Properties

Label 1521.2.i.d.746.1
Level $1521$
Weight $2$
Character 1521.746
Analytic conductor $12.145$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1521,2,Mod(746,1521)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1521, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1521.746");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1521 = 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1521.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.1452461474\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 746.1
Root \(-0.965926 - 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 1521.746
Dual form 1521.2.i.d.944.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.41421 - 1.41421i) q^{2} +2.00000i q^{4} +(-0.517638 - 0.517638i) q^{5} +(-1.36603 - 1.36603i) q^{7} +1.46410i q^{10} +(-4.38134 + 4.38134i) q^{11} +3.86370i q^{14} +4.00000 q^{16} -1.79315 q^{17} +(-2.46410 + 2.46410i) q^{19} +(1.03528 - 1.03528i) q^{20} +12.3923 q^{22} +2.44949 q^{23} -4.46410i q^{25} +(2.73205 - 2.73205i) q^{28} +1.41421i q^{29} +(6.36603 - 6.36603i) q^{31} +(-5.65685 - 5.65685i) q^{32} +(2.53590 + 2.53590i) q^{34} +1.41421i q^{35} +(5.73205 + 5.73205i) q^{37} +6.96953 q^{38} +(-3.86370 - 3.86370i) q^{41} +4.26795i q^{43} +(-8.76268 - 8.76268i) q^{44} +(-3.46410 - 3.46410i) q^{46} +(4.76028 - 4.76028i) q^{47} -3.26795i q^{49} +(-6.31319 + 6.31319i) q^{50} +8.76268i q^{53} +4.53590 q^{55} +(2.00000 - 2.00000i) q^{58} +(7.20977 - 7.20977i) q^{59} +2.80385 q^{61} -18.0058 q^{62} +8.00000i q^{64} +(-6.56218 + 6.56218i) q^{67} -3.58630i q^{68} +(2.00000 - 2.00000i) q^{70} +(-1.17398 - 1.17398i) q^{71} +(8.09808 + 8.09808i) q^{73} -16.2127i q^{74} +(-4.92820 - 4.92820i) q^{76} +11.9700 q^{77} -3.19615 q^{79} +(-2.07055 - 2.07055i) q^{80} +10.9282i q^{82} +(0.378937 + 0.378937i) q^{83} +(0.928203 + 0.928203i) q^{85} +(6.03579 - 6.03579i) q^{86} +(8.10634 - 8.10634i) q^{89} +4.89898i q^{92} -13.4641 q^{94} +2.55103 q^{95} +(8.56218 - 8.56218i) q^{97} +(-4.62158 + 4.62158i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{7} + 32 q^{16} + 8 q^{19} + 16 q^{22} + 8 q^{28} + 44 q^{31} + 48 q^{34} + 32 q^{37} + 64 q^{55} + 16 q^{58} + 64 q^{61} - 4 q^{67} + 16 q^{70} + 44 q^{73} + 16 q^{76} + 16 q^{79} - 48 q^{85}+ \cdots + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1521\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41421 1.41421i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(3\) 0 0
\(4\) 2.00000i 1.00000i
\(5\) −0.517638 0.517638i −0.231495 0.231495i 0.581822 0.813316i \(-0.302340\pi\)
−0.813316 + 0.581822i \(0.802340\pi\)
\(6\) 0 0
\(7\) −1.36603 1.36603i −0.516309 0.516309i 0.400143 0.916453i \(-0.368960\pi\)
−0.916453 + 0.400143i \(0.868960\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 1.46410i 0.462990i
\(11\) −4.38134 + 4.38134i −1.32102 + 1.32102i −0.408076 + 0.912948i \(0.633800\pi\)
−0.912948 + 0.408076i \(0.866200\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 3.86370i 1.03262i
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) −1.79315 −0.434903 −0.217451 0.976071i \(-0.569774\pi\)
−0.217451 + 0.976071i \(0.569774\pi\)
\(18\) 0 0
\(19\) −2.46410 + 2.46410i −0.565304 + 0.565304i −0.930809 0.365505i \(-0.880896\pi\)
0.365505 + 0.930809i \(0.380896\pi\)
\(20\) 1.03528 1.03528i 0.231495 0.231495i
\(21\) 0 0
\(22\) 12.3923 2.64205
\(23\) 2.44949 0.510754 0.255377 0.966842i \(-0.417800\pi\)
0.255377 + 0.966842i \(0.417800\pi\)
\(24\) 0 0
\(25\) 4.46410i 0.892820i
\(26\) 0 0
\(27\) 0 0
\(28\) 2.73205 2.73205i 0.516309 0.516309i
\(29\) 1.41421i 0.262613i 0.991342 + 0.131306i \(0.0419172\pi\)
−0.991342 + 0.131306i \(0.958083\pi\)
\(30\) 0 0
\(31\) 6.36603 6.36603i 1.14337 1.14337i 0.155543 0.987829i \(-0.450287\pi\)
0.987829 0.155543i \(-0.0497126\pi\)
\(32\) −5.65685 5.65685i −1.00000 1.00000i
\(33\) 0 0
\(34\) 2.53590 + 2.53590i 0.434903 + 0.434903i
\(35\) 1.41421i 0.239046i
\(36\) 0 0
\(37\) 5.73205 + 5.73205i 0.942343 + 0.942343i 0.998426 0.0560828i \(-0.0178611\pi\)
−0.0560828 + 0.998426i \(0.517861\pi\)
\(38\) 6.96953 1.13061
\(39\) 0 0
\(40\) 0 0
\(41\) −3.86370 3.86370i −0.603409 0.603409i 0.337807 0.941216i \(-0.390315\pi\)
−0.941216 + 0.337807i \(0.890315\pi\)
\(42\) 0 0
\(43\) 4.26795i 0.650856i 0.945567 + 0.325428i \(0.105508\pi\)
−0.945567 + 0.325428i \(0.894492\pi\)
\(44\) −8.76268 8.76268i −1.32102 1.32102i
\(45\) 0 0
\(46\) −3.46410 3.46410i −0.510754 0.510754i
\(47\) 4.76028 4.76028i 0.694358 0.694358i −0.268830 0.963188i \(-0.586637\pi\)
0.963188 + 0.268830i \(0.0866369\pi\)
\(48\) 0 0
\(49\) 3.26795i 0.466850i
\(50\) −6.31319 + 6.31319i −0.892820 + 0.892820i
\(51\) 0 0
\(52\) 0 0
\(53\) 8.76268i 1.20365i 0.798629 + 0.601824i \(0.205559\pi\)
−0.798629 + 0.601824i \(0.794441\pi\)
\(54\) 0 0
\(55\) 4.53590 0.611620
\(56\) 0 0
\(57\) 0 0
\(58\) 2.00000 2.00000i 0.262613 0.262613i
\(59\) 7.20977 7.20977i 0.938632 0.938632i −0.0595910 0.998223i \(-0.518980\pi\)
0.998223 + 0.0595910i \(0.0189796\pi\)
\(60\) 0 0
\(61\) 2.80385 0.358996 0.179498 0.983758i \(-0.442553\pi\)
0.179498 + 0.983758i \(0.442553\pi\)
\(62\) −18.0058 −2.28674
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) 0 0
\(66\) 0 0
\(67\) −6.56218 + 6.56218i −0.801698 + 0.801698i −0.983361 0.181663i \(-0.941852\pi\)
0.181663 + 0.983361i \(0.441852\pi\)
\(68\) 3.58630i 0.434903i
\(69\) 0 0
\(70\) 2.00000 2.00000i 0.239046 0.239046i
\(71\) −1.17398 1.17398i −0.139325 0.139325i 0.634004 0.773330i \(-0.281410\pi\)
−0.773330 + 0.634004i \(0.781410\pi\)
\(72\) 0 0
\(73\) 8.09808 + 8.09808i 0.947808 + 0.947808i 0.998704 0.0508958i \(-0.0162077\pi\)
−0.0508958 + 0.998704i \(0.516208\pi\)
\(74\) 16.2127i 1.88469i
\(75\) 0 0
\(76\) −4.92820 4.92820i −0.565304 0.565304i
\(77\) 11.9700 1.36411
\(78\) 0 0
\(79\) −3.19615 −0.359595 −0.179798 0.983704i \(-0.557544\pi\)
−0.179798 + 0.983704i \(0.557544\pi\)
\(80\) −2.07055 2.07055i −0.231495 0.231495i
\(81\) 0 0
\(82\) 10.9282i 1.20682i
\(83\) 0.378937 + 0.378937i 0.0415938 + 0.0415938i 0.727598 0.686004i \(-0.240637\pi\)
−0.686004 + 0.727598i \(0.740637\pi\)
\(84\) 0 0
\(85\) 0.928203 + 0.928203i 0.100678 + 0.100678i
\(86\) 6.03579 6.03579i 0.650856 0.650856i
\(87\) 0 0
\(88\) 0 0
\(89\) 8.10634 8.10634i 0.859271 0.859271i −0.131981 0.991252i \(-0.542134\pi\)
0.991252 + 0.131981i \(0.0421339\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 4.89898i 0.510754i
\(93\) 0 0
\(94\) −13.4641 −1.38872
\(95\) 2.55103 0.261730
\(96\) 0 0
\(97\) 8.56218 8.56218i 0.869357 0.869357i −0.123044 0.992401i \(-0.539266\pi\)
0.992401 + 0.123044i \(0.0392656\pi\)
\(98\) −4.62158 + 4.62158i −0.466850 + 0.466850i
\(99\) 0 0
\(100\) 8.92820 0.892820
\(101\) 15.8338 1.57552 0.787759 0.615984i \(-0.211241\pi\)
0.787759 + 0.615984i \(0.211241\pi\)
\(102\) 0 0
\(103\) 8.66025i 0.853320i 0.904412 + 0.426660i \(0.140310\pi\)
−0.904412 + 0.426660i \(0.859690\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 12.3923 12.3923i 1.20365 1.20365i
\(107\) 13.0053i 1.25727i 0.777700 + 0.628636i \(0.216386\pi\)
−0.777700 + 0.628636i \(0.783614\pi\)
\(108\) 0 0
\(109\) 4.29423 4.29423i 0.411313 0.411313i −0.470883 0.882196i \(-0.656065\pi\)
0.882196 + 0.470883i \(0.156065\pi\)
\(110\) −6.41473 6.41473i −0.611620 0.611620i
\(111\) 0 0
\(112\) −5.46410 5.46410i −0.516309 0.516309i
\(113\) 10.1769i 0.957362i −0.877989 0.478681i \(-0.841115\pi\)
0.877989 0.478681i \(-0.158885\pi\)
\(114\) 0 0
\(115\) −1.26795 1.26795i −0.118237 0.118237i
\(116\) −2.82843 −0.262613
\(117\) 0 0
\(118\) −20.3923 −1.87726
\(119\) 2.44949 + 2.44949i 0.224544 + 0.224544i
\(120\) 0 0
\(121\) 27.3923i 2.49021i
\(122\) −3.96524 3.96524i −0.358996 0.358996i
\(123\) 0 0
\(124\) 12.7321 + 12.7321i 1.14337 + 1.14337i
\(125\) −4.89898 + 4.89898i −0.438178 + 0.438178i
\(126\) 0 0
\(127\) 3.92820i 0.348572i −0.984695 0.174286i \(-0.944238\pi\)
0.984695 0.174286i \(-0.0557617\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.07107i 0.617802i −0.951094 0.308901i \(-0.900039\pi\)
0.951094 0.308901i \(-0.0999612\pi\)
\(132\) 0 0
\(133\) 6.73205 0.583743
\(134\) 18.5606 1.60340
\(135\) 0 0
\(136\) 0 0
\(137\) 0.757875 0.757875i 0.0647496 0.0647496i −0.673990 0.738740i \(-0.735421\pi\)
0.738740 + 0.673990i \(0.235421\pi\)
\(138\) 0 0
\(139\) −17.3923 −1.47520 −0.737598 0.675240i \(-0.764040\pi\)
−0.737598 + 0.675240i \(0.764040\pi\)
\(140\) −2.82843 −0.239046
\(141\) 0 0
\(142\) 3.32051i 0.278651i
\(143\) 0 0
\(144\) 0 0
\(145\) 0.732051 0.732051i 0.0607935 0.0607935i
\(146\) 22.9048i 1.89562i
\(147\) 0 0
\(148\) −11.4641 + 11.4641i −0.942343 + 0.942343i
\(149\) 10.1769 + 10.1769i 0.833724 + 0.833724i 0.988024 0.154300i \(-0.0493123\pi\)
−0.154300 + 0.988024i \(0.549312\pi\)
\(150\) 0 0
\(151\) −1.53590 1.53590i −0.124990 0.124990i 0.641845 0.766835i \(-0.278169\pi\)
−0.766835 + 0.641845i \(0.778169\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −16.9282 16.9282i −1.36411 1.36411i
\(155\) −6.59059 −0.529369
\(156\) 0 0
\(157\) 9.39230 0.749588 0.374794 0.927108i \(-0.377714\pi\)
0.374794 + 0.927108i \(0.377714\pi\)
\(158\) 4.52004 + 4.52004i 0.359595 + 0.359595i
\(159\) 0 0
\(160\) 5.85641i 0.462990i
\(161\) −3.34607 3.34607i −0.263707 0.263707i
\(162\) 0 0
\(163\) 10.7583 + 10.7583i 0.842657 + 0.842657i 0.989204 0.146546i \(-0.0468157\pi\)
−0.146546 + 0.989204i \(0.546816\pi\)
\(164\) 7.72741 7.72741i 0.603409 0.603409i
\(165\) 0 0
\(166\) 1.07180i 0.0831876i
\(167\) −1.03528 + 1.03528i −0.0801121 + 0.0801121i −0.746027 0.665915i \(-0.768041\pi\)
0.665915 + 0.746027i \(0.268041\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 2.62536i 0.201356i
\(171\) 0 0
\(172\) −8.53590 −0.650856
\(173\) −5.55532 −0.422363 −0.211182 0.977447i \(-0.567731\pi\)
−0.211182 + 0.977447i \(0.567731\pi\)
\(174\) 0 0
\(175\) −6.09808 + 6.09808i −0.460971 + 0.460971i
\(176\) −17.5254 + 17.5254i −1.32102 + 1.32102i
\(177\) 0 0
\(178\) −22.9282 −1.71854
\(179\) 8.00481 0.598307 0.299154 0.954205i \(-0.403296\pi\)
0.299154 + 0.954205i \(0.403296\pi\)
\(180\) 0 0
\(181\) 6.00000i 0.445976i −0.974821 0.222988i \(-0.928419\pi\)
0.974821 0.222988i \(-0.0715812\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.93426i 0.436295i
\(186\) 0 0
\(187\) 7.85641 7.85641i 0.574517 0.574517i
\(188\) 9.52056 + 9.52056i 0.694358 + 0.694358i
\(189\) 0 0
\(190\) −3.60770 3.60770i −0.261730 0.261730i
\(191\) 1.69161i 0.122401i −0.998125 0.0612005i \(-0.980507\pi\)
0.998125 0.0612005i \(-0.0194929\pi\)
\(192\) 0 0
\(193\) −7.83013 7.83013i −0.563625 0.563625i 0.366710 0.930335i \(-0.380484\pi\)
−0.930335 + 0.366710i \(0.880484\pi\)
\(194\) −24.2175 −1.73871
\(195\) 0 0
\(196\) 6.53590 0.466850
\(197\) −14.7985 14.7985i −1.05435 1.05435i −0.998436 0.0559119i \(-0.982193\pi\)
−0.0559119 0.998436i \(-0.517807\pi\)
\(198\) 0 0
\(199\) 6.46410i 0.458228i −0.973400 0.229114i \(-0.926417\pi\)
0.973400 0.229114i \(-0.0735829\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −22.3923 22.3923i −1.57552 1.57552i
\(203\) 1.93185 1.93185i 0.135589 0.135589i
\(204\) 0 0
\(205\) 4.00000i 0.279372i
\(206\) 12.2474 12.2474i 0.853320 0.853320i
\(207\) 0 0
\(208\) 0 0
\(209\) 21.5921i 1.49356i
\(210\) 0 0
\(211\) −4.80385 −0.330711 −0.165355 0.986234i \(-0.552877\pi\)
−0.165355 + 0.986234i \(0.552877\pi\)
\(212\) −17.5254 −1.20365
\(213\) 0 0
\(214\) 18.3923 18.3923i 1.25727 1.25727i
\(215\) 2.20925 2.20925i 0.150670 0.150670i
\(216\) 0 0
\(217\) −17.3923 −1.18067
\(218\) −12.1459 −0.822625
\(219\) 0 0
\(220\) 9.07180i 0.611620i
\(221\) 0 0
\(222\) 0 0
\(223\) −3.39230 + 3.39230i −0.227166 + 0.227166i −0.811508 0.584342i \(-0.801353\pi\)
0.584342 + 0.811508i \(0.301353\pi\)
\(224\) 15.4548i 1.03262i
\(225\) 0 0
\(226\) −14.3923 + 14.3923i −0.957362 + 0.957362i
\(227\) 9.52056 + 9.52056i 0.631902 + 0.631902i 0.948545 0.316643i \(-0.102556\pi\)
−0.316643 + 0.948545i \(0.602556\pi\)
\(228\) 0 0
\(229\) −0.267949 0.267949i −0.0177066 0.0177066i 0.698198 0.715905i \(-0.253985\pi\)
−0.715905 + 0.698198i \(0.753985\pi\)
\(230\) 3.58630i 0.236474i
\(231\) 0 0
\(232\) 0 0
\(233\) −10.4543 −0.684884 −0.342442 0.939539i \(-0.611254\pi\)
−0.342442 + 0.939539i \(0.611254\pi\)
\(234\) 0 0
\(235\) −4.92820 −0.321481
\(236\) 14.4195 + 14.4195i 0.938632 + 0.938632i
\(237\) 0 0
\(238\) 6.92820i 0.449089i
\(239\) 9.52056 + 9.52056i 0.615834 + 0.615834i 0.944460 0.328626i \(-0.106586\pi\)
−0.328626 + 0.944460i \(0.606586\pi\)
\(240\) 0 0
\(241\) 11.7321 + 11.7321i 0.755728 + 0.755728i 0.975542 0.219814i \(-0.0705450\pi\)
−0.219814 + 0.975542i \(0.570545\pi\)
\(242\) −38.7386 + 38.7386i −2.49021 + 2.49021i
\(243\) 0 0
\(244\) 5.60770i 0.358996i
\(245\) −1.69161 + 1.69161i −0.108073 + 0.108073i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 13.8564 0.876356
\(251\) 12.9038 0.814480 0.407240 0.913321i \(-0.366491\pi\)
0.407240 + 0.913321i \(0.366491\pi\)
\(252\) 0 0
\(253\) −10.7321 + 10.7321i −0.674718 + 0.674718i
\(254\) −5.55532 + 5.55532i −0.348572 + 0.348572i
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 18.2832 1.14048 0.570239 0.821479i \(-0.306851\pi\)
0.570239 + 0.821479i \(0.306851\pi\)
\(258\) 0 0
\(259\) 15.6603i 0.973081i
\(260\) 0 0
\(261\) 0 0
\(262\) −10.0000 + 10.0000i −0.617802 + 0.617802i
\(263\) 20.6312i 1.27217i −0.771617 0.636087i \(-0.780552\pi\)
0.771617 0.636087i \(-0.219448\pi\)
\(264\) 0 0
\(265\) 4.53590 4.53590i 0.278638 0.278638i
\(266\) −9.52056 9.52056i −0.583743 0.583743i
\(267\) 0 0
\(268\) −13.1244 13.1244i −0.801698 0.801698i
\(269\) 23.4596i 1.43036i 0.698941 + 0.715179i \(0.253655\pi\)
−0.698941 + 0.715179i \(0.746345\pi\)
\(270\) 0 0
\(271\) 15.8301 + 15.8301i 0.961612 + 0.961612i 0.999290 0.0376782i \(-0.0119962\pi\)
−0.0376782 + 0.999290i \(0.511996\pi\)
\(272\) −7.17260 −0.434903
\(273\) 0 0
\(274\) −2.14359 −0.129499
\(275\) 19.5588 + 19.5588i 1.17944 + 1.17944i
\(276\) 0 0
\(277\) 7.85641i 0.472046i 0.971748 + 0.236023i \(0.0758440\pi\)
−0.971748 + 0.236023i \(0.924156\pi\)
\(278\) 24.5964 + 24.5964i 1.47520 + 1.47520i
\(279\) 0 0
\(280\) 0 0
\(281\) 15.2146 15.2146i 0.907626 0.907626i −0.0884547 0.996080i \(-0.528193\pi\)
0.996080 + 0.0884547i \(0.0281928\pi\)
\(282\) 0 0
\(283\) 4.85641i 0.288683i −0.989528 0.144342i \(-0.953894\pi\)
0.989528 0.144342i \(-0.0461064\pi\)
\(284\) 2.34795 2.34795i 0.139325 0.139325i
\(285\) 0 0
\(286\) 0 0
\(287\) 10.5558i 0.623091i
\(288\) 0 0
\(289\) −13.7846 −0.810859
\(290\) −2.07055 −0.121587
\(291\) 0 0
\(292\) −16.1962 + 16.1962i −0.947808 + 0.947808i
\(293\) 15.6950 15.6950i 0.916915 0.916915i −0.0798891 0.996804i \(-0.525457\pi\)
0.996804 + 0.0798891i \(0.0254566\pi\)
\(294\) 0 0
\(295\) −7.46410 −0.434577
\(296\) 0 0
\(297\) 0 0
\(298\) 28.7846i 1.66745i
\(299\) 0 0
\(300\) 0 0
\(301\) 5.83013 5.83013i 0.336043 0.336043i
\(302\) 4.34418i 0.249979i
\(303\) 0 0
\(304\) −9.85641 + 9.85641i −0.565304 + 0.565304i
\(305\) −1.45138 1.45138i −0.0831057 0.0831057i
\(306\) 0 0
\(307\) 3.70577 + 3.70577i 0.211500 + 0.211500i 0.804904 0.593405i \(-0.202217\pi\)
−0.593405 + 0.804904i \(0.702217\pi\)
\(308\) 23.9401i 1.36411i
\(309\) 0 0
\(310\) 9.32051 + 9.32051i 0.529369 + 0.529369i
\(311\) 28.0812 1.59234 0.796169 0.605074i \(-0.206856\pi\)
0.796169 + 0.605074i \(0.206856\pi\)
\(312\) 0 0
\(313\) 7.19615 0.406751 0.203375 0.979101i \(-0.434809\pi\)
0.203375 + 0.979101i \(0.434809\pi\)
\(314\) −13.2827 13.2827i −0.749588 0.749588i
\(315\) 0 0
\(316\) 6.39230i 0.359595i
\(317\) −0.757875 0.757875i −0.0425665 0.0425665i 0.685503 0.728070i \(-0.259582\pi\)
−0.728070 + 0.685503i \(0.759582\pi\)
\(318\) 0 0
\(319\) −6.19615 6.19615i −0.346918 0.346918i
\(320\) 4.14110 4.14110i 0.231495 0.231495i
\(321\) 0 0
\(322\) 9.46410i 0.527414i
\(323\) 4.41851 4.41851i 0.245852 0.245852i
\(324\) 0 0
\(325\) 0 0
\(326\) 30.4292i 1.68531i
\(327\) 0 0
\(328\) 0 0
\(329\) −13.0053 −0.717007
\(330\) 0 0
\(331\) −4.83013 + 4.83013i −0.265488 + 0.265488i −0.827279 0.561791i \(-0.810112\pi\)
0.561791 + 0.827279i \(0.310112\pi\)
\(332\) −0.757875 + 0.757875i −0.0415938 + 0.0415938i
\(333\) 0 0
\(334\) 2.92820 0.160224
\(335\) 6.79367 0.371178
\(336\) 0 0
\(337\) 14.0718i 0.766540i 0.923636 + 0.383270i \(0.125202\pi\)
−0.923636 + 0.383270i \(0.874798\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) −1.85641 + 1.85641i −0.100678 + 0.100678i
\(341\) 55.7835i 3.02084i
\(342\) 0 0
\(343\) −14.0263 + 14.0263i −0.757348 + 0.757348i
\(344\) 0 0
\(345\) 0 0
\(346\) 7.85641 + 7.85641i 0.422363 + 0.422363i
\(347\) 14.9743i 0.803865i 0.915669 + 0.401932i \(0.131661\pi\)
−0.915669 + 0.401932i \(0.868339\pi\)
\(348\) 0 0
\(349\) 24.4904 + 24.4904i 1.31094 + 1.31094i 0.920723 + 0.390217i \(0.127600\pi\)
0.390217 + 0.920723i \(0.372400\pi\)
\(350\) 17.2480 0.921942
\(351\) 0 0
\(352\) 49.5692 2.64205
\(353\) 8.62398 + 8.62398i 0.459008 + 0.459008i 0.898330 0.439322i \(-0.144781\pi\)
−0.439322 + 0.898330i \(0.644781\pi\)
\(354\) 0 0
\(355\) 1.21539i 0.0645062i
\(356\) 16.2127 + 16.2127i 0.859271 + 0.859271i
\(357\) 0 0
\(358\) −11.3205 11.3205i −0.598307 0.598307i
\(359\) −7.07107 + 7.07107i −0.373197 + 0.373197i −0.868640 0.495443i \(-0.835006\pi\)
0.495443 + 0.868640i \(0.335006\pi\)
\(360\) 0 0
\(361\) 6.85641i 0.360863i
\(362\) −8.48528 + 8.48528i −0.445976 + 0.445976i
\(363\) 0 0
\(364\) 0 0
\(365\) 8.38375i 0.438825i
\(366\) 0 0
\(367\) 15.3923 0.803472 0.401736 0.915756i \(-0.368407\pi\)
0.401736 + 0.915756i \(0.368407\pi\)
\(368\) 9.79796 0.510754
\(369\) 0 0
\(370\) −8.39230 + 8.39230i −0.436295 + 0.436295i
\(371\) 11.9700 11.9700i 0.621454 0.621454i
\(372\) 0 0
\(373\) 23.5885 1.22136 0.610682 0.791876i \(-0.290895\pi\)
0.610682 + 0.791876i \(0.290895\pi\)
\(374\) −22.2213 −1.14903
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −14.6340 + 14.6340i −0.751697 + 0.751697i −0.974796 0.223099i \(-0.928383\pi\)
0.223099 + 0.974796i \(0.428383\pi\)
\(380\) 5.10205i 0.261730i
\(381\) 0 0
\(382\) −2.39230 + 2.39230i −0.122401 + 0.122401i
\(383\) 7.07107 + 7.07107i 0.361315 + 0.361315i 0.864297 0.502982i \(-0.167764\pi\)
−0.502982 + 0.864297i \(0.667764\pi\)
\(384\) 0 0
\(385\) −6.19615 6.19615i −0.315785 0.315785i
\(386\) 22.1469i 1.12725i
\(387\) 0 0
\(388\) 17.1244 + 17.1244i 0.869357 + 0.869357i
\(389\) −1.79315 −0.0909164 −0.0454582 0.998966i \(-0.514475\pi\)
−0.0454582 + 0.998966i \(0.514475\pi\)
\(390\) 0 0
\(391\) −4.39230 −0.222128
\(392\) 0 0
\(393\) 0 0
\(394\) 41.8564i 2.10870i
\(395\) 1.65445 + 1.65445i 0.0832444 + 0.0832444i
\(396\) 0 0
\(397\) −18.2224 18.2224i −0.914558 0.914558i 0.0820690 0.996627i \(-0.473847\pi\)
−0.996627 + 0.0820690i \(0.973847\pi\)
\(398\) −9.14162 + 9.14162i −0.458228 + 0.458228i
\(399\) 0 0
\(400\) 17.8564i 0.892820i
\(401\) 8.58682 8.58682i 0.428805 0.428805i −0.459416 0.888221i \(-0.651941\pi\)
0.888221 + 0.459416i \(0.151941\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 31.6675i 1.57552i
\(405\) 0 0
\(406\) −5.46410 −0.271179
\(407\) −50.2281 −2.48972
\(408\) 0 0
\(409\) −6.90192 + 6.90192i −0.341278 + 0.341278i −0.856848 0.515570i \(-0.827580\pi\)
0.515570 + 0.856848i \(0.327580\pi\)
\(410\) 5.65685 5.65685i 0.279372 0.279372i
\(411\) 0 0
\(412\) −17.3205 −0.853320
\(413\) −19.6975 −0.969248
\(414\) 0 0
\(415\) 0.392305i 0.0192575i
\(416\) 0 0
\(417\) 0 0
\(418\) −30.5359 + 30.5359i −1.49356 + 1.49356i
\(419\) 26.0106i 1.27070i −0.772223 0.635352i \(-0.780855\pi\)
0.772223 0.635352i \(-0.219145\pi\)
\(420\) 0 0
\(421\) 13.6340 13.6340i 0.664479 0.664479i −0.291953 0.956433i \(-0.594305\pi\)
0.956433 + 0.291953i \(0.0943052\pi\)
\(422\) 6.79367 + 6.79367i 0.330711 + 0.330711i
\(423\) 0 0
\(424\) 0 0
\(425\) 8.00481i 0.388290i
\(426\) 0 0
\(427\) −3.83013 3.83013i −0.185353 0.185353i
\(428\) −26.0106 −1.25727
\(429\) 0 0
\(430\) −6.24871 −0.301340
\(431\) 8.38375 + 8.38375i 0.403831 + 0.403831i 0.879581 0.475750i \(-0.157823\pi\)
−0.475750 + 0.879581i \(0.657823\pi\)
\(432\) 0 0
\(433\) 11.5359i 0.554380i 0.960815 + 0.277190i \(0.0894031\pi\)
−0.960815 + 0.277190i \(0.910597\pi\)
\(434\) 24.5964 + 24.5964i 1.18067 + 1.18067i
\(435\) 0 0
\(436\) 8.58846 + 8.58846i 0.411313 + 0.411313i
\(437\) −6.03579 + 6.03579i −0.288731 + 0.288731i
\(438\) 0 0
\(439\) 21.5885i 1.03036i 0.857082 + 0.515180i \(0.172275\pi\)
−0.857082 + 0.515180i \(0.827725\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 35.0507i 1.66531i 0.553792 + 0.832655i \(0.313180\pi\)
−0.553792 + 0.832655i \(0.686820\pi\)
\(444\) 0 0
\(445\) −8.39230 −0.397833
\(446\) 9.59489 0.454331
\(447\) 0 0
\(448\) 10.9282 10.9282i 0.516309 0.516309i
\(449\) −3.72500 + 3.72500i −0.175794 + 0.175794i −0.789519 0.613726i \(-0.789670\pi\)
0.613726 + 0.789519i \(0.289670\pi\)
\(450\) 0 0
\(451\) 33.8564 1.59424
\(452\) 20.3538 0.957362
\(453\) 0 0
\(454\) 26.9282i 1.26380i
\(455\) 0 0
\(456\) 0 0
\(457\) 2.90192 2.90192i 0.135746 0.135746i −0.635969 0.771715i \(-0.719399\pi\)
0.771715 + 0.635969i \(0.219399\pi\)
\(458\) 0.757875i 0.0354132i
\(459\) 0 0
\(460\) 2.53590 2.53590i 0.118237 0.118237i
\(461\) −26.3896 26.3896i −1.22909 1.22909i −0.964310 0.264775i \(-0.914702\pi\)
−0.264775 0.964310i \(-0.585298\pi\)
\(462\) 0 0
\(463\) 3.83013 + 3.83013i 0.178001 + 0.178001i 0.790484 0.612483i \(-0.209829\pi\)
−0.612483 + 0.790484i \(0.709829\pi\)
\(464\) 5.65685i 0.262613i
\(465\) 0 0
\(466\) 14.7846 + 14.7846i 0.684884 + 0.684884i
\(467\) −22.0454 −1.02014 −0.510070 0.860133i \(-0.670380\pi\)
−0.510070 + 0.860133i \(0.670380\pi\)
\(468\) 0 0
\(469\) 17.9282 0.827848
\(470\) 6.96953 + 6.96953i 0.321481 + 0.321481i
\(471\) 0 0
\(472\) 0 0
\(473\) −18.6993 18.6993i −0.859797 0.859797i
\(474\) 0 0
\(475\) 11.0000 + 11.0000i 0.504715 + 0.504715i
\(476\) −4.89898 + 4.89898i −0.224544 + 0.224544i
\(477\) 0 0
\(478\) 26.9282i 1.23167i
\(479\) −2.82843 + 2.82843i −0.129234 + 0.129234i −0.768765 0.639531i \(-0.779129\pi\)
0.639531 + 0.768765i \(0.279129\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 33.1833i 1.51146i
\(483\) 0 0
\(484\) 54.7846 2.49021
\(485\) −8.86422 −0.402503
\(486\) 0 0
\(487\) 10.1244 10.1244i 0.458778 0.458778i −0.439476 0.898254i \(-0.644836\pi\)
0.898254 + 0.439476i \(0.144836\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 4.78461 0.216147
\(491\) 16.3142 0.736251 0.368125 0.929776i \(-0.380000\pi\)
0.368125 + 0.929776i \(0.380000\pi\)
\(492\) 0 0
\(493\) 2.53590i 0.114211i
\(494\) 0 0
\(495\) 0 0
\(496\) 25.4641 25.4641i 1.14337 1.14337i
\(497\) 3.20736i 0.143870i
\(498\) 0 0
\(499\) −27.7321 + 27.7321i −1.24146 + 1.24146i −0.282060 + 0.959397i \(0.591018\pi\)
−0.959397 + 0.282060i \(0.908982\pi\)
\(500\) −9.79796 9.79796i −0.438178 0.438178i
\(501\) 0 0
\(502\) −18.2487 18.2487i −0.814480 0.814480i
\(503\) 26.8701i 1.19808i 0.800720 + 0.599038i \(0.204450\pi\)
−0.800720 + 0.599038i \(0.795550\pi\)
\(504\) 0 0
\(505\) −8.19615 8.19615i −0.364724 0.364724i
\(506\) 30.3548 1.34944
\(507\) 0 0
\(508\) 7.85641 0.348572
\(509\) −18.1445 18.1445i −0.804243 0.804243i 0.179513 0.983756i \(-0.442548\pi\)
−0.983756 + 0.179513i \(0.942548\pi\)
\(510\) 0 0
\(511\) 22.1244i 0.978724i
\(512\) −22.6274 22.6274i −1.00000 1.00000i
\(513\) 0 0
\(514\) −25.8564 25.8564i −1.14048 1.14048i
\(515\) 4.48288 4.48288i 0.197539 0.197539i
\(516\) 0 0
\(517\) 41.7128i 1.83453i
\(518\) −22.1469 + 22.1469i −0.973081 + 0.973081i
\(519\) 0 0
\(520\) 0 0
\(521\) 32.2223i 1.41168i −0.708369 0.705842i \(-0.750569\pi\)
0.708369 0.705842i \(-0.249431\pi\)
\(522\) 0 0
\(523\) −1.21539 −0.0531453 −0.0265727 0.999647i \(-0.508459\pi\)
−0.0265727 + 0.999647i \(0.508459\pi\)
\(524\) 14.1421 0.617802
\(525\) 0 0
\(526\) −29.1769 + 29.1769i −1.27217 + 1.27217i
\(527\) −11.4152 + 11.4152i −0.497256 + 0.497256i
\(528\) 0 0
\(529\) −17.0000 −0.739130
\(530\) −12.8295 −0.557276
\(531\) 0 0
\(532\) 13.4641i 0.583743i
\(533\) 0 0
\(534\) 0 0
\(535\) 6.73205 6.73205i 0.291052 0.291052i
\(536\) 0 0
\(537\) 0 0
\(538\) 33.1769 33.1769i 1.43036 1.43036i
\(539\) 14.3180 + 14.3180i 0.616720 + 0.616720i
\(540\) 0 0
\(541\) 5.68653 + 5.68653i 0.244483 + 0.244483i 0.818702 0.574219i \(-0.194694\pi\)
−0.574219 + 0.818702i \(0.694694\pi\)
\(542\) 44.7744i 1.92322i
\(543\) 0 0
\(544\) 10.1436 + 10.1436i 0.434903 + 0.434903i
\(545\) −4.44571 −0.190433
\(546\) 0 0
\(547\) 3.39230 0.145044 0.0725222 0.997367i \(-0.476895\pi\)
0.0725222 + 0.997367i \(0.476895\pi\)
\(548\) 1.51575 + 1.51575i 0.0647496 + 0.0647496i
\(549\) 0 0
\(550\) 55.3205i 2.35887i
\(551\) −3.48477 3.48477i −0.148456 0.148456i
\(552\) 0 0
\(553\) 4.36603 + 4.36603i 0.185662 + 0.185662i
\(554\) 11.1106 11.1106i 0.472046 0.472046i
\(555\) 0 0
\(556\) 34.7846i 1.47520i
\(557\) 8.10634 8.10634i 0.343477 0.343477i −0.514196 0.857673i \(-0.671910\pi\)
0.857673 + 0.514196i \(0.171910\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 5.65685i 0.239046i
\(561\) 0 0
\(562\) −43.0333 −1.81525
\(563\) 29.6985 1.25164 0.625821 0.779967i \(-0.284764\pi\)
0.625821 + 0.779967i \(0.284764\pi\)
\(564\) 0 0
\(565\) −5.26795 + 5.26795i −0.221624 + 0.221624i
\(566\) −6.86800 + 6.86800i −0.288683 + 0.288683i
\(567\) 0 0
\(568\) 0 0
\(569\) 7.34847 0.308064 0.154032 0.988066i \(-0.450774\pi\)
0.154032 + 0.988066i \(0.450774\pi\)
\(570\) 0 0
\(571\) 33.7128i 1.41084i −0.708791 0.705419i \(-0.750759\pi\)
0.708791 0.705419i \(-0.249241\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 14.9282 14.9282i 0.623091 0.623091i
\(575\) 10.9348i 0.456011i
\(576\) 0 0
\(577\) −1.19615 + 1.19615i −0.0497965 + 0.0497965i −0.731567 0.681770i \(-0.761210\pi\)
0.681770 + 0.731567i \(0.261210\pi\)
\(578\) 19.4944 + 19.4944i 0.810859 + 0.810859i
\(579\) 0 0
\(580\) 1.46410 + 1.46410i 0.0607935 + 0.0607935i
\(581\) 1.03528i 0.0429505i
\(582\) 0 0
\(583\) −38.3923 38.3923i −1.59005 1.59005i
\(584\) 0 0
\(585\) 0 0
\(586\) −44.3923 −1.83383
\(587\) −5.24075 5.24075i −0.216309 0.216309i 0.590632 0.806941i \(-0.298878\pi\)
−0.806941 + 0.590632i \(0.798878\pi\)
\(588\) 0 0
\(589\) 31.3731i 1.29270i
\(590\) 10.5558 + 10.5558i 0.434577 + 0.434577i
\(591\) 0 0
\(592\) 22.9282 + 22.9282i 0.942343 + 0.942343i
\(593\) 11.4524 11.4524i 0.470294 0.470294i −0.431716 0.902010i \(-0.642092\pi\)
0.902010 + 0.431716i \(0.142092\pi\)
\(594\) 0 0
\(595\) 2.53590i 0.103962i
\(596\) −20.3538 + 20.3538i −0.833724 + 0.833724i
\(597\) 0 0
\(598\) 0 0
\(599\) 29.9759i 1.22478i 0.790555 + 0.612391i \(0.209792\pi\)
−0.790555 + 0.612391i \(0.790208\pi\)
\(600\) 0 0
\(601\) 4.78461 0.195168 0.0975842 0.995227i \(-0.468888\pi\)
0.0975842 + 0.995227i \(0.468888\pi\)
\(602\) −16.4901 −0.672086
\(603\) 0 0
\(604\) 3.07180 3.07180i 0.124990 0.124990i
\(605\) −14.1793 + 14.1793i −0.576471 + 0.576471i
\(606\) 0 0
\(607\) −17.6077 −0.714674 −0.357337 0.933975i \(-0.616315\pi\)
−0.357337 + 0.933975i \(0.616315\pi\)
\(608\) 27.8781 1.13061
\(609\) 0 0
\(610\) 4.10512i 0.166211i
\(611\) 0 0
\(612\) 0 0
\(613\) 6.36603 6.36603i 0.257121 0.257121i −0.566761 0.823882i \(-0.691804\pi\)
0.823882 + 0.566761i \(0.191804\pi\)
\(614\) 10.4815i 0.422999i
\(615\) 0 0
\(616\) 0 0
\(617\) 14.8356 + 14.8356i 0.597260 + 0.597260i 0.939583 0.342322i \(-0.111213\pi\)
−0.342322 + 0.939583i \(0.611213\pi\)
\(618\) 0 0
\(619\) 4.16987 + 4.16987i 0.167601 + 0.167601i 0.785924 0.618323i \(-0.212188\pi\)
−0.618323 + 0.785924i \(0.712188\pi\)
\(620\) 13.1812i 0.529369i
\(621\) 0 0
\(622\) −39.7128 39.7128i −1.59234 1.59234i
\(623\) −22.1469 −0.887299
\(624\) 0 0
\(625\) −17.2487 −0.689948
\(626\) −10.1769 10.1769i −0.406751 0.406751i
\(627\) 0 0
\(628\) 18.7846i 0.749588i
\(629\) −10.2784 10.2784i −0.409828 0.409828i
\(630\) 0 0
\(631\) 15.1506 + 15.1506i 0.603137 + 0.603137i 0.941144 0.338007i \(-0.109753\pi\)
−0.338007 + 0.941144i \(0.609753\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 2.14359i 0.0851330i
\(635\) −2.03339 + 2.03339i −0.0806925 + 0.0806925i
\(636\) 0 0
\(637\) 0 0
\(638\) 17.5254i 0.693836i
\(639\) 0 0
\(640\) 0 0
\(641\) 26.9444 1.06424 0.532120 0.846669i \(-0.321396\pi\)
0.532120 + 0.846669i \(0.321396\pi\)
\(642\) 0 0
\(643\) 0.705771 0.705771i 0.0278329 0.0278329i −0.693053 0.720886i \(-0.743735\pi\)
0.720886 + 0.693053i \(0.243735\pi\)
\(644\) 6.69213 6.69213i 0.263707 0.263707i
\(645\) 0 0
\(646\) −12.4974 −0.491705
\(647\) −47.9817 −1.88636 −0.943178 0.332288i \(-0.892180\pi\)
−0.943178 + 0.332288i \(0.892180\pi\)
\(648\) 0 0
\(649\) 63.1769i 2.47991i
\(650\) 0 0
\(651\) 0 0
\(652\) −21.5167 + 21.5167i −0.842657 + 0.842657i
\(653\) 11.3137i 0.442740i −0.975190 0.221370i \(-0.928947\pi\)
0.975190 0.221370i \(-0.0710528\pi\)
\(654\) 0 0
\(655\) −3.66025 + 3.66025i −0.143018 + 0.143018i
\(656\) −15.4548 15.4548i −0.603409 0.603409i
\(657\) 0 0
\(658\) 18.3923 + 18.3923i 0.717007 + 0.717007i
\(659\) 26.8429i 1.04565i −0.852440 0.522825i \(-0.824878\pi\)
0.852440 0.522825i \(-0.175122\pi\)
\(660\) 0 0
\(661\) −3.22243 3.22243i −0.125338 0.125338i 0.641655 0.766993i \(-0.278248\pi\)
−0.766993 + 0.641655i \(0.778248\pi\)
\(662\) 13.6617 0.530976
\(663\) 0 0
\(664\) 0 0
\(665\) −3.48477 3.48477i −0.135133 0.135133i
\(666\) 0 0
\(667\) 3.46410i 0.134131i
\(668\) −2.07055 2.07055i −0.0801121 0.0801121i
\(669\) 0 0
\(670\) −9.60770 9.60770i −0.371178 0.371178i
\(671\) −12.2846 + 12.2846i −0.474242 + 0.474242i
\(672\) 0 0
\(673\) 39.5885i 1.52602i 0.646385 + 0.763011i \(0.276280\pi\)
−0.646385 + 0.763011i \(0.723720\pi\)
\(674\) 19.9005 19.9005i 0.766540 0.766540i
\(675\) 0 0
\(676\) 0 0
\(677\) 42.9812i 1.65190i −0.563742 0.825951i \(-0.690639\pi\)
0.563742 0.825951i \(-0.309361\pi\)
\(678\) 0 0
\(679\) −23.3923 −0.897714
\(680\) 0 0
\(681\) 0 0
\(682\) 78.8897 78.8897i 3.02084 3.02084i
\(683\) 19.4572 19.4572i 0.744510 0.744510i −0.228933 0.973442i \(-0.573524\pi\)
0.973442 + 0.228933i \(0.0735235\pi\)
\(684\) 0 0
\(685\) −0.784610 −0.0299784
\(686\) 39.6723 1.51470
\(687\) 0 0
\(688\) 17.0718i 0.650856i
\(689\) 0 0
\(690\) 0 0
\(691\) 28.8827 28.8827i 1.09875 1.09875i 0.104192 0.994557i \(-0.466774\pi\)
0.994557 0.104192i \(-0.0332256\pi\)
\(692\) 11.1106i 0.422363i
\(693\) 0 0
\(694\) 21.1769 21.1769i 0.803865 0.803865i
\(695\) 9.00292 + 9.00292i 0.341500 + 0.341500i
\(696\) 0 0
\(697\) 6.92820 + 6.92820i 0.262424 + 0.262424i
\(698\) 69.2693i 2.62188i
\(699\) 0 0
\(700\) −12.1962 12.1962i −0.460971 0.460971i
\(701\) −6.21166 −0.234611 −0.117306 0.993096i \(-0.537426\pi\)
−0.117306 + 0.993096i \(0.537426\pi\)
\(702\) 0 0
\(703\) −28.2487 −1.06542
\(704\) −35.0507 35.0507i −1.32102 1.32102i
\(705\) 0 0
\(706\) 24.3923i 0.918017i
\(707\) −21.6293 21.6293i −0.813454 0.813454i
\(708\) 0 0
\(709\) −3.56218 3.56218i −0.133780 0.133780i 0.637046 0.770826i \(-0.280156\pi\)
−0.770826 + 0.637046i \(0.780156\pi\)
\(710\) 1.71882 1.71882i 0.0645062 0.0645062i
\(711\) 0 0
\(712\) 0 0
\(713\) 15.5935 15.5935i 0.583982 0.583982i
\(714\) 0 0
\(715\) 0 0
\(716\) 16.0096i 0.598307i
\(717\) 0 0
\(718\) 20.0000 0.746393
\(719\) −9.97382 −0.371961 −0.185980 0.982553i \(-0.559546\pi\)
−0.185980 + 0.982553i \(0.559546\pi\)
\(720\) 0 0
\(721\) 11.8301 11.8301i 0.440577 0.440577i
\(722\) 9.69642 9.69642i 0.360863 0.360863i
\(723\) 0 0
\(724\) 12.0000 0.445976
\(725\) 6.31319 0.234466
\(726\) 0 0
\(727\) 41.1051i 1.52450i 0.647280 + 0.762252i \(0.275906\pi\)
−0.647280 + 0.762252i \(0.724094\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −11.8564 + 11.8564i −0.438825 + 0.438825i
\(731\) 7.65308i 0.283059i
\(732\) 0 0
\(733\) −10.2417 + 10.2417i −0.378285 + 0.378285i −0.870483 0.492198i \(-0.836193\pi\)
0.492198 + 0.870483i \(0.336193\pi\)
\(734\) −21.7680 21.7680i −0.803472 0.803472i
\(735\) 0 0
\(736\) −13.8564 13.8564i −0.510754 0.510754i
\(737\) 57.5023i 2.11812i
\(738\) 0 0
\(739\) −8.46410 8.46410i −0.311357 0.311357i 0.534078 0.845435i \(-0.320659\pi\)
−0.845435 + 0.534078i \(0.820659\pi\)
\(740\) 11.8685 0.436295
\(741\) 0 0
\(742\) −33.8564 −1.24291
\(743\) 22.0082 + 22.0082i 0.807404 + 0.807404i 0.984240 0.176836i \(-0.0565863\pi\)
−0.176836 + 0.984240i \(0.556586\pi\)
\(744\) 0 0
\(745\) 10.5359i 0.386005i
\(746\) −33.3591 33.3591i −1.22136 1.22136i
\(747\) 0 0
\(748\) 15.7128 + 15.7128i 0.574517 + 0.574517i
\(749\) 17.7656 17.7656i 0.649141 0.649141i
\(750\) 0 0
\(751\) 37.8564i 1.38140i −0.723141 0.690700i \(-0.757303\pi\)
0.723141 0.690700i \(-0.242697\pi\)
\(752\) 19.0411 19.0411i 0.694358 0.694358i
\(753\) 0 0
\(754\) 0 0
\(755\) 1.59008i 0.0578689i
\(756\) 0 0
\(757\) −50.3923 −1.83154 −0.915770 0.401704i \(-0.868418\pi\)
−0.915770 + 0.401704i \(0.868418\pi\)
\(758\) 41.3911 1.50339
\(759\) 0 0
\(760\) 0 0
\(761\) −30.2533 + 30.2533i −1.09668 + 1.09668i −0.101885 + 0.994796i \(0.532487\pi\)
−0.994796 + 0.101885i \(0.967513\pi\)
\(762\) 0 0
\(763\) −11.7321 −0.424729
\(764\) 3.38323 0.122401
\(765\) 0 0
\(766\) 20.0000i 0.722629i
\(767\) 0 0
\(768\) 0 0
\(769\) 20.5167 20.5167i 0.739850 0.739850i −0.232699 0.972549i \(-0.574756\pi\)
0.972549 + 0.232699i \(0.0747557\pi\)
\(770\) 17.5254i 0.631570i
\(771\) 0 0
\(772\) 15.6603 15.6603i 0.563625 0.563625i
\(773\) −29.7356 29.7356i −1.06952 1.06952i −0.997396 0.0721211i \(-0.977023\pi\)
−0.0721211 0.997396i \(-0.522977\pi\)
\(774\) 0 0
\(775\) −28.4186 28.4186i −1.02083 1.02083i
\(776\) 0 0
\(777\) 0 0
\(778\) 2.53590 + 2.53590i 0.0909164 + 0.0909164i
\(779\) 19.0411 0.682219
\(780\) 0 0
\(781\) 10.2872 0.368104
\(782\) 6.21166 + 6.21166i 0.222128 + 0.222128i
\(783\) 0 0
\(784\) 13.0718i 0.466850i
\(785\) −4.86181 4.86181i −0.173526 0.173526i
\(786\) 0 0
\(787\) 14.0981 + 14.0981i 0.502542 + 0.502542i 0.912227 0.409685i \(-0.134361\pi\)
−0.409685 + 0.912227i \(0.634361\pi\)
\(788\) 29.5969 29.5969i 1.05435 1.05435i
\(789\) 0 0
\(790\) 4.67949i 0.166489i
\(791\) −13.9019 + 13.9019i −0.494295 + 0.494295i
\(792\) 0 0
\(793\) 0 0
\(794\) 51.5408i 1.82912i
\(795\) 0 0
\(796\) 12.9282 0.458228
\(797\) −13.8647 −0.491114 −0.245557 0.969382i \(-0.578971\pi\)
−0.245557 + 0.969382i \(0.578971\pi\)
\(798\) 0 0
\(799\) −8.53590 + 8.53590i −0.301978 + 0.301978i
\(800\) −25.2528 + 25.2528i −0.892820 + 0.892820i
\(801\) 0 0
\(802\) −24.2872 −0.857610
\(803\) −70.9609 −2.50415
\(804\) 0 0
\(805\) 3.46410i 0.122094i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 33.6637i 1.18355i −0.806102 0.591777i \(-0.798427\pi\)
0.806102 0.591777i \(-0.201573\pi\)
\(810\) 0 0
\(811\) 2.90192 2.90192i 0.101900 0.101900i −0.654319 0.756219i \(-0.727044\pi\)
0.756219 + 0.654319i \(0.227044\pi\)
\(812\) 3.86370 + 3.86370i 0.135589 + 0.135589i
\(813\) 0 0
\(814\) 71.0333 + 71.0333i 2.48972 + 2.48972i
\(815\) 11.1378i 0.390142i
\(816\) 0 0
\(817\) −10.5167 10.5167i −0.367931 0.367931i
\(818\) 19.5216 0.682556
\(819\) 0 0
\(820\) −8.00000 −0.279372
\(821\) 15.1402 + 15.1402i 0.528398 + 0.528398i 0.920095 0.391696i \(-0.128112\pi\)
−0.391696 + 0.920095i \(0.628112\pi\)
\(822\) 0 0
\(823\) 16.3923i 0.571400i 0.958319 + 0.285700i \(0.0922261\pi\)
−0.958319 + 0.285700i \(0.907774\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 27.8564 + 27.8564i 0.969248 + 0.969248i
\(827\) 11.8685 11.8685i 0.412709 0.412709i −0.469972 0.882681i \(-0.655736\pi\)
0.882681 + 0.469972i \(0.155736\pi\)
\(828\) 0 0
\(829\) 36.7128i 1.27509i −0.770414 0.637544i \(-0.779950\pi\)
0.770414 0.637544i \(-0.220050\pi\)
\(830\) −0.554803 + 0.554803i −0.0192575 + 0.0192575i
\(831\) 0 0
\(832\) 0 0
\(833\) 5.85993i 0.203034i
\(834\) 0 0
\(835\) 1.07180 0.0370911
\(836\) 43.1843 1.49356
\(837\) 0 0
\(838\) −36.7846 + 36.7846i −1.27070 + 1.27070i
\(839\) 22.3872 22.3872i 0.772891 0.772891i −0.205720 0.978611i \(-0.565954\pi\)
0.978611 + 0.205720i \(0.0659535\pi\)
\(840\) 0 0
\(841\) 27.0000 0.931034
\(842\) −38.5627 −1.32896
\(843\) 0 0
\(844\) 9.60770i 0.330711i
\(845\) 0 0
\(846\) 0 0
\(847\) −37.4186 + 37.4186i −1.28572 + 1.28572i
\(848\) 35.0507i 1.20365i
\(849\) 0 0
\(850\) 11.3205 11.3205i 0.388290 0.388290i
\(851\) 14.0406 + 14.0406i 0.481306 + 0.481306i
\(852\) 0 0
\(853\) −18.2224 18.2224i −0.623924 0.623924i 0.322608 0.946533i \(-0.395440\pi\)
−0.946533 + 0.322608i \(0.895440\pi\)
\(854\) 10.8332i 0.370706i
\(855\) 0 0
\(856\) 0 0
\(857\) 45.7081 1.56136 0.780679 0.624932i \(-0.214873\pi\)
0.780679 + 0.624932i \(0.214873\pi\)
\(858\) 0 0
\(859\) −40.8038 −1.39221 −0.696105 0.717940i \(-0.745085\pi\)
−0.696105 + 0.717940i \(0.745085\pi\)
\(860\) 4.41851 + 4.41851i 0.150670 + 0.150670i
\(861\) 0 0
\(862\) 23.7128i 0.807662i
\(863\) 11.7298 + 11.7298i 0.399287 + 0.399287i 0.877982 0.478694i \(-0.158890\pi\)
−0.478694 + 0.877982i \(0.658890\pi\)
\(864\) 0 0
\(865\) 2.87564 + 2.87564i 0.0977748 + 0.0977748i
\(866\) 16.3142 16.3142i 0.554380 0.554380i
\(867\) 0 0
\(868\) 34.7846i 1.18067i
\(869\) 14.0034 14.0034i 0.475034 0.475034i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 17.0718 0.577462
\(875\) 13.3843 0.452471
\(876\) 0 0
\(877\) 27.1962 27.1962i 0.918349 0.918349i −0.0785605 0.996909i \(-0.525032\pi\)
0.996909 + 0.0785605i \(0.0250324\pi\)
\(878\) 30.5307 30.5307i 1.03036 1.03036i
\(879\) 0 0
\(880\) 18.1436 0.611620
\(881\) 24.9754 0.841442 0.420721 0.907190i \(-0.361777\pi\)
0.420721 + 0.907190i \(0.361777\pi\)
\(882\) 0 0
\(883\) 17.7846i 0.598500i 0.954175 + 0.299250i \(0.0967364\pi\)
−0.954175 + 0.299250i \(0.903264\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 49.5692 49.5692i 1.66531 1.66531i
\(887\) 0.582009i 0.0195420i 0.999952 + 0.00977098i \(0.00311025\pi\)
−0.999952 + 0.00977098i \(0.996890\pi\)
\(888\) 0 0
\(889\) −5.36603 + 5.36603i −0.179971 + 0.179971i
\(890\) 11.8685 + 11.8685i 0.397833 + 0.397833i
\(891\) 0 0
\(892\) −6.78461 6.78461i −0.227166 0.227166i
\(893\) 23.4596i 0.785046i
\(894\) 0 0
\(895\) −4.14359 4.14359i −0.138505 0.138505i
\(896\) 0 0
\(897\) 0 0
\(898\) 10.5359 0.351587
\(899\) 9.00292 + 9.00292i 0.300264 + 0.300264i
\(900\) 0 0
\(901\) 15.7128i 0.523470i
\(902\) −47.8802 47.8802i −1.59424 1.59424i
\(903\) 0 0
\(904\) 0 0
\(905\) −3.10583 + 3.10583i −0.103241 + 0.103241i
\(906\) 0 0
\(907\) 18.0000i 0.597680i −0.954303 0.298840i \(-0.903400\pi\)
0.954303 0.298840i \(-0.0965997\pi\)
\(908\) −19.0411 + 19.0411i −0.631902 + 0.631902i
\(909\) 0 0
\(910\) 0 0
\(911\) 6.76646i 0.224183i −0.993698 0.112091i \(-0.964245\pi\)
0.993698 0.112091i \(-0.0357549\pi\)
\(912\) 0 0
\(913\) −3.32051 −0.109893
\(914\) −8.20788 −0.271493
\(915\) 0 0
\(916\) 0.535898 0.535898i 0.0177066 0.0177066i
\(917\) −9.65926 + 9.65926i −0.318977 + 0.318977i
\(918\) 0 0
\(919\) 33.1769 1.09441 0.547203 0.837000i \(-0.315693\pi\)
0.547203 + 0.837000i \(0.315693\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 74.6410i 2.45817i
\(923\) 0 0
\(924\) 0 0
\(925\) 25.5885 25.5885i 0.841343 0.841343i
\(926\) 10.8332i 0.356002i
\(927\) 0 0
\(928\) 8.00000 8.00000i 0.262613 0.262613i
\(929\) −30.6322 30.6322i −1.00501 1.00501i −0.999987 0.00502332i \(-0.998401\pi\)
−0.00502332 0.999987i \(-0.501599\pi\)
\(930\) 0 0
\(931\) 8.05256 + 8.05256i 0.263912 + 0.263912i
\(932\) 20.9086i 0.684884i
\(933\) 0 0
\(934\) 31.1769 + 31.1769i 1.02014 + 1.02014i
\(935\) −8.13355 −0.265996
\(936\) 0 0
\(937\) 31.5692 1.03132 0.515661 0.856793i \(-0.327547\pi\)
0.515661 + 0.856793i \(0.327547\pi\)
\(938\) −25.3543 25.3543i −0.827848 0.827848i
\(939\) 0 0
\(940\) 9.85641i 0.321481i
\(941\) −9.00292 9.00292i −0.293487 0.293487i 0.544969 0.838456i \(-0.316541\pi\)
−0.838456 + 0.544969i \(0.816541\pi\)
\(942\) 0 0
\(943\) −9.46410 9.46410i −0.308194 0.308194i
\(944\) 28.8391 28.8391i 0.938632 0.938632i
\(945\) 0 0
\(946\) 52.8897i 1.71959i
\(947\) −2.82843 + 2.82843i −0.0919115 + 0.0919115i −0.751568 0.659656i \(-0.770702\pi\)
0.659656 + 0.751568i \(0.270702\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 31.1127i 1.00943i
\(951\) 0 0
\(952\) 0 0
\(953\) −25.2800 −0.818899 −0.409449 0.912333i \(-0.634279\pi\)
−0.409449 + 0.912333i \(0.634279\pi\)
\(954\) 0 0
\(955\) −0.875644 + 0.875644i −0.0283352 + 0.0283352i
\(956\) −19.0411 + 19.0411i −0.615834 + 0.615834i
\(957\) 0 0
\(958\) 8.00000 0.258468
\(959\) −2.07055 −0.0668616
\(960\) 0 0
\(961\) 50.0526i 1.61460i
\(962\) 0 0
\(963\) 0 0
\(964\) −23.4641 + 23.4641i −0.755728 + 0.755728i
\(965\) 8.10634i 0.260952i
\(966\) 0 0
\(967\) 2.26795 2.26795i 0.0729323 0.0729323i −0.669700 0.742632i \(-0.733577\pi\)
0.742632 + 0.669700i \(0.233577\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 12.5359 + 12.5359i 0.402503 + 0.402503i
\(971\) 6.76646i 0.217146i −0.994088 0.108573i \(-0.965372\pi\)
0.994088 0.108573i \(-0.0346281\pi\)
\(972\) 0 0
\(973\) 23.7583 + 23.7583i 0.761657 + 0.761657i
\(974\) −28.6360 −0.917557
\(975\) 0 0
\(976\) 11.2154 0.358996
\(977\) −27.0459 27.0459i −0.865276 0.865276i 0.126669 0.991945i \(-0.459571\pi\)
−0.991945 + 0.126669i \(0.959571\pi\)
\(978\) 0 0
\(979\) 71.0333i 2.27023i
\(980\) −3.38323 3.38323i −0.108073 0.108073i
\(981\) 0 0
\(982\) −23.0718 23.0718i −0.736251 0.736251i
\(983\) −22.6646 + 22.6646i −0.722888 + 0.722888i −0.969192 0.246305i \(-0.920784\pi\)
0.246305 + 0.969192i \(0.420784\pi\)
\(984\) 0 0
\(985\) 15.3205i 0.488152i
\(986\) −3.58630 + 3.58630i −0.114211 + 0.114211i
\(987\) 0 0
\(988\) 0 0
\(989\) 10.4543i 0.332427i
\(990\) 0 0
\(991\) 30.3923 0.965443 0.482722 0.875774i \(-0.339648\pi\)
0.482722 + 0.875774i \(0.339648\pi\)
\(992\) −72.0234 −2.28674
\(993\) 0 0
\(994\) 4.53590 4.53590i 0.143870 0.143870i
\(995\) −3.34607 + 3.34607i −0.106077 + 0.106077i
\(996\) 0 0
\(997\) 1.78461 0.0565192 0.0282596 0.999601i \(-0.491003\pi\)
0.0282596 + 0.999601i \(0.491003\pi\)
\(998\) 78.4381 2.48291
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1521.2.i.d.746.1 8
3.2 odd 2 inner 1521.2.i.d.746.4 8
13.3 even 3 117.2.ba.a.71.2 yes 8
13.5 odd 4 1521.2.i.e.944.1 8
13.7 odd 12 117.2.ba.a.89.1 yes 8
13.8 odd 4 inner 1521.2.i.d.944.4 8
13.12 even 2 1521.2.i.e.746.4 8
39.5 even 4 1521.2.i.e.944.4 8
39.8 even 4 inner 1521.2.i.d.944.1 8
39.20 even 12 117.2.ba.a.89.2 yes 8
39.29 odd 6 117.2.ba.a.71.1 8
39.38 odd 2 1521.2.i.e.746.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.ba.a.71.1 8 39.29 odd 6
117.2.ba.a.71.2 yes 8 13.3 even 3
117.2.ba.a.89.1 yes 8 13.7 odd 12
117.2.ba.a.89.2 yes 8 39.20 even 12
1521.2.i.d.746.1 8 1.1 even 1 trivial
1521.2.i.d.746.4 8 3.2 odd 2 inner
1521.2.i.d.944.1 8 39.8 even 4 inner
1521.2.i.d.944.4 8 13.8 odd 4 inner
1521.2.i.e.746.1 8 39.38 odd 2
1521.2.i.e.746.4 8 13.12 even 2
1521.2.i.e.944.1 8 13.5 odd 4
1521.2.i.e.944.4 8 39.5 even 4