7 0.940627
\(956\) 0 0
\(957\) −9.81860e6 −0.346553
\(958\) 0 0
\(959\) −1.51274e6 −0.0531152
\(960\) 0 0
\(961\) −1.14167e7 −0.398779
\(962\) 0 0
\(963\) 2.92053e7 1.01484
\(964\) 0 0
\(965\) 1.15309e7 0.398606
\(966\) 0 0
\(967\) 2.42724e7 0.834731 0.417365 0.908739i \(-0.362954\pi\)
0.417365 + 0.908739i \(0.362954\pi\)
\(968\) 0 0
\(969\) 4.76846e6 0.163143
\(970\) 0 0
\(971\) −3.06986e7 −1.04489 −0.522444 0.852673i \(-0.674980\pi\)
−0.522444 + 0.852673i \(0.674980\pi\)
\(972\) 0 0
\(973\) 5.14603e6 0.174257
\(974\) 0 0
\(975\) 6.95752e6 0.234392
\(976\) 0 0
\(977\) −2.73274e7 −0.915931 −0.457965 0.888970i \(-0.651422\pi\)
−0.457965 + 0.888970i \(0.651422\pi\)
\(978\) 0 0
\(979\) 2.80746e7 0.936175
\(980\) 0 0
\(981\) −8.06803e7 −2.67667
\(982\) 0 0
\(983\) 8.28346e6 0.273419 0.136709 0.990611i \(-0.456347\pi\)
0.136709 + 0.990611i \(0.456347\pi\)
\(984\) 0 0
\(985\) −1.25409e7 −0.411847
\(986\) 0 0
\(987\) 2.32384e6 0.0759299
\(988\) 0 0
\(989\) 1.80065e6 0.0585382
\(990\) 0 0
\(991\) −3.63848e7 −1.17689 −0.588445 0.808537i \(-0.700260\pi\)
−0.588445 + 0.808537i \(0.700260\pi\)
\(992\) 0 0
\(993\) 5.13725e7 1.65332
\(994\) 0 0
\(995\) 2.84073e7 0.909644
\(996\) 0 0
\(997\) −1.41746e7 −0.451619 −0.225809 0.974172i \(-0.572503\pi\)
−0.225809 + 0.974172i \(0.572503\pi\)
\(998\) 0 0
\(999\) 1.86150e7 0.590134
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 152.6.a.b.1.1 3
4.3 odd 2 304.6.a.i.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.6.a.b.1.1 3 1.1 even 1 trivial
304.6.a.i.1.3 3 4.3 odd 2