Properties

Label 1521.2.i.e.746.4
Level $1521$
Weight $2$
Character 1521.746
Analytic conductor $12.145$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1521,2,Mod(746,1521)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1521, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1521.746");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1521 = 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1521.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.1452461474\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 746.4
Root \(0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 1521.746
Dual form 1521.2.i.e.944.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.41421 + 1.41421i) q^{2} +2.00000i q^{4} +(0.517638 + 0.517638i) q^{5} +(1.36603 + 1.36603i) q^{7} +1.46410i q^{10} +(4.38134 - 4.38134i) q^{11} +3.86370i q^{14} +4.00000 q^{16} -1.79315 q^{17} +(2.46410 - 2.46410i) q^{19} +(-1.03528 + 1.03528i) q^{20} +12.3923 q^{22} +2.44949 q^{23} -4.46410i q^{25} +(-2.73205 + 2.73205i) q^{28} +1.41421i q^{29} +(-6.36603 + 6.36603i) q^{31} +(5.65685 + 5.65685i) q^{32} +(-2.53590 - 2.53590i) q^{34} +1.41421i q^{35} +(-5.73205 - 5.73205i) q^{37} +6.96953 q^{38} +(3.86370 + 3.86370i) q^{41} +4.26795i q^{43} +(8.76268 + 8.76268i) q^{44} +(3.46410 + 3.46410i) q^{46} +(-4.76028 + 4.76028i) q^{47} -3.26795i q^{49} +(6.31319 - 6.31319i) q^{50} +8.76268i q^{53} +4.53590 q^{55} +(-2.00000 + 2.00000i) q^{58} +(-7.20977 + 7.20977i) q^{59} +2.80385 q^{61} -18.0058 q^{62} +8.00000i q^{64} +(6.56218 - 6.56218i) q^{67} -3.58630i q^{68} +(-2.00000 + 2.00000i) q^{70} +(1.17398 + 1.17398i) q^{71} +(-8.09808 - 8.09808i) q^{73} -16.2127i q^{74} +(4.92820 + 4.92820i) q^{76} +11.9700 q^{77} -3.19615 q^{79} +(2.07055 + 2.07055i) q^{80} +10.9282i q^{82} +(-0.378937 - 0.378937i) q^{83} +(-0.928203 - 0.928203i) q^{85} +(-6.03579 + 6.03579i) q^{86} +(-8.10634 + 8.10634i) q^{89} +4.89898i q^{92} -13.4641 q^{94} +2.55103 q^{95} +(-8.56218 + 8.56218i) q^{97} +(4.62158 - 4.62158i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{7} + 32 q^{16} - 8 q^{19} + 16 q^{22} - 8 q^{28} - 44 q^{31} - 48 q^{34} - 32 q^{37} + 64 q^{55} - 16 q^{58} + 64 q^{61} + 4 q^{67} - 16 q^{70} - 44 q^{73} - 16 q^{76} + 16 q^{79} + 48 q^{85}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1521\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421 + 1.41421i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(3\) 0 0
\(4\) 2.00000i 1.00000i
\(5\) 0.517638 + 0.517638i 0.231495 + 0.231495i 0.813316 0.581822i \(-0.197660\pi\)
−0.581822 + 0.813316i \(0.697660\pi\)
\(6\) 0 0
\(7\) 1.36603 + 1.36603i 0.516309 + 0.516309i 0.916453 0.400143i \(-0.131040\pi\)
−0.400143 + 0.916453i \(0.631040\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 1.46410i 0.462990i
\(11\) 4.38134 4.38134i 1.32102 1.32102i 0.408076 0.912948i \(-0.366200\pi\)
0.912948 0.408076i \(-0.133800\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 3.86370i 1.03262i
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) −1.79315 −0.434903 −0.217451 0.976071i \(-0.569774\pi\)
−0.217451 + 0.976071i \(0.569774\pi\)
\(18\) 0 0
\(19\) 2.46410 2.46410i 0.565304 0.565304i −0.365505 0.930809i \(-0.619104\pi\)
0.930809 + 0.365505i \(0.119104\pi\)
\(20\) −1.03528 + 1.03528i −0.231495 + 0.231495i
\(21\) 0 0
\(22\) 12.3923 2.64205
\(23\) 2.44949 0.510754 0.255377 0.966842i \(-0.417800\pi\)
0.255377 + 0.966842i \(0.417800\pi\)
\(24\) 0 0
\(25\) 4.46410i 0.892820i
\(26\) 0 0
\(27\) 0 0
\(28\) −2.73205 + 2.73205i −0.516309 + 0.516309i
\(29\) 1.41421i 0.262613i 0.991342 + 0.131306i \(0.0419172\pi\)
−0.991342 + 0.131306i \(0.958083\pi\)
\(30\) 0 0
\(31\) −6.36603 + 6.36603i −1.14337 + 1.14337i −0.155543 + 0.987829i \(0.549713\pi\)
−0.987829 + 0.155543i \(0.950287\pi\)
\(32\) 5.65685 + 5.65685i 1.00000 + 1.00000i
\(33\) 0 0
\(34\) −2.53590 2.53590i −0.434903 0.434903i
\(35\) 1.41421i 0.239046i
\(36\) 0 0
\(37\) −5.73205 5.73205i −0.942343 0.942343i 0.0560828 0.998426i \(-0.482139\pi\)
−0.998426 + 0.0560828i \(0.982139\pi\)
\(38\) 6.96953 1.13061
\(39\) 0 0
\(40\) 0 0
\(41\) 3.86370 + 3.86370i 0.603409 + 0.603409i 0.941216 0.337807i \(-0.109685\pi\)
−0.337807 + 0.941216i \(0.609685\pi\)
\(42\) 0 0
\(43\) 4.26795i 0.650856i 0.945567 + 0.325428i \(0.105508\pi\)
−0.945567 + 0.325428i \(0.894492\pi\)
\(44\) 8.76268 + 8.76268i 1.32102 + 1.32102i
\(45\) 0 0
\(46\) 3.46410 + 3.46410i 0.510754 + 0.510754i
\(47\) −4.76028 + 4.76028i −0.694358 + 0.694358i −0.963188 0.268830i \(-0.913363\pi\)
0.268830 + 0.963188i \(0.413363\pi\)
\(48\) 0 0
\(49\) 3.26795i 0.466850i
\(50\) 6.31319 6.31319i 0.892820 0.892820i
\(51\) 0 0
\(52\) 0 0
\(53\) 8.76268i 1.20365i 0.798629 + 0.601824i \(0.205559\pi\)
−0.798629 + 0.601824i \(0.794441\pi\)
\(54\) 0 0
\(55\) 4.53590 0.611620
\(56\) 0 0
\(57\) 0 0
\(58\) −2.00000 + 2.00000i −0.262613 + 0.262613i
\(59\) −7.20977 + 7.20977i −0.938632 + 0.938632i −0.998223 0.0595910i \(-0.981020\pi\)
0.0595910 + 0.998223i \(0.481020\pi\)
\(60\) 0 0
\(61\) 2.80385 0.358996 0.179498 0.983758i \(-0.442553\pi\)
0.179498 + 0.983758i \(0.442553\pi\)
\(62\) −18.0058 −2.28674
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) 0 0
\(66\) 0 0
\(67\) 6.56218 6.56218i 0.801698 0.801698i −0.181663 0.983361i \(-0.558148\pi\)
0.983361 + 0.181663i \(0.0581481\pi\)
\(68\) 3.58630i 0.434903i
\(69\) 0 0
\(70\) −2.00000 + 2.00000i −0.239046 + 0.239046i
\(71\) 1.17398 + 1.17398i 0.139325 + 0.139325i 0.773330 0.634004i \(-0.218590\pi\)
−0.634004 + 0.773330i \(0.718590\pi\)
\(72\) 0 0
\(73\) −8.09808 8.09808i −0.947808 0.947808i 0.0508958 0.998704i \(-0.483792\pi\)
−0.998704 + 0.0508958i \(0.983792\pi\)
\(74\) 16.2127i 1.88469i
\(75\) 0 0
\(76\) 4.92820 + 4.92820i 0.565304 + 0.565304i
\(77\) 11.9700 1.36411
\(78\) 0 0
\(79\) −3.19615 −0.359595 −0.179798 0.983704i \(-0.557544\pi\)
−0.179798 + 0.983704i \(0.557544\pi\)
\(80\) 2.07055 + 2.07055i 0.231495 + 0.231495i
\(81\) 0 0
\(82\) 10.9282i 1.20682i
\(83\) −0.378937 0.378937i −0.0415938 0.0415938i 0.686004 0.727598i \(-0.259363\pi\)
−0.727598 + 0.686004i \(0.759363\pi\)
\(84\) 0 0
\(85\) −0.928203 0.928203i −0.100678 0.100678i
\(86\) −6.03579 + 6.03579i −0.650856 + 0.650856i
\(87\) 0 0
\(88\) 0 0
\(89\) −8.10634 + 8.10634i −0.859271 + 0.859271i −0.991252 0.131981i \(-0.957866\pi\)
0.131981 + 0.991252i \(0.457866\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 4.89898i 0.510754i
\(93\) 0 0
\(94\) −13.4641 −1.38872
\(95\) 2.55103 0.261730
\(96\) 0 0
\(97\) −8.56218 + 8.56218i −0.869357 + 0.869357i −0.992401 0.123044i \(-0.960734\pi\)
0.123044 + 0.992401i \(0.460734\pi\)
\(98\) 4.62158 4.62158i 0.466850 0.466850i
\(99\) 0 0
\(100\) 8.92820 0.892820
\(101\) 15.8338 1.57552 0.787759 0.615984i \(-0.211241\pi\)
0.787759 + 0.615984i \(0.211241\pi\)
\(102\) 0 0
\(103\) 8.66025i 0.853320i 0.904412 + 0.426660i \(0.140310\pi\)
−0.904412 + 0.426660i \(0.859690\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −12.3923 + 12.3923i −1.20365 + 1.20365i
\(107\) 13.0053i 1.25727i 0.777700 + 0.628636i \(0.216386\pi\)
−0.777700 + 0.628636i \(0.783614\pi\)
\(108\) 0 0
\(109\) −4.29423 + 4.29423i −0.411313 + 0.411313i −0.882196 0.470883i \(-0.843935\pi\)
0.470883 + 0.882196i \(0.343935\pi\)
\(110\) 6.41473 + 6.41473i 0.611620 + 0.611620i
\(111\) 0 0
\(112\) 5.46410 + 5.46410i 0.516309 + 0.516309i
\(113\) 10.1769i 0.957362i −0.877989 0.478681i \(-0.841115\pi\)
0.877989 0.478681i \(-0.158885\pi\)
\(114\) 0 0
\(115\) 1.26795 + 1.26795i 0.118237 + 0.118237i
\(116\) −2.82843 −0.262613
\(117\) 0 0
\(118\) −20.3923 −1.87726
\(119\) −2.44949 2.44949i −0.224544 0.224544i
\(120\) 0 0
\(121\) 27.3923i 2.49021i
\(122\) 3.96524 + 3.96524i 0.358996 + 0.358996i
\(123\) 0 0
\(124\) −12.7321 12.7321i −1.14337 1.14337i
\(125\) 4.89898 4.89898i 0.438178 0.438178i
\(126\) 0 0
\(127\) 3.92820i 0.348572i −0.984695 0.174286i \(-0.944238\pi\)
0.984695 0.174286i \(-0.0557617\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.07107i 0.617802i −0.951094 0.308901i \(-0.900039\pi\)
0.951094 0.308901i \(-0.0999612\pi\)
\(132\) 0 0
\(133\) 6.73205 0.583743
\(134\) 18.5606 1.60340
\(135\) 0 0
\(136\) 0 0
\(137\) −0.757875 + 0.757875i −0.0647496 + 0.0647496i −0.738740 0.673990i \(-0.764579\pi\)
0.673990 + 0.738740i \(0.264579\pi\)
\(138\) 0 0
\(139\) −17.3923 −1.47520 −0.737598 0.675240i \(-0.764040\pi\)
−0.737598 + 0.675240i \(0.764040\pi\)
\(140\) −2.82843 −0.239046
\(141\) 0 0
\(142\) 3.32051i 0.278651i
\(143\) 0 0
\(144\) 0 0
\(145\) −0.732051 + 0.732051i −0.0607935 + 0.0607935i
\(146\) 22.9048i 1.89562i
\(147\) 0 0
\(148\) 11.4641 11.4641i 0.942343 0.942343i
\(149\) −10.1769 10.1769i −0.833724 0.833724i 0.154300 0.988024i \(-0.450688\pi\)
−0.988024 + 0.154300i \(0.950688\pi\)
\(150\) 0 0
\(151\) 1.53590 + 1.53590i 0.124990 + 0.124990i 0.766835 0.641845i \(-0.221831\pi\)
−0.641845 + 0.766835i \(0.721831\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 16.9282 + 16.9282i 1.36411 + 1.36411i
\(155\) −6.59059 −0.529369
\(156\) 0 0
\(157\) 9.39230 0.749588 0.374794 0.927108i \(-0.377714\pi\)
0.374794 + 0.927108i \(0.377714\pi\)
\(158\) −4.52004 4.52004i −0.359595 0.359595i
\(159\) 0 0
\(160\) 5.85641i 0.462990i
\(161\) 3.34607 + 3.34607i 0.263707 + 0.263707i
\(162\) 0 0
\(163\) −10.7583 10.7583i −0.842657 0.842657i 0.146546 0.989204i \(-0.453184\pi\)
−0.989204 + 0.146546i \(0.953184\pi\)
\(164\) −7.72741 + 7.72741i −0.603409 + 0.603409i
\(165\) 0 0
\(166\) 1.07180i 0.0831876i
\(167\) 1.03528 1.03528i 0.0801121 0.0801121i −0.665915 0.746027i \(-0.731959\pi\)
0.746027 + 0.665915i \(0.231959\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 2.62536i 0.201356i
\(171\) 0 0
\(172\) −8.53590 −0.650856
\(173\) −5.55532 −0.422363 −0.211182 0.977447i \(-0.567731\pi\)
−0.211182 + 0.977447i \(0.567731\pi\)
\(174\) 0 0
\(175\) 6.09808 6.09808i 0.460971 0.460971i
\(176\) 17.5254 17.5254i 1.32102 1.32102i
\(177\) 0 0
\(178\) −22.9282 −1.71854
\(179\) 8.00481 0.598307 0.299154 0.954205i \(-0.403296\pi\)
0.299154 + 0.954205i \(0.403296\pi\)
\(180\) 0 0
\(181\) 6.00000i 0.445976i −0.974821 0.222988i \(-0.928419\pi\)
0.974821 0.222988i \(-0.0715812\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.93426i 0.436295i
\(186\) 0 0
\(187\) −7.85641 + 7.85641i −0.574517 + 0.574517i
\(188\) −9.52056 9.52056i −0.694358 0.694358i
\(189\) 0 0
\(190\) 3.60770 + 3.60770i 0.261730 + 0.261730i
\(191\) 1.69161i 0.122401i −0.998125 0.0612005i \(-0.980507\pi\)
0.998125 0.0612005i \(-0.0194929\pi\)
\(192\) 0 0
\(193\) 7.83013 + 7.83013i 0.563625 + 0.563625i 0.930335 0.366710i \(-0.119516\pi\)
−0.366710 + 0.930335i \(0.619516\pi\)
\(194\) −24.2175 −1.73871
\(195\) 0 0
\(196\) 6.53590 0.466850
\(197\) 14.7985 + 14.7985i 1.05435 + 1.05435i 0.998436 + 0.0559119i \(0.0178066\pi\)
0.0559119 + 0.998436i \(0.482193\pi\)
\(198\) 0 0
\(199\) 6.46410i 0.458228i −0.973400 0.229114i \(-0.926417\pi\)
0.973400 0.229114i \(-0.0735829\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 22.3923 + 22.3923i 1.57552 + 1.57552i
\(203\) −1.93185 + 1.93185i −0.135589 + 0.135589i
\(204\) 0 0
\(205\) 4.00000i 0.279372i
\(206\) −12.2474 + 12.2474i −0.853320 + 0.853320i
\(207\) 0 0
\(208\) 0 0
\(209\) 21.5921i 1.49356i
\(210\) 0 0
\(211\) −4.80385 −0.330711 −0.165355 0.986234i \(-0.552877\pi\)
−0.165355 + 0.986234i \(0.552877\pi\)
\(212\) −17.5254 −1.20365
\(213\) 0 0
\(214\) −18.3923 + 18.3923i −1.25727 + 1.25727i
\(215\) −2.20925 + 2.20925i −0.150670 + 0.150670i
\(216\) 0 0
\(217\) −17.3923 −1.18067
\(218\) −12.1459 −0.822625
\(219\) 0 0
\(220\) 9.07180i 0.611620i
\(221\) 0 0
\(222\) 0 0
\(223\) 3.39230 3.39230i 0.227166 0.227166i −0.584342 0.811508i \(-0.698647\pi\)
0.811508 + 0.584342i \(0.198647\pi\)
\(224\) 15.4548i 1.03262i
\(225\) 0 0
\(226\) 14.3923 14.3923i 0.957362 0.957362i
\(227\) −9.52056 9.52056i −0.631902 0.631902i 0.316643 0.948545i \(-0.397444\pi\)
−0.948545 + 0.316643i \(0.897444\pi\)
\(228\) 0 0
\(229\) 0.267949 + 0.267949i 0.0177066 + 0.0177066i 0.715905 0.698198i \(-0.246015\pi\)
−0.698198 + 0.715905i \(0.746015\pi\)
\(230\) 3.58630i 0.236474i
\(231\) 0 0
\(232\) 0 0
\(233\) −10.4543 −0.684884 −0.342442 0.939539i \(-0.611254\pi\)
−0.342442 + 0.939539i \(0.611254\pi\)
\(234\) 0 0
\(235\) −4.92820 −0.321481
\(236\) −14.4195 14.4195i −0.938632 0.938632i
\(237\) 0 0
\(238\) 6.92820i 0.449089i
\(239\) −9.52056 9.52056i −0.615834 0.615834i 0.328626 0.944460i \(-0.393414\pi\)
−0.944460 + 0.328626i \(0.893414\pi\)
\(240\) 0 0
\(241\) −11.7321 11.7321i −0.755728 0.755728i 0.219814 0.975542i \(-0.429455\pi\)
−0.975542 + 0.219814i \(0.929455\pi\)
\(242\) 38.7386 38.7386i 2.49021 2.49021i
\(243\) 0 0
\(244\) 5.60770i 0.358996i
\(245\) 1.69161 1.69161i 0.108073 0.108073i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 13.8564 0.876356
\(251\) 12.9038 0.814480 0.407240 0.913321i \(-0.366491\pi\)
0.407240 + 0.913321i \(0.366491\pi\)
\(252\) 0 0
\(253\) 10.7321 10.7321i 0.674718 0.674718i
\(254\) 5.55532 5.55532i 0.348572 0.348572i
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 18.2832 1.14048 0.570239 0.821479i \(-0.306851\pi\)
0.570239 + 0.821479i \(0.306851\pi\)
\(258\) 0 0
\(259\) 15.6603i 0.973081i
\(260\) 0 0
\(261\) 0 0
\(262\) 10.0000 10.0000i 0.617802 0.617802i
\(263\) 20.6312i 1.27217i −0.771617 0.636087i \(-0.780552\pi\)
0.771617 0.636087i \(-0.219448\pi\)
\(264\) 0 0
\(265\) −4.53590 + 4.53590i −0.278638 + 0.278638i
\(266\) 9.52056 + 9.52056i 0.583743 + 0.583743i
\(267\) 0 0
\(268\) 13.1244 + 13.1244i 0.801698 + 0.801698i
\(269\) 23.4596i 1.43036i 0.698941 + 0.715179i \(0.253655\pi\)
−0.698941 + 0.715179i \(0.746345\pi\)
\(270\) 0 0
\(271\) −15.8301 15.8301i −0.961612 0.961612i 0.0376782 0.999290i \(-0.488004\pi\)
−0.999290 + 0.0376782i \(0.988004\pi\)
\(272\) −7.17260 −0.434903
\(273\) 0 0
\(274\) −2.14359 −0.129499
\(275\) −19.5588 19.5588i −1.17944 1.17944i
\(276\) 0 0
\(277\) 7.85641i 0.472046i 0.971748 + 0.236023i \(0.0758440\pi\)
−0.971748 + 0.236023i \(0.924156\pi\)
\(278\) −24.5964 24.5964i −1.47520 1.47520i
\(279\) 0 0
\(280\) 0 0
\(281\) −15.2146 + 15.2146i −0.907626 + 0.907626i −0.996080 0.0884547i \(-0.971807\pi\)
0.0884547 + 0.996080i \(0.471807\pi\)
\(282\) 0 0
\(283\) 4.85641i 0.288683i −0.989528 0.144342i \(-0.953894\pi\)
0.989528 0.144342i \(-0.0461064\pi\)
\(284\) −2.34795 + 2.34795i −0.139325 + 0.139325i
\(285\) 0 0
\(286\) 0 0
\(287\) 10.5558i 0.623091i
\(288\) 0 0
\(289\) −13.7846 −0.810859
\(290\) −2.07055 −0.121587
\(291\) 0 0
\(292\) 16.1962 16.1962i 0.947808 0.947808i
\(293\) −15.6950 + 15.6950i −0.916915 + 0.916915i −0.996804 0.0798891i \(-0.974543\pi\)
0.0798891 + 0.996804i \(0.474543\pi\)
\(294\) 0 0
\(295\) −7.46410 −0.434577
\(296\) 0 0
\(297\) 0 0
\(298\) 28.7846i 1.66745i
\(299\) 0 0
\(300\) 0 0
\(301\) −5.83013 + 5.83013i −0.336043 + 0.336043i
\(302\) 4.34418i 0.249979i
\(303\) 0 0
\(304\) 9.85641 9.85641i 0.565304 0.565304i
\(305\) 1.45138 + 1.45138i 0.0831057 + 0.0831057i
\(306\) 0 0
\(307\) −3.70577 3.70577i −0.211500 0.211500i 0.593405 0.804904i \(-0.297783\pi\)
−0.804904 + 0.593405i \(0.797783\pi\)
\(308\) 23.9401i 1.36411i
\(309\) 0 0
\(310\) −9.32051 9.32051i −0.529369 0.529369i
\(311\) 28.0812 1.59234 0.796169 0.605074i \(-0.206856\pi\)
0.796169 + 0.605074i \(0.206856\pi\)
\(312\) 0 0
\(313\) 7.19615 0.406751 0.203375 0.979101i \(-0.434809\pi\)
0.203375 + 0.979101i \(0.434809\pi\)
\(314\) 13.2827 + 13.2827i 0.749588 + 0.749588i
\(315\) 0 0
\(316\) 6.39230i 0.359595i
\(317\) 0.757875 + 0.757875i 0.0425665 + 0.0425665i 0.728070 0.685503i \(-0.240418\pi\)
−0.685503 + 0.728070i \(0.740418\pi\)
\(318\) 0 0
\(319\) 6.19615 + 6.19615i 0.346918 + 0.346918i
\(320\) −4.14110 + 4.14110i −0.231495 + 0.231495i
\(321\) 0 0
\(322\) 9.46410i 0.527414i
\(323\) −4.41851 + 4.41851i −0.245852 + 0.245852i
\(324\) 0 0
\(325\) 0 0
\(326\) 30.4292i 1.68531i
\(327\) 0 0
\(328\) 0 0
\(329\) −13.0053 −0.717007
\(330\) 0 0
\(331\) 4.83013 4.83013i 0.265488 0.265488i −0.561791 0.827279i \(-0.689888\pi\)
0.827279 + 0.561791i \(0.189888\pi\)
\(332\) 0.757875 0.757875i 0.0415938 0.0415938i
\(333\) 0 0
\(334\) 2.92820 0.160224
\(335\) 6.79367 0.371178
\(336\) 0 0
\(337\) 14.0718i 0.766540i 0.923636 + 0.383270i \(0.125202\pi\)
−0.923636 + 0.383270i \(0.874798\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 1.85641 1.85641i 0.100678 0.100678i
\(341\) 55.7835i 3.02084i
\(342\) 0 0
\(343\) 14.0263 14.0263i 0.757348 0.757348i
\(344\) 0 0
\(345\) 0 0
\(346\) −7.85641 7.85641i −0.422363 0.422363i
\(347\) 14.9743i 0.803865i 0.915669 + 0.401932i \(0.131661\pi\)
−0.915669 + 0.401932i \(0.868339\pi\)
\(348\) 0 0
\(349\) −24.4904 24.4904i −1.31094 1.31094i −0.920723 0.390217i \(-0.872400\pi\)
−0.390217 0.920723i \(-0.627600\pi\)
\(350\) 17.2480 0.921942
\(351\) 0 0
\(352\) 49.5692 2.64205
\(353\) −8.62398 8.62398i −0.459008 0.459008i 0.439322 0.898330i \(-0.355219\pi\)
−0.898330 + 0.439322i \(0.855219\pi\)
\(354\) 0 0
\(355\) 1.21539i 0.0645062i
\(356\) −16.2127 16.2127i −0.859271 0.859271i
\(357\) 0 0
\(358\) 11.3205 + 11.3205i 0.598307 + 0.598307i
\(359\) 7.07107 7.07107i 0.373197 0.373197i −0.495443 0.868640i \(-0.664994\pi\)
0.868640 + 0.495443i \(0.164994\pi\)
\(360\) 0 0
\(361\) 6.85641i 0.360863i
\(362\) 8.48528 8.48528i 0.445976 0.445976i
\(363\) 0 0
\(364\) 0 0
\(365\) 8.38375i 0.438825i
\(366\) 0 0
\(367\) 15.3923 0.803472 0.401736 0.915756i \(-0.368407\pi\)
0.401736 + 0.915756i \(0.368407\pi\)
\(368\) 9.79796 0.510754
\(369\) 0 0
\(370\) 8.39230 8.39230i 0.436295 0.436295i
\(371\) −11.9700 + 11.9700i −0.621454 + 0.621454i
\(372\) 0 0
\(373\) 23.5885 1.22136 0.610682 0.791876i \(-0.290895\pi\)
0.610682 + 0.791876i \(0.290895\pi\)
\(374\) −22.2213 −1.14903
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 14.6340 14.6340i 0.751697 0.751697i −0.223099 0.974796i \(-0.571617\pi\)
0.974796 + 0.223099i \(0.0716173\pi\)
\(380\) 5.10205i 0.261730i
\(381\) 0 0
\(382\) 2.39230 2.39230i 0.122401 0.122401i
\(383\) −7.07107 7.07107i −0.361315 0.361315i 0.502982 0.864297i \(-0.332236\pi\)
−0.864297 + 0.502982i \(0.832236\pi\)
\(384\) 0 0
\(385\) 6.19615 + 6.19615i 0.315785 + 0.315785i
\(386\) 22.1469i 1.12725i
\(387\) 0 0
\(388\) −17.1244 17.1244i −0.869357 0.869357i
\(389\) −1.79315 −0.0909164 −0.0454582 0.998966i \(-0.514475\pi\)
−0.0454582 + 0.998966i \(0.514475\pi\)
\(390\) 0 0
\(391\) −4.39230 −0.222128
\(392\) 0 0
\(393\) 0 0
\(394\) 41.8564i 2.10870i
\(395\) −1.65445 1.65445i −0.0832444 0.0832444i
\(396\) 0 0
\(397\) 18.2224 + 18.2224i 0.914558 + 0.914558i 0.996627 0.0820690i \(-0.0261528\pi\)
−0.0820690 + 0.996627i \(0.526153\pi\)
\(398\) 9.14162 9.14162i 0.458228 0.458228i
\(399\) 0 0
\(400\) 17.8564i 0.892820i
\(401\) −8.58682 + 8.58682i −0.428805 + 0.428805i −0.888221 0.459416i \(-0.848059\pi\)
0.459416 + 0.888221i \(0.348059\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 31.6675i 1.57552i
\(405\) 0 0
\(406\) −5.46410 −0.271179
\(407\) −50.2281 −2.48972
\(408\) 0 0
\(409\) 6.90192 6.90192i 0.341278 0.341278i −0.515570 0.856848i \(-0.672420\pi\)
0.856848 + 0.515570i \(0.172420\pi\)
\(410\) −5.65685 + 5.65685i −0.279372 + 0.279372i
\(411\) 0 0
\(412\) −17.3205 −0.853320
\(413\) −19.6975 −0.969248
\(414\) 0 0
\(415\) 0.392305i 0.0192575i
\(416\) 0 0
\(417\) 0 0
\(418\) 30.5359 30.5359i 1.49356 1.49356i
\(419\) 26.0106i 1.27070i −0.772223 0.635352i \(-0.780855\pi\)
0.772223 0.635352i \(-0.219145\pi\)
\(420\) 0 0
\(421\) −13.6340 + 13.6340i −0.664479 + 0.664479i −0.956433 0.291953i \(-0.905695\pi\)
0.291953 + 0.956433i \(0.405695\pi\)
\(422\) −6.79367 6.79367i −0.330711 0.330711i
\(423\) 0 0
\(424\) 0 0
\(425\) 8.00481i 0.388290i
\(426\) 0 0
\(427\) 3.83013 + 3.83013i 0.185353 + 0.185353i
\(428\) −26.0106 −1.25727
\(429\) 0 0
\(430\) −6.24871 −0.301340
\(431\) −8.38375 8.38375i −0.403831 0.403831i 0.475750 0.879581i \(-0.342177\pi\)
−0.879581 + 0.475750i \(0.842177\pi\)
\(432\) 0 0
\(433\) 11.5359i 0.554380i 0.960815 + 0.277190i \(0.0894031\pi\)
−0.960815 + 0.277190i \(0.910597\pi\)
\(434\) −24.5964 24.5964i −1.18067 1.18067i
\(435\) 0 0
\(436\) −8.58846 8.58846i −0.411313 0.411313i
\(437\) 6.03579 6.03579i 0.288731 0.288731i
\(438\) 0 0
\(439\) 21.5885i 1.03036i 0.857082 + 0.515180i \(0.172275\pi\)
−0.857082 + 0.515180i \(0.827725\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 35.0507i 1.66531i 0.553792 + 0.832655i \(0.313180\pi\)
−0.553792 + 0.832655i \(0.686820\pi\)
\(444\) 0 0
\(445\) −8.39230 −0.397833
\(446\) 9.59489 0.454331
\(447\) 0 0
\(448\) −10.9282 + 10.9282i −0.516309 + 0.516309i
\(449\) 3.72500 3.72500i 0.175794 0.175794i −0.613726 0.789519i \(-0.710330\pi\)
0.789519 + 0.613726i \(0.210330\pi\)
\(450\) 0 0
\(451\) 33.8564 1.59424
\(452\) 20.3538 0.957362
\(453\) 0 0
\(454\) 26.9282i 1.26380i
\(455\) 0 0
\(456\) 0 0
\(457\) −2.90192 + 2.90192i −0.135746 + 0.135746i −0.771715 0.635969i \(-0.780601\pi\)
0.635969 + 0.771715i \(0.280601\pi\)
\(458\) 0.757875i 0.0354132i
\(459\) 0 0
\(460\) −2.53590 + 2.53590i −0.118237 + 0.118237i
\(461\) 26.3896 + 26.3896i 1.22909 + 1.22909i 0.964310 + 0.264775i \(0.0852978\pi\)
0.264775 + 0.964310i \(0.414702\pi\)
\(462\) 0 0
\(463\) −3.83013 3.83013i −0.178001 0.178001i 0.612483 0.790484i \(-0.290171\pi\)
−0.790484 + 0.612483i \(0.790171\pi\)
\(464\) 5.65685i 0.262613i
\(465\) 0 0
\(466\) −14.7846 14.7846i −0.684884 0.684884i
\(467\) −22.0454 −1.02014 −0.510070 0.860133i \(-0.670380\pi\)
−0.510070 + 0.860133i \(0.670380\pi\)
\(468\) 0 0
\(469\) 17.9282 0.827848
\(470\) −6.96953 6.96953i −0.321481 0.321481i
\(471\) 0 0
\(472\) 0 0
\(473\) 18.6993 + 18.6993i 0.859797 + 0.859797i
\(474\) 0 0
\(475\) −11.0000 11.0000i −0.504715 0.504715i
\(476\) 4.89898 4.89898i 0.224544 0.224544i
\(477\) 0 0
\(478\) 26.9282i 1.23167i
\(479\) 2.82843 2.82843i 0.129234 0.129234i −0.639531 0.768765i \(-0.720871\pi\)
0.768765 + 0.639531i \(0.220871\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 33.1833i 1.51146i
\(483\) 0 0
\(484\) 54.7846 2.49021
\(485\) −8.86422 −0.402503
\(486\) 0 0
\(487\) −10.1244 + 10.1244i −0.458778 + 0.458778i −0.898254 0.439476i \(-0.855164\pi\)
0.439476 + 0.898254i \(0.355164\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 4.78461 0.216147
\(491\) 16.3142 0.736251 0.368125 0.929776i \(-0.380000\pi\)
0.368125 + 0.929776i \(0.380000\pi\)
\(492\) 0 0
\(493\) 2.53590i 0.114211i
\(494\) 0 0
\(495\) 0 0
\(496\) −25.4641 + 25.4641i −1.14337 + 1.14337i
\(497\) 3.20736i 0.143870i
\(498\) 0 0
\(499\) 27.7321 27.7321i 1.24146 1.24146i 0.282060 0.959397i \(-0.408982\pi\)
0.959397 0.282060i \(-0.0910179\pi\)
\(500\) 9.79796 + 9.79796i 0.438178 + 0.438178i
\(501\) 0 0
\(502\) 18.2487 + 18.2487i 0.814480 + 0.814480i
\(503\) 26.8701i 1.19808i 0.800720 + 0.599038i \(0.204450\pi\)
−0.800720 + 0.599038i \(0.795550\pi\)
\(504\) 0 0
\(505\) 8.19615 + 8.19615i 0.364724 + 0.364724i
\(506\) 30.3548 1.34944
\(507\) 0 0
\(508\) 7.85641 0.348572
\(509\) 18.1445 + 18.1445i 0.804243 + 0.804243i 0.983756 0.179513i \(-0.0574522\pi\)
−0.179513 + 0.983756i \(0.557452\pi\)
\(510\) 0 0
\(511\) 22.1244i 0.978724i
\(512\) 22.6274 + 22.6274i 1.00000 + 1.00000i
\(513\) 0 0
\(514\) 25.8564 + 25.8564i 1.14048 + 1.14048i
\(515\) −4.48288 + 4.48288i −0.197539 + 0.197539i
\(516\) 0 0
\(517\) 41.7128i 1.83453i
\(518\) 22.1469 22.1469i 0.973081 0.973081i
\(519\) 0 0
\(520\) 0 0
\(521\) 32.2223i 1.41168i −0.708369 0.705842i \(-0.750569\pi\)
0.708369 0.705842i \(-0.249431\pi\)
\(522\) 0 0
\(523\) −1.21539 −0.0531453 −0.0265727 0.999647i \(-0.508459\pi\)
−0.0265727 + 0.999647i \(0.508459\pi\)
\(524\) 14.1421 0.617802
\(525\) 0 0
\(526\) 29.1769 29.1769i 1.27217 1.27217i
\(527\) 11.4152 11.4152i 0.497256 0.497256i
\(528\) 0 0
\(529\) −17.0000 −0.739130
\(530\) −12.8295 −0.557276
\(531\) 0 0
\(532\) 13.4641i 0.583743i
\(533\) 0 0
\(534\) 0 0
\(535\) −6.73205 + 6.73205i −0.291052 + 0.291052i
\(536\) 0 0
\(537\) 0 0
\(538\) −33.1769 + 33.1769i −1.43036 + 1.43036i
\(539\) −14.3180 14.3180i −0.616720 0.616720i
\(540\) 0 0
\(541\) −5.68653 5.68653i −0.244483 0.244483i 0.574219 0.818702i \(-0.305306\pi\)
−0.818702 + 0.574219i \(0.805306\pi\)
\(542\) 44.7744i 1.92322i
\(543\) 0 0
\(544\) −10.1436 10.1436i −0.434903 0.434903i
\(545\) −4.44571 −0.190433
\(546\) 0 0
\(547\) 3.39230 0.145044 0.0725222 0.997367i \(-0.476895\pi\)
0.0725222 + 0.997367i \(0.476895\pi\)
\(548\) −1.51575 1.51575i −0.0647496 0.0647496i
\(549\) 0 0
\(550\) 55.3205i 2.35887i
\(551\) 3.48477 + 3.48477i 0.148456 + 0.148456i
\(552\) 0 0
\(553\) −4.36603 4.36603i −0.185662 0.185662i
\(554\) −11.1106 + 11.1106i −0.472046 + 0.472046i
\(555\) 0 0
\(556\) 34.7846i 1.47520i
\(557\) −8.10634 + 8.10634i −0.343477 + 0.343477i −0.857673 0.514196i \(-0.828090\pi\)
0.514196 + 0.857673i \(0.328090\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 5.65685i 0.239046i
\(561\) 0 0
\(562\) −43.0333 −1.81525
\(563\) 29.6985 1.25164 0.625821 0.779967i \(-0.284764\pi\)
0.625821 + 0.779967i \(0.284764\pi\)
\(564\) 0 0
\(565\) 5.26795 5.26795i 0.221624 0.221624i
\(566\) 6.86800 6.86800i 0.288683 0.288683i
\(567\) 0 0
\(568\) 0 0
\(569\) 7.34847 0.308064 0.154032 0.988066i \(-0.450774\pi\)
0.154032 + 0.988066i \(0.450774\pi\)
\(570\) 0 0
\(571\) 33.7128i 1.41084i −0.708791 0.705419i \(-0.750759\pi\)
0.708791 0.705419i \(-0.249241\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −14.9282 + 14.9282i −0.623091 + 0.623091i
\(575\) 10.9348i 0.456011i
\(576\) 0 0
\(577\) 1.19615 1.19615i 0.0497965 0.0497965i −0.681770 0.731567i \(-0.738790\pi\)
0.731567 + 0.681770i \(0.238790\pi\)
\(578\) −19.4944 19.4944i −0.810859 0.810859i
\(579\) 0 0
\(580\) −1.46410 1.46410i −0.0607935 0.0607935i
\(581\) 1.03528i 0.0429505i
\(582\) 0 0
\(583\) 38.3923 + 38.3923i 1.59005 + 1.59005i
\(584\) 0 0
\(585\) 0 0
\(586\) −44.3923 −1.83383
\(587\) 5.24075 + 5.24075i 0.216309 + 0.216309i 0.806941 0.590632i \(-0.201122\pi\)
−0.590632 + 0.806941i \(0.701122\pi\)
\(588\) 0 0
\(589\) 31.3731i 1.29270i
\(590\) −10.5558 10.5558i −0.434577 0.434577i
\(591\) 0 0
\(592\) −22.9282 22.9282i −0.942343 0.942343i
\(593\) −11.4524 + 11.4524i −0.470294 + 0.470294i −0.902010 0.431716i \(-0.857908\pi\)
0.431716 + 0.902010i \(0.357908\pi\)
\(594\) 0 0
\(595\) 2.53590i 0.103962i
\(596\) 20.3538 20.3538i 0.833724 0.833724i
\(597\) 0 0
\(598\) 0 0
\(599\) 29.9759i 1.22478i 0.790555 + 0.612391i \(0.209792\pi\)
−0.790555 + 0.612391i \(0.790208\pi\)
\(600\) 0 0
\(601\) 4.78461 0.195168 0.0975842 0.995227i \(-0.468888\pi\)
0.0975842 + 0.995227i \(0.468888\pi\)
\(602\) −16.4901 −0.672086
\(603\) 0 0
\(604\) −3.07180 + 3.07180i −0.124990 + 0.124990i
\(605\) 14.1793 14.1793i 0.576471 0.576471i
\(606\) 0 0
\(607\) −17.6077 −0.714674 −0.357337 0.933975i \(-0.616315\pi\)
−0.357337 + 0.933975i \(0.616315\pi\)
\(608\) 27.8781 1.13061
\(609\) 0 0
\(610\) 4.10512i 0.166211i
\(611\) 0 0
\(612\) 0 0
\(613\) −6.36603 + 6.36603i −0.257121 + 0.257121i −0.823882 0.566761i \(-0.808196\pi\)
0.566761 + 0.823882i \(0.308196\pi\)
\(614\) 10.4815i 0.422999i
\(615\) 0 0
\(616\) 0 0
\(617\) −14.8356 14.8356i −0.597260 0.597260i 0.342322 0.939583i \(-0.388787\pi\)
−0.939583 + 0.342322i \(0.888787\pi\)
\(618\) 0 0
\(619\) −4.16987 4.16987i −0.167601 0.167601i 0.618323 0.785924i \(-0.287812\pi\)
−0.785924 + 0.618323i \(0.787812\pi\)
\(620\) 13.1812i 0.529369i
\(621\) 0 0
\(622\) 39.7128 + 39.7128i 1.59234 + 1.59234i
\(623\) −22.1469 −0.887299
\(624\) 0 0
\(625\) −17.2487 −0.689948
\(626\) 10.1769 + 10.1769i 0.406751 + 0.406751i
\(627\) 0 0
\(628\) 18.7846i 0.749588i
\(629\) 10.2784 + 10.2784i 0.409828 + 0.409828i
\(630\) 0 0
\(631\) −15.1506 15.1506i −0.603137 0.603137i 0.338007 0.941144i \(-0.390247\pi\)
−0.941144 + 0.338007i \(0.890247\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 2.14359i 0.0851330i
\(635\) 2.03339 2.03339i 0.0806925 0.0806925i
\(636\) 0 0
\(637\) 0 0
\(638\) 17.5254i 0.693836i
\(639\) 0 0
\(640\) 0 0
\(641\) 26.9444 1.06424 0.532120 0.846669i \(-0.321396\pi\)
0.532120 + 0.846669i \(0.321396\pi\)
\(642\) 0 0
\(643\) −0.705771 + 0.705771i −0.0278329 + 0.0278329i −0.720886 0.693053i \(-0.756265\pi\)
0.693053 + 0.720886i \(0.256265\pi\)
\(644\) −6.69213 + 6.69213i −0.263707 + 0.263707i
\(645\) 0 0
\(646\) −12.4974 −0.491705
\(647\) −47.9817 −1.88636 −0.943178 0.332288i \(-0.892180\pi\)
−0.943178 + 0.332288i \(0.892180\pi\)
\(648\) 0 0
\(649\) 63.1769i 2.47991i
\(650\) 0 0
\(651\) 0 0
\(652\) 21.5167 21.5167i 0.842657 0.842657i
\(653\) 11.3137i 0.442740i −0.975190 0.221370i \(-0.928947\pi\)
0.975190 0.221370i \(-0.0710528\pi\)
\(654\) 0 0
\(655\) 3.66025 3.66025i 0.143018 0.143018i
\(656\) 15.4548 + 15.4548i 0.603409 + 0.603409i
\(657\) 0 0
\(658\) −18.3923 18.3923i −0.717007 0.717007i
\(659\) 26.8429i 1.04565i −0.852440 0.522825i \(-0.824878\pi\)
0.852440 0.522825i \(-0.175122\pi\)
\(660\) 0 0
\(661\) 3.22243 + 3.22243i 0.125338 + 0.125338i 0.766993 0.641655i \(-0.221752\pi\)
−0.641655 + 0.766993i \(0.721752\pi\)
\(662\) 13.6617 0.530976
\(663\) 0 0
\(664\) 0 0
\(665\) 3.48477 + 3.48477i 0.135133 + 0.135133i
\(666\) 0 0
\(667\) 3.46410i 0.134131i
\(668\) 2.07055 + 2.07055i 0.0801121 + 0.0801121i
\(669\) 0 0
\(670\) 9.60770 + 9.60770i 0.371178 + 0.371178i
\(671\) 12.2846 12.2846i 0.474242 0.474242i
\(672\) 0 0
\(673\) 39.5885i 1.52602i 0.646385 + 0.763011i \(0.276280\pi\)
−0.646385 + 0.763011i \(0.723720\pi\)
\(674\) −19.9005 + 19.9005i −0.766540 + 0.766540i
\(675\) 0 0
\(676\) 0 0
\(677\) 42.9812i 1.65190i −0.563742 0.825951i \(-0.690639\pi\)
0.563742 0.825951i \(-0.309361\pi\)
\(678\) 0 0
\(679\) −23.3923 −0.897714
\(680\) 0 0
\(681\) 0 0
\(682\) −78.8897 + 78.8897i −3.02084 + 3.02084i
\(683\) −19.4572 + 19.4572i −0.744510 + 0.744510i −0.973442 0.228933i \(-0.926476\pi\)
0.228933 + 0.973442i \(0.426476\pi\)
\(684\) 0 0
\(685\) −0.784610 −0.0299784
\(686\) 39.6723 1.51470
\(687\) 0 0
\(688\) 17.0718i 0.650856i
\(689\) 0 0
\(690\) 0 0
\(691\) −28.8827 + 28.8827i −1.09875 + 1.09875i −0.104192 + 0.994557i \(0.533226\pi\)
−0.994557 + 0.104192i \(0.966774\pi\)
\(692\) 11.1106i 0.422363i
\(693\) 0 0
\(694\) −21.1769 + 21.1769i −0.803865 + 0.803865i
\(695\) −9.00292 9.00292i −0.341500 0.341500i
\(696\) 0 0
\(697\) −6.92820 6.92820i −0.262424 0.262424i
\(698\) 69.2693i 2.62188i
\(699\) 0 0
\(700\) 12.1962 + 12.1962i 0.460971 + 0.460971i
\(701\) −6.21166 −0.234611 −0.117306 0.993096i \(-0.537426\pi\)
−0.117306 + 0.993096i \(0.537426\pi\)
\(702\) 0 0
\(703\) −28.2487 −1.06542
\(704\) 35.0507 + 35.0507i 1.32102 + 1.32102i
\(705\) 0 0
\(706\) 24.3923i 0.918017i
\(707\) 21.6293 + 21.6293i 0.813454 + 0.813454i
\(708\) 0 0
\(709\) 3.56218 + 3.56218i 0.133780 + 0.133780i 0.770826 0.637046i \(-0.219844\pi\)
−0.637046 + 0.770826i \(0.719844\pi\)
\(710\) −1.71882 + 1.71882i −0.0645062 + 0.0645062i
\(711\) 0 0
\(712\) 0 0
\(713\) −15.5935 + 15.5935i −0.583982 + 0.583982i
\(714\) 0 0
\(715\) 0 0
\(716\) 16.0096i 0.598307i
\(717\) 0 0
\(718\) 20.0000 0.746393
\(719\) −9.97382 −0.371961 −0.185980 0.982553i \(-0.559546\pi\)
−0.185980 + 0.982553i \(0.559546\pi\)
\(720\) 0 0
\(721\) −11.8301 + 11.8301i −0.440577 + 0.440577i
\(722\) −9.69642 + 9.69642i −0.360863 + 0.360863i
\(723\) 0 0
\(724\) 12.0000 0.445976
\(725\) 6.31319 0.234466
\(726\) 0 0
\(727\) 41.1051i 1.52450i 0.647280 + 0.762252i \(0.275906\pi\)
−0.647280 + 0.762252i \(0.724094\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 11.8564 11.8564i 0.438825 0.438825i
\(731\) 7.65308i 0.283059i
\(732\) 0 0
\(733\) 10.2417 10.2417i 0.378285 0.378285i −0.492198 0.870483i \(-0.663807\pi\)
0.870483 + 0.492198i \(0.163807\pi\)
\(734\) 21.7680 + 21.7680i 0.803472 + 0.803472i
\(735\) 0 0
\(736\) 13.8564 + 13.8564i 0.510754 + 0.510754i
\(737\) 57.5023i 2.11812i
\(738\) 0 0
\(739\) 8.46410 + 8.46410i 0.311357 + 0.311357i 0.845435 0.534078i \(-0.179341\pi\)
−0.534078 + 0.845435i \(0.679341\pi\)
\(740\) 11.8685 0.436295
\(741\) 0 0
\(742\) −33.8564 −1.24291
\(743\) −22.0082 22.0082i −0.807404 0.807404i 0.176836 0.984240i \(-0.443414\pi\)
−0.984240 + 0.176836i \(0.943414\pi\)
\(744\) 0 0
\(745\) 10.5359i 0.386005i
\(746\) 33.3591 + 33.3591i 1.22136 + 1.22136i
\(747\) 0 0
\(748\) −15.7128 15.7128i −0.574517 0.574517i
\(749\) −17.7656 + 17.7656i −0.649141 + 0.649141i
\(750\) 0 0
\(751\) 37.8564i 1.38140i −0.723141 0.690700i \(-0.757303\pi\)
0.723141 0.690700i \(-0.242697\pi\)
\(752\) −19.0411 + 19.0411i −0.694358 + 0.694358i
\(753\) 0 0
\(754\) 0 0
\(755\) 1.59008i 0.0578689i
\(756\) 0 0
\(757\) −50.3923 −1.83154 −0.915770 0.401704i \(-0.868418\pi\)
−0.915770 + 0.401704i \(0.868418\pi\)
\(758\) 41.3911 1.50339
\(759\) 0 0
\(760\) 0 0
\(761\) 30.2533 30.2533i 1.09668 1.09668i 0.101885 0.994796i \(-0.467513\pi\)
0.994796 0.101885i \(-0.0324872\pi\)
\(762\) 0 0
\(763\) −11.7321 −0.424729
\(764\) 3.38323 0.122401
\(765\) 0 0
\(766\) 20.0000i 0.722629i
\(767\) 0 0
\(768\) 0 0
\(769\) −20.5167 + 20.5167i −0.739850 + 0.739850i −0.972549 0.232699i \(-0.925244\pi\)
0.232699 + 0.972549i \(0.425244\pi\)
\(770\) 17.5254i 0.631570i
\(771\) 0 0
\(772\) −15.6603 + 15.6603i −0.563625 + 0.563625i
\(773\) 29.7356 + 29.7356i 1.06952 + 1.06952i 0.997396 + 0.0721211i \(0.0229768\pi\)
0.0721211 + 0.997396i \(0.477023\pi\)
\(774\) 0 0
\(775\) 28.4186 + 28.4186i 1.02083 + 1.02083i
\(776\) 0 0
\(777\) 0 0
\(778\) −2.53590 2.53590i −0.0909164 0.0909164i
\(779\) 19.0411 0.682219
\(780\) 0 0
\(781\) 10.2872 0.368104
\(782\) −6.21166 6.21166i −0.222128 0.222128i
\(783\) 0 0
\(784\) 13.0718i 0.466850i
\(785\) 4.86181 + 4.86181i 0.173526 + 0.173526i
\(786\) 0 0
\(787\) −14.0981 14.0981i −0.502542 0.502542i 0.409685 0.912227i \(-0.365639\pi\)
−0.912227 + 0.409685i \(0.865639\pi\)
\(788\) −29.5969 + 29.5969i −1.05435 + 1.05435i
\(789\) 0 0
\(790\) 4.67949i 0.166489i
\(791\) 13.9019 13.9019i 0.494295 0.494295i
\(792\) 0 0
\(793\) 0 0
\(794\) 51.5408i 1.82912i
\(795\) 0 0
\(796\) 12.9282 0.458228
\(797\) −13.8647 −0.491114 −0.245557 0.969382i \(-0.578971\pi\)
−0.245557 + 0.969382i \(0.578971\pi\)
\(798\) 0 0
\(799\) 8.53590 8.53590i 0.301978 0.301978i
\(800\) 25.2528 25.2528i 0.892820 0.892820i
\(801\) 0 0
\(802\) −24.2872 −0.857610
\(803\) −70.9609 −2.50415
\(804\) 0 0
\(805\) 3.46410i 0.122094i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 33.6637i 1.18355i −0.806102 0.591777i \(-0.798427\pi\)
0.806102 0.591777i \(-0.201573\pi\)
\(810\) 0 0
\(811\) −2.90192 + 2.90192i −0.101900 + 0.101900i −0.756219 0.654319i \(-0.772956\pi\)
0.654319 + 0.756219i \(0.272956\pi\)
\(812\) −3.86370 3.86370i −0.135589 0.135589i
\(813\) 0 0
\(814\) −71.0333 71.0333i −2.48972 2.48972i
\(815\) 11.1378i 0.390142i
\(816\) 0 0
\(817\) 10.5167 + 10.5167i 0.367931 + 0.367931i
\(818\) 19.5216 0.682556
\(819\) 0 0
\(820\) −8.00000 −0.279372
\(821\) −15.1402 15.1402i −0.528398 0.528398i 0.391696 0.920095i \(-0.371888\pi\)
−0.920095 + 0.391696i \(0.871888\pi\)
\(822\) 0 0
\(823\) 16.3923i 0.571400i 0.958319 + 0.285700i \(0.0922261\pi\)
−0.958319 + 0.285700i \(0.907774\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −27.8564 27.8564i −0.969248 0.969248i
\(827\) −11.8685 + 11.8685i −0.412709 + 0.412709i −0.882681 0.469972i \(-0.844264\pi\)
0.469972 + 0.882681i \(0.344264\pi\)
\(828\) 0 0
\(829\) 36.7128i 1.27509i −0.770414 0.637544i \(-0.779950\pi\)
0.770414 0.637544i \(-0.220050\pi\)
\(830\) 0.554803 0.554803i 0.0192575 0.0192575i
\(831\) 0 0
\(832\) 0 0
\(833\) 5.85993i 0.203034i
\(834\) 0 0
\(835\) 1.07180 0.0370911
\(836\) 43.1843 1.49356
\(837\) 0 0
\(838\) 36.7846 36.7846i 1.27070 1.27070i
\(839\) −22.3872 + 22.3872i −0.772891 + 0.772891i −0.978611 0.205720i \(-0.934046\pi\)
0.205720 + 0.978611i \(0.434046\pi\)
\(840\) 0 0
\(841\) 27.0000 0.931034
\(842\) −38.5627 −1.32896
\(843\) 0 0
\(844\) 9.60770i 0.330711i
\(845\) 0 0
\(846\) 0 0
\(847\) 37.4186 37.4186i 1.28572 1.28572i
\(848\) 35.0507i 1.20365i
\(849\) 0 0
\(850\) −11.3205 + 11.3205i −0.388290 + 0.388290i
\(851\) −14.0406 14.0406i −0.481306 0.481306i
\(852\) 0 0
\(853\) 18.2224 + 18.2224i 0.623924 + 0.623924i 0.946533 0.322608i \(-0.104560\pi\)
−0.322608 + 0.946533i \(0.604560\pi\)
\(854\) 10.8332i 0.370706i
\(855\) 0 0
\(856\) 0 0
\(857\) 45.7081 1.56136 0.780679 0.624932i \(-0.214873\pi\)
0.780679 + 0.624932i \(0.214873\pi\)
\(858\) 0 0
\(859\) −40.8038 −1.39221 −0.696105 0.717940i \(-0.745085\pi\)
−0.696105 + 0.717940i \(0.745085\pi\)
\(860\) −4.41851 4.41851i −0.150670 0.150670i
\(861\) 0 0
\(862\) 23.7128i 0.807662i
\(863\) −11.7298 11.7298i −0.399287 0.399287i 0.478694 0.877982i \(-0.341110\pi\)
−0.877982 + 0.478694i \(0.841110\pi\)
\(864\) 0 0
\(865\) −2.87564 2.87564i −0.0977748 0.0977748i
\(866\) −16.3142 + 16.3142i −0.554380 + 0.554380i
\(867\) 0 0
\(868\) 34.7846i 1.18067i
\(869\) −14.0034 + 14.0034i −0.475034 + 0.475034i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 17.0718 0.577462
\(875\) 13.3843 0.452471
\(876\) 0 0
\(877\) −27.1962 + 27.1962i −0.918349 + 0.918349i −0.996909 0.0785605i \(-0.974968\pi\)
0.0785605 + 0.996909i \(0.474968\pi\)
\(878\) −30.5307 + 30.5307i −1.03036 + 1.03036i
\(879\) 0 0
\(880\) 18.1436 0.611620
\(881\) 24.9754 0.841442 0.420721 0.907190i \(-0.361777\pi\)
0.420721 + 0.907190i \(0.361777\pi\)
\(882\) 0 0
\(883\) 17.7846i 0.598500i 0.954175 + 0.299250i \(0.0967364\pi\)
−0.954175 + 0.299250i \(0.903264\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −49.5692 + 49.5692i −1.66531 + 1.66531i
\(887\) 0.582009i 0.0195420i 0.999952 + 0.00977098i \(0.00311025\pi\)
−0.999952 + 0.00977098i \(0.996890\pi\)
\(888\) 0 0
\(889\) 5.36603 5.36603i 0.179971 0.179971i
\(890\) −11.8685 11.8685i −0.397833 0.397833i
\(891\) 0 0
\(892\) 6.78461 + 6.78461i 0.227166 + 0.227166i
\(893\) 23.4596i 0.785046i
\(894\) 0 0
\(895\) 4.14359 + 4.14359i 0.138505 + 0.138505i
\(896\) 0 0
\(897\) 0 0
\(898\) 10.5359 0.351587
\(899\) −9.00292 9.00292i −0.300264 0.300264i
\(900\) 0 0
\(901\) 15.7128i 0.523470i
\(902\) 47.8802 + 47.8802i 1.59424 + 1.59424i
\(903\) 0 0
\(904\) 0 0
\(905\) 3.10583 3.10583i 0.103241 0.103241i
\(906\) 0 0
\(907\) 18.0000i 0.597680i −0.954303 0.298840i \(-0.903400\pi\)
0.954303 0.298840i \(-0.0965997\pi\)
\(908\) 19.0411 19.0411i 0.631902 0.631902i
\(909\) 0 0
\(910\) 0 0
\(911\) 6.76646i 0.224183i −0.993698 0.112091i \(-0.964245\pi\)
0.993698 0.112091i \(-0.0357549\pi\)
\(912\) 0 0
\(913\) −3.32051 −0.109893
\(914\) −8.20788 −0.271493
\(915\) 0 0
\(916\) −0.535898 + 0.535898i −0.0177066 + 0.0177066i
\(917\) 9.65926 9.65926i 0.318977 0.318977i
\(918\) 0 0
\(919\) 33.1769 1.09441 0.547203 0.837000i \(-0.315693\pi\)
0.547203 + 0.837000i \(0.315693\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 74.6410i 2.45817i
\(923\) 0 0
\(924\) 0 0
\(925\) −25.5885 + 25.5885i −0.841343 + 0.841343i
\(926\) 10.8332i 0.356002i
\(927\) 0 0
\(928\) −8.00000 + 8.00000i −0.262613 + 0.262613i
\(929\) 30.6322 + 30.6322i 1.00501 + 1.00501i 0.999987 + 0.00502332i \(0.00159898\pi\)
0.00502332 + 0.999987i \(0.498401\pi\)
\(930\) 0 0
\(931\) −8.05256 8.05256i −0.263912 0.263912i
\(932\) 20.9086i 0.684884i
\(933\) 0 0
\(934\) −31.1769 31.1769i −1.02014 1.02014i
\(935\) −8.13355 −0.265996
\(936\) 0 0
\(937\) 31.5692 1.03132 0.515661 0.856793i \(-0.327547\pi\)
0.515661 + 0.856793i \(0.327547\pi\)
\(938\) 25.3543 + 25.3543i 0.827848 + 0.827848i
\(939\) 0 0
\(940\) 9.85641i 0.321481i
\(941\) 9.00292 + 9.00292i 0.293487 + 0.293487i 0.838456 0.544969i \(-0.183459\pi\)
−0.544969 + 0.838456i \(0.683459\pi\)
\(942\) 0 0
\(943\) 9.46410 + 9.46410i 0.308194 + 0.308194i
\(944\) −28.8391 + 28.8391i −0.938632 + 0.938632i
\(945\) 0 0
\(946\) 52.8897i 1.71959i
\(947\) 2.82843 2.82843i 0.0919115 0.0919115i −0.659656 0.751568i \(-0.729298\pi\)
0.751568 + 0.659656i \(0.229298\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 31.1127i 1.00943i
\(951\) 0 0
\(952\) 0 0
\(953\) −25.2800 −0.818899 −0.409449 0.912333i \(-0.634279\pi\)
−0.409449 + 0.912333i \(0.634279\pi\)
\(954\) 0 0
\(955\) 0.875644 0.875644i 0.0283352 0.0283352i
\(956\) 19.0411 19.0411i 0.615834 0.615834i
\(957\) 0 0
\(958\) 8.00000 0.258468
\(959\) −2.07055 −0.0668616
\(960\) 0 0
\(961\) 50.0526i 1.61460i
\(962\) 0 0
\(963\) 0 0
\(964\) 23.4641 23.4641i 0.755728 0.755728i
\(965\) 8.10634i 0.260952i
\(966\) 0 0
\(967\) −2.26795 + 2.26795i −0.0729323 + 0.0729323i −0.742632 0.669700i \(-0.766423\pi\)
0.669700 + 0.742632i \(0.266423\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −12.5359 12.5359i −0.402503 0.402503i
\(971\) 6.76646i 0.217146i −0.994088 0.108573i \(-0.965372\pi\)
0.994088 0.108573i \(-0.0346281\pi\)
\(972\) 0 0
\(973\) −23.7583 23.7583i −0.761657 0.761657i
\(974\) −28.6360 −0.917557
\(975\) 0 0
\(976\) 11.2154 0.358996
\(977\) 27.0459 + 27.0459i 0.865276 + 0.865276i 0.991945 0.126669i \(-0.0404287\pi\)
−0.126669 + 0.991945i \(0.540429\pi\)
\(978\) 0 0
\(979\) 71.0333i 2.27023i
\(980\) 3.38323 + 3.38323i 0.108073 + 0.108073i
\(981\) 0 0
\(982\) 23.0718 + 23.0718i 0.736251 + 0.736251i
\(983\) 22.6646 22.6646i 0.722888 0.722888i −0.246305 0.969192i \(-0.579216\pi\)
0.969192 + 0.246305i \(0.0792164\pi\)
\(984\) 0 0
\(985\) 15.3205i 0.488152i
\(986\) 3.58630 3.58630i 0.114211 0.114211i
\(987\) 0 0
\(988\) 0 0
\(989\) 10.4543i 0.332427i
\(990\) 0 0
\(991\) 30.3923 0.965443 0.482722 0.875774i \(-0.339648\pi\)
0.482722 + 0.875774i \(0.339648\pi\)
\(992\) −72.0234 −2.28674
\(993\) 0 0
\(994\) −4.53590 + 4.53590i −0.143870 + 0.143870i
\(995\) 3.34607 3.34607i 0.106077 0.106077i
\(996\) 0 0
\(997\) 1.78461 0.0565192 0.0282596 0.999601i \(-0.491003\pi\)
0.0282596 + 0.999601i \(0.491003\pi\)
\(998\) 78.4381 2.48291
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1521.2.i.e.746.4 8
3.2 odd 2 inner 1521.2.i.e.746.1 8
13.5 odd 4 1521.2.i.d.944.4 8
13.6 odd 12 117.2.ba.a.89.1 yes 8
13.8 odd 4 inner 1521.2.i.e.944.1 8
13.10 even 6 117.2.ba.a.71.2 yes 8
13.12 even 2 1521.2.i.d.746.1 8
39.5 even 4 1521.2.i.d.944.1 8
39.8 even 4 inner 1521.2.i.e.944.4 8
39.23 odd 6 117.2.ba.a.71.1 8
39.32 even 12 117.2.ba.a.89.2 yes 8
39.38 odd 2 1521.2.i.d.746.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.ba.a.71.1 8 39.23 odd 6
117.2.ba.a.71.2 yes 8 13.10 even 6
117.2.ba.a.89.1 yes 8 13.6 odd 12
117.2.ba.a.89.2 yes 8 39.32 even 12
1521.2.i.d.746.1 8 13.12 even 2
1521.2.i.d.746.4 8 39.38 odd 2
1521.2.i.d.944.1 8 39.5 even 4
1521.2.i.d.944.4 8 13.5 odd 4
1521.2.i.e.746.1 8 3.2 odd 2 inner
1521.2.i.e.746.4 8 1.1 even 1 trivial
1521.2.i.e.944.1 8 13.8 odd 4 inner
1521.2.i.e.944.4 8 39.8 even 4 inner