Properties

Label 1568.2.i.o.961.1
Level $1568$
Weight $2$
Character 1568.961
Analytic conductor $12.521$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1568,2,Mod(961,1568)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1568, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1568.961");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1568 = 2^{5} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1568.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5205430369\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 224)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 961.1
Root \(-0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 1568.961
Dual form 1568.2.i.o.1537.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.20711 - 2.09077i) q^{3} +(1.91421 - 3.31552i) q^{5} +(-1.41421 + 2.44949i) q^{9} +O(q^{10})\) \(q+(-1.20711 - 2.09077i) q^{3} +(1.91421 - 3.31552i) q^{5} +(-1.41421 + 2.44949i) q^{9} +(0.207107 + 0.358719i) q^{11} +2.82843 q^{13} -9.24264 q^{15} +(-2.91421 - 5.04757i) q^{17} +(-1.79289 + 3.10538i) q^{19} +(1.62132 - 2.80821i) q^{23} +(-4.82843 - 8.36308i) q^{25} -0.414214 q^{27} +2.82843 q^{29} +(-4.20711 - 7.28692i) q^{31} +(0.500000 - 0.866025i) q^{33} +(1.32843 - 2.30090i) q^{37} +(-3.41421 - 5.91359i) q^{39} +1.17157 q^{41} +1.65685 q^{43} +(5.41421 + 9.37769i) q^{45} +(-3.79289 + 6.56948i) q^{47} +(-7.03553 + 12.1859i) q^{51} +(0.500000 + 0.866025i) q^{53} +1.58579 q^{55} +8.65685 q^{57} +(4.44975 + 7.70719i) q^{59} +(-1.32843 + 2.30090i) q^{61} +(5.41421 - 9.37769i) q^{65} +(-5.62132 - 9.73641i) q^{67} -7.82843 q^{69} -2.34315 q^{71} +(-1.67157 - 2.89525i) q^{73} +(-11.6569 + 20.1903i) q^{75} +(-4.03553 + 6.98975i) q^{79} +(4.74264 + 8.21449i) q^{81} +15.3137 q^{83} -22.3137 q^{85} +(-3.41421 - 5.91359i) q^{87} +(-4.50000 + 7.79423i) q^{89} +(-10.1569 + 17.5922i) q^{93} +(6.86396 + 11.8887i) q^{95} +6.82843 q^{97} -1.17157 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} + 2 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{3} + 2 q^{5} - 2 q^{11} - 20 q^{15} - 6 q^{17} - 10 q^{19} - 2 q^{23} - 8 q^{25} + 4 q^{27} - 14 q^{31} + 2 q^{33} - 6 q^{37} - 8 q^{39} + 16 q^{41} - 16 q^{43} + 16 q^{45} - 18 q^{47} - 14 q^{51} + 2 q^{53} + 12 q^{55} + 12 q^{57} - 2 q^{59} + 6 q^{61} + 16 q^{65} - 14 q^{67} - 20 q^{69} - 32 q^{71} - 18 q^{73} - 24 q^{75} - 2 q^{79} + 2 q^{81} + 16 q^{83} - 44 q^{85} - 8 q^{87} - 18 q^{89} - 18 q^{93} + 2 q^{95} + 16 q^{97} - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1568\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(1471\) \(1473\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.20711 2.09077i −0.696923 1.20711i −0.969528 0.244981i \(-0.921218\pi\)
0.272605 0.962126i \(-0.412115\pi\)
\(4\) 0 0
\(5\) 1.91421 3.31552i 0.856062 1.48274i −0.0195936 0.999808i \(-0.506237\pi\)
0.875656 0.482935i \(-0.160429\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −1.41421 + 2.44949i −0.471405 + 0.816497i
\(10\) 0 0
\(11\) 0.207107 + 0.358719i 0.0624450 + 0.108158i 0.895558 0.444945i \(-0.146777\pi\)
−0.833113 + 0.553103i \(0.813444\pi\)
\(12\) 0 0
\(13\) 2.82843 0.784465 0.392232 0.919866i \(-0.371703\pi\)
0.392232 + 0.919866i \(0.371703\pi\)
\(14\) 0 0
\(15\) −9.24264 −2.38644
\(16\) 0 0
\(17\) −2.91421 5.04757i −0.706801 1.22421i −0.966038 0.258401i \(-0.916804\pi\)
0.259237 0.965814i \(-0.416529\pi\)
\(18\) 0 0
\(19\) −1.79289 + 3.10538i −0.411318 + 0.712424i −0.995034 0.0995342i \(-0.968265\pi\)
0.583716 + 0.811958i \(0.301598\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.62132 2.80821i 0.338069 0.585552i −0.646001 0.763337i \(-0.723560\pi\)
0.984069 + 0.177785i \(0.0568931\pi\)
\(24\) 0 0
\(25\) −4.82843 8.36308i −0.965685 1.67262i
\(26\) 0 0
\(27\) −0.414214 −0.0797154
\(28\) 0 0
\(29\) 2.82843 0.525226 0.262613 0.964901i \(-0.415416\pi\)
0.262613 + 0.964901i \(0.415416\pi\)
\(30\) 0 0
\(31\) −4.20711 7.28692i −0.755619 1.30877i −0.945066 0.326879i \(-0.894003\pi\)
0.189447 0.981891i \(-0.439330\pi\)
\(32\) 0 0
\(33\) 0.500000 0.866025i 0.0870388 0.150756i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.32843 2.30090i 0.218392 0.378266i −0.735924 0.677064i \(-0.763252\pi\)
0.954317 + 0.298797i \(0.0965855\pi\)
\(38\) 0 0
\(39\) −3.41421 5.91359i −0.546712 0.946932i
\(40\) 0 0
\(41\) 1.17157 0.182969 0.0914845 0.995807i \(-0.470839\pi\)
0.0914845 + 0.995807i \(0.470839\pi\)
\(42\) 0 0
\(43\) 1.65685 0.252668 0.126334 0.991988i \(-0.459679\pi\)
0.126334 + 0.991988i \(0.459679\pi\)
\(44\) 0 0
\(45\) 5.41421 + 9.37769i 0.807103 + 1.39794i
\(46\) 0 0
\(47\) −3.79289 + 6.56948i −0.553250 + 0.958258i 0.444787 + 0.895636i \(0.353279\pi\)
−0.998037 + 0.0626213i \(0.980054\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −7.03553 + 12.1859i −0.985172 + 1.70637i
\(52\) 0 0
\(53\) 0.500000 + 0.866025i 0.0686803 + 0.118958i 0.898321 0.439340i \(-0.144788\pi\)
−0.829640 + 0.558298i \(0.811454\pi\)
\(54\) 0 0
\(55\) 1.58579 0.213827
\(56\) 0 0
\(57\) 8.65685 1.14663
\(58\) 0 0
\(59\) 4.44975 + 7.70719i 0.579308 + 1.00339i 0.995559 + 0.0941408i \(0.0300104\pi\)
−0.416251 + 0.909250i \(0.636656\pi\)
\(60\) 0 0
\(61\) −1.32843 + 2.30090i −0.170088 + 0.294600i −0.938450 0.345414i \(-0.887738\pi\)
0.768363 + 0.640015i \(0.221072\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 5.41421 9.37769i 0.671551 1.16316i
\(66\) 0 0
\(67\) −5.62132 9.73641i −0.686754 1.18949i −0.972882 0.231301i \(-0.925702\pi\)
0.286129 0.958191i \(-0.407632\pi\)
\(68\) 0 0
\(69\) −7.82843 −0.942432
\(70\) 0 0
\(71\) −2.34315 −0.278080 −0.139040 0.990287i \(-0.544402\pi\)
−0.139040 + 0.990287i \(0.544402\pi\)
\(72\) 0 0
\(73\) −1.67157 2.89525i −0.195643 0.338863i 0.751468 0.659769i \(-0.229346\pi\)
−0.947111 + 0.320906i \(0.896013\pi\)
\(74\) 0 0
\(75\) −11.6569 + 20.1903i −1.34602 + 2.33137i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −4.03553 + 6.98975i −0.454033 + 0.786408i −0.998632 0.0522883i \(-0.983349\pi\)
0.544599 + 0.838697i \(0.316682\pi\)
\(80\) 0 0
\(81\) 4.74264 + 8.21449i 0.526960 + 0.912722i
\(82\) 0 0
\(83\) 15.3137 1.68090 0.840449 0.541891i \(-0.182291\pi\)
0.840449 + 0.541891i \(0.182291\pi\)
\(84\) 0 0
\(85\) −22.3137 −2.42026
\(86\) 0 0
\(87\) −3.41421 5.91359i −0.366042 0.634004i
\(88\) 0 0
\(89\) −4.50000 + 7.79423i −0.476999 + 0.826187i −0.999653 0.0263586i \(-0.991609\pi\)
0.522654 + 0.852545i \(0.324942\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −10.1569 + 17.5922i −1.05322 + 1.82422i
\(94\) 0 0
\(95\) 6.86396 + 11.8887i 0.704228 + 1.21976i
\(96\) 0 0
\(97\) 6.82843 0.693322 0.346661 0.937991i \(-0.387315\pi\)
0.346661 + 0.937991i \(0.387315\pi\)
\(98\) 0 0
\(99\) −1.17157 −0.117748
\(100\) 0 0
\(101\) −1.74264 3.01834i −0.173399 0.300336i 0.766207 0.642594i \(-0.222142\pi\)
−0.939606 + 0.342258i \(0.888808\pi\)
\(102\) 0 0
\(103\) −2.79289 + 4.83743i −0.275192 + 0.476646i −0.970184 0.242371i \(-0.922075\pi\)
0.694992 + 0.719018i \(0.255408\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.44975 5.97514i 0.333500 0.577638i −0.649696 0.760194i \(-0.725104\pi\)
0.983195 + 0.182556i \(0.0584371\pi\)
\(108\) 0 0
\(109\) 6.91421 + 11.9758i 0.662262 + 1.14707i 0.980020 + 0.198899i \(0.0637366\pi\)
−0.317758 + 0.948172i \(0.602930\pi\)
\(110\) 0 0
\(111\) −6.41421 −0.608810
\(112\) 0 0
\(113\) −10.1421 −0.954092 −0.477046 0.878878i \(-0.658292\pi\)
−0.477046 + 0.878878i \(0.658292\pi\)
\(114\) 0 0
\(115\) −6.20711 10.7510i −0.578816 1.00254i
\(116\) 0 0
\(117\) −4.00000 + 6.92820i −0.369800 + 0.640513i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.41421 9.37769i 0.492201 0.852518i
\(122\) 0 0
\(123\) −1.41421 2.44949i −0.127515 0.220863i
\(124\) 0 0
\(125\) −17.8284 −1.59462
\(126\) 0 0
\(127\) −5.65685 −0.501965 −0.250982 0.967992i \(-0.580754\pi\)
−0.250982 + 0.967992i \(0.580754\pi\)
\(128\) 0 0
\(129\) −2.00000 3.46410i −0.176090 0.304997i
\(130\) 0 0
\(131\) 8.86396 15.3528i 0.774448 1.34138i −0.160656 0.987010i \(-0.551361\pi\)
0.935104 0.354373i \(-0.115306\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −0.792893 + 1.37333i −0.0682414 + 0.118198i
\(136\) 0 0
\(137\) 8.57107 + 14.8455i 0.732276 + 1.26834i 0.955908 + 0.293665i \(0.0948751\pi\)
−0.223633 + 0.974674i \(0.571792\pi\)
\(138\) 0 0
\(139\) −7.31371 −0.620341 −0.310170 0.950681i \(-0.600386\pi\)
−0.310170 + 0.950681i \(0.600386\pi\)
\(140\) 0 0
\(141\) 18.3137 1.54229
\(142\) 0 0
\(143\) 0.585786 + 1.01461i 0.0489859 + 0.0848461i
\(144\) 0 0
\(145\) 5.41421 9.37769i 0.449626 0.778775i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −5.91421 + 10.2437i −0.484511 + 0.839198i −0.999842 0.0177935i \(-0.994336\pi\)
0.515330 + 0.856992i \(0.327669\pi\)
\(150\) 0 0
\(151\) −9.44975 16.3674i −0.769010 1.33196i −0.938101 0.346363i \(-0.887417\pi\)
0.169091 0.985600i \(-0.445917\pi\)
\(152\) 0 0
\(153\) 16.4853 1.33276
\(154\) 0 0
\(155\) −32.2132 −2.58743
\(156\) 0 0
\(157\) 10.3284 + 17.8894i 0.824298 + 1.42773i 0.902454 + 0.430785i \(0.141763\pi\)
−0.0781562 + 0.996941i \(0.524903\pi\)
\(158\) 0 0
\(159\) 1.20711 2.09077i 0.0957298 0.165809i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 7.62132 13.2005i 0.596948 1.03394i −0.396321 0.918112i \(-0.629713\pi\)
0.993269 0.115832i \(-0.0369534\pi\)
\(164\) 0 0
\(165\) −1.91421 3.31552i −0.149021 0.258113i
\(166\) 0 0
\(167\) 2.00000 0.154765 0.0773823 0.997001i \(-0.475344\pi\)
0.0773823 + 0.997001i \(0.475344\pi\)
\(168\) 0 0
\(169\) −5.00000 −0.384615
\(170\) 0 0
\(171\) −5.07107 8.78335i −0.387794 0.671679i
\(172\) 0 0
\(173\) 5.50000 9.52628i 0.418157 0.724270i −0.577597 0.816322i \(-0.696009\pi\)
0.995754 + 0.0920525i \(0.0293428\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 10.7426 18.6068i 0.807466 1.39857i
\(178\) 0 0
\(179\) 4.20711 + 7.28692i 0.314454 + 0.544650i 0.979321 0.202311i \(-0.0648453\pi\)
−0.664867 + 0.746961i \(0.731512\pi\)
\(180\) 0 0
\(181\) −13.3137 −0.989600 −0.494800 0.869007i \(-0.664759\pi\)
−0.494800 + 0.869007i \(0.664759\pi\)
\(182\) 0 0
\(183\) 6.41421 0.474152
\(184\) 0 0
\(185\) −5.08579 8.80884i −0.373914 0.647639i
\(186\) 0 0
\(187\) 1.20711 2.09077i 0.0882724 0.152892i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 5.44975 9.43924i 0.394330 0.682999i −0.598686 0.800984i \(-0.704310\pi\)
0.993015 + 0.117985i \(0.0376434\pi\)
\(192\) 0 0
\(193\) −9.57107 16.5776i −0.688941 1.19328i −0.972181 0.234231i \(-0.924743\pi\)
0.283240 0.959049i \(-0.408591\pi\)
\(194\) 0 0
\(195\) −26.1421 −1.87208
\(196\) 0 0
\(197\) −13.1716 −0.938436 −0.469218 0.883082i \(-0.655464\pi\)
−0.469218 + 0.883082i \(0.655464\pi\)
\(198\) 0 0
\(199\) −1.37868 2.38794i −0.0977320 0.169277i 0.813014 0.582245i \(-0.197825\pi\)
−0.910746 + 0.412968i \(0.864492\pi\)
\(200\) 0 0
\(201\) −13.5711 + 23.5058i −0.957229 + 1.65797i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 2.24264 3.88437i 0.156633 0.271296i
\(206\) 0 0
\(207\) 4.58579 + 7.94282i 0.318734 + 0.552064i
\(208\) 0 0
\(209\) −1.48528 −0.102739
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) 0 0
\(213\) 2.82843 + 4.89898i 0.193801 + 0.335673i
\(214\) 0 0
\(215\) 3.17157 5.49333i 0.216299 0.374642i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −4.03553 + 6.98975i −0.272696 + 0.472324i
\(220\) 0 0
\(221\) −8.24264 14.2767i −0.554460 0.960353i
\(222\) 0 0
\(223\) 13.6569 0.914531 0.457265 0.889330i \(-0.348829\pi\)
0.457265 + 0.889330i \(0.348829\pi\)
\(224\) 0 0
\(225\) 27.3137 1.82091
\(226\) 0 0
\(227\) 0.964466 + 1.67050i 0.0640139 + 0.110875i 0.896256 0.443537i \(-0.146276\pi\)
−0.832242 + 0.554412i \(0.812943\pi\)
\(228\) 0 0
\(229\) −4.91421 + 8.51167i −0.324740 + 0.562467i −0.981460 0.191668i \(-0.938610\pi\)
0.656719 + 0.754135i \(0.271944\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3.91421 + 6.77962i −0.256429 + 0.444147i −0.965283 0.261208i \(-0.915879\pi\)
0.708854 + 0.705355i \(0.249213\pi\)
\(234\) 0 0
\(235\) 14.5208 + 25.1508i 0.947234 + 1.64066i
\(236\) 0 0
\(237\) 19.4853 1.26571
\(238\) 0 0
\(239\) 21.3137 1.37867 0.689335 0.724443i \(-0.257903\pi\)
0.689335 + 0.724443i \(0.257903\pi\)
\(240\) 0 0
\(241\) −6.15685 10.6640i −0.396598 0.686928i 0.596706 0.802460i \(-0.296476\pi\)
−0.993304 + 0.115532i \(0.963143\pi\)
\(242\) 0 0
\(243\) 10.8284 18.7554i 0.694644 1.20316i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −5.07107 + 8.78335i −0.322664 + 0.558871i
\(248\) 0 0
\(249\) −18.4853 32.0174i −1.17146 2.02902i
\(250\) 0 0
\(251\) 2.97056 0.187500 0.0937501 0.995596i \(-0.470115\pi\)
0.0937501 + 0.995596i \(0.470115\pi\)
\(252\) 0 0
\(253\) 1.34315 0.0844428
\(254\) 0 0
\(255\) 26.9350 + 46.6528i 1.68674 + 2.92151i
\(256\) 0 0
\(257\) 10.7426 18.6068i 0.670108 1.16066i −0.307766 0.951462i \(-0.599581\pi\)
0.977873 0.209198i \(-0.0670854\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −4.00000 + 6.92820i −0.247594 + 0.428845i
\(262\) 0 0
\(263\) −4.44975 7.70719i −0.274383 0.475246i 0.695596 0.718433i \(-0.255140\pi\)
−0.969979 + 0.243187i \(0.921807\pi\)
\(264\) 0 0
\(265\) 3.82843 0.235178
\(266\) 0 0
\(267\) 21.7279 1.32973
\(268\) 0 0
\(269\) 0.671573 + 1.16320i 0.0409465 + 0.0709215i 0.885772 0.464120i \(-0.153629\pi\)
−0.844826 + 0.535041i \(0.820296\pi\)
\(270\) 0 0
\(271\) −6.10660 + 10.5769i −0.370950 + 0.642504i −0.989712 0.143075i \(-0.954301\pi\)
0.618762 + 0.785578i \(0.287634\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.00000 3.46410i 0.120605 0.208893i
\(276\) 0 0
\(277\) 6.15685 + 10.6640i 0.369930 + 0.640737i 0.989554 0.144162i \(-0.0460485\pi\)
−0.619625 + 0.784898i \(0.712715\pi\)
\(278\) 0 0
\(279\) 23.7990 1.42481
\(280\) 0 0
\(281\) 4.48528 0.267569 0.133785 0.991010i \(-0.457287\pi\)
0.133785 + 0.991010i \(0.457287\pi\)
\(282\) 0 0
\(283\) −4.20711 7.28692i −0.250087 0.433163i 0.713463 0.700693i \(-0.247126\pi\)
−0.963549 + 0.267530i \(0.913792\pi\)
\(284\) 0 0
\(285\) 16.5711 28.7019i 0.981585 1.70016i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −8.48528 + 14.6969i −0.499134 + 0.864526i
\(290\) 0 0
\(291\) −8.24264 14.2767i −0.483192 0.836913i
\(292\) 0 0
\(293\) 16.6274 0.971384 0.485692 0.874130i \(-0.338568\pi\)
0.485692 + 0.874130i \(0.338568\pi\)
\(294\) 0 0
\(295\) 34.0711 1.98369
\(296\) 0 0
\(297\) −0.0857864 0.148586i −0.00497783 0.00862186i
\(298\) 0 0
\(299\) 4.58579 7.94282i 0.265203 0.459345i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −4.20711 + 7.28692i −0.241692 + 0.418623i
\(304\) 0 0
\(305\) 5.08579 + 8.80884i 0.291211 + 0.504393i
\(306\) 0 0
\(307\) 25.6569 1.46431 0.732157 0.681136i \(-0.238514\pi\)
0.732157 + 0.681136i \(0.238514\pi\)
\(308\) 0 0
\(309\) 13.4853 0.767151
\(310\) 0 0
\(311\) 13.6213 + 23.5928i 0.772394 + 1.33783i 0.936247 + 0.351341i \(0.114274\pi\)
−0.163853 + 0.986485i \(0.552392\pi\)
\(312\) 0 0
\(313\) 13.6421 23.6289i 0.771099 1.33558i −0.165862 0.986149i \(-0.553041\pi\)
0.936961 0.349434i \(-0.113626\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 16.1569 27.9845i 0.907459 1.57177i 0.0898778 0.995953i \(-0.471352\pi\)
0.817582 0.575813i \(-0.195314\pi\)
\(318\) 0 0
\(319\) 0.585786 + 1.01461i 0.0327977 + 0.0568074i
\(320\) 0 0
\(321\) −16.6569 −0.929695
\(322\) 0 0
\(323\) 20.8995 1.16288
\(324\) 0 0
\(325\) −13.6569 23.6544i −0.757546 1.31211i
\(326\) 0 0
\(327\) 16.6924 28.9121i 0.923091 1.59884i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 12.7929 22.1579i 0.703161 1.21791i −0.264190 0.964471i \(-0.585105\pi\)
0.967351 0.253440i \(-0.0815620\pi\)
\(332\) 0 0
\(333\) 3.75736 + 6.50794i 0.205902 + 0.356633i
\(334\) 0 0
\(335\) −43.0416 −2.35162
\(336\) 0 0
\(337\) 14.8284 0.807756 0.403878 0.914813i \(-0.367662\pi\)
0.403878 + 0.914813i \(0.367662\pi\)
\(338\) 0 0
\(339\) 12.2426 + 21.2049i 0.664929 + 1.15169i
\(340\) 0 0
\(341\) 1.74264 3.01834i 0.0943693 0.163452i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −14.9853 + 25.9553i −0.806780 + 1.39738i
\(346\) 0 0
\(347\) 7.55025 + 13.0774i 0.405319 + 0.702033i 0.994359 0.106071i \(-0.0338272\pi\)
−0.589040 + 0.808104i \(0.700494\pi\)
\(348\) 0 0
\(349\) −10.8284 −0.579632 −0.289816 0.957082i \(-0.593594\pi\)
−0.289816 + 0.957082i \(0.593594\pi\)
\(350\) 0 0
\(351\) −1.17157 −0.0625339
\(352\) 0 0
\(353\) 3.91421 + 6.77962i 0.208333 + 0.360843i 0.951189 0.308608i \(-0.0998630\pi\)
−0.742857 + 0.669450i \(0.766530\pi\)
\(354\) 0 0
\(355\) −4.48528 + 7.76874i −0.238054 + 0.412322i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −12.6924 + 21.9839i −0.669879 + 1.16026i 0.308059 + 0.951367i \(0.400321\pi\)
−0.977938 + 0.208897i \(0.933013\pi\)
\(360\) 0 0
\(361\) 3.07107 + 5.31925i 0.161635 + 0.279960i
\(362\) 0 0
\(363\) −26.1421 −1.37211
\(364\) 0 0
\(365\) −12.7990 −0.669930
\(366\) 0 0
\(367\) −14.8640 25.7451i −0.775892 1.34389i −0.934292 0.356510i \(-0.883967\pi\)
0.158399 0.987375i \(-0.449367\pi\)
\(368\) 0 0
\(369\) −1.65685 + 2.86976i −0.0862524 + 0.149394i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −7.15685 + 12.3960i −0.370568 + 0.641842i −0.989653 0.143482i \(-0.954170\pi\)
0.619085 + 0.785324i \(0.287504\pi\)
\(374\) 0 0
\(375\) 21.5208 + 37.2751i 1.11133 + 1.92488i
\(376\) 0 0
\(377\) 8.00000 0.412021
\(378\) 0 0
\(379\) 1.02944 0.0528786 0.0264393 0.999650i \(-0.491583\pi\)
0.0264393 + 0.999650i \(0.491583\pi\)
\(380\) 0 0
\(381\) 6.82843 + 11.8272i 0.349831 + 0.605925i
\(382\) 0 0
\(383\) 1.37868 2.38794i 0.0704472 0.122018i −0.828650 0.559767i \(-0.810891\pi\)
0.899097 + 0.437749i \(0.144224\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −2.34315 + 4.05845i −0.119109 + 0.206302i
\(388\) 0 0
\(389\) −11.9142 20.6360i −0.604075 1.04629i −0.992197 0.124680i \(-0.960210\pi\)
0.388122 0.921608i \(-0.373124\pi\)
\(390\) 0 0
\(391\) −18.8995 −0.955789
\(392\) 0 0
\(393\) −42.7990 −2.15892
\(394\) 0 0
\(395\) 15.4497 + 26.7597i 0.777361 + 1.34643i
\(396\) 0 0
\(397\) −4.91421 + 8.51167i −0.246637 + 0.427188i −0.962591 0.270960i \(-0.912659\pi\)
0.715953 + 0.698148i \(0.245992\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.08579 + 1.88064i −0.0542216 + 0.0939145i −0.891862 0.452307i \(-0.850601\pi\)
0.837641 + 0.546222i \(0.183934\pi\)
\(402\) 0 0
\(403\) −11.8995 20.6105i −0.592756 1.02668i
\(404\) 0 0
\(405\) 36.3137 1.80444
\(406\) 0 0
\(407\) 1.10051 0.0545500
\(408\) 0 0
\(409\) −18.2279 31.5717i −0.901313 1.56112i −0.825792 0.563975i \(-0.809271\pi\)
−0.0755210 0.997144i \(-0.524062\pi\)
\(410\) 0 0
\(411\) 20.6924 35.8403i 1.02068 1.76787i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 29.3137 50.7728i 1.43895 2.49234i
\(416\) 0 0
\(417\) 8.82843 + 15.2913i 0.432330 + 0.748817i
\(418\) 0 0
\(419\) −1.65685 −0.0809426 −0.0404713 0.999181i \(-0.512886\pi\)
−0.0404713 + 0.999181i \(0.512886\pi\)
\(420\) 0 0
\(421\) 0.485281 0.0236512 0.0118256 0.999930i \(-0.496236\pi\)
0.0118256 + 0.999930i \(0.496236\pi\)
\(422\) 0 0
\(423\) −10.7279 18.5813i −0.521609 0.903454i
\(424\) 0 0
\(425\) −28.1421 + 48.7436i −1.36509 + 2.36441i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 1.41421 2.44949i 0.0682789 0.118262i
\(430\) 0 0
\(431\) −10.6213 18.3967i −0.511611 0.886136i −0.999909 0.0134595i \(-0.995716\pi\)
0.488298 0.872677i \(-0.337618\pi\)
\(432\) 0 0
\(433\) −28.4853 −1.36892 −0.684458 0.729053i \(-0.739961\pi\)
−0.684458 + 0.729053i \(0.739961\pi\)
\(434\) 0 0
\(435\) −26.1421 −1.25342
\(436\) 0 0
\(437\) 5.81371 + 10.0696i 0.278107 + 0.481696i
\(438\) 0 0
\(439\) 18.3492 31.7818i 0.875762 1.51686i 0.0198123 0.999804i \(-0.493693\pi\)
0.855949 0.517060i \(-0.172974\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −13.0355 + 22.5782i −0.619337 + 1.07272i 0.370270 + 0.928924i \(0.379265\pi\)
−0.989607 + 0.143799i \(0.954068\pi\)
\(444\) 0 0
\(445\) 17.2279 + 29.8396i 0.816682 + 1.41453i
\(446\) 0 0
\(447\) 28.5563 1.35067
\(448\) 0 0
\(449\) 6.82843 0.322253 0.161127 0.986934i \(-0.448487\pi\)
0.161127 + 0.986934i \(0.448487\pi\)
\(450\) 0 0
\(451\) 0.242641 + 0.420266i 0.0114255 + 0.0197896i
\(452\) 0 0
\(453\) −22.8137 + 39.5145i −1.07188 + 1.85655i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 18.6421 32.2891i 0.872042 1.51042i 0.0121619 0.999926i \(-0.496129\pi\)
0.859880 0.510496i \(-0.170538\pi\)
\(458\) 0 0
\(459\) 1.20711 + 2.09077i 0.0563429 + 0.0975888i
\(460\) 0 0
\(461\) −25.4558 −1.18560 −0.592798 0.805351i \(-0.701977\pi\)
−0.592798 + 0.805351i \(0.701977\pi\)
\(462\) 0 0
\(463\) −11.3137 −0.525793 −0.262896 0.964824i \(-0.584678\pi\)
−0.262896 + 0.964824i \(0.584678\pi\)
\(464\) 0 0
\(465\) 38.8848 + 67.3504i 1.80324 + 3.12330i
\(466\) 0 0
\(467\) −9.27817 + 16.0703i −0.429343 + 0.743643i −0.996815 0.0797491i \(-0.974588\pi\)
0.567472 + 0.823393i \(0.307921\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 24.9350 43.1887i 1.14895 1.99003i
\(472\) 0 0
\(473\) 0.343146 + 0.594346i 0.0157779 + 0.0273281i
\(474\) 0 0
\(475\) 34.6274 1.58881
\(476\) 0 0
\(477\) −2.82843 −0.129505
\(478\) 0 0
\(479\) −15.3492 26.5857i −0.701325 1.21473i −0.968002 0.250944i \(-0.919259\pi\)
0.266677 0.963786i \(-0.414074\pi\)
\(480\) 0 0
\(481\) 3.75736 6.50794i 0.171321 0.296736i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 13.0711 22.6398i 0.593527 1.02802i
\(486\) 0 0
\(487\) 6.86396 + 11.8887i 0.311036 + 0.538730i 0.978587 0.205834i \(-0.0659908\pi\)
−0.667551 + 0.744564i \(0.732657\pi\)
\(488\) 0 0
\(489\) −36.7990 −1.66411
\(490\) 0 0
\(491\) 7.65685 0.345549 0.172774 0.984961i \(-0.444727\pi\)
0.172774 + 0.984961i \(0.444727\pi\)
\(492\) 0 0
\(493\) −8.24264 14.2767i −0.371230 0.642989i
\(494\) 0 0
\(495\) −2.24264 + 3.88437i −0.100799 + 0.174589i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 13.2782 22.9985i 0.594413 1.02955i −0.399217 0.916857i \(-0.630718\pi\)
0.993629 0.112696i \(-0.0359488\pi\)
\(500\) 0 0
\(501\) −2.41421 4.18154i −0.107859 0.186817i
\(502\) 0 0
\(503\) −21.6569 −0.965631 −0.482816 0.875722i \(-0.660386\pi\)
−0.482816 + 0.875722i \(0.660386\pi\)
\(504\) 0 0
\(505\) −13.3431 −0.593762
\(506\) 0 0
\(507\) 6.03553 + 10.4539i 0.268047 + 0.464272i
\(508\) 0 0
\(509\) 12.2574 21.2304i 0.543298 0.941020i −0.455414 0.890280i \(-0.650509\pi\)
0.998712 0.0507398i \(-0.0161579\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0.742641 1.28629i 0.0327884 0.0567912i
\(514\) 0 0
\(515\) 10.6924 + 18.5198i 0.471163 + 0.816078i
\(516\) 0 0
\(517\) −3.14214 −0.138191
\(518\) 0 0
\(519\) −26.5563 −1.16569
\(520\) 0 0
\(521\) 3.50000 + 6.06218i 0.153338 + 0.265589i 0.932453 0.361293i \(-0.117664\pi\)
−0.779115 + 0.626881i \(0.784331\pi\)
\(522\) 0 0
\(523\) 3.86396 6.69258i 0.168959 0.292646i −0.769095 0.639134i \(-0.779293\pi\)
0.938054 + 0.346489i \(0.112626\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −24.5208 + 42.4713i −1.06814 + 1.85008i
\(528\) 0 0
\(529\) 6.24264 + 10.8126i 0.271419 + 0.470112i
\(530\) 0 0
\(531\) −25.1716 −1.09235
\(532\) 0 0
\(533\) 3.31371 0.143533
\(534\) 0 0
\(535\) −13.2071 22.8754i −0.570993 0.988989i
\(536\) 0 0
\(537\) 10.1569 17.5922i 0.438301 0.759159i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 10.0858 17.4691i 0.433622 0.751055i −0.563560 0.826075i \(-0.690569\pi\)
0.997182 + 0.0750200i \(0.0239021\pi\)
\(542\) 0 0
\(543\) 16.0711 + 27.8359i 0.689676 + 1.19455i
\(544\) 0 0
\(545\) 52.9411 2.26775
\(546\) 0 0
\(547\) 22.9706 0.982150 0.491075 0.871117i \(-0.336604\pi\)
0.491075 + 0.871117i \(0.336604\pi\)
\(548\) 0 0
\(549\) −3.75736 6.50794i −0.160360 0.277752i
\(550\) 0 0
\(551\) −5.07107 + 8.78335i −0.216035 + 0.374183i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −12.2782 + 21.2664i −0.521179 + 0.902709i
\(556\) 0 0
\(557\) 2.91421 + 5.04757i 0.123479 + 0.213872i 0.921137 0.389237i \(-0.127261\pi\)
−0.797658 + 0.603110i \(0.793928\pi\)
\(558\) 0 0
\(559\) 4.68629 0.198209
\(560\) 0 0
\(561\) −5.82843 −0.246076
\(562\) 0 0
\(563\) −0.0355339 0.0615465i −0.00149758 0.00259388i 0.865276 0.501296i \(-0.167143\pi\)
−0.866773 + 0.498703i \(0.833810\pi\)
\(564\) 0 0
\(565\) −19.4142 + 33.6264i −0.816762 + 1.41467i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −12.6716 + 21.9478i −0.531220 + 0.920100i 0.468116 + 0.883667i \(0.344933\pi\)
−0.999336 + 0.0364330i \(0.988400\pi\)
\(570\) 0 0
\(571\) −7.79289 13.4977i −0.326122 0.564861i 0.655616 0.755094i \(-0.272409\pi\)
−0.981739 + 0.190233i \(0.939076\pi\)
\(572\) 0 0
\(573\) −26.3137 −1.09927
\(574\) 0 0
\(575\) −31.3137 −1.30587
\(576\) 0 0
\(577\) 19.5000 + 33.7750i 0.811796 + 1.40607i 0.911606 + 0.411065i \(0.134843\pi\)
−0.0998105 + 0.995006i \(0.531824\pi\)
\(578\) 0 0
\(579\) −23.1066 + 40.0218i −0.960278 + 1.66325i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −0.207107 + 0.358719i −0.00857749 + 0.0148566i
\(584\) 0 0
\(585\) 15.3137 + 26.5241i 0.633144 + 1.09664i
\(586\) 0 0
\(587\) −4.97056 −0.205157 −0.102579 0.994725i \(-0.532709\pi\)
−0.102579 + 0.994725i \(0.532709\pi\)
\(588\) 0 0
\(589\) 30.1716 1.24320
\(590\) 0 0
\(591\) 15.8995 + 27.5387i 0.654018 + 1.13279i
\(592\) 0 0
\(593\) −5.74264 + 9.94655i −0.235822 + 0.408456i −0.959511 0.281670i \(-0.909112\pi\)
0.723689 + 0.690126i \(0.242445\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −3.32843 + 5.76500i −0.136223 + 0.235946i
\(598\) 0 0
\(599\) −8.93503 15.4759i −0.365075 0.632329i 0.623713 0.781654i \(-0.285623\pi\)
−0.988788 + 0.149324i \(0.952290\pi\)
\(600\) 0 0
\(601\) 2.14214 0.0873795 0.0436898 0.999045i \(-0.486089\pi\)
0.0436898 + 0.999045i \(0.486089\pi\)
\(602\) 0 0
\(603\) 31.7990 1.29495
\(604\) 0 0
\(605\) −20.7279 35.9018i −0.842710 1.45962i
\(606\) 0 0
\(607\) 0.692388 1.19925i 0.0281032 0.0486761i −0.851632 0.524141i \(-0.824387\pi\)
0.879735 + 0.475464i \(0.157720\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −10.7279 + 18.5813i −0.434005 + 0.751719i
\(612\) 0 0
\(613\) −10.7426 18.6068i −0.433891 0.751522i 0.563313 0.826243i \(-0.309526\pi\)
−0.997204 + 0.0747219i \(0.976193\pi\)
\(614\) 0 0
\(615\) −10.8284 −0.436644
\(616\) 0 0
\(617\) −43.1127 −1.73565 −0.867826 0.496868i \(-0.834483\pi\)
−0.867826 + 0.496868i \(0.834483\pi\)
\(618\) 0 0
\(619\) −16.0355 27.7744i −0.644523 1.11635i −0.984412 0.175880i \(-0.943723\pi\)
0.339889 0.940466i \(-0.389610\pi\)
\(620\) 0 0
\(621\) −0.671573 + 1.16320i −0.0269493 + 0.0466775i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −9.98528 + 17.2950i −0.399411 + 0.691801i
\(626\) 0 0
\(627\) 1.79289 + 3.10538i 0.0716013 + 0.124017i
\(628\) 0 0
\(629\) −15.4853 −0.617439
\(630\) 0 0
\(631\) −18.3431 −0.730229 −0.365115 0.930963i \(-0.618970\pi\)
−0.365115 + 0.930963i \(0.618970\pi\)
\(632\) 0 0
\(633\) −14.4853 25.0892i −0.575738 0.997208i
\(634\) 0 0
\(635\) −10.8284 + 18.7554i −0.429713 + 0.744285i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 3.31371 5.73951i 0.131088 0.227052i
\(640\) 0 0
\(641\) 8.50000 + 14.7224i 0.335730 + 0.581501i 0.983625 0.180229i \(-0.0576838\pi\)
−0.647895 + 0.761730i \(0.724350\pi\)
\(642\) 0 0
\(643\) 44.9706 1.77347 0.886733 0.462282i \(-0.152969\pi\)
0.886733 + 0.462282i \(0.152969\pi\)
\(644\) 0 0
\(645\) −15.3137 −0.602977
\(646\) 0 0
\(647\) 12.9350 + 22.4041i 0.508528 + 0.880797i 0.999951 + 0.00987597i \(0.00314367\pi\)
−0.491423 + 0.870921i \(0.663523\pi\)
\(648\) 0 0
\(649\) −1.84315 + 3.19242i −0.0723498 + 0.125314i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −14.4706 + 25.0637i −0.566277 + 0.980820i 0.430653 + 0.902518i \(0.358283\pi\)
−0.996930 + 0.0783026i \(0.975050\pi\)
\(654\) 0 0
\(655\) −33.9350 58.7772i −1.32595 2.29662i
\(656\) 0 0
\(657\) 9.45584 0.368908
\(658\) 0 0
\(659\) 10.6274 0.413985 0.206993 0.978342i \(-0.433632\pi\)
0.206993 + 0.978342i \(0.433632\pi\)
\(660\) 0 0
\(661\) −9.67157 16.7517i −0.376181 0.651564i 0.614322 0.789055i \(-0.289429\pi\)
−0.990503 + 0.137491i \(0.956096\pi\)
\(662\) 0 0
\(663\) −19.8995 + 34.4669i −0.772832 + 1.33858i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 4.58579 7.94282i 0.177562 0.307547i
\(668\) 0 0
\(669\) −16.4853 28.5533i −0.637358 1.10394i
\(670\) 0 0
\(671\) −1.10051 −0.0424845
\(672\) 0 0
\(673\) 26.1421 1.00771 0.503853 0.863790i \(-0.331915\pi\)
0.503853 + 0.863790i \(0.331915\pi\)
\(674\) 0 0
\(675\) 2.00000 + 3.46410i 0.0769800 + 0.133333i
\(676\) 0 0
\(677\) 10.3995 18.0125i 0.399685 0.692275i −0.594002 0.804464i \(-0.702453\pi\)
0.993687 + 0.112189i \(0.0357862\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 2.32843 4.03295i 0.0892255 0.154543i
\(682\) 0 0
\(683\) −24.2782 42.0510i −0.928979 1.60904i −0.785034 0.619452i \(-0.787355\pi\)
−0.143944 0.989586i \(-0.545979\pi\)
\(684\) 0 0
\(685\) 65.6274 2.50749
\(686\) 0 0
\(687\) 23.7279 0.905277
\(688\) 0 0
\(689\) 1.41421 + 2.44949i 0.0538772 + 0.0933181i
\(690\) 0 0
\(691\) 10.5208 18.2226i 0.400231 0.693220i −0.593523 0.804817i \(-0.702263\pi\)
0.993754 + 0.111597i \(0.0355967\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −14.0000 + 24.2487i −0.531050 + 0.919806i
\(696\) 0 0
\(697\) −3.41421 5.91359i −0.129323 0.223993i
\(698\) 0 0
\(699\) 18.8995 0.714845
\(700\) 0 0
\(701\) 14.0000 0.528773 0.264386 0.964417i \(-0.414831\pi\)
0.264386 + 0.964417i \(0.414831\pi\)
\(702\) 0 0
\(703\) 4.76346 + 8.25055i 0.179657 + 0.311175i
\(704\) 0 0
\(705\) 35.0563 60.7194i 1.32030 2.28682i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −21.2990 + 36.8909i −0.799900 + 1.38547i 0.119780 + 0.992800i \(0.461781\pi\)
−0.919680 + 0.392668i \(0.871552\pi\)
\(710\) 0 0
\(711\) −11.4142 19.7700i −0.428066 0.741433i
\(712\) 0 0
\(713\) −27.2843 −1.02180
\(714\) 0 0
\(715\) 4.48528 0.167740
\(716\) 0 0
\(717\) −25.7279 44.5621i −0.960827 1.66420i
\(718\) 0 0
\(719\) 8.52082 14.7585i 0.317773 0.550399i −0.662250 0.749283i \(-0.730398\pi\)
0.980023 + 0.198884i \(0.0637317\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −14.8640 + 25.7451i −0.552797 + 0.957472i
\(724\) 0 0
\(725\) −13.6569 23.6544i −0.507203 0.878501i
\(726\) 0 0
\(727\) 45.6569 1.69332 0.846659 0.532135i \(-0.178610\pi\)
0.846659 + 0.532135i \(0.178610\pi\)
\(728\) 0 0
\(729\) −23.8284 −0.882534
\(730\) 0 0
\(731\) −4.82843 8.36308i −0.178586 0.309320i
\(732\) 0 0
\(733\) 23.1569 40.1088i 0.855318 1.48145i −0.0210318 0.999779i \(-0.506695\pi\)
0.876350 0.481675i \(-0.159972\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.32843 4.03295i 0.0857687 0.148556i
\(738\) 0 0
\(739\) 26.3492 + 45.6382i 0.969273 + 1.67883i 0.697669 + 0.716420i \(0.254221\pi\)
0.271603 + 0.962409i \(0.412446\pi\)
\(740\) 0 0
\(741\) 24.4853 0.899489
\(742\) 0 0
\(743\) −37.6569 −1.38150 −0.690748 0.723096i \(-0.742719\pi\)
−0.690748 + 0.723096i \(0.742719\pi\)
\(744\) 0 0
\(745\) 22.6421 + 39.2173i 0.829544 + 1.43681i
\(746\) 0 0
\(747\) −21.6569 + 37.5108i −0.792383 + 1.37245i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −1.86396 + 3.22848i −0.0680169 + 0.117809i −0.898028 0.439938i \(-0.855001\pi\)
0.830011 + 0.557746i \(0.188334\pi\)
\(752\) 0 0
\(753\) −3.58579 6.21076i −0.130673 0.226333i
\(754\) 0 0
\(755\) −72.3553 −2.63328
\(756\) 0 0
\(757\) 22.1421 0.804770 0.402385 0.915471i \(-0.368181\pi\)
0.402385 + 0.915471i \(0.368181\pi\)
\(758\) 0 0
\(759\) −1.62132 2.80821i −0.0588502 0.101932i
\(760\) 0 0
\(761\) 10.0563 17.4181i 0.364542 0.631406i −0.624160 0.781296i \(-0.714559\pi\)
0.988703 + 0.149890i \(0.0478921\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 31.5563 54.6572i 1.14092 1.97614i
\(766\) 0 0
\(767\) 12.5858 + 21.7992i 0.454446 + 0.787124i
\(768\) 0 0
\(769\) −42.1421 −1.51968 −0.759842 0.650108i \(-0.774724\pi\)
−0.759842 + 0.650108i \(0.774724\pi\)
\(770\) 0 0
\(771\) −51.8701 −1.86805
\(772\) 0 0
\(773\) 9.57107 + 16.5776i 0.344247 + 0.596254i 0.985217 0.171313i \(-0.0548008\pi\)
−0.640969 + 0.767566i \(0.721467\pi\)
\(774\) 0 0
\(775\) −40.6274 + 70.3688i −1.45938 + 2.52772i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.10051 + 3.63818i −0.0752584 + 0.130351i
\(780\) 0 0
\(781\) −0.485281 0.840532i −0.0173647 0.0300766i
\(782\) 0 0
\(783\) −1.17157 −0.0418686
\(784\) 0 0
\(785\) 79.0833 2.82260
\(786\) 0 0
\(787\) −1.89340 3.27946i −0.0674924 0.116900i 0.830305 0.557310i \(-0.188166\pi\)
−0.897797 + 0.440410i \(0.854833\pi\)
\(788\) 0 0
\(789\) −10.7426 + 18.6068i −0.382448 + 0.662420i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −3.75736 + 6.50794i −0.133428 + 0.231104i
\(794\) 0 0
\(795\) −4.62132 8.00436i −0.163901 0.283885i
\(796\) 0 0
\(797\) 15.1127 0.535319 0.267660 0.963514i \(-0.413750\pi\)
0.267660 + 0.963514i \(0.413750\pi\)
\(798\) 0 0
\(799\) 44.2132 1.56415
\(800\) 0 0
\(801\) −12.7279 22.0454i −0.449719 0.778936i
\(802\) 0 0
\(803\) 0.692388 1.19925i 0.0244338 0.0423207i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.62132 2.80821i 0.0570732 0.0988536i
\(808\) 0 0
\(809\) −7.98528 13.8309i −0.280748 0.486269i 0.690822 0.723025i \(-0.257249\pi\)
−0.971569 + 0.236756i \(0.923916\pi\)
\(810\) 0 0
\(811\) −6.34315 −0.222738 −0.111369 0.993779i \(-0.535524\pi\)
−0.111369 + 0.993779i \(0.535524\pi\)
\(812\) 0 0
\(813\) 29.4853 1.03409
\(814\) 0 0
\(815\) −29.1777 50.5372i −1.02205 1.77024i
\(816\) 0 0
\(817\) −2.97056 + 5.14517i −0.103927 + 0.180007i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 6.57107 11.3814i 0.229332 0.397214i −0.728278 0.685281i \(-0.759679\pi\)
0.957610 + 0.288067i \(0.0930126\pi\)
\(822\) 0 0
\(823\) 17.0061 + 29.4554i 0.592795 + 1.02675i 0.993854 + 0.110699i \(0.0353090\pi\)
−0.401059 + 0.916052i \(0.631358\pi\)
\(824\) 0 0
\(825\) −9.65685 −0.336209
\(826\) 0 0
\(827\) −30.3431 −1.05513 −0.527567 0.849513i \(-0.676896\pi\)
−0.527567 + 0.849513i \(0.676896\pi\)
\(828\) 0 0
\(829\) 20.3995 + 35.3330i 0.708504 + 1.22716i 0.965412 + 0.260729i \(0.0839628\pi\)
−0.256908 + 0.966436i \(0.582704\pi\)
\(830\) 0 0
\(831\) 14.8640 25.7451i 0.515625 0.893089i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 3.82843 6.63103i 0.132488 0.229476i
\(836\) 0 0
\(837\) 1.74264 + 3.01834i 0.0602345 + 0.104329i
\(838\) 0 0
\(839\) 19.3137 0.666783 0.333392 0.942788i \(-0.391807\pi\)
0.333392 + 0.942788i \(0.391807\pi\)
\(840\) 0 0
\(841\) −21.0000 −0.724138
\(842\) 0 0
\(843\) −5.41421 9.37769i −0.186475 0.322985i
\(844\) 0 0
\(845\) −9.57107 + 16.5776i −0.329255 + 0.570286i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −10.1569 + 17.5922i −0.348582 + 0.603762i
\(850\) 0 0
\(851\) −4.30761 7.46100i −0.147663 0.255760i
\(852\) 0 0
\(853\) 23.5147 0.805129 0.402564 0.915392i \(-0.368119\pi\)
0.402564 + 0.915392i \(0.368119\pi\)
\(854\) 0 0
\(855\) −38.8284 −1.32790
\(856\) 0 0
\(857\) 18.3284 + 31.7458i 0.626087 + 1.08441i 0.988330 + 0.152331i \(0.0486779\pi\)
−0.362242 + 0.932084i \(0.617989\pi\)
\(858\) 0 0
\(859\) −18.2782 + 31.6587i −0.623643 + 1.08018i 0.365158 + 0.930945i \(0.381015\pi\)
−0.988802 + 0.149236i \(0.952318\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.69239 + 2.93130i −0.0576096 + 0.0997827i −0.893392 0.449278i \(-0.851681\pi\)
0.835782 + 0.549061i \(0.185015\pi\)
\(864\) 0 0
\(865\) −21.0563 36.4707i −0.715937 1.24004i
\(866\) 0 0
\(867\) 40.9706 1.39143
\(868\) 0 0
\(869\) −3.34315 −0.113408
\(870\) 0 0
\(871\) −15.8995 27.5387i −0.538734 0.933114i
\(872\) 0 0
\(873\) −9.65685 + 16.7262i −0.326835 + 0.566095i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 16.7132 28.9481i 0.564365 0.977508i −0.432744 0.901517i \(-0.642454\pi\)
0.997108 0.0759915i \(-0.0242122\pi\)
\(878\) 0 0
\(879\) −20.0711 34.7641i −0.676980 1.17256i
\(880\) 0 0
\(881\) 26.0000 0.875962 0.437981 0.898984i \(-0.355694\pi\)
0.437981 + 0.898984i \(0.355694\pi\)
\(882\) 0 0
\(883\) −49.2548 −1.65756 −0.828779 0.559577i \(-0.810964\pi\)
−0.828779 + 0.559577i \(0.810964\pi\)
\(884\) 0 0
\(885\) −41.1274 71.2348i −1.38248 2.39453i
\(886\) 0 0
\(887\) −25.4497 + 44.0803i −0.854519 + 1.48007i 0.0225717 + 0.999745i \(0.492815\pi\)
−0.877091 + 0.480325i \(0.840519\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −1.96447 + 3.40256i −0.0658121 + 0.113990i
\(892\) 0 0
\(893\) −13.6005 23.5568i −0.455124 0.788297i
\(894\) 0 0
\(895\) 32.2132 1.07677
\(896\) 0 0
\(897\) −22.1421 −0.739304
\(898\) 0 0
\(899\) −11.8995 20.6105i −0.396870 0.687400i
\(900\) 0 0
\(901\) 2.91421 5.04757i 0.0970865 0.168159i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −25.4853 + 44.1418i −0.847159 + 1.46732i
\(906\) 0 0
\(907\) −19.7635 34.2313i −0.656235 1.13663i −0.981583 0.191038i \(-0.938815\pi\)
0.325348 0.945594i \(-0.394519\pi\)
\(908\) 0 0
\(909\) 9.85786 0.326965
\(910\) 0 0
\(911\) −8.00000 −0.265052 −0.132526 0.991180i \(-0.542309\pi\)
−0.132526 + 0.991180i \(0.542309\pi\)
\(912\) 0 0
\(913\) 3.17157 + 5.49333i 0.104964 + 0.181803i
\(914\) 0 0
\(915\) 12.2782 21.2664i 0.405904 0.703046i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 12.2782 21.2664i 0.405020 0.701515i −0.589304 0.807911i \(-0.700598\pi\)
0.994324 + 0.106397i \(0.0339314\pi\)
\(920\) 0 0
\(921\) −30.9706 53.6426i −1.02051 1.76758i
\(922\) 0 0
\(923\) −6.62742 −0.218144
\(924\) 0 0
\(925\) −25.6569 −0.843592
\(926\) 0 0
\(927\) −7.89949 13.6823i −0.259453 0.449387i
\(928\) 0 0
\(929\) −15.3284 + 26.5496i −0.502909 + 0.871065i 0.497085 + 0.867702i \(0.334404\pi\)
−0.999994 + 0.00336273i \(0.998930\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 32.8848 56.9581i 1.07660 1.86472i
\(934\) 0 0
\(935\) −4.62132 8.00436i −0.151133 0.261771i
\(936\) 0 0
\(937\) 28.6274 0.935217 0.467608 0.883936i \(-0.345116\pi\)
0.467608 + 0.883936i \(0.345116\pi\)
\(938\) 0 0
\(939\) −65.8701 −2.14959
\(940\) 0 0
\(941\) 26.1274 + 45.2540i 0.851729 + 1.47524i 0.879646 + 0.475628i \(0.157779\pi\)
−0.0279168 + 0.999610i \(0.508887\pi\)
\(942\) 0 0
\(943\) 1.89949 3.29002i 0.0618561 0.107138i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 12.1066 20.9692i 0.393412 0.681409i −0.599485 0.800386i \(-0.704628\pi\)
0.992897 + 0.118977i \(0.0379614\pi\)
\(948\) 0 0
\(949\) −4.72792 8.18900i −0.153475 0.265826i
\(950\) 0 0
\(951\) −78.0122 −2.52972
\(952\) 0 0
\(953\) 35.1127 1.13741 0.568706 0.822541i \(-0.307444\pi\)
0.568706 + 0.822541i \(0.307444\pi\)
\(954\) 0 0
\(955\) −20.8640 36.1374i −0.675142 1.16938i
\(956\) 0 0
\(957\) 1.41421 2.44949i 0.0457150 0.0791808i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −19.8995 + 34.4669i −0.641919 + 1.11184i
\(962\) 0 0
\(963\) 9.75736 + 16.9002i 0.314427 + 0.544603i
\(964\) 0 0
\(965\) −73.2843 −2.35910
\(966\) 0 0
\(967\) 29.6569 0.953700 0.476850 0.878985i \(-0.341778\pi\)
0.476850 + 0.878985i \(0.341778\pi\)
\(968\) 0 0
\(969\) −25.2279 43.6960i −0.810438 1.40372i
\(970\) 0 0
\(971\) 19.2071 33.2677i 0.616385 1.06761i −0.373754 0.927528i \(-0.621930\pi\)
0.990140 0.140083i \(-0.0447370\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −32.9706 + 57.1067i −1.05590 + 1.82888i
\(976\) 0 0
\(977\) 25.7426 + 44.5876i 0.823580 + 1.42648i 0.903000 + 0.429641i \(0.141360\pi\)
−0.0794196 + 0.996841i \(0.525307\pi\)
\(978\) 0 0
\(979\) −3.72792 −0.119145
\(980\) 0 0
\(981\) −39.1127 −1.24877
\(982\) 0 0
\(983\) 30.4203 + 52.6895i 0.970257 + 1.68053i 0.694773 + 0.719229i \(0.255505\pi\)
0.275484 + 0.961306i \(0.411162\pi\)
\(984\) 0 0
\(985\) −25.2132 + 43.6705i −0.803359 + 1.39146i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.68629 4.65279i 0.0854191 0.147950i
\(990\) 0 0
\(991\) 7.34924 + 12.7293i 0.233456 + 0.404358i 0.958823 0.284004i \(-0.0916631\pi\)
−0.725367 + 0.688363i \(0.758330\pi\)
\(992\) 0 0
\(993\) −61.7696 −1.96020
\(994\) 0 0
\(995\) −10.5563 −0.334659
\(996\) 0 0
\(997\) 5.64214 + 9.77247i 0.178688 + 0.309497i 0.941431 0.337204i \(-0.109481\pi\)
−0.762743 + 0.646701i \(0.776148\pi\)
\(998\) 0 0
\(999\) −0.550253 + 0.953065i −0.0174092 + 0.0301537i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1568.2.i.o.961.1 4
4.3 odd 2 1568.2.i.x.961.2 4
7.2 even 3 1568.2.a.u.1.2 2
7.3 odd 6 224.2.i.d.193.2 yes 4
7.4 even 3 inner 1568.2.i.o.1537.1 4
7.5 odd 6 1568.2.a.l.1.1 2
7.6 odd 2 224.2.i.d.65.2 yes 4
21.17 even 6 2016.2.s.s.865.2 4
21.20 even 2 2016.2.s.s.289.2 4
28.3 even 6 224.2.i.a.193.1 yes 4
28.11 odd 6 1568.2.i.x.1537.2 4
28.19 even 6 1568.2.a.w.1.2 2
28.23 odd 6 1568.2.a.j.1.1 2
28.27 even 2 224.2.i.a.65.1 4
56.3 even 6 448.2.i.j.193.2 4
56.5 odd 6 3136.2.a.bw.1.2 2
56.13 odd 2 448.2.i.g.65.1 4
56.19 even 6 3136.2.a.bd.1.1 2
56.27 even 2 448.2.i.j.65.2 4
56.37 even 6 3136.2.a.be.1.1 2
56.45 odd 6 448.2.i.g.193.1 4
56.51 odd 6 3136.2.a.bx.1.2 2
84.59 odd 6 2016.2.s.q.865.2 4
84.83 odd 2 2016.2.s.q.289.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
224.2.i.a.65.1 4 28.27 even 2
224.2.i.a.193.1 yes 4 28.3 even 6
224.2.i.d.65.2 yes 4 7.6 odd 2
224.2.i.d.193.2 yes 4 7.3 odd 6
448.2.i.g.65.1 4 56.13 odd 2
448.2.i.g.193.1 4 56.45 odd 6
448.2.i.j.65.2 4 56.27 even 2
448.2.i.j.193.2 4 56.3 even 6
1568.2.a.j.1.1 2 28.23 odd 6
1568.2.a.l.1.1 2 7.5 odd 6
1568.2.a.u.1.2 2 7.2 even 3
1568.2.a.w.1.2 2 28.19 even 6
1568.2.i.o.961.1 4 1.1 even 1 trivial
1568.2.i.o.1537.1 4 7.4 even 3 inner
1568.2.i.x.961.2 4 4.3 odd 2
1568.2.i.x.1537.2 4 28.11 odd 6
2016.2.s.q.289.2 4 84.83 odd 2
2016.2.s.q.865.2 4 84.59 odd 6
2016.2.s.s.289.2 4 21.20 even 2
2016.2.s.s.865.2 4 21.17 even 6
3136.2.a.bd.1.1 2 56.19 even 6
3136.2.a.be.1.1 2 56.37 even 6
3136.2.a.bw.1.2 2 56.5 odd 6
3136.2.a.bx.1.2 2 56.51 odd 6