Properties

Label 1520.2.j.e.911.5
Level $1520$
Weight $2$
Character 1520.911
Analytic conductor $12.137$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1520,2,Mod(911,1520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1520, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1520.911");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1520 = 2^{4} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1520.j (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.1372611072\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.433300527120384.59
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 4x^{6} - 10x^{4} + 676x^{2} + 28561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 911.5
Root \(-1.14437 - 3.41912i\) of defining polynomial
Character \(\chi\) \(=\) 1520.911
Dual form 1520.2.j.e.911.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.14437 q^{3} +1.00000 q^{5} -0.786873i q^{7} -1.69042 q^{9} -0.786873i q^{11} -3.91275i q^{13} +1.14437 q^{15} +(-1.14437 - 4.20600i) q^{19} -0.900474i q^{21} -6.05138i q^{23} +1.00000 q^{25} -5.36757 q^{27} +7.65632 q^{31} -0.900474i q^{33} -0.786873i q^{35} +4.81322i q^{37} -4.47763i q^{39} -8.72597i q^{41} -7.62512i q^{43} -1.69042 q^{45} -0.786873i q^{47} +6.38083 q^{49} +12.6387i q^{53} -0.786873i q^{55} +(-1.30958 - 4.81322i) q^{57} +9.94506 q^{59} -4.69042 q^{61} +1.33014i q^{63} -3.91275i q^{65} +11.0894 q^{67} -6.92502i q^{69} -9.94506 q^{71} -7.38083 q^{73} +1.14437 q^{75} -0.619168 q^{77} -7.65632 q^{79} -1.07125 q^{81} -12.8896i q^{83} +17.4519i q^{89} -3.07883 q^{91} +8.76166 q^{93} +(-1.14437 - 4.20600i) q^{95} +12.6387i q^{97} +1.33014i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{5} + 24 q^{9} + 8 q^{25} + 24 q^{45} - 24 q^{49} - 48 q^{57} + 16 q^{73} - 80 q^{77} + 104 q^{81} - 80 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1520\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(401\) \(1141\) \(1217\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.14437 0.660703 0.330351 0.943858i \(-0.392833\pi\)
0.330351 + 0.943858i \(0.392833\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 0.786873i 0.297410i −0.988882 0.148705i \(-0.952490\pi\)
0.988882 0.148705i \(-0.0475105\pi\)
\(8\) 0 0
\(9\) −1.69042 −0.563472
\(10\) 0 0
\(11\) 0.786873i 0.237251i −0.992939 0.118626i \(-0.962151\pi\)
0.992939 0.118626i \(-0.0378488\pi\)
\(12\) 0 0
\(13\) 3.91275i 1.08520i −0.839991 0.542600i \(-0.817440\pi\)
0.839991 0.542600i \(-0.182560\pi\)
\(14\) 0 0
\(15\) 1.14437 0.295475
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) −1.14437 4.20600i −0.262537 0.964922i
\(20\) 0 0
\(21\) 0.900474i 0.196500i
\(22\) 0 0
\(23\) 6.05138i 1.26180i −0.775864 0.630900i \(-0.782686\pi\)
0.775864 0.630900i \(-0.217314\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −5.36757 −1.03299
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 7.65632 1.37511 0.687557 0.726130i \(-0.258683\pi\)
0.687557 + 0.726130i \(0.258683\pi\)
\(32\) 0 0
\(33\) 0.900474i 0.156752i
\(34\) 0 0
\(35\) 0.786873i 0.133006i
\(36\) 0 0
\(37\) 4.81322i 0.791289i 0.918404 + 0.395644i \(0.129479\pi\)
−0.918404 + 0.395644i \(0.870521\pi\)
\(38\) 0 0
\(39\) 4.47763i 0.716995i
\(40\) 0 0
\(41\) 8.72597i 1.36277i −0.731927 0.681384i \(-0.761379\pi\)
0.731927 0.681384i \(-0.238621\pi\)
\(42\) 0 0
\(43\) 7.62512i 1.16282i −0.813611 0.581410i \(-0.802501\pi\)
0.813611 0.581410i \(-0.197499\pi\)
\(44\) 0 0
\(45\) −1.69042 −0.251992
\(46\) 0 0
\(47\) 0.786873i 0.114777i −0.998352 0.0573886i \(-0.981723\pi\)
0.998352 0.0573886i \(-0.0182774\pi\)
\(48\) 0 0
\(49\) 6.38083 0.911547
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 12.6387i 1.73606i 0.496511 + 0.868030i \(0.334614\pi\)
−0.496511 + 0.868030i \(0.665386\pi\)
\(54\) 0 0
\(55\) 0.786873i 0.106102i
\(56\) 0 0
\(57\) −1.30958 4.81322i −0.173459 0.637527i
\(58\) 0 0
\(59\) 9.94506 1.29474 0.647368 0.762178i \(-0.275870\pi\)
0.647368 + 0.762178i \(0.275870\pi\)
\(60\) 0 0
\(61\) −4.69042 −0.600546 −0.300273 0.953853i \(-0.597078\pi\)
−0.300273 + 0.953853i \(0.597078\pi\)
\(62\) 0 0
\(63\) 1.33014i 0.167582i
\(64\) 0 0
\(65\) 3.91275i 0.485316i
\(66\) 0 0
\(67\) 11.0894 1.35479 0.677395 0.735620i \(-0.263109\pi\)
0.677395 + 0.735620i \(0.263109\pi\)
\(68\) 0 0
\(69\) 6.92502i 0.833674i
\(70\) 0 0
\(71\) −9.94506 −1.18026 −0.590131 0.807308i \(-0.700924\pi\)
−0.590131 + 0.807308i \(0.700924\pi\)
\(72\) 0 0
\(73\) −7.38083 −0.863861 −0.431930 0.901907i \(-0.642167\pi\)
−0.431930 + 0.901907i \(0.642167\pi\)
\(74\) 0 0
\(75\) 1.14437 0.132141
\(76\) 0 0
\(77\) −0.619168 −0.0705608
\(78\) 0 0
\(79\) −7.65632 −0.861403 −0.430701 0.902494i \(-0.641734\pi\)
−0.430701 + 0.902494i \(0.641734\pi\)
\(80\) 0 0
\(81\) −1.07125 −0.119027
\(82\) 0 0
\(83\) 12.8896i 1.41482i −0.706803 0.707410i \(-0.749863\pi\)
0.706803 0.707410i \(-0.250137\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 17.4519i 1.84990i 0.380087 + 0.924951i \(0.375894\pi\)
−0.380087 + 0.924951i \(0.624106\pi\)
\(90\) 0 0
\(91\) −3.07883 −0.322749
\(92\) 0 0
\(93\) 8.76166 0.908542
\(94\) 0 0
\(95\) −1.14437 4.20600i −0.117410 0.431526i
\(96\) 0 0
\(97\) 12.6387i 1.28327i 0.767011 + 0.641633i \(0.221743\pi\)
−0.767011 + 0.641633i \(0.778257\pi\)
\(98\) 0 0
\(99\) 1.33014i 0.133684i
\(100\) 0 0
\(101\) 2.69042 0.267706 0.133853 0.991001i \(-0.457265\pi\)
0.133853 + 0.991001i \(0.457265\pi\)
\(102\) 0 0
\(103\) 15.6669 1.54371 0.771853 0.635801i \(-0.219330\pi\)
0.771853 + 0.635801i \(0.219330\pi\)
\(104\) 0 0
\(105\) 0.900474i 0.0878773i
\(106\) 0 0
\(107\) −6.51194 −0.629533 −0.314767 0.949169i \(-0.601926\pi\)
−0.314767 + 0.949169i \(0.601926\pi\)
\(108\) 0 0
\(109\) 8.72597i 0.835796i 0.908494 + 0.417898i \(0.137233\pi\)
−0.908494 + 0.417898i \(0.862767\pi\)
\(110\) 0 0
\(111\) 5.50811i 0.522806i
\(112\) 0 0
\(113\) 11.7382i 1.10424i −0.833764 0.552120i \(-0.813819\pi\)
0.833764 0.552120i \(-0.186181\pi\)
\(114\) 0 0
\(115\) 6.05138i 0.564294i
\(116\) 0 0
\(117\) 6.61417i 0.611480i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 10.3808 0.943712
\(122\) 0 0
\(123\) 9.98574i 0.900384i
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −5.72185 −0.507732 −0.253866 0.967239i \(-0.581702\pi\)
−0.253866 + 0.967239i \(0.581702\pi\)
\(128\) 0 0
\(129\) 8.72597i 0.768279i
\(130\) 0 0
\(131\) 1.57375i 0.137499i 0.997634 + 0.0687494i \(0.0219009\pi\)
−0.997634 + 0.0687494i \(0.978099\pi\)
\(132\) 0 0
\(133\) −3.30958 + 0.900474i −0.286977 + 0.0780810i
\(134\) 0 0
\(135\) −5.36757 −0.461967
\(136\) 0 0
\(137\) −12.0000 −1.02523 −0.512615 0.858619i \(-0.671323\pi\)
−0.512615 + 0.858619i \(0.671323\pi\)
\(138\) 0 0
\(139\) 12.8896i 1.09328i −0.837366 0.546642i \(-0.815906\pi\)
0.837366 0.546642i \(-0.184094\pi\)
\(140\) 0 0
\(141\) 0.900474i 0.0758336i
\(142\) 0 0
\(143\) −3.07883 −0.257465
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 7.30204 0.602262
\(148\) 0 0
\(149\) −8.69042 −0.711947 −0.355973 0.934496i \(-0.615851\pi\)
−0.355973 + 0.934496i \(0.615851\pi\)
\(150\) 0 0
\(151\) −4.57748 −0.372510 −0.186255 0.982501i \(-0.559635\pi\)
−0.186255 + 0.982501i \(0.559635\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 7.65632 0.614970
\(156\) 0 0
\(157\) −1.38083 −0.110202 −0.0551012 0.998481i \(-0.517548\pi\)
−0.0551012 + 0.998481i \(0.517548\pi\)
\(158\) 0 0
\(159\) 14.4634i 1.14702i
\(160\) 0 0
\(161\) −4.76166 −0.375272
\(162\) 0 0
\(163\) 22.8754i 1.79174i −0.444319 0.895869i \(-0.646554\pi\)
0.444319 0.895869i \(-0.353446\pi\)
\(164\) 0 0
\(165\) 0.900474i 0.0701018i
\(166\) 0 0
\(167\) 16.4570 1.27348 0.636741 0.771078i \(-0.280282\pi\)
0.636741 + 0.771078i \(0.280282\pi\)
\(168\) 0 0
\(169\) −2.30958 −0.177660
\(170\) 0 0
\(171\) 1.93446 + 7.10988i 0.147932 + 0.543706i
\(172\) 0 0
\(173\) 3.91275i 0.297481i 0.988876 + 0.148740i \(0.0475218\pi\)
−0.988876 + 0.148740i \(0.952478\pi\)
\(174\) 0 0
\(175\) 0.786873i 0.0594820i
\(176\) 0 0
\(177\) 11.3808 0.855436
\(178\) 0 0
\(179\) 9.94506 0.743328 0.371664 0.928367i \(-0.378787\pi\)
0.371664 + 0.928367i \(0.378787\pi\)
\(180\) 0 0
\(181\) 7.82549i 0.581664i −0.956774 0.290832i \(-0.906068\pi\)
0.956774 0.290832i \(-0.0939321\pi\)
\(182\) 0 0
\(183\) −5.36757 −0.396783
\(184\) 0 0
\(185\) 4.81322i 0.353875i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 4.22360i 0.307221i
\(190\) 0 0
\(191\) 20.5147i 1.48440i 0.670181 + 0.742198i \(0.266216\pi\)
−0.670181 + 0.742198i \(0.733784\pi\)
\(192\) 0 0
\(193\) 3.01227i 0.216828i 0.994106 + 0.108414i \(0.0345772\pi\)
−0.994106 + 0.108414i \(0.965423\pi\)
\(194\) 0 0
\(195\) 4.47763i 0.320650i
\(196\) 0 0
\(197\) 5.38083 0.383368 0.191684 0.981457i \(-0.438605\pi\)
0.191684 + 0.981457i \(0.438605\pi\)
\(198\) 0 0
\(199\) 6.83825i 0.484751i 0.970183 + 0.242375i \(0.0779265\pi\)
−0.970183 + 0.242375i \(0.922073\pi\)
\(200\) 0 0
\(201\) 12.6904 0.895113
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 8.72597i 0.609448i
\(206\) 0 0
\(207\) 10.2293i 0.710989i
\(208\) 0 0
\(209\) −3.30958 + 0.900474i −0.228929 + 0.0622871i
\(210\) 0 0
\(211\) −15.3126 −1.05417 −0.527083 0.849814i \(-0.676714\pi\)
−0.527083 + 0.849814i \(0.676714\pi\)
\(212\) 0 0
\(213\) −11.3808 −0.779802
\(214\) 0 0
\(215\) 7.62512i 0.520029i
\(216\) 0 0
\(217\) 6.02454i 0.408973i
\(218\) 0 0
\(219\) −8.44641 −0.570755
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −1.14437 −0.0766327 −0.0383164 0.999266i \(-0.512199\pi\)
−0.0383164 + 0.999266i \(0.512199\pi\)
\(224\) 0 0
\(225\) −1.69042 −0.112694
\(226\) 0 0
\(227\) −13.3782 −0.887940 −0.443970 0.896042i \(-0.646430\pi\)
−0.443970 + 0.896042i \(0.646430\pi\)
\(228\) 0 0
\(229\) −1.30958 −0.0865398 −0.0432699 0.999063i \(-0.513778\pi\)
−0.0432699 + 0.999063i \(0.513778\pi\)
\(230\) 0 0
\(231\) −0.708558 −0.0466197
\(232\) 0 0
\(233\) 17.3808 1.13866 0.569328 0.822110i \(-0.307203\pi\)
0.569328 + 0.822110i \(0.307203\pi\)
\(234\) 0 0
\(235\) 0.786873i 0.0513299i
\(236\) 0 0
\(237\) −8.76166 −0.569131
\(238\) 0 0
\(239\) 28.9267i 1.87112i 0.353174 + 0.935558i \(0.385102\pi\)
−0.353174 + 0.935558i \(0.614898\pi\)
\(240\) 0 0
\(241\) 18.3524i 1.18218i −0.806605 0.591091i \(-0.798697\pi\)
0.806605 0.591091i \(-0.201303\pi\)
\(242\) 0 0
\(243\) 14.8768 0.954348
\(244\) 0 0
\(245\) 6.38083 0.407656
\(246\) 0 0
\(247\) −16.4570 + 4.47763i −1.04713 + 0.284905i
\(248\) 0 0
\(249\) 14.7505i 0.934776i
\(250\) 0 0
\(251\) 11.5595i 0.729628i 0.931080 + 0.364814i \(0.118867\pi\)
−0.931080 + 0.364814i \(0.881133\pi\)
\(252\) 0 0
\(253\) −4.76166 −0.299363
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.01227i 0.187900i 0.995577 + 0.0939502i \(0.0299494\pi\)
−0.995577 + 0.0939502i \(0.970051\pi\)
\(258\) 0 0
\(259\) 3.78739 0.235337
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4.47763i 0.276103i 0.990425 + 0.138051i \(0.0440839\pi\)
−0.990425 + 0.138051i \(0.955916\pi\)
\(264\) 0 0
\(265\) 12.6387i 0.776390i
\(266\) 0 0
\(267\) 19.9715i 1.22223i
\(268\) 0 0
\(269\) 18.3524i 1.11897i −0.828842 0.559483i \(-0.811000\pi\)
0.828842 0.559483i \(-0.189000\pi\)
\(270\) 0 0
\(271\) 28.1399i 1.70938i 0.519142 + 0.854688i \(0.326251\pi\)
−0.519142 + 0.854688i \(0.673749\pi\)
\(272\) 0 0
\(273\) −3.52333 −0.213241
\(274\) 0 0
\(275\) 0.786873i 0.0474502i
\(276\) 0 0
\(277\) 13.3808 0.803976 0.401988 0.915645i \(-0.368319\pi\)
0.401988 + 0.915645i \(0.368319\pi\)
\(278\) 0 0
\(279\) −12.9424 −0.774839
\(280\) 0 0
\(281\) 16.5515i 0.987377i 0.869639 + 0.493689i \(0.164352\pi\)
−0.869639 + 0.493689i \(0.835648\pi\)
\(282\) 0 0
\(283\) 17.6109i 1.04686i −0.852070 0.523429i \(-0.824653\pi\)
0.852070 0.523429i \(-0.175347\pi\)
\(284\) 0 0
\(285\) −1.30958 4.81322i −0.0775731 0.285111i
\(286\) 0 0
\(287\) −6.86622 −0.405300
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 14.4634i 0.847858i
\(292\) 0 0
\(293\) 3.01227i 0.175979i 0.996121 + 0.0879894i \(0.0280442\pi\)
−0.996121 + 0.0879894i \(0.971956\pi\)
\(294\) 0 0
\(295\) 9.94506 0.579024
\(296\) 0 0
\(297\) 4.22360i 0.245078i
\(298\) 0 0
\(299\) −23.6775 −1.36931
\(300\) 0 0
\(301\) −6.00000 −0.345834
\(302\) 0 0
\(303\) 3.07883 0.176874
\(304\) 0 0
\(305\) −4.69042 −0.268572
\(306\) 0 0
\(307\) −11.0894 −0.632907 −0.316454 0.948608i \(-0.602492\pi\)
−0.316454 + 0.948608i \(0.602492\pi\)
\(308\) 0 0
\(309\) 17.9288 1.01993
\(310\) 0 0
\(311\) 19.1846i 1.08786i 0.839131 + 0.543930i \(0.183064\pi\)
−0.839131 + 0.543930i \(0.816936\pi\)
\(312\) 0 0
\(313\) 2.76166 0.156098 0.0780492 0.996950i \(-0.475131\pi\)
0.0780492 + 0.996950i \(0.475131\pi\)
\(314\) 0 0
\(315\) 1.33014i 0.0749450i
\(316\) 0 0
\(317\) 5.71369i 0.320913i −0.987043 0.160457i \(-0.948703\pi\)
0.987043 0.160457i \(-0.0512966\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −7.45208 −0.415934
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 3.91275i 0.217040i
\(326\) 0 0
\(327\) 9.98574i 0.552213i
\(328\) 0 0
\(329\) −0.619168 −0.0341359
\(330\) 0 0
\(331\) 22.1789 1.21906 0.609530 0.792763i \(-0.291358\pi\)
0.609530 + 0.792763i \(0.291358\pi\)
\(332\) 0 0
\(333\) 8.13634i 0.445869i
\(334\) 0 0
\(335\) 11.0894 0.605880
\(336\) 0 0
\(337\) 11.7382i 0.639423i −0.947515 0.319711i \(-0.896414\pi\)
0.947515 0.319711i \(-0.103586\pi\)
\(338\) 0 0
\(339\) 13.4329i 0.729575i
\(340\) 0 0
\(341\) 6.02454i 0.326247i
\(342\) 0 0
\(343\) 10.5290i 0.568513i
\(344\) 0 0
\(345\) 6.92502i 0.372830i
\(346\) 0 0
\(347\) 18.1541i 0.974565i 0.873244 + 0.487282i \(0.162012\pi\)
−0.873244 + 0.487282i \(0.837988\pi\)
\(348\) 0 0
\(349\) 25.3808 1.35860 0.679302 0.733858i \(-0.262282\pi\)
0.679302 + 0.733858i \(0.262282\pi\)
\(350\) 0 0
\(351\) 21.0020i 1.12100i
\(352\) 0 0
\(353\) 22.7617 1.21148 0.605741 0.795662i \(-0.292877\pi\)
0.605741 + 0.795662i \(0.292877\pi\)
\(354\) 0 0
\(355\) −9.94506 −0.527829
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 16.0371i 0.846407i 0.906035 + 0.423203i \(0.139094\pi\)
−0.906035 + 0.423203i \(0.860906\pi\)
\(360\) 0 0
\(361\) −16.3808 + 9.62644i −0.862149 + 0.506655i
\(362\) 0 0
\(363\) 11.8795 0.623513
\(364\) 0 0
\(365\) −7.38083 −0.386330
\(366\) 0 0
\(367\) 9.19887i 0.480177i 0.970751 + 0.240088i \(0.0771765\pi\)
−0.970751 + 0.240088i \(0.922824\pi\)
\(368\) 0 0
\(369\) 14.7505i 0.767881i
\(370\) 0 0
\(371\) 9.94506 0.516322
\(372\) 0 0
\(373\) 3.01227i 0.155970i 0.996955 + 0.0779848i \(0.0248486\pi\)
−0.996955 + 0.0779848i \(0.975151\pi\)
\(374\) 0 0
\(375\) 1.14437 0.0590950
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 22.1789 1.13925 0.569626 0.821904i \(-0.307088\pi\)
0.569626 + 0.821904i \(0.307088\pi\)
\(380\) 0 0
\(381\) −6.54792 −0.335460
\(382\) 0 0
\(383\) −20.2444 −1.03444 −0.517220 0.855852i \(-0.673033\pi\)
−0.517220 + 0.855852i \(0.673033\pi\)
\(384\) 0 0
\(385\) −0.619168 −0.0315557
\(386\) 0 0
\(387\) 12.8896i 0.655217i
\(388\) 0 0
\(389\) −6.61917 −0.335605 −0.167803 0.985821i \(-0.553667\pi\)
−0.167803 + 0.985821i \(0.553667\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 1.80095i 0.0908458i
\(394\) 0 0
\(395\) −7.65632 −0.385231
\(396\) 0 0
\(397\) 14.0000 0.702640 0.351320 0.936255i \(-0.385733\pi\)
0.351320 + 0.936255i \(0.385733\pi\)
\(398\) 0 0
\(399\) −3.78739 + 1.03048i −0.189607 + 0.0515883i
\(400\) 0 0
\(401\) 1.80095i 0.0899350i 0.998988 + 0.0449675i \(0.0143184\pi\)
−0.998988 + 0.0449675i \(0.985682\pi\)
\(402\) 0 0
\(403\) 29.9572i 1.49228i
\(404\) 0 0
\(405\) −1.07125 −0.0532307
\(406\) 0 0
\(407\) 3.78739 0.187734
\(408\) 0 0
\(409\) 34.0034i 1.68136i 0.541533 + 0.840680i \(0.317844\pi\)
−0.541533 + 0.840680i \(0.682156\pi\)
\(410\) 0 0
\(411\) −13.7324 −0.677372
\(412\) 0 0
\(413\) 7.82549i 0.385067i
\(414\) 0 0
\(415\) 12.8896i 0.632727i
\(416\) 0 0
\(417\) 14.7505i 0.722336i
\(418\) 0 0
\(419\) 10.5290i 0.514376i 0.966361 + 0.257188i \(0.0827959\pi\)
−0.966361 + 0.257188i \(0.917204\pi\)
\(420\) 0 0
\(421\) 40.0279i 1.95084i 0.220349 + 0.975421i \(0.429280\pi\)
−0.220349 + 0.975421i \(0.570720\pi\)
\(422\) 0 0
\(423\) 1.33014i 0.0646737i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 3.69076i 0.178608i
\(428\) 0 0
\(429\) −3.52333 −0.170108
\(430\) 0 0
\(431\) −33.6226 −1.61954 −0.809771 0.586746i \(-0.800409\pi\)
−0.809771 + 0.586746i \(0.800409\pi\)
\(432\) 0 0
\(433\) 13.5392i 0.650652i −0.945602 0.325326i \(-0.894526\pi\)
0.945602 0.325326i \(-0.105474\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −25.4521 + 6.92502i −1.21754 + 0.331269i
\(438\) 0 0
\(439\) 12.2338 0.583887 0.291944 0.956436i \(-0.405698\pi\)
0.291944 + 0.956436i \(0.405698\pi\)
\(440\) 0 0
\(441\) −10.7863 −0.513631
\(442\) 0 0
\(443\) 4.47763i 0.212739i −0.994327 0.106369i \(-0.966077\pi\)
0.994327 0.106369i \(-0.0339226\pi\)
\(444\) 0 0
\(445\) 17.4519i 0.827301i
\(446\) 0 0
\(447\) −9.94506 −0.470385
\(448\) 0 0
\(449\) 10.5269i 0.496796i 0.968658 + 0.248398i \(0.0799040\pi\)
−0.968658 + 0.248398i \(0.920096\pi\)
\(450\) 0 0
\(451\) −6.86622 −0.323318
\(452\) 0 0
\(453\) −5.23834 −0.246119
\(454\) 0 0
\(455\) −3.07883 −0.144338
\(456\) 0 0
\(457\) −30.1425 −1.41001 −0.705003 0.709204i \(-0.749054\pi\)
−0.705003 + 0.709204i \(0.749054\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 23.3808 1.08895 0.544477 0.838776i \(-0.316728\pi\)
0.544477 + 0.838776i \(0.316728\pi\)
\(462\) 0 0
\(463\) 7.62512i 0.354369i −0.984178 0.177185i \(-0.943301\pi\)
0.984178 0.177185i \(-0.0566990\pi\)
\(464\) 0 0
\(465\) 8.76166 0.406312
\(466\) 0 0
\(467\) 9.19887i 0.425673i 0.977088 + 0.212836i \(0.0682701\pi\)
−0.977088 + 0.212836i \(0.931730\pi\)
\(468\) 0 0
\(469\) 8.72597i 0.402928i
\(470\) 0 0
\(471\) −1.58018 −0.0728110
\(472\) 0 0
\(473\) −6.00000 −0.275880
\(474\) 0 0
\(475\) −1.14437 4.20600i −0.0525073 0.192984i
\(476\) 0 0
\(477\) 21.3647i 0.978221i
\(478\) 0 0
\(479\) 17.6109i 0.804661i 0.915495 + 0.402330i \(0.131800\pi\)
−0.915495 + 0.402330i \(0.868200\pi\)
\(480\) 0 0
\(481\) 18.8329 0.858707
\(482\) 0 0
\(483\) −5.44911 −0.247943
\(484\) 0 0
\(485\) 12.6387i 0.573894i
\(486\) 0 0
\(487\) 17.9557 0.813648 0.406824 0.913507i \(-0.366636\pi\)
0.406824 + 0.913507i \(0.366636\pi\)
\(488\) 0 0
\(489\) 26.1779i 1.18381i
\(490\) 0 0
\(491\) 35.7650i 1.61405i 0.590516 + 0.807026i \(0.298924\pi\)
−0.590516 + 0.807026i \(0.701076\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 1.33014i 0.0597854i
\(496\) 0 0
\(497\) 7.82549i 0.351021i
\(498\) 0 0
\(499\) 32.8611i 1.47107i −0.677489 0.735533i \(-0.736932\pi\)
0.677489 0.735533i \(-0.263068\pi\)
\(500\) 0 0
\(501\) 18.8329 0.841392
\(502\) 0 0
\(503\) 15.0066i 0.669113i −0.942376 0.334557i \(-0.891413\pi\)
0.942376 0.334557i \(-0.108587\pi\)
\(504\) 0 0
\(505\) 2.69042 0.119722
\(506\) 0 0
\(507\) −2.64302 −0.117381
\(508\) 0 0
\(509\) 23.4765i 1.04058i −0.853991 0.520288i \(-0.825824\pi\)
0.853991 0.520288i \(-0.174176\pi\)
\(510\) 0 0
\(511\) 5.80777i 0.256921i
\(512\) 0 0
\(513\) 6.14249 + 22.5760i 0.271198 + 0.996755i
\(514\) 0 0
\(515\) 15.6669 0.690367
\(516\) 0 0
\(517\) −0.619168 −0.0272310
\(518\) 0 0
\(519\) 4.47763i 0.196546i
\(520\) 0 0
\(521\) 6.02454i 0.263940i −0.991254 0.131970i \(-0.957870\pi\)
0.991254 0.131970i \(-0.0421303\pi\)
\(522\) 0 0
\(523\) 27.9007 1.22001 0.610006 0.792396i \(-0.291167\pi\)
0.610006 + 0.792396i \(0.291167\pi\)
\(524\) 0 0
\(525\) 0.900474i 0.0392999i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −13.6192 −0.592138
\(530\) 0 0
\(531\) −16.8113 −0.729547
\(532\) 0 0
\(533\) −34.1425 −1.47888
\(534\) 0 0
\(535\) −6.51194 −0.281536
\(536\) 0 0
\(537\) 11.3808 0.491119
\(538\) 0 0
\(539\) 5.02090i 0.216266i
\(540\) 0 0
\(541\) −28.0712 −1.20688 −0.603439 0.797409i \(-0.706203\pi\)
−0.603439 + 0.797409i \(0.706203\pi\)
\(542\) 0 0
\(543\) 8.95526i 0.384307i
\(544\) 0 0
\(545\) 8.72597i 0.373779i
\(546\) 0 0
\(547\) 5.72185 0.244649 0.122324 0.992490i \(-0.460965\pi\)
0.122324 + 0.992490i \(0.460965\pi\)
\(548\) 0 0
\(549\) 7.92875 0.338391
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 6.02454i 0.256190i
\(554\) 0 0
\(555\) 5.50811i 0.233806i
\(556\) 0 0
\(557\) 12.0000 0.508456 0.254228 0.967144i \(-0.418179\pi\)
0.254228 + 0.967144i \(0.418179\pi\)
\(558\) 0 0
\(559\) −29.8352 −1.26189
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 29.4809 1.24247 0.621236 0.783624i \(-0.286631\pi\)
0.621236 + 0.783624i \(0.286631\pi\)
\(564\) 0 0
\(565\) 11.7382i 0.493831i
\(566\) 0 0
\(567\) 0.842935i 0.0353999i
\(568\) 0 0
\(569\) 26.1779i 1.09743i 0.836008 + 0.548717i \(0.184884\pi\)
−0.836008 + 0.548717i \(0.815116\pi\)
\(570\) 0 0
\(571\) 28.1399i 1.17762i −0.808273 0.588809i \(-0.799597\pi\)
0.808273 0.588809i \(-0.200403\pi\)
\(572\) 0 0
\(573\) 23.4765i 0.980744i
\(574\) 0 0
\(575\) 6.05138i 0.252360i
\(576\) 0 0
\(577\) 21.3808 0.890096 0.445048 0.895507i \(-0.353187\pi\)
0.445048 + 0.895507i \(0.353187\pi\)
\(578\) 0 0
\(579\) 3.44716i 0.143259i
\(580\) 0 0
\(581\) −10.1425 −0.420782
\(582\) 0 0
\(583\) 9.94506 0.411882
\(584\) 0 0
\(585\) 6.61417i 0.273462i
\(586\) 0 0
\(587\) 17.6109i 0.726878i 0.931618 + 0.363439i \(0.118398\pi\)
−0.931618 + 0.363439i \(0.881602\pi\)
\(588\) 0 0
\(589\) −8.76166 32.2024i −0.361018 1.32688i
\(590\) 0 0
\(591\) 6.15767 0.253293
\(592\) 0 0
\(593\) −39.5233 −1.62303 −0.811514 0.584333i \(-0.801356\pi\)
−0.811514 + 0.584333i \(0.801356\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 7.82549i 0.320276i
\(598\) 0 0
\(599\) 22.9689 0.938486 0.469243 0.883069i \(-0.344527\pi\)
0.469243 + 0.883069i \(0.344527\pi\)
\(600\) 0 0
\(601\) 16.5515i 0.675148i 0.941299 + 0.337574i \(0.109606\pi\)
−0.941299 + 0.337574i \(0.890394\pi\)
\(602\) 0 0
\(603\) −18.7457 −0.763386
\(604\) 0 0
\(605\) 10.3808 0.422041
\(606\) 0 0
\(607\) 11.0894 0.450106 0.225053 0.974347i \(-0.427744\pi\)
0.225053 + 0.974347i \(0.427744\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −3.07883 −0.124556
\(612\) 0 0
\(613\) 38.1425 1.54056 0.770280 0.637705i \(-0.220116\pi\)
0.770280 + 0.637705i \(0.220116\pi\)
\(614\) 0 0
\(615\) 9.98574i 0.402664i
\(616\) 0 0
\(617\) 16.7617 0.674799 0.337400 0.941362i \(-0.390453\pi\)
0.337400 + 0.941362i \(0.390453\pi\)
\(618\) 0 0
\(619\) 17.6109i 0.707840i −0.935276 0.353920i \(-0.884848\pi\)
0.935276 0.353920i \(-0.115152\pi\)
\(620\) 0 0
\(621\) 32.4812i 1.30343i
\(622\) 0 0
\(623\) 13.7324 0.550179
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −3.78739 + 1.03048i −0.151254 + 0.0411532i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 2.36062i 0.0939747i −0.998895 0.0469874i \(-0.985038\pi\)
0.998895 0.0469874i \(-0.0149620\pi\)
\(632\) 0 0
\(633\) −17.5233 −0.696490
\(634\) 0 0
\(635\) −5.72185 −0.227065
\(636\) 0 0
\(637\) 24.9666i 0.989212i
\(638\) 0 0
\(639\) 16.8113 0.665044
\(640\) 0 0
\(641\) 16.5515i 0.653743i 0.945069 + 0.326872i \(0.105994\pi\)
−0.945069 + 0.326872i \(0.894006\pi\)
\(642\) 0 0
\(643\) 27.5966i 1.08830i −0.838987 0.544152i \(-0.816852\pi\)
0.838987 0.544152i \(-0.183148\pi\)
\(644\) 0 0
\(645\) 8.72597i 0.343585i
\(646\) 0 0
\(647\) 31.2874i 1.23003i −0.788514 0.615017i \(-0.789149\pi\)
0.788514 0.615017i \(-0.210851\pi\)
\(648\) 0 0
\(649\) 7.82549i 0.307177i
\(650\) 0 0
\(651\) 6.89431i 0.270209i
\(652\) 0 0
\(653\) 24.6192 0.963423 0.481711 0.876330i \(-0.340015\pi\)
0.481711 + 0.876330i \(0.340015\pi\)
\(654\) 0 0
\(655\) 1.57375i 0.0614913i
\(656\) 0 0
\(657\) 12.4767 0.486761
\(658\) 0 0
\(659\) −16.8113 −0.654875 −0.327437 0.944873i \(-0.606185\pi\)
−0.327437 + 0.944873i \(0.606185\pi\)
\(660\) 0 0
\(661\) 24.3770i 0.948154i −0.880484 0.474077i \(-0.842782\pi\)
0.880484 0.474077i \(-0.157218\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −3.30958 + 0.900474i −0.128340 + 0.0349189i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −1.30958 −0.0506315
\(670\) 0 0
\(671\) 3.69076i 0.142480i
\(672\) 0 0
\(673\) 38.8166i 1.49627i −0.663546 0.748135i \(-0.730949\pi\)
0.663546 0.748135i \(-0.269051\pi\)
\(674\) 0 0
\(675\) −5.36757 −0.206598
\(676\) 0 0
\(677\) 18.6633i 0.717287i −0.933475 0.358644i \(-0.883239\pi\)
0.933475 0.358644i \(-0.116761\pi\)
\(678\) 0 0
\(679\) 9.94506 0.381656
\(680\) 0 0
\(681\) −15.3096 −0.586665
\(682\) 0 0
\(683\) −30.1894 −1.15517 −0.577584 0.816332i \(-0.696004\pi\)
−0.577584 + 0.816332i \(0.696004\pi\)
\(684\) 0 0
\(685\) −12.0000 −0.458496
\(686\) 0 0
\(687\) −1.49865 −0.0571771
\(688\) 0 0
\(689\) 49.4521 1.88397
\(690\) 0 0
\(691\) 16.0371i 0.610081i −0.952339 0.305040i \(-0.901330\pi\)
0.952339 0.305040i \(-0.0986700\pi\)
\(692\) 0 0
\(693\) 1.04665 0.0397590
\(694\) 0 0
\(695\) 12.8896i 0.488931i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 19.8901 0.752313
\(700\) 0 0
\(701\) 9.92875 0.375004 0.187502 0.982264i \(-0.439961\pi\)
0.187502 + 0.982264i \(0.439961\pi\)
\(702\) 0 0
\(703\) 20.2444 5.50811i 0.763532 0.207742i
\(704\) 0 0
\(705\) 0.900474i 0.0339138i
\(706\) 0 0
\(707\) 2.11701i 0.0796185i
\(708\) 0 0
\(709\) −18.7617 −0.704609 −0.352305 0.935885i \(-0.614602\pi\)
−0.352305 + 0.935885i \(0.614602\pi\)
\(710\) 0 0
\(711\) 12.9424 0.485376
\(712\) 0 0
\(713\) 46.3313i 1.73512i
\(714\) 0 0
\(715\) −3.07883 −0.115142
\(716\) 0 0
\(717\) 33.1029i 1.23625i
\(718\) 0 0
\(719\) 24.9924i 0.932059i 0.884769 + 0.466029i \(0.154316\pi\)
−0.884769 + 0.466029i \(0.845684\pi\)
\(720\) 0 0
\(721\) 12.3279i 0.459114i
\(722\) 0 0
\(723\) 21.0020i 0.781071i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 43.9334i 1.62940i −0.579883 0.814700i \(-0.696902\pi\)
0.579883 0.814700i \(-0.303098\pi\)
\(728\) 0 0
\(729\) 20.2383 0.749568
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 5.23834 0.193482 0.0967412 0.995310i \(-0.469158\pi\)
0.0967412 + 0.995310i \(0.469158\pi\)
\(734\) 0 0
\(735\) 7.30204 0.269340
\(736\) 0 0
\(737\) 8.72597i 0.321425i
\(738\) 0 0
\(739\) 38.9125i 1.43142i −0.698398 0.715709i \(-0.746103\pi\)
0.698398 0.715709i \(-0.253897\pi\)
\(740\) 0 0
\(741\) −18.8329 + 5.12407i −0.691844 + 0.188237i
\(742\) 0 0
\(743\) −50.0796 −1.83724 −0.918621 0.395141i \(-0.870696\pi\)
−0.918621 + 0.395141i \(0.870696\pi\)
\(744\) 0 0
\(745\) −8.69042 −0.318392
\(746\) 0 0
\(747\) 21.7888i 0.797212i
\(748\) 0 0
\(749\) 5.12407i 0.187229i
\(750\) 0 0
\(751\) −10.7351 −0.391731 −0.195866 0.980631i \(-0.562752\pi\)
−0.195866 + 0.980631i \(0.562752\pi\)
\(752\) 0 0
\(753\) 13.2283i 0.482067i
\(754\) 0 0
\(755\) −4.57748 −0.166592
\(756\) 0 0
\(757\) 20.0000 0.726912 0.363456 0.931611i \(-0.381597\pi\)
0.363456 + 0.931611i \(0.381597\pi\)
\(758\) 0 0
\(759\) −5.44911 −0.197790
\(760\) 0 0
\(761\) −32.0712 −1.16258 −0.581291 0.813696i \(-0.697452\pi\)
−0.581291 + 0.813696i \(0.697452\pi\)
\(762\) 0 0
\(763\) 6.86622 0.248574
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 38.9125i 1.40505i
\(768\) 0 0
\(769\) −33.4521 −1.20631 −0.603156 0.797623i \(-0.706091\pi\)
−0.603156 + 0.797623i \(0.706091\pi\)
\(770\) 0 0
\(771\) 3.44716i 0.124146i
\(772\) 0 0
\(773\) 30.9911i 1.11467i −0.830287 0.557337i \(-0.811823\pi\)
0.830287 0.557337i \(-0.188177\pi\)
\(774\) 0 0
\(775\) 7.65632 0.275023
\(776\) 0 0
\(777\) 4.33418 0.155488
\(778\) 0 0
\(779\) −36.7014 + 9.98574i −1.31496 + 0.357776i
\(780\) 0 0
\(781\) 7.82549i 0.280018i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.38083 −0.0492840
\(786\) 0 0
\(787\) 40.9246 1.45880 0.729402 0.684085i \(-0.239798\pi\)
0.729402 + 0.684085i \(0.239798\pi\)
\(788\) 0 0
\(789\) 5.12407i 0.182422i
\(790\) 0 0
\(791\) −9.23650 −0.328412
\(792\) 0 0
\(793\) 18.3524i 0.651713i
\(794\) 0 0
\(795\) 14.4634i 0.512963i
\(796\) 0 0
\(797\) 3.01227i 0.106700i 0.998576 + 0.0533501i \(0.0169899\pi\)
−0.998576 + 0.0533501i \(0.983010\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 29.5010i 1.04237i
\(802\) 0 0
\(803\) 5.80777i 0.204952i
\(804\) 0 0
\(805\) −4.76166 −0.167827
\(806\) 0 0
\(807\) 21.0020i 0.739304i
\(808\) 0 0
\(809\) 33.5233 1.17862 0.589309 0.807908i \(-0.299400\pi\)
0.589309 + 0.807908i \(0.299400\pi\)
\(810\) 0 0
\(811\) 38.9901 1.36913 0.684564 0.728952i \(-0.259992\pi\)
0.684564 + 0.728952i \(0.259992\pi\)
\(812\) 0 0
\(813\) 32.2024i 1.12939i
\(814\) 0 0
\(815\) 22.8754i 0.801289i
\(816\) 0 0
\(817\) −32.0712 + 8.72597i −1.12203 + 0.305283i
\(818\) 0 0
\(819\) 5.20451 0.181860
\(820\) 0 0
\(821\) 16.1425 0.563377 0.281688 0.959506i \(-0.409106\pi\)
0.281688 + 0.959506i \(0.409106\pi\)
\(822\) 0 0
\(823\) 18.1541i 0.632813i −0.948624 0.316407i \(-0.897524\pi\)
0.948624 0.316407i \(-0.102476\pi\)
\(824\) 0 0
\(825\) 0.900474i 0.0313505i
\(826\) 0 0
\(827\) −2.72455 −0.0947420 −0.0473710 0.998877i \(-0.515084\pi\)
−0.0473710 + 0.998877i \(0.515084\pi\)
\(828\) 0 0
\(829\) 6.92502i 0.240516i 0.992743 + 0.120258i \(0.0383722\pi\)
−0.992743 + 0.120258i \(0.961628\pi\)
\(830\) 0 0
\(831\) 15.3126 0.531189
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 16.4570 0.569518
\(836\) 0 0
\(837\) −41.0958 −1.42048
\(838\) 0 0
\(839\) 9.94506 0.343341 0.171671 0.985154i \(-0.445083\pi\)
0.171671 + 0.985154i \(0.445083\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 0 0
\(843\) 18.9410i 0.652363i
\(844\) 0 0
\(845\) −2.30958 −0.0794521
\(846\) 0 0
\(847\) 8.16839i 0.280669i
\(848\) 0 0
\(849\) 20.1534i 0.691661i
\(850\) 0 0
\(851\) 29.1266 0.998447
\(852\) 0 0
\(853\) 24.7617 0.847823 0.423912 0.905704i \(-0.360657\pi\)
0.423912 + 0.905704i \(0.360657\pi\)
\(854\) 0 0
\(855\) 1.93446 + 7.10988i 0.0661572 + 0.243153i
\(856\) 0 0
\(857\) 31.8916i 1.08940i −0.838632 0.544698i \(-0.816644\pi\)
0.838632 0.544698i \(-0.183356\pi\)
\(858\) 0 0
\(859\) 24.6927i 0.842505i −0.906943 0.421252i \(-0.861591\pi\)
0.906943 0.421252i \(-0.138409\pi\)
\(860\) 0 0
\(861\) −7.85751 −0.267783
\(862\) 0 0
\(863\) 56.2372 1.91434 0.957169 0.289531i \(-0.0934992\pi\)
0.957169 + 0.289531i \(0.0934992\pi\)
\(864\) 0 0
\(865\) 3.91275i 0.133037i
\(866\) 0 0
\(867\) −19.4543 −0.660703
\(868\) 0 0
\(869\) 6.02454i 0.204369i
\(870\) 0 0
\(871\) 43.3901i 1.47022i
\(872\) 0 0
\(873\) 21.3647i 0.723085i
\(874\) 0 0
\(875\) 0.786873i 0.0266011i
\(876\) 0 0
\(877\) 39.7171i 1.34115i −0.741841 0.670575i \(-0.766047\pi\)
0.741841 0.670575i \(-0.233953\pi\)
\(878\) 0 0
\(879\) 3.44716i 0.116270i
\(880\) 0 0
\(881\) 38.0712 1.28265 0.641326 0.767268i \(-0.278384\pi\)
0.641326 + 0.767268i \(0.278384\pi\)
\(882\) 0 0
\(883\) 14.4634i 0.486731i −0.969935 0.243366i \(-0.921749\pi\)
0.969935 0.243366i \(-0.0782515\pi\)
\(884\) 0 0
\(885\) 11.3808 0.382562
\(886\) 0 0
\(887\) 0.354279 0.0118955 0.00594776 0.999982i \(-0.498107\pi\)
0.00594776 + 0.999982i \(0.498107\pi\)
\(888\) 0 0
\(889\) 4.50237i 0.151005i
\(890\) 0 0
\(891\) 0.842935i 0.0282394i
\(892\) 0 0
\(893\) −3.30958 + 0.900474i −0.110751 + 0.0301332i
\(894\) 0 0
\(895\) 9.94506 0.332427
\(896\) 0 0
\(897\) −27.0958 −0.904704
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −6.86622 −0.228494
\(904\) 0 0
\(905\) 7.82549i 0.260128i
\(906\) 0 0
\(907\) −55.4471 −1.84109 −0.920546 0.390634i \(-0.872256\pi\)
−0.920546 + 0.390634i \(0.872256\pi\)
\(908\) 0 0
\(909\) −4.54792 −0.150845
\(910\) 0 0
\(911\) 26.0478 0.863001 0.431501 0.902113i \(-0.357984\pi\)
0.431501 + 0.902113i \(0.357984\pi\)
\(912\) 0 0
\(913\) −10.1425 −0.335668
\(914\) 0 0
\(915\) −5.36757 −0.177447
\(916\) 0 0
\(917\) 1.23834 0.0408935
\(918\) 0 0
\(919\) 21.5452i 0.710711i −0.934731 0.355356i \(-0.884360\pi\)
0.934731 0.355356i \(-0.115640\pi\)
\(920\) 0 0
\(921\) −12.6904 −0.418163
\(922\) 0 0
\(923\) 38.9125i 1.28082i
\(924\) 0 0
\(925\) 4.81322i 0.158258i
\(926\) 0 0
\(927\) −26.4836 −0.869835
\(928\) 0 0
\(929\) −28.7617 −0.943640 −0.471820 0.881695i \(-0.656403\pi\)
−0.471820 + 0.881695i \(0.656403\pi\)
\(930\) 0 0
\(931\) −7.30204 26.8378i −0.239315 0.879572i
\(932\) 0 0
\(933\) 21.9543i 0.718752i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 48.7617 1.59297 0.796487 0.604656i \(-0.206689\pi\)
0.796487 + 0.604656i \(0.206689\pi\)
\(938\) 0 0
\(939\) 3.16037 0.103135
\(940\) 0 0
\(941\) 17.4519i 0.568917i 0.958688 + 0.284458i \(0.0918138\pi\)
−0.958688 + 0.284458i \(0.908186\pi\)
\(942\) 0 0
\(943\) −52.8041 −1.71954
\(944\) 0 0
\(945\) 4.22360i 0.137394i
\(946\) 0 0
\(947\) 33.4044i 1.08550i −0.839895 0.542748i \(-0.817384\pi\)
0.839895 0.542748i \(-0.182616\pi\)
\(948\) 0 0
\(949\) 28.8793i 0.937462i
\(950\) 0 0
\(951\) 6.53858i 0.212028i
\(952\) 0 0
\(953\) 22.2652i 0.721239i 0.932713 + 0.360620i \(0.117435\pi\)
−0.932713 + 0.360620i \(0.882565\pi\)
\(954\) 0 0
\(955\) 20.5147i 0.663842i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 9.44247i 0.304913i
\(960\) 0 0
\(961\) 27.6192 0.890941
\(962\) 0 0
\(963\) 11.0079 0.354724
\(964\) 0 0
\(965\) 3.01227i 0.0969685i
\(966\) 0 0
\(967\) 14.4634i 0.465111i −0.972583 0.232555i \(-0.925291\pi\)
0.972583 0.232555i \(-0.0747087\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −3.78739 −0.121543 −0.0607716 0.998152i \(-0.519356\pi\)
−0.0607716 + 0.998152i \(0.519356\pi\)
\(972\) 0 0
\(973\) −10.1425 −0.325153
\(974\) 0 0
\(975\) 4.47763i 0.143399i
\(976\) 0 0
\(977\) 37.0157i 1.18424i 0.805851 + 0.592118i \(0.201708\pi\)
−0.805851 + 0.592118i \(0.798292\pi\)
\(978\) 0 0
\(979\) 13.7324 0.438891
\(980\) 0 0
\(981\) 14.7505i 0.470948i
\(982\) 0 0
\(983\) 46.2922 1.47649 0.738246 0.674532i \(-0.235655\pi\)
0.738246 + 0.674532i \(0.235655\pi\)
\(984\) 0 0
\(985\) 5.38083 0.171448
\(986\) 0 0
\(987\) −0.708558 −0.0225537
\(988\) 0 0
\(989\) −46.1425 −1.46725
\(990\) 0 0
\(991\) −15.3126 −0.486422 −0.243211 0.969973i \(-0.578201\pi\)
−0.243211 + 0.969973i \(0.578201\pi\)
\(992\) 0 0
\(993\) 25.3808 0.805436
\(994\) 0 0
\(995\) 6.83825i 0.216787i
\(996\) 0 0
\(997\) −48.1425 −1.52469 −0.762344 0.647172i \(-0.775952\pi\)
−0.762344 + 0.647172i \(0.775952\pi\)
\(998\) 0 0
\(999\) 25.8353i 0.817393i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1520.2.j.e.911.5 yes 8
4.3 odd 2 inner 1520.2.j.e.911.4 yes 8
19.18 odd 2 inner 1520.2.j.e.911.3 8
76.75 even 2 inner 1520.2.j.e.911.6 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1520.2.j.e.911.3 8 19.18 odd 2 inner
1520.2.j.e.911.4 yes 8 4.3 odd 2 inner
1520.2.j.e.911.5 yes 8 1.1 even 1 trivial
1520.2.j.e.911.6 yes 8 76.75 even 2 inner