Properties

Label 152.8.a.d.1.4
Level $152$
Weight $8$
Character 152.1
Self dual yes
Analytic conductor $47.483$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [152,8,Mod(1,152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(152, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("152.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 152.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.4825238736\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 2 x^{8} - 13922 x^{7} - 25112 x^{6} + 57411673 x^{5} + 379057666 x^{4} - 62486804160 x^{3} + \cdots + 69542466153984 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{19}\cdot 3\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-18.9403\) of defining polynomial
Character \(\chi\) \(=\) 152.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-12.9403 q^{3} -448.356 q^{5} -610.684 q^{7} -2019.55 q^{9} +O(q^{10})\) \(q-12.9403 q^{3} -448.356 q^{5} -610.684 q^{7} -2019.55 q^{9} -797.626 q^{11} -11152.4 q^{13} +5801.85 q^{15} -23870.4 q^{17} +6859.00 q^{19} +7902.43 q^{21} -88520.0 q^{23} +122898. q^{25} +54433.9 q^{27} -170424. q^{29} +218460. q^{31} +10321.5 q^{33} +273804. q^{35} -28815.2 q^{37} +144315. q^{39} -144799. q^{41} -162752. q^{43} +905477. q^{45} -259026. q^{47} -450607. q^{49} +308889. q^{51} +1.31886e6 q^{53} +357621. q^{55} -88757.4 q^{57} -639322. q^{59} -2.19944e6 q^{61} +1.23331e6 q^{63} +5.00024e6 q^{65} -747422. q^{67} +1.14547e6 q^{69} +792365. q^{71} +6.08000e6 q^{73} -1.59034e6 q^{75} +487098. q^{77} -4.36104e6 q^{79} +3.71236e6 q^{81} +8.78352e6 q^{83} +1.07024e7 q^{85} +2.20533e6 q^{87} -2.13717e6 q^{89} +6.81058e6 q^{91} -2.82693e6 q^{93} -3.07528e6 q^{95} +6.51694e6 q^{97} +1.61085e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 56 q^{3} + 82 q^{5} + 464 q^{7} + 8513 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 9 q + 56 q^{3} + 82 q^{5} + 464 q^{7} + 8513 q^{9} + 3360 q^{11} + 16522 q^{13} - 46608 q^{15} - 12902 q^{17} + 61731 q^{19} + 956 q^{21} - 76956 q^{23} + 188627 q^{25} + 417356 q^{27} + 63186 q^{29} + 314040 q^{31} + 89912 q^{33} + 429444 q^{35} + 389598 q^{37} - 350316 q^{39} + 424802 q^{41} + 1707520 q^{43} + 1515186 q^{45} + 968164 q^{47} + 3215825 q^{49} + 1731172 q^{51} + 1629130 q^{53} + 2745620 q^{55} + 384104 q^{57} + 4118768 q^{59} + 4051834 q^{61} + 6884020 q^{63} + 14144476 q^{65} + 5291736 q^{67} + 17194484 q^{69} + 7132000 q^{71} + 16065346 q^{73} - 2212376 q^{75} + 5883084 q^{77} + 799544 q^{79} + 26315489 q^{81} + 9460268 q^{83} - 2142320 q^{85} + 32521836 q^{87} + 29176746 q^{89} + 16210748 q^{91} + 46195392 q^{93} + 562438 q^{95} + 33616226 q^{97} + 21789816 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −12.9403 −0.276706 −0.138353 0.990383i \(-0.544181\pi\)
−0.138353 + 0.990383i \(0.544181\pi\)
\(4\) 0 0
\(5\) −448.356 −1.60409 −0.802044 0.597265i \(-0.796254\pi\)
−0.802044 + 0.597265i \(0.796254\pi\)
\(6\) 0 0
\(7\) −610.684 −0.672936 −0.336468 0.941695i \(-0.609232\pi\)
−0.336468 + 0.941695i \(0.609232\pi\)
\(8\) 0 0
\(9\) −2019.55 −0.923434
\(10\) 0 0
\(11\) −797.626 −0.180686 −0.0903431 0.995911i \(-0.528796\pi\)
−0.0903431 + 0.995911i \(0.528796\pi\)
\(12\) 0 0
\(13\) −11152.4 −1.40788 −0.703940 0.710259i \(-0.748578\pi\)
−0.703940 + 0.710259i \(0.748578\pi\)
\(14\) 0 0
\(15\) 5801.85 0.443861
\(16\) 0 0
\(17\) −23870.4 −1.17839 −0.589194 0.807992i \(-0.700555\pi\)
−0.589194 + 0.807992i \(0.700555\pi\)
\(18\) 0 0
\(19\) 6859.00 0.229416
\(20\) 0 0
\(21\) 7902.43 0.186206
\(22\) 0 0
\(23\) −88520.0 −1.51703 −0.758515 0.651656i \(-0.774075\pi\)
−0.758515 + 0.651656i \(0.774075\pi\)
\(24\) 0 0
\(25\) 122898. 1.57310
\(26\) 0 0
\(27\) 54433.9 0.532226
\(28\) 0 0
\(29\) −170424. −1.29759 −0.648795 0.760963i \(-0.724727\pi\)
−0.648795 + 0.760963i \(0.724727\pi\)
\(30\) 0 0
\(31\) 218460. 1.31706 0.658531 0.752554i \(-0.271178\pi\)
0.658531 + 0.752554i \(0.271178\pi\)
\(32\) 0 0
\(33\) 10321.5 0.0499970
\(34\) 0 0
\(35\) 273804. 1.07945
\(36\) 0 0
\(37\) −28815.2 −0.0935223 −0.0467611 0.998906i \(-0.514890\pi\)
−0.0467611 + 0.998906i \(0.514890\pi\)
\(38\) 0 0
\(39\) 144315. 0.389569
\(40\) 0 0
\(41\) −144799. −0.328112 −0.164056 0.986451i \(-0.552458\pi\)
−0.164056 + 0.986451i \(0.552458\pi\)
\(42\) 0 0
\(43\) −162752. −0.312167 −0.156084 0.987744i \(-0.549887\pi\)
−0.156084 + 0.987744i \(0.549887\pi\)
\(44\) 0 0
\(45\) 905477. 1.48127
\(46\) 0 0
\(47\) −259026. −0.363916 −0.181958 0.983306i \(-0.558244\pi\)
−0.181958 + 0.983306i \(0.558244\pi\)
\(48\) 0 0
\(49\) −450607. −0.547157
\(50\) 0 0
\(51\) 308889. 0.326067
\(52\) 0 0
\(53\) 1.31886e6 1.21684 0.608422 0.793614i \(-0.291803\pi\)
0.608422 + 0.793614i \(0.291803\pi\)
\(54\) 0 0
\(55\) 357621. 0.289837
\(56\) 0 0
\(57\) −88757.4 −0.0634808
\(58\) 0 0
\(59\) −639322. −0.405264 −0.202632 0.979255i \(-0.564950\pi\)
−0.202632 + 0.979255i \(0.564950\pi\)
\(60\) 0 0
\(61\) −2.19944e6 −1.24067 −0.620336 0.784336i \(-0.713004\pi\)
−0.620336 + 0.784336i \(0.713004\pi\)
\(62\) 0 0
\(63\) 1.23331e6 0.621412
\(64\) 0 0
\(65\) 5.00024e6 2.25836
\(66\) 0 0
\(67\) −747422. −0.303602 −0.151801 0.988411i \(-0.548507\pi\)
−0.151801 + 0.988411i \(0.548507\pi\)
\(68\) 0 0
\(69\) 1.14547e6 0.419772
\(70\) 0 0
\(71\) 792365. 0.262737 0.131369 0.991334i \(-0.458063\pi\)
0.131369 + 0.991334i \(0.458063\pi\)
\(72\) 0 0
\(73\) 6.08000e6 1.82925 0.914626 0.404302i \(-0.132486\pi\)
0.914626 + 0.404302i \(0.132486\pi\)
\(74\) 0 0
\(75\) −1.59034e6 −0.435286
\(76\) 0 0
\(77\) 487098. 0.121590
\(78\) 0 0
\(79\) −4.36104e6 −0.995165 −0.497583 0.867417i \(-0.665779\pi\)
−0.497583 + 0.867417i \(0.665779\pi\)
\(80\) 0 0
\(81\) 3.71236e6 0.776163
\(82\) 0 0
\(83\) 8.78352e6 1.68615 0.843073 0.537799i \(-0.180744\pi\)
0.843073 + 0.537799i \(0.180744\pi\)
\(84\) 0 0
\(85\) 1.07024e7 1.89024
\(86\) 0 0
\(87\) 2.20533e6 0.359051
\(88\) 0 0
\(89\) −2.13717e6 −0.321346 −0.160673 0.987008i \(-0.551366\pi\)
−0.160673 + 0.987008i \(0.551366\pi\)
\(90\) 0 0
\(91\) 6.81058e6 0.947413
\(92\) 0 0
\(93\) −2.82693e6 −0.364439
\(94\) 0 0
\(95\) −3.07528e6 −0.368003
\(96\) 0 0
\(97\) 6.51694e6 0.725008 0.362504 0.931982i \(-0.381922\pi\)
0.362504 + 0.931982i \(0.381922\pi\)
\(98\) 0 0
\(99\) 1.61085e6 0.166852
\(100\) 0 0
\(101\) −1.26633e7 −1.22299 −0.611495 0.791248i \(-0.709432\pi\)
−0.611495 + 0.791248i \(0.709432\pi\)
\(102\) 0 0
\(103\) −9.77257e6 −0.881208 −0.440604 0.897702i \(-0.645236\pi\)
−0.440604 + 0.897702i \(0.645236\pi\)
\(104\) 0 0
\(105\) −3.54310e6 −0.298690
\(106\) 0 0
\(107\) −2.26471e7 −1.78718 −0.893592 0.448881i \(-0.851823\pi\)
−0.893592 + 0.448881i \(0.851823\pi\)
\(108\) 0 0
\(109\) −2.97914e6 −0.220342 −0.110171 0.993913i \(-0.535140\pi\)
−0.110171 + 0.993913i \(0.535140\pi\)
\(110\) 0 0
\(111\) 372876. 0.0258782
\(112\) 0 0
\(113\) 1.03860e7 0.677130 0.338565 0.940943i \(-0.390059\pi\)
0.338565 + 0.940943i \(0.390059\pi\)
\(114\) 0 0
\(115\) 3.96885e7 2.43345
\(116\) 0 0
\(117\) 2.25228e7 1.30008
\(118\) 0 0
\(119\) 1.45773e7 0.792979
\(120\) 0 0
\(121\) −1.88510e7 −0.967353
\(122\) 0 0
\(123\) 1.87374e6 0.0907907
\(124\) 0 0
\(125\) −2.00744e7 −0.919300
\(126\) 0 0
\(127\) 5.85859e6 0.253793 0.126897 0.991916i \(-0.459498\pi\)
0.126897 + 0.991916i \(0.459498\pi\)
\(128\) 0 0
\(129\) 2.10606e6 0.0863787
\(130\) 0 0
\(131\) −2.75157e7 −1.06938 −0.534689 0.845049i \(-0.679571\pi\)
−0.534689 + 0.845049i \(0.679571\pi\)
\(132\) 0 0
\(133\) −4.18868e6 −0.154382
\(134\) 0 0
\(135\) −2.44058e7 −0.853738
\(136\) 0 0
\(137\) 2.27466e7 0.755780 0.377890 0.925851i \(-0.376650\pi\)
0.377890 + 0.925851i \(0.376650\pi\)
\(138\) 0 0
\(139\) −4.07689e7 −1.28759 −0.643794 0.765199i \(-0.722641\pi\)
−0.643794 + 0.765199i \(0.722641\pi\)
\(140\) 0 0
\(141\) 3.35187e6 0.100698
\(142\) 0 0
\(143\) 8.89543e6 0.254384
\(144\) 0 0
\(145\) 7.64106e7 2.08145
\(146\) 0 0
\(147\) 5.83099e6 0.151402
\(148\) 0 0
\(149\) −1.58867e7 −0.393443 −0.196722 0.980459i \(-0.563030\pi\)
−0.196722 + 0.980459i \(0.563030\pi\)
\(150\) 0 0
\(151\) −7.78860e6 −0.184094 −0.0920471 0.995755i \(-0.529341\pi\)
−0.0920471 + 0.995755i \(0.529341\pi\)
\(152\) 0 0
\(153\) 4.82074e7 1.08816
\(154\) 0 0
\(155\) −9.79479e7 −2.11268
\(156\) 0 0
\(157\) −9.22820e6 −0.190313 −0.0951565 0.995462i \(-0.530335\pi\)
−0.0951565 + 0.995462i \(0.530335\pi\)
\(158\) 0 0
\(159\) −1.70665e7 −0.336708
\(160\) 0 0
\(161\) 5.40578e7 1.02086
\(162\) 0 0
\(163\) −5.34216e7 −0.966184 −0.483092 0.875569i \(-0.660486\pi\)
−0.483092 + 0.875569i \(0.660486\pi\)
\(164\) 0 0
\(165\) −4.62771e6 −0.0801996
\(166\) 0 0
\(167\) −9.80959e7 −1.62983 −0.814917 0.579578i \(-0.803217\pi\)
−0.814917 + 0.579578i \(0.803217\pi\)
\(168\) 0 0
\(169\) 6.16270e7 0.982126
\(170\) 0 0
\(171\) −1.38521e7 −0.211850
\(172\) 0 0
\(173\) −1.01529e8 −1.49083 −0.745413 0.666603i \(-0.767748\pi\)
−0.745413 + 0.666603i \(0.767748\pi\)
\(174\) 0 0
\(175\) −7.50521e7 −1.05859
\(176\) 0 0
\(177\) 8.27301e6 0.112139
\(178\) 0 0
\(179\) −1.13078e8 −1.47364 −0.736820 0.676089i \(-0.763674\pi\)
−0.736820 + 0.676089i \(0.763674\pi\)
\(180\) 0 0
\(181\) −1.03026e8 −1.29144 −0.645719 0.763575i \(-0.723442\pi\)
−0.645719 + 0.763575i \(0.723442\pi\)
\(182\) 0 0
\(183\) 2.84613e7 0.343302
\(184\) 0 0
\(185\) 1.29195e7 0.150018
\(186\) 0 0
\(187\) 1.90396e7 0.212918
\(188\) 0 0
\(189\) −3.32419e7 −0.358154
\(190\) 0 0
\(191\) −9.21955e7 −0.957399 −0.478699 0.877979i \(-0.658892\pi\)
−0.478699 + 0.877979i \(0.658892\pi\)
\(192\) 0 0
\(193\) −9.62052e7 −0.963270 −0.481635 0.876372i \(-0.659957\pi\)
−0.481635 + 0.876372i \(0.659957\pi\)
\(194\) 0 0
\(195\) −6.47045e7 −0.624904
\(196\) 0 0
\(197\) 2.92172e7 0.272274 0.136137 0.990690i \(-0.456531\pi\)
0.136137 + 0.990690i \(0.456531\pi\)
\(198\) 0 0
\(199\) 3.87443e6 0.0348516 0.0174258 0.999848i \(-0.494453\pi\)
0.0174258 + 0.999848i \(0.494453\pi\)
\(200\) 0 0
\(201\) 9.67185e6 0.0840085
\(202\) 0 0
\(203\) 1.04075e8 0.873195
\(204\) 0 0
\(205\) 6.49216e7 0.526321
\(206\) 0 0
\(207\) 1.78771e8 1.40088
\(208\) 0 0
\(209\) −5.47092e6 −0.0414523
\(210\) 0 0
\(211\) 2.54992e8 1.86869 0.934347 0.356364i \(-0.115984\pi\)
0.934347 + 0.356364i \(0.115984\pi\)
\(212\) 0 0
\(213\) −1.02534e7 −0.0727010
\(214\) 0 0
\(215\) 7.29710e7 0.500744
\(216\) 0 0
\(217\) −1.33410e8 −0.886298
\(218\) 0 0
\(219\) −7.86768e7 −0.506165
\(220\) 0 0
\(221\) 2.66211e8 1.65903
\(222\) 0 0
\(223\) 7.04562e7 0.425454 0.212727 0.977112i \(-0.431766\pi\)
0.212727 + 0.977112i \(0.431766\pi\)
\(224\) 0 0
\(225\) −2.48199e8 −1.45265
\(226\) 0 0
\(227\) −3.33992e8 −1.89516 −0.947580 0.319519i \(-0.896479\pi\)
−0.947580 + 0.319519i \(0.896479\pi\)
\(228\) 0 0
\(229\) 1.87397e8 1.03119 0.515593 0.856833i \(-0.327571\pi\)
0.515593 + 0.856833i \(0.327571\pi\)
\(230\) 0 0
\(231\) −6.30318e6 −0.0336448
\(232\) 0 0
\(233\) 2.62037e8 1.35712 0.678558 0.734547i \(-0.262605\pi\)
0.678558 + 0.734547i \(0.262605\pi\)
\(234\) 0 0
\(235\) 1.16136e8 0.583754
\(236\) 0 0
\(237\) 5.64331e7 0.275369
\(238\) 0 0
\(239\) 2.25478e8 1.06834 0.534172 0.845376i \(-0.320623\pi\)
0.534172 + 0.845376i \(0.320623\pi\)
\(240\) 0 0
\(241\) 3.68196e7 0.169441 0.0847207 0.996405i \(-0.473000\pi\)
0.0847207 + 0.996405i \(0.473000\pi\)
\(242\) 0 0
\(243\) −1.67086e8 −0.746996
\(244\) 0 0
\(245\) 2.02033e8 0.877688
\(246\) 0 0
\(247\) −7.64941e7 −0.322990
\(248\) 0 0
\(249\) −1.13661e8 −0.466567
\(250\) 0 0
\(251\) −1.87349e7 −0.0747815 −0.0373907 0.999301i \(-0.511905\pi\)
−0.0373907 + 0.999301i \(0.511905\pi\)
\(252\) 0 0
\(253\) 7.06059e7 0.274106
\(254\) 0 0
\(255\) −1.38492e8 −0.523041
\(256\) 0 0
\(257\) −1.07261e8 −0.394162 −0.197081 0.980387i \(-0.563146\pi\)
−0.197081 + 0.980387i \(0.563146\pi\)
\(258\) 0 0
\(259\) 1.75970e7 0.0629345
\(260\) 0 0
\(261\) 3.44179e8 1.19824
\(262\) 0 0
\(263\) −4.14555e7 −0.140520 −0.0702599 0.997529i \(-0.522383\pi\)
−0.0702599 + 0.997529i \(0.522383\pi\)
\(264\) 0 0
\(265\) −5.91321e8 −1.95192
\(266\) 0 0
\(267\) 2.76555e7 0.0889185
\(268\) 0 0
\(269\) −2.68602e8 −0.841348 −0.420674 0.907212i \(-0.638206\pi\)
−0.420674 + 0.907212i \(0.638206\pi\)
\(270\) 0 0
\(271\) 5.05747e8 1.54362 0.771810 0.635853i \(-0.219352\pi\)
0.771810 + 0.635853i \(0.219352\pi\)
\(272\) 0 0
\(273\) −8.81308e7 −0.262155
\(274\) 0 0
\(275\) −9.80269e7 −0.284237
\(276\) 0 0
\(277\) 2.22715e8 0.629609 0.314804 0.949157i \(-0.398061\pi\)
0.314804 + 0.949157i \(0.398061\pi\)
\(278\) 0 0
\(279\) −4.41191e8 −1.21622
\(280\) 0 0
\(281\) 2.75476e8 0.740649 0.370324 0.928902i \(-0.379247\pi\)
0.370324 + 0.928902i \(0.379247\pi\)
\(282\) 0 0
\(283\) 7.02053e8 1.84127 0.920635 0.390424i \(-0.127671\pi\)
0.920635 + 0.390424i \(0.127671\pi\)
\(284\) 0 0
\(285\) 3.97949e7 0.101829
\(286\) 0 0
\(287\) 8.84265e7 0.220798
\(288\) 0 0
\(289\) 1.59456e8 0.388597
\(290\) 0 0
\(291\) −8.43310e7 −0.200614
\(292\) 0 0
\(293\) −9.86639e7 −0.229151 −0.114575 0.993415i \(-0.536551\pi\)
−0.114575 + 0.993415i \(0.536551\pi\)
\(294\) 0 0
\(295\) 2.86644e8 0.650079
\(296\) 0 0
\(297\) −4.34179e7 −0.0961660
\(298\) 0 0
\(299\) 9.87209e8 2.13580
\(300\) 0 0
\(301\) 9.93903e7 0.210069
\(302\) 0 0
\(303\) 1.63867e8 0.338409
\(304\) 0 0
\(305\) 9.86132e8 1.99015
\(306\) 0 0
\(307\) 9.66453e8 1.90632 0.953161 0.302462i \(-0.0978087\pi\)
0.953161 + 0.302462i \(0.0978087\pi\)
\(308\) 0 0
\(309\) 1.26460e8 0.243836
\(310\) 0 0
\(311\) −2.68112e8 −0.505423 −0.252711 0.967542i \(-0.581322\pi\)
−0.252711 + 0.967542i \(0.581322\pi\)
\(312\) 0 0
\(313\) −5.50471e8 −1.01468 −0.507341 0.861746i \(-0.669371\pi\)
−0.507341 + 0.861746i \(0.669371\pi\)
\(314\) 0 0
\(315\) −5.52961e8 −0.996799
\(316\) 0 0
\(317\) 2.60829e7 0.0459885 0.0229942 0.999736i \(-0.492680\pi\)
0.0229942 + 0.999736i \(0.492680\pi\)
\(318\) 0 0
\(319\) 1.35934e8 0.234457
\(320\) 0 0
\(321\) 2.93060e8 0.494525
\(322\) 0 0
\(323\) −1.63727e8 −0.270341
\(324\) 0 0
\(325\) −1.37061e9 −2.21473
\(326\) 0 0
\(327\) 3.85509e7 0.0609702
\(328\) 0 0
\(329\) 1.58183e8 0.244892
\(330\) 0 0
\(331\) −1.18133e9 −1.79049 −0.895246 0.445573i \(-0.853000\pi\)
−0.895246 + 0.445573i \(0.853000\pi\)
\(332\) 0 0
\(333\) 5.81936e7 0.0863616
\(334\) 0 0
\(335\) 3.35111e8 0.487004
\(336\) 0 0
\(337\) −3.15915e8 −0.449641 −0.224820 0.974400i \(-0.572180\pi\)
−0.224820 + 0.974400i \(0.572180\pi\)
\(338\) 0 0
\(339\) −1.34397e8 −0.187366
\(340\) 0 0
\(341\) −1.74249e8 −0.237975
\(342\) 0 0
\(343\) 7.78104e8 1.04114
\(344\) 0 0
\(345\) −5.13580e8 −0.673351
\(346\) 0 0
\(347\) 1.44435e9 1.85575 0.927874 0.372894i \(-0.121634\pi\)
0.927874 + 0.372894i \(0.121634\pi\)
\(348\) 0 0
\(349\) −9.95757e8 −1.25390 −0.626952 0.779058i \(-0.715698\pi\)
−0.626952 + 0.779058i \(0.715698\pi\)
\(350\) 0 0
\(351\) −6.07067e8 −0.749311
\(352\) 0 0
\(353\) −6.13500e8 −0.742341 −0.371170 0.928565i \(-0.621043\pi\)
−0.371170 + 0.928565i \(0.621043\pi\)
\(354\) 0 0
\(355\) −3.55262e8 −0.421453
\(356\) 0 0
\(357\) −1.88634e8 −0.219422
\(358\) 0 0
\(359\) 4.27255e8 0.487368 0.243684 0.969855i \(-0.421644\pi\)
0.243684 + 0.969855i \(0.421644\pi\)
\(360\) 0 0
\(361\) 4.70459e7 0.0526316
\(362\) 0 0
\(363\) 2.43937e8 0.267673
\(364\) 0 0
\(365\) −2.72600e9 −2.93428
\(366\) 0 0
\(367\) −6.24024e8 −0.658977 −0.329488 0.944160i \(-0.606876\pi\)
−0.329488 + 0.944160i \(0.606876\pi\)
\(368\) 0 0
\(369\) 2.92429e8 0.302990
\(370\) 0 0
\(371\) −8.05410e8 −0.818858
\(372\) 0 0
\(373\) 1.22124e8 0.121848 0.0609241 0.998142i \(-0.480595\pi\)
0.0609241 + 0.998142i \(0.480595\pi\)
\(374\) 0 0
\(375\) 2.59768e8 0.254376
\(376\) 0 0
\(377\) 1.90063e9 1.82685
\(378\) 0 0
\(379\) 8.08681e8 0.763027 0.381513 0.924363i \(-0.375403\pi\)
0.381513 + 0.924363i \(0.375403\pi\)
\(380\) 0 0
\(381\) −7.58117e7 −0.0702262
\(382\) 0 0
\(383\) −1.80693e9 −1.64341 −0.821703 0.569916i \(-0.806976\pi\)
−0.821703 + 0.569916i \(0.806976\pi\)
\(384\) 0 0
\(385\) −2.18393e8 −0.195041
\(386\) 0 0
\(387\) 3.28686e8 0.288266
\(388\) 0 0
\(389\) −1.01333e9 −0.872826 −0.436413 0.899746i \(-0.643751\pi\)
−0.436413 + 0.899746i \(0.643751\pi\)
\(390\) 0 0
\(391\) 2.11301e9 1.78765
\(392\) 0 0
\(393\) 3.56061e8 0.295904
\(394\) 0 0
\(395\) 1.95530e9 1.59633
\(396\) 0 0
\(397\) 2.41712e8 0.193879 0.0969395 0.995290i \(-0.469095\pi\)
0.0969395 + 0.995290i \(0.469095\pi\)
\(398\) 0 0
\(399\) 5.42027e7 0.0427185
\(400\) 0 0
\(401\) 1.62242e9 1.25649 0.628244 0.778017i \(-0.283774\pi\)
0.628244 + 0.778017i \(0.283774\pi\)
\(402\) 0 0
\(403\) −2.43635e9 −1.85426
\(404\) 0 0
\(405\) −1.66446e9 −1.24503
\(406\) 0 0
\(407\) 2.29837e7 0.0168982
\(408\) 0 0
\(409\) −1.92933e9 −1.39436 −0.697181 0.716895i \(-0.745563\pi\)
−0.697181 + 0.716895i \(0.745563\pi\)
\(410\) 0 0
\(411\) −2.94348e8 −0.209129
\(412\) 0 0
\(413\) 3.90424e8 0.272717
\(414\) 0 0
\(415\) −3.93814e9 −2.70473
\(416\) 0 0
\(417\) 5.27560e8 0.356284
\(418\) 0 0
\(419\) −1.95566e9 −1.29880 −0.649402 0.760445i \(-0.724981\pi\)
−0.649402 + 0.760445i \(0.724981\pi\)
\(420\) 0 0
\(421\) 8.97950e8 0.586496 0.293248 0.956036i \(-0.405264\pi\)
0.293248 + 0.956036i \(0.405264\pi\)
\(422\) 0 0
\(423\) 5.23117e8 0.336053
\(424\) 0 0
\(425\) −2.93363e9 −1.85372
\(426\) 0 0
\(427\) 1.34316e9 0.834893
\(428\) 0 0
\(429\) −1.15109e8 −0.0703898
\(430\) 0 0
\(431\) −8.16396e7 −0.0491169 −0.0245584 0.999698i \(-0.507818\pi\)
−0.0245584 + 0.999698i \(0.507818\pi\)
\(432\) 0 0
\(433\) 1.80911e9 1.07092 0.535462 0.844560i \(-0.320138\pi\)
0.535462 + 0.844560i \(0.320138\pi\)
\(434\) 0 0
\(435\) −9.88774e8 −0.575950
\(436\) 0 0
\(437\) −6.07159e8 −0.348030
\(438\) 0 0
\(439\) 1.97358e9 1.11334 0.556670 0.830734i \(-0.312079\pi\)
0.556670 + 0.830734i \(0.312079\pi\)
\(440\) 0 0
\(441\) 9.10024e8 0.505263
\(442\) 0 0
\(443\) 1.59486e9 0.871583 0.435791 0.900048i \(-0.356469\pi\)
0.435791 + 0.900048i \(0.356469\pi\)
\(444\) 0 0
\(445\) 9.58212e8 0.515468
\(446\) 0 0
\(447\) 2.05579e8 0.108868
\(448\) 0 0
\(449\) −9.62423e8 −0.501769 −0.250884 0.968017i \(-0.580721\pi\)
−0.250884 + 0.968017i \(0.580721\pi\)
\(450\) 0 0
\(451\) 1.15496e8 0.0592853
\(452\) 0 0
\(453\) 1.00787e8 0.0509400
\(454\) 0 0
\(455\) −3.05357e9 −1.51973
\(456\) 0 0
\(457\) 3.67165e9 1.79951 0.899755 0.436394i \(-0.143745\pi\)
0.899755 + 0.436394i \(0.143745\pi\)
\(458\) 0 0
\(459\) −1.29936e9 −0.627169
\(460\) 0 0
\(461\) −3.61303e9 −1.71758 −0.858792 0.512324i \(-0.828785\pi\)
−0.858792 + 0.512324i \(0.828785\pi\)
\(462\) 0 0
\(463\) 5.76619e8 0.269995 0.134997 0.990846i \(-0.456897\pi\)
0.134997 + 0.990846i \(0.456897\pi\)
\(464\) 0 0
\(465\) 1.26747e9 0.584593
\(466\) 0 0
\(467\) −3.54781e9 −1.61195 −0.805974 0.591951i \(-0.798358\pi\)
−0.805974 + 0.591951i \(0.798358\pi\)
\(468\) 0 0
\(469\) 4.56439e8 0.204305
\(470\) 0 0
\(471\) 1.19415e8 0.0526608
\(472\) 0 0
\(473\) 1.29816e8 0.0564043
\(474\) 0 0
\(475\) 8.42959e8 0.360893
\(476\) 0 0
\(477\) −2.66351e9 −1.12367
\(478\) 0 0
\(479\) 3.58532e9 1.49057 0.745287 0.666743i \(-0.232312\pi\)
0.745287 + 0.666743i \(0.232312\pi\)
\(480\) 0 0
\(481\) 3.21357e8 0.131668
\(482\) 0 0
\(483\) −6.99523e8 −0.282480
\(484\) 0 0
\(485\) −2.92191e9 −1.16298
\(486\) 0 0
\(487\) 2.10687e9 0.826582 0.413291 0.910599i \(-0.364379\pi\)
0.413291 + 0.910599i \(0.364379\pi\)
\(488\) 0 0
\(489\) 6.91290e8 0.267349
\(490\) 0 0
\(491\) −1.42095e9 −0.541744 −0.270872 0.962615i \(-0.587312\pi\)
−0.270872 + 0.962615i \(0.587312\pi\)
\(492\) 0 0
\(493\) 4.06808e9 1.52906
\(494\) 0 0
\(495\) −7.22232e8 −0.267645
\(496\) 0 0
\(497\) −4.83885e8 −0.176805
\(498\) 0 0
\(499\) 1.35904e9 0.489645 0.244822 0.969568i \(-0.421270\pi\)
0.244822 + 0.969568i \(0.421270\pi\)
\(500\) 0 0
\(501\) 1.26939e9 0.450985
\(502\) 0 0
\(503\) −1.38824e9 −0.486382 −0.243191 0.969978i \(-0.578194\pi\)
−0.243191 + 0.969978i \(0.578194\pi\)
\(504\) 0 0
\(505\) 5.67768e9 1.96178
\(506\) 0 0
\(507\) −7.97470e8 −0.271761
\(508\) 0 0
\(509\) −3.49832e9 −1.17584 −0.587918 0.808921i \(-0.700052\pi\)
−0.587918 + 0.808921i \(0.700052\pi\)
\(510\) 0 0
\(511\) −3.71296e9 −1.23097
\(512\) 0 0
\(513\) 3.73362e8 0.122101
\(514\) 0 0
\(515\) 4.38159e9 1.41354
\(516\) 0 0
\(517\) 2.06606e8 0.0657547
\(518\) 0 0
\(519\) 1.31381e9 0.412521
\(520\) 0 0
\(521\) 2.87079e9 0.889345 0.444672 0.895693i \(-0.353320\pi\)
0.444672 + 0.895693i \(0.353320\pi\)
\(522\) 0 0
\(523\) 5.34638e9 1.63420 0.817098 0.576499i \(-0.195582\pi\)
0.817098 + 0.576499i \(0.195582\pi\)
\(524\) 0 0
\(525\) 9.71195e8 0.292920
\(526\) 0 0
\(527\) −5.21472e9 −1.55201
\(528\) 0 0
\(529\) 4.43097e9 1.30138
\(530\) 0 0
\(531\) 1.29114e9 0.374234
\(532\) 0 0
\(533\) 1.61485e9 0.461942
\(534\) 0 0
\(535\) 1.01540e10 2.86680
\(536\) 0 0
\(537\) 1.46326e9 0.407766
\(538\) 0 0
\(539\) 3.59416e8 0.0988637
\(540\) 0 0
\(541\) −5.46213e9 −1.48310 −0.741551 0.670896i \(-0.765910\pi\)
−0.741551 + 0.670896i \(0.765910\pi\)
\(542\) 0 0
\(543\) 1.33319e9 0.357349
\(544\) 0 0
\(545\) 1.33572e9 0.353449
\(546\) 0 0
\(547\) −1.99084e9 −0.520092 −0.260046 0.965596i \(-0.583738\pi\)
−0.260046 + 0.965596i \(0.583738\pi\)
\(548\) 0 0
\(549\) 4.44187e9 1.14568
\(550\) 0 0
\(551\) −1.16894e9 −0.297687
\(552\) 0 0
\(553\) 2.66322e9 0.669683
\(554\) 0 0
\(555\) −1.67181e8 −0.0415109
\(556\) 0 0
\(557\) 4.05741e9 0.994844 0.497422 0.867509i \(-0.334280\pi\)
0.497422 + 0.867509i \(0.334280\pi\)
\(558\) 0 0
\(559\) 1.81508e9 0.439494
\(560\) 0 0
\(561\) −2.46378e8 −0.0589159
\(562\) 0 0
\(563\) 4.89883e8 0.115695 0.0578473 0.998325i \(-0.481576\pi\)
0.0578473 + 0.998325i \(0.481576\pi\)
\(564\) 0 0
\(565\) −4.65661e9 −1.08618
\(566\) 0 0
\(567\) −2.26708e9 −0.522308
\(568\) 0 0
\(569\) 2.34018e9 0.532545 0.266272 0.963898i \(-0.414208\pi\)
0.266272 + 0.963898i \(0.414208\pi\)
\(570\) 0 0
\(571\) −1.73889e8 −0.0390882 −0.0195441 0.999809i \(-0.506221\pi\)
−0.0195441 + 0.999809i \(0.506221\pi\)
\(572\) 0 0
\(573\) 1.19303e9 0.264918
\(574\) 0 0
\(575\) −1.08790e10 −2.38644
\(576\) 0 0
\(577\) 7.68023e9 1.66440 0.832202 0.554472i \(-0.187080\pi\)
0.832202 + 0.554472i \(0.187080\pi\)
\(578\) 0 0
\(579\) 1.24492e9 0.266543
\(580\) 0 0
\(581\) −5.36396e9 −1.13467
\(582\) 0 0
\(583\) −1.05196e9 −0.219867
\(584\) 0 0
\(585\) −1.00982e10 −2.08545
\(586\) 0 0
\(587\) −5.64323e9 −1.15158 −0.575791 0.817597i \(-0.695306\pi\)
−0.575791 + 0.817597i \(0.695306\pi\)
\(588\) 0 0
\(589\) 1.49842e9 0.302155
\(590\) 0 0
\(591\) −3.78078e8 −0.0753400
\(592\) 0 0
\(593\) 9.38008e9 1.84720 0.923602 0.383352i \(-0.125230\pi\)
0.923602 + 0.383352i \(0.125230\pi\)
\(594\) 0 0
\(595\) −6.53581e9 −1.27201
\(596\) 0 0
\(597\) −5.01362e7 −0.00964365
\(598\) 0 0
\(599\) 7.13757e9 1.35693 0.678463 0.734634i \(-0.262646\pi\)
0.678463 + 0.734634i \(0.262646\pi\)
\(600\) 0 0
\(601\) 1.96406e9 0.369058 0.184529 0.982827i \(-0.440924\pi\)
0.184529 + 0.982827i \(0.440924\pi\)
\(602\) 0 0
\(603\) 1.50946e9 0.280356
\(604\) 0 0
\(605\) 8.45195e9 1.55172
\(606\) 0 0
\(607\) −8.03346e9 −1.45795 −0.728974 0.684541i \(-0.760003\pi\)
−0.728974 + 0.684541i \(0.760003\pi\)
\(608\) 0 0
\(609\) −1.34676e9 −0.241619
\(610\) 0 0
\(611\) 2.88876e9 0.512351
\(612\) 0 0
\(613\) −2.90624e9 −0.509589 −0.254795 0.966995i \(-0.582008\pi\)
−0.254795 + 0.966995i \(0.582008\pi\)
\(614\) 0 0
\(615\) −8.40103e8 −0.145636
\(616\) 0 0
\(617\) 1.29659e9 0.222230 0.111115 0.993808i \(-0.464558\pi\)
0.111115 + 0.993808i \(0.464558\pi\)
\(618\) 0 0
\(619\) −5.35707e9 −0.907841 −0.453921 0.891042i \(-0.649975\pi\)
−0.453921 + 0.891042i \(0.649975\pi\)
\(620\) 0 0
\(621\) −4.81849e9 −0.807403
\(622\) 0 0
\(623\) 1.30513e9 0.216245
\(624\) 0 0
\(625\) −6.00954e8 −0.0984603
\(626\) 0 0
\(627\) 7.07952e7 0.0114701
\(628\) 0 0
\(629\) 6.87829e8 0.110205
\(630\) 0 0
\(631\) −3.70368e9 −0.586855 −0.293427 0.955981i \(-0.594796\pi\)
−0.293427 + 0.955981i \(0.594796\pi\)
\(632\) 0 0
\(633\) −3.29967e9 −0.517080
\(634\) 0 0
\(635\) −2.62673e9 −0.407106
\(636\) 0 0
\(637\) 5.02534e9 0.770332
\(638\) 0 0
\(639\) −1.60022e9 −0.242620
\(640\) 0 0
\(641\) −1.05174e9 −0.157726 −0.0788632 0.996885i \(-0.525129\pi\)
−0.0788632 + 0.996885i \(0.525129\pi\)
\(642\) 0 0
\(643\) −1.32758e9 −0.196935 −0.0984675 0.995140i \(-0.531394\pi\)
−0.0984675 + 0.995140i \(0.531394\pi\)
\(644\) 0 0
\(645\) −9.44265e8 −0.138559
\(646\) 0 0
\(647\) −1.03277e10 −1.49913 −0.749564 0.661932i \(-0.769737\pi\)
−0.749564 + 0.661932i \(0.769737\pi\)
\(648\) 0 0
\(649\) 5.09940e8 0.0732256
\(650\) 0 0
\(651\) 1.72636e9 0.245244
\(652\) 0 0
\(653\) 5.50814e9 0.774121 0.387060 0.922054i \(-0.373491\pi\)
0.387060 + 0.922054i \(0.373491\pi\)
\(654\) 0 0
\(655\) 1.23368e10 1.71538
\(656\) 0 0
\(657\) −1.22789e10 −1.68919
\(658\) 0 0
\(659\) −8.11699e9 −1.10483 −0.552416 0.833569i \(-0.686294\pi\)
−0.552416 + 0.833569i \(0.686294\pi\)
\(660\) 0 0
\(661\) 4.15573e9 0.559684 0.279842 0.960046i \(-0.409718\pi\)
0.279842 + 0.960046i \(0.409718\pi\)
\(662\) 0 0
\(663\) −3.44485e9 −0.459064
\(664\) 0 0
\(665\) 1.87802e9 0.247642
\(666\) 0 0
\(667\) 1.50859e10 1.96848
\(668\) 0 0
\(669\) −9.11723e8 −0.117726
\(670\) 0 0
\(671\) 1.75433e9 0.224172
\(672\) 0 0
\(673\) 1.24619e10 1.57591 0.787954 0.615734i \(-0.211141\pi\)
0.787954 + 0.615734i \(0.211141\pi\)
\(674\) 0 0
\(675\) 6.68984e9 0.837244
\(676\) 0 0
\(677\) −5.44025e9 −0.673843 −0.336921 0.941533i \(-0.609386\pi\)
−0.336921 + 0.941533i \(0.609386\pi\)
\(678\) 0 0
\(679\) −3.97979e9 −0.487884
\(680\) 0 0
\(681\) 4.32195e9 0.524403
\(682\) 0 0
\(683\) −5.12121e9 −0.615036 −0.307518 0.951542i \(-0.599498\pi\)
−0.307518 + 0.951542i \(0.599498\pi\)
\(684\) 0 0
\(685\) −1.01986e10 −1.21234
\(686\) 0 0
\(687\) −2.42496e9 −0.285336
\(688\) 0 0
\(689\) −1.47085e10 −1.71317
\(690\) 0 0
\(691\) −1.45730e9 −0.168026 −0.0840129 0.996465i \(-0.526774\pi\)
−0.0840129 + 0.996465i \(0.526774\pi\)
\(692\) 0 0
\(693\) −9.83718e8 −0.112281
\(694\) 0 0
\(695\) 1.82790e10 2.06540
\(696\) 0 0
\(697\) 3.45641e9 0.386643
\(698\) 0 0
\(699\) −3.39083e9 −0.375523
\(700\) 0 0
\(701\) −9.50026e9 −1.04165 −0.520826 0.853663i \(-0.674376\pi\)
−0.520826 + 0.853663i \(0.674376\pi\)
\(702\) 0 0
\(703\) −1.97643e8 −0.0214555
\(704\) 0 0
\(705\) −1.50283e9 −0.161528
\(706\) 0 0
\(707\) 7.73330e9 0.822994
\(708\) 0 0
\(709\) 1.31224e9 0.138277 0.0691387 0.997607i \(-0.477975\pi\)
0.0691387 + 0.997607i \(0.477975\pi\)
\(710\) 0 0
\(711\) 8.80733e9 0.918969
\(712\) 0 0
\(713\) −1.93381e10 −1.99802
\(714\) 0 0
\(715\) −3.98832e9 −0.408055
\(716\) 0 0
\(717\) −2.91775e9 −0.295618
\(718\) 0 0
\(719\) −7.33298e8 −0.0735748 −0.0367874 0.999323i \(-0.511712\pi\)
−0.0367874 + 0.999323i \(0.511712\pi\)
\(720\) 0 0
\(721\) 5.96796e9 0.592997
\(722\) 0 0
\(723\) −4.76456e8 −0.0468855
\(724\) 0 0
\(725\) −2.09448e10 −2.04124
\(726\) 0 0
\(727\) −6.87921e9 −0.664000 −0.332000 0.943279i \(-0.607723\pi\)
−0.332000 + 0.943279i \(0.607723\pi\)
\(728\) 0 0
\(729\) −5.95680e9 −0.569465
\(730\) 0 0
\(731\) 3.88496e9 0.367854
\(732\) 0 0
\(733\) −1.38323e10 −1.29727 −0.648634 0.761101i \(-0.724659\pi\)
−0.648634 + 0.761101i \(0.724659\pi\)
\(734\) 0 0
\(735\) −2.61436e9 −0.242862
\(736\) 0 0
\(737\) 5.96163e8 0.0548566
\(738\) 0 0
\(739\) −7.07576e9 −0.644938 −0.322469 0.946580i \(-0.604513\pi\)
−0.322469 + 0.946580i \(0.604513\pi\)
\(740\) 0 0
\(741\) 9.89855e8 0.0893734
\(742\) 0 0
\(743\) −3.32152e9 −0.297081 −0.148541 0.988906i \(-0.547458\pi\)
−0.148541 + 0.988906i \(0.547458\pi\)
\(744\) 0 0
\(745\) 7.12291e9 0.631118
\(746\) 0 0
\(747\) −1.77387e10 −1.55704
\(748\) 0 0
\(749\) 1.38302e10 1.20266
\(750\) 0 0
\(751\) 3.09703e9 0.266812 0.133406 0.991061i \(-0.457409\pi\)
0.133406 + 0.991061i \(0.457409\pi\)
\(752\) 0 0
\(753\) 2.42435e8 0.0206925
\(754\) 0 0
\(755\) 3.49207e9 0.295303
\(756\) 0 0
\(757\) −1.66635e10 −1.39614 −0.698072 0.716028i \(-0.745958\pi\)
−0.698072 + 0.716028i \(0.745958\pi\)
\(758\) 0 0
\(759\) −9.13660e8 −0.0758470
\(760\) 0 0
\(761\) 1.03368e10 0.850241 0.425120 0.905137i \(-0.360232\pi\)
0.425120 + 0.905137i \(0.360232\pi\)
\(762\) 0 0
\(763\) 1.81931e9 0.148276
\(764\) 0 0
\(765\) −2.16141e10 −1.74551
\(766\) 0 0
\(767\) 7.12996e9 0.570563
\(768\) 0 0
\(769\) −5.20185e9 −0.412492 −0.206246 0.978500i \(-0.566125\pi\)
−0.206246 + 0.978500i \(0.566125\pi\)
\(770\) 0 0
\(771\) 1.38798e9 0.109067
\(772\) 0 0
\(773\) −1.06405e10 −0.828582 −0.414291 0.910144i \(-0.635970\pi\)
−0.414291 + 0.910144i \(0.635970\pi\)
\(774\) 0 0
\(775\) 2.68484e10 2.07187
\(776\) 0 0
\(777\) −2.27710e8 −0.0174144
\(778\) 0 0
\(779\) −9.93177e8 −0.0752741
\(780\) 0 0
\(781\) −6.32011e8 −0.0474729
\(782\) 0 0
\(783\) −9.27684e9 −0.690611
\(784\) 0 0
\(785\) 4.13752e9 0.305279
\(786\) 0 0
\(787\) −7.27109e9 −0.531726 −0.265863 0.964011i \(-0.585657\pi\)
−0.265863 + 0.964011i \(0.585657\pi\)
\(788\) 0 0
\(789\) 5.36446e8 0.0388827
\(790\) 0 0
\(791\) −6.34254e9 −0.455665
\(792\) 0 0
\(793\) 2.45290e10 1.74672
\(794\) 0 0
\(795\) 7.65186e9 0.540110
\(796\) 0 0
\(797\) 1.74025e10 1.21761 0.608805 0.793320i \(-0.291649\pi\)
0.608805 + 0.793320i \(0.291649\pi\)
\(798\) 0 0
\(799\) 6.18306e9 0.428835
\(800\) 0 0
\(801\) 4.31611e9 0.296742
\(802\) 0 0
\(803\) −4.84956e9 −0.330520
\(804\) 0 0
\(805\) −2.42372e10 −1.63756
\(806\) 0 0
\(807\) 3.47578e9 0.232806
\(808\) 0 0
\(809\) 5.29753e9 0.351766 0.175883 0.984411i \(-0.443722\pi\)
0.175883 + 0.984411i \(0.443722\pi\)
\(810\) 0 0
\(811\) 9.01559e9 0.593501 0.296750 0.954955i \(-0.404097\pi\)
0.296750 + 0.954955i \(0.404097\pi\)
\(812\) 0 0
\(813\) −6.54450e9 −0.427130
\(814\) 0 0
\(815\) 2.39519e10 1.54984
\(816\) 0 0
\(817\) −1.11632e9 −0.0716161
\(818\) 0 0
\(819\) −1.37543e10 −0.874873
\(820\) 0 0
\(821\) 1.40553e10 0.886417 0.443208 0.896419i \(-0.353840\pi\)
0.443208 + 0.896419i \(0.353840\pi\)
\(822\) 0 0
\(823\) −1.04404e10 −0.652859 −0.326429 0.945222i \(-0.605846\pi\)
−0.326429 + 0.945222i \(0.605846\pi\)
\(824\) 0 0
\(825\) 1.26850e9 0.0786502
\(826\) 0 0
\(827\) 2.00292e10 1.23139 0.615693 0.787986i \(-0.288876\pi\)
0.615693 + 0.787986i \(0.288876\pi\)
\(828\) 0 0
\(829\) 8.53589e9 0.520365 0.260182 0.965559i \(-0.416217\pi\)
0.260182 + 0.965559i \(0.416217\pi\)
\(830\) 0 0
\(831\) −2.88200e9 −0.174217
\(832\) 0 0
\(833\) 1.07562e10 0.644763
\(834\) 0 0
\(835\) 4.39819e10 2.61440
\(836\) 0 0
\(837\) 1.18916e10 0.700975
\(838\) 0 0
\(839\) −3.02709e10 −1.76953 −0.884766 0.466035i \(-0.845682\pi\)
−0.884766 + 0.466035i \(0.845682\pi\)
\(840\) 0 0
\(841\) 1.17944e10 0.683739
\(842\) 0 0
\(843\) −3.56474e9 −0.204942
\(844\) 0 0
\(845\) −2.76308e10 −1.57542
\(846\) 0 0
\(847\) 1.15120e10 0.650966
\(848\) 0 0
\(849\) −9.08477e9 −0.509491
\(850\) 0 0
\(851\) 2.55072e9 0.141876
\(852\) 0 0
\(853\) 1.20968e10 0.667341 0.333671 0.942690i \(-0.391713\pi\)
0.333671 + 0.942690i \(0.391713\pi\)
\(854\) 0 0
\(855\) 6.21067e9 0.339826
\(856\) 0 0
\(857\) −1.15027e9 −0.0624260 −0.0312130 0.999513i \(-0.509937\pi\)
−0.0312130 + 0.999513i \(0.509937\pi\)
\(858\) 0 0
\(859\) 5.83084e9 0.313874 0.156937 0.987609i \(-0.449838\pi\)
0.156937 + 0.987609i \(0.449838\pi\)
\(860\) 0 0
\(861\) −1.14426e9 −0.0610963
\(862\) 0 0
\(863\) 2.61395e9 0.138439 0.0692196 0.997601i \(-0.477949\pi\)
0.0692196 + 0.997601i \(0.477949\pi\)
\(864\) 0 0
\(865\) 4.55210e10 2.39142
\(866\) 0 0
\(867\) −2.06341e9 −0.107527
\(868\) 0 0
\(869\) 3.47848e9 0.179813
\(870\) 0 0
\(871\) 8.33553e9 0.427435
\(872\) 0 0
\(873\) −1.31613e10 −0.669497
\(874\) 0 0
\(875\) 1.22591e10 0.618630
\(876\) 0 0
\(877\) −2.60197e8 −0.0130258 −0.00651290 0.999979i \(-0.502073\pi\)
−0.00651290 + 0.999979i \(0.502073\pi\)
\(878\) 0 0
\(879\) 1.27674e9 0.0634075
\(880\) 0 0
\(881\) −5.20364e6 −0.000256385 0 −0.000128192 1.00000i \(-0.500041\pi\)
−0.000128192 1.00000i \(0.500041\pi\)
\(882\) 0 0
\(883\) −1.74039e9 −0.0850717 −0.0425358 0.999095i \(-0.513544\pi\)
−0.0425358 + 0.999095i \(0.513544\pi\)
\(884\) 0 0
\(885\) −3.70926e9 −0.179881
\(886\) 0 0
\(887\) −2.55616e10 −1.22986 −0.614929 0.788583i \(-0.710815\pi\)
−0.614929 + 0.788583i \(0.710815\pi\)
\(888\) 0 0
\(889\) −3.57775e9 −0.170787
\(890\) 0 0
\(891\) −2.96108e9 −0.140242
\(892\) 0 0
\(893\) −1.77666e9 −0.0834882
\(894\) 0 0
\(895\) 5.06991e10 2.36385
\(896\) 0 0
\(897\) −1.27748e10 −0.590988
\(898\) 0 0
\(899\) −3.72308e10 −1.70900
\(900\) 0 0
\(901\) −3.14818e10 −1.43391
\(902\) 0 0
\(903\) −1.28614e9 −0.0581274
\(904\) 0 0
\(905\) 4.61926e10 2.07158
\(906\) 0 0
\(907\) 1.09403e10 0.486858 0.243429 0.969919i \(-0.421728\pi\)
0.243429 + 0.969919i \(0.421728\pi\)
\(908\) 0 0
\(909\) 2.55742e10 1.12935
\(910\) 0 0
\(911\) −3.27541e10 −1.43533 −0.717664 0.696389i \(-0.754789\pi\)
−0.717664 + 0.696389i \(0.754789\pi\)
\(912\) 0 0
\(913\) −7.00596e9 −0.304663
\(914\) 0 0
\(915\) −1.27608e10 −0.550687
\(916\) 0 0
\(917\) 1.68034e10 0.719623
\(918\) 0 0
\(919\) 2.59412e10 1.10252 0.551259 0.834334i \(-0.314148\pi\)
0.551259 + 0.834334i \(0.314148\pi\)
\(920\) 0 0
\(921\) −1.25062e10 −0.527492
\(922\) 0 0
\(923\) −8.83676e9 −0.369902
\(924\) 0 0
\(925\) −3.54133e9 −0.147120
\(926\) 0 0
\(927\) 1.97362e10 0.813737
\(928\) 0 0
\(929\) −1.20517e10 −0.493166 −0.246583 0.969122i \(-0.579308\pi\)
−0.246583 + 0.969122i \(0.579308\pi\)
\(930\) 0 0
\(931\) −3.09072e9 −0.125526
\(932\) 0 0
\(933\) 3.46944e9 0.139854
\(934\) 0 0
\(935\) −8.53654e9 −0.341540
\(936\) 0 0
\(937\) −3.36217e9 −0.133515 −0.0667577 0.997769i \(-0.521265\pi\)
−0.0667577 + 0.997769i \(0.521265\pi\)
\(938\) 0 0
\(939\) 7.12325e9 0.280769
\(940\) 0 0
\(941\) −4.15855e10 −1.62697 −0.813483 0.581589i \(-0.802431\pi\)
−0.813483 + 0.581589i \(0.802431\pi\)
\(942\) 0 0
\(943\) 1.28176e10 0.497756
\(944\) 0 0
\(945\) 1.49042e10 0.574511
\(946\) 0 0
\(947\) −2.96254e10 −1.13355 −0.566773 0.823874i \(-0.691808\pi\)
−0.566773 + 0.823874i \(0.691808\pi\)
\(948\) 0 0
\(949\) −6.78064e10 −2.57537
\(950\) 0 0
\(951\) −3.37520e8 −0.0127253
\(952\) 0 0
\(953\) 1.58681e10 0.593882 0.296941 0.954896i \(-0.404034\pi\)
0.296941 + 0.954896i \(0.404034\pi\)
\(954\) 0 0
\(955\) 4.13364e10 1.53575
\(956\) 0 0
\(957\) −1.75903e9 −0.0648756
\(958\) 0 0
\(959\) −1.38910e10 −0.508592
\(960\) 0 0
\(961\) 2.02121e10 0.734650
\(962\) 0 0
\(963\) 4.57369e10 1.65034
\(964\) 0 0
\(965\) 4.31342e10 1.54517
\(966\) 0 0
\(967\) −2.77875e9 −0.0988229 −0.0494114 0.998779i \(-0.515735\pi\)
−0.0494114 + 0.998779i \(0.515735\pi\)
\(968\) 0 0
\(969\) 2.11867e9 0.0748050
\(970\) 0 0
\(971\) −1.74377e10 −0.611254 −0.305627 0.952151i \(-0.598866\pi\)
−0.305627 + 0.952151i \(0.598866\pi\)
\(972\) 0 0
\(973\) 2.48969e10 0.866464
\(974\) 0 0
\(975\) 1.77360e10 0.612831
\(976\) 0 0
\(977\) −2.69095e10 −0.923154 −0.461577 0.887100i \(-0.652716\pi\)
−0.461577 + 0.887100i \(0.652716\pi\)
\(978\) 0 0
\(979\) 1.70466e9 0.0580628
\(980\) 0 0
\(981\) 6.01652e9 0.203472
\(982\) 0 0
\(983\) 1.77111e10 0.594715 0.297357 0.954766i \(-0.403895\pi\)
0.297357 + 0.954766i \(0.403895\pi\)
\(984\) 0 0
\(985\) −1.30997e10 −0.436752
\(986\) 0 0
\(987\) −2.04694e9 −0.0677633
\(988\) 0 0
\(989\) 1.44068e10 0.473567
\(990\) 0 0
\(991\) 2.08537e10 0.680651 0.340326 0.940308i \(-0.389463\pi\)
0.340326 + 0.940308i \(0.389463\pi\)
\(992\) 0 0
\(993\) 1.52867e10 0.495440
\(994\) 0 0
\(995\) −1.73713e9 −0.0559050
\(996\) 0 0
\(997\) −4.13878e10 −1.32263 −0.661317 0.750107i \(-0.730002\pi\)
−0.661317 + 0.750107i \(0.730002\pi\)
\(998\) 0 0
\(999\) −1.56852e9 −0.0497750
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 152.8.a.d.1.4 9
4.3 odd 2 304.8.a.m.1.6 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.8.a.d.1.4 9 1.1 even 1 trivial
304.8.a.m.1.6 9 4.3 odd 2