Properties

Label 2016.2.s.q.289.2
Level $2016$
Weight $2$
Character 2016.289
Analytic conductor $16.098$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2016,2,Mod(289,2016)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2016, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2016.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2016.s (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.0978410475\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 224)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.2
Root \(0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 2016.289
Dual form 2016.2.s.q.865.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.91421 - 3.31552i) q^{5} +(-1.00000 + 2.44949i) q^{7} +(0.207107 + 0.358719i) q^{11} -2.82843 q^{13} +(-2.91421 - 5.04757i) q^{17} +(-1.79289 + 3.10538i) q^{19} +(1.62132 - 2.80821i) q^{23} +(-4.82843 - 8.36308i) q^{25} -2.82843 q^{29} +(-4.20711 - 7.28692i) q^{31} +(6.20711 + 8.00436i) q^{35} +(1.32843 - 2.30090i) q^{37} +1.17157 q^{41} -1.65685 q^{43} +(3.79289 - 6.56948i) q^{47} +(-5.00000 - 4.89898i) q^{49} +(-0.500000 - 0.866025i) q^{53} +1.58579 q^{55} +(-4.44975 - 7.70719i) q^{59} +(1.32843 - 2.30090i) q^{61} +(-5.41421 + 9.37769i) q^{65} +(5.62132 + 9.73641i) q^{67} -2.34315 q^{71} +(1.67157 + 2.89525i) q^{73} +(-1.08579 + 0.148586i) q^{77} +(4.03553 - 6.98975i) q^{79} -15.3137 q^{83} -22.3137 q^{85} +(-4.50000 + 7.79423i) q^{89} +(2.82843 - 6.92820i) q^{91} +(6.86396 + 11.8887i) q^{95} -6.82843 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{5} - 4 q^{7} - 2 q^{11} - 6 q^{17} - 10 q^{19} - 2 q^{23} - 8 q^{25} - 14 q^{31} + 22 q^{35} - 6 q^{37} + 16 q^{41} + 16 q^{43} + 18 q^{47} - 20 q^{49} - 2 q^{53} + 12 q^{55} + 2 q^{59} - 6 q^{61}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2016\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1765\) \(1793\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.91421 3.31552i 0.856062 1.48274i −0.0195936 0.999808i \(-0.506237\pi\)
0.875656 0.482935i \(-0.160429\pi\)
\(6\) 0 0
\(7\) −1.00000 + 2.44949i −0.377964 + 0.925820i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.207107 + 0.358719i 0.0624450 + 0.108158i 0.895558 0.444945i \(-0.146777\pi\)
−0.833113 + 0.553103i \(0.813444\pi\)
\(12\) 0 0
\(13\) −2.82843 −0.784465 −0.392232 0.919866i \(-0.628297\pi\)
−0.392232 + 0.919866i \(0.628297\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.91421 5.04757i −0.706801 1.22421i −0.966038 0.258401i \(-0.916804\pi\)
0.259237 0.965814i \(-0.416529\pi\)
\(18\) 0 0
\(19\) −1.79289 + 3.10538i −0.411318 + 0.712424i −0.995034 0.0995342i \(-0.968265\pi\)
0.583716 + 0.811958i \(0.301598\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.62132 2.80821i 0.338069 0.585552i −0.646001 0.763337i \(-0.723560\pi\)
0.984069 + 0.177785i \(0.0568931\pi\)
\(24\) 0 0
\(25\) −4.82843 8.36308i −0.965685 1.67262i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.82843 −0.525226 −0.262613 0.964901i \(-0.584584\pi\)
−0.262613 + 0.964901i \(0.584584\pi\)
\(30\) 0 0
\(31\) −4.20711 7.28692i −0.755619 1.30877i −0.945066 0.326879i \(-0.894003\pi\)
0.189447 0.981891i \(-0.439330\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 6.20711 + 8.00436i 1.04919 + 1.35298i
\(36\) 0 0
\(37\) 1.32843 2.30090i 0.218392 0.378266i −0.735924 0.677064i \(-0.763252\pi\)
0.954317 + 0.298797i \(0.0965855\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.17157 0.182969 0.0914845 0.995807i \(-0.470839\pi\)
0.0914845 + 0.995807i \(0.470839\pi\)
\(42\) 0 0
\(43\) −1.65685 −0.252668 −0.126334 0.991988i \(-0.540321\pi\)
−0.126334 + 0.991988i \(0.540321\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.79289 6.56948i 0.553250 0.958258i −0.444787 0.895636i \(-0.646721\pi\)
0.998037 0.0626213i \(-0.0199460\pi\)
\(48\) 0 0
\(49\) −5.00000 4.89898i −0.714286 0.699854i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −0.500000 0.866025i −0.0686803 0.118958i 0.829640 0.558298i \(-0.188546\pi\)
−0.898321 + 0.439340i \(0.855212\pi\)
\(54\) 0 0
\(55\) 1.58579 0.213827
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.44975 7.70719i −0.579308 1.00339i −0.995559 0.0941408i \(-0.969990\pi\)
0.416251 0.909250i \(-0.363344\pi\)
\(60\) 0 0
\(61\) 1.32843 2.30090i 0.170088 0.294600i −0.768363 0.640015i \(-0.778928\pi\)
0.938450 + 0.345414i \(0.112262\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −5.41421 + 9.37769i −0.671551 + 1.16316i
\(66\) 0 0
\(67\) 5.62132 + 9.73641i 0.686754 + 1.18949i 0.972882 + 0.231301i \(0.0742982\pi\)
−0.286129 + 0.958191i \(0.592368\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −2.34315 −0.278080 −0.139040 0.990287i \(-0.544402\pi\)
−0.139040 + 0.990287i \(0.544402\pi\)
\(72\) 0 0
\(73\) 1.67157 + 2.89525i 0.195643 + 0.338863i 0.947111 0.320906i \(-0.103987\pi\)
−0.751468 + 0.659769i \(0.770654\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.08579 + 0.148586i −0.123737 + 0.0169330i
\(78\) 0 0
\(79\) 4.03553 6.98975i 0.454033 0.786408i −0.544599 0.838697i \(-0.683318\pi\)
0.998632 + 0.0522883i \(0.0166515\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −15.3137 −1.68090 −0.840449 0.541891i \(-0.817709\pi\)
−0.840449 + 0.541891i \(0.817709\pi\)
\(84\) 0 0
\(85\) −22.3137 −2.42026
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.50000 + 7.79423i −0.476999 + 0.826187i −0.999653 0.0263586i \(-0.991609\pi\)
0.522654 + 0.852545i \(0.324942\pi\)
\(90\) 0 0
\(91\) 2.82843 6.92820i 0.296500 0.726273i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 6.86396 + 11.8887i 0.704228 + 1.21976i
\(96\) 0 0
\(97\) −6.82843 −0.693322 −0.346661 0.937991i \(-0.612685\pi\)
−0.346661 + 0.937991i \(0.612685\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.74264 3.01834i −0.173399 0.300336i 0.766207 0.642594i \(-0.222142\pi\)
−0.939606 + 0.342258i \(0.888808\pi\)
\(102\) 0 0
\(103\) −2.79289 + 4.83743i −0.275192 + 0.476646i −0.970184 0.242371i \(-0.922075\pi\)
0.694992 + 0.719018i \(0.255408\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.44975 5.97514i 0.333500 0.577638i −0.649696 0.760194i \(-0.725104\pi\)
0.983195 + 0.182556i \(0.0584371\pi\)
\(108\) 0 0
\(109\) 6.91421 + 11.9758i 0.662262 + 1.14707i 0.980020 + 0.198899i \(0.0637366\pi\)
−0.317758 + 0.948172i \(0.602930\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 10.1421 0.954092 0.477046 0.878878i \(-0.341708\pi\)
0.477046 + 0.878878i \(0.341708\pi\)
\(114\) 0 0
\(115\) −6.20711 10.7510i −0.578816 1.00254i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 15.2782 2.09077i 1.40055 0.191661i
\(120\) 0 0
\(121\) 5.41421 9.37769i 0.492201 0.852518i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −17.8284 −1.59462
\(126\) 0 0
\(127\) 5.65685 0.501965 0.250982 0.967992i \(-0.419246\pi\)
0.250982 + 0.967992i \(0.419246\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −8.86396 + 15.3528i −0.774448 + 1.34138i 0.160656 + 0.987010i \(0.448639\pi\)
−0.935104 + 0.354373i \(0.884694\pi\)
\(132\) 0 0
\(133\) −5.81371 7.49706i −0.504112 0.650077i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −8.57107 14.8455i −0.732276 1.26834i −0.955908 0.293665i \(-0.905125\pi\)
0.223633 0.974674i \(-0.428208\pi\)
\(138\) 0 0
\(139\) −7.31371 −0.620341 −0.310170 0.950681i \(-0.600386\pi\)
−0.310170 + 0.950681i \(0.600386\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.585786 1.01461i −0.0489859 0.0848461i
\(144\) 0 0
\(145\) −5.41421 + 9.37769i −0.449626 + 0.778775i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.91421 10.2437i 0.484511 0.839198i −0.515330 0.856992i \(-0.672331\pi\)
0.999842 + 0.0177935i \(0.00566413\pi\)
\(150\) 0 0
\(151\) 9.44975 + 16.3674i 0.769010 + 1.33196i 0.938101 + 0.346363i \(0.112583\pi\)
−0.169091 + 0.985600i \(0.554083\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −32.2132 −2.58743
\(156\) 0 0
\(157\) −10.3284 17.8894i −0.824298 1.42773i −0.902454 0.430785i \(-0.858237\pi\)
0.0781562 0.996941i \(-0.475097\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 5.25736 + 6.77962i 0.414338 + 0.534309i
\(162\) 0 0
\(163\) −7.62132 + 13.2005i −0.596948 + 1.03394i 0.396321 + 0.918112i \(0.370287\pi\)
−0.993269 + 0.115832i \(0.963047\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.00000 −0.154765 −0.0773823 0.997001i \(-0.524656\pi\)
−0.0773823 + 0.997001i \(0.524656\pi\)
\(168\) 0 0
\(169\) −5.00000 −0.384615
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 5.50000 9.52628i 0.418157 0.724270i −0.577597 0.816322i \(-0.696009\pi\)
0.995754 + 0.0920525i \(0.0293428\pi\)
\(174\) 0 0
\(175\) 25.3137 3.46410i 1.91354 0.261861i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.20711 + 7.28692i 0.314454 + 0.544650i 0.979321 0.202311i \(-0.0648453\pi\)
−0.664867 + 0.746961i \(0.731512\pi\)
\(180\) 0 0
\(181\) 13.3137 0.989600 0.494800 0.869007i \(-0.335241\pi\)
0.494800 + 0.869007i \(0.335241\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −5.08579 8.80884i −0.373914 0.647639i
\(186\) 0 0
\(187\) 1.20711 2.09077i 0.0882724 0.152892i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 5.44975 9.43924i 0.394330 0.682999i −0.598686 0.800984i \(-0.704310\pi\)
0.993015 + 0.117985i \(0.0376434\pi\)
\(192\) 0 0
\(193\) −9.57107 16.5776i −0.688941 1.19328i −0.972181 0.234231i \(-0.924743\pi\)
0.283240 0.959049i \(-0.408591\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 13.1716 0.938436 0.469218 0.883082i \(-0.344536\pi\)
0.469218 + 0.883082i \(0.344536\pi\)
\(198\) 0 0
\(199\) −1.37868 2.38794i −0.0977320 0.169277i 0.813014 0.582245i \(-0.197825\pi\)
−0.910746 + 0.412968i \(0.864492\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.82843 6.92820i 0.198517 0.486265i
\(204\) 0 0
\(205\) 2.24264 3.88437i 0.156633 0.271296i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.48528 −0.102739
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −3.17157 + 5.49333i −0.216299 + 0.374642i
\(216\) 0 0
\(217\) 22.0563 3.01834i 1.49728 0.204898i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 8.24264 + 14.2767i 0.554460 + 0.960353i
\(222\) 0 0
\(223\) 13.6569 0.914531 0.457265 0.889330i \(-0.348829\pi\)
0.457265 + 0.889330i \(0.348829\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −0.964466 1.67050i −0.0640139 0.110875i 0.832242 0.554412i \(-0.187057\pi\)
−0.896256 + 0.443537i \(0.853724\pi\)
\(228\) 0 0
\(229\) 4.91421 8.51167i 0.324740 0.562467i −0.656719 0.754135i \(-0.728056\pi\)
0.981460 + 0.191668i \(0.0613897\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.91421 6.77962i 0.256429 0.444147i −0.708854 0.705355i \(-0.750787\pi\)
0.965283 + 0.261208i \(0.0841208\pi\)
\(234\) 0 0
\(235\) −14.5208 25.1508i −0.947234 1.64066i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 21.3137 1.37867 0.689335 0.724443i \(-0.257903\pi\)
0.689335 + 0.724443i \(0.257903\pi\)
\(240\) 0 0
\(241\) 6.15685 + 10.6640i 0.396598 + 0.686928i 0.993304 0.115532i \(-0.0368574\pi\)
−0.596706 + 0.802460i \(0.703524\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −25.8137 + 7.19988i −1.64918 + 0.459984i
\(246\) 0 0
\(247\) 5.07107 8.78335i 0.322664 0.558871i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2.97056 −0.187500 −0.0937501 0.995596i \(-0.529885\pi\)
−0.0937501 + 0.995596i \(0.529885\pi\)
\(252\) 0 0
\(253\) 1.34315 0.0844428
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 10.7426 18.6068i 0.670108 1.16066i −0.307766 0.951462i \(-0.599581\pi\)
0.977873 0.209198i \(-0.0670854\pi\)
\(258\) 0 0
\(259\) 4.30761 + 5.55487i 0.267662 + 0.345163i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −4.44975 7.70719i −0.274383 0.475246i 0.695596 0.718433i \(-0.255140\pi\)
−0.969979 + 0.243187i \(0.921807\pi\)
\(264\) 0 0
\(265\) −3.82843 −0.235178
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0.671573 + 1.16320i 0.0409465 + 0.0709215i 0.885772 0.464120i \(-0.153629\pi\)
−0.844826 + 0.535041i \(0.820296\pi\)
\(270\) 0 0
\(271\) −6.10660 + 10.5769i −0.370950 + 0.642504i −0.989712 0.143075i \(-0.954301\pi\)
0.618762 + 0.785578i \(0.287634\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.00000 3.46410i 0.120605 0.208893i
\(276\) 0 0
\(277\) 6.15685 + 10.6640i 0.369930 + 0.640737i 0.989554 0.144162i \(-0.0460485\pi\)
−0.619625 + 0.784898i \(0.712715\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −4.48528 −0.267569 −0.133785 0.991010i \(-0.542713\pi\)
−0.133785 + 0.991010i \(0.542713\pi\)
\(282\) 0 0
\(283\) −4.20711 7.28692i −0.250087 0.433163i 0.713463 0.700693i \(-0.247126\pi\)
−0.963549 + 0.267530i \(0.913792\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.17157 + 2.86976i −0.0691558 + 0.169396i
\(288\) 0 0
\(289\) −8.48528 + 14.6969i −0.499134 + 0.864526i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 16.6274 0.971384 0.485692 0.874130i \(-0.338568\pi\)
0.485692 + 0.874130i \(0.338568\pi\)
\(294\) 0 0
\(295\) −34.0711 −1.98369
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4.58579 + 7.94282i −0.265203 + 0.459345i
\(300\) 0 0
\(301\) 1.65685 4.05845i 0.0954995 0.233925i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −5.08579 8.80884i −0.291211 0.504393i
\(306\) 0 0
\(307\) 25.6569 1.46431 0.732157 0.681136i \(-0.238514\pi\)
0.732157 + 0.681136i \(0.238514\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −13.6213 23.5928i −0.772394 1.33783i −0.936247 0.351341i \(-0.885726\pi\)
0.163853 0.986485i \(-0.447608\pi\)
\(312\) 0 0
\(313\) −13.6421 + 23.6289i −0.771099 + 1.33558i 0.165862 + 0.986149i \(0.446959\pi\)
−0.936961 + 0.349434i \(0.886374\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −16.1569 + 27.9845i −0.907459 + 1.57177i −0.0898778 + 0.995953i \(0.528648\pi\)
−0.817582 + 0.575813i \(0.804686\pi\)
\(318\) 0 0
\(319\) −0.585786 1.01461i −0.0327977 0.0568074i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 20.8995 1.16288
\(324\) 0 0
\(325\) 13.6569 + 23.6544i 0.757546 + 1.31211i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 12.2990 + 15.8601i 0.678065 + 0.874398i
\(330\) 0 0
\(331\) −12.7929 + 22.1579i −0.703161 + 1.21791i 0.264190 + 0.964471i \(0.414895\pi\)
−0.967351 + 0.253440i \(0.918438\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 43.0416 2.35162
\(336\) 0 0
\(337\) 14.8284 0.807756 0.403878 0.914813i \(-0.367662\pi\)
0.403878 + 0.914813i \(0.367662\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.74264 3.01834i 0.0943693 0.163452i
\(342\) 0 0
\(343\) 17.0000 7.34847i 0.917914 0.396780i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.55025 + 13.0774i 0.405319 + 0.702033i 0.994359 0.106071i \(-0.0338272\pi\)
−0.589040 + 0.808104i \(0.700494\pi\)
\(348\) 0 0
\(349\) 10.8284 0.579632 0.289816 0.957082i \(-0.406406\pi\)
0.289816 + 0.957082i \(0.406406\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.91421 + 6.77962i 0.208333 + 0.360843i 0.951189 0.308608i \(-0.0998630\pi\)
−0.742857 + 0.669450i \(0.766530\pi\)
\(354\) 0 0
\(355\) −4.48528 + 7.76874i −0.238054 + 0.412322i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −12.6924 + 21.9839i −0.669879 + 1.16026i 0.308059 + 0.951367i \(0.400321\pi\)
−0.977938 + 0.208897i \(0.933013\pi\)
\(360\) 0 0
\(361\) 3.07107 + 5.31925i 0.161635 + 0.279960i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 12.7990 0.669930
\(366\) 0 0
\(367\) −14.8640 25.7451i −0.775892 1.34389i −0.934292 0.356510i \(-0.883967\pi\)
0.158399 0.987375i \(-0.449367\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2.62132 0.358719i 0.136092 0.0186238i
\(372\) 0 0
\(373\) −7.15685 + 12.3960i −0.370568 + 0.641842i −0.989653 0.143482i \(-0.954170\pi\)
0.619085 + 0.785324i \(0.287504\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 8.00000 0.412021
\(378\) 0 0
\(379\) −1.02944 −0.0528786 −0.0264393 0.999650i \(-0.508417\pi\)
−0.0264393 + 0.999650i \(0.508417\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −1.37868 + 2.38794i −0.0704472 + 0.122018i −0.899097 0.437749i \(-0.855776\pi\)
0.828650 + 0.559767i \(0.189109\pi\)
\(384\) 0 0
\(385\) −1.58579 + 3.88437i −0.0808192 + 0.197966i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 11.9142 + 20.6360i 0.604075 + 1.04629i 0.992197 + 0.124680i \(0.0397904\pi\)
−0.388122 + 0.921608i \(0.626876\pi\)
\(390\) 0 0
\(391\) −18.8995 −0.955789
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −15.4497 26.7597i −0.777361 1.34643i
\(396\) 0 0
\(397\) 4.91421 8.51167i 0.246637 0.427188i −0.715953 0.698148i \(-0.754008\pi\)
0.962591 + 0.270960i \(0.0873410\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.08579 1.88064i 0.0542216 0.0939145i −0.837641 0.546222i \(-0.816066\pi\)
0.891862 + 0.452307i \(0.149399\pi\)
\(402\) 0 0
\(403\) 11.8995 + 20.6105i 0.592756 + 1.02668i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.10051 0.0545500
\(408\) 0 0
\(409\) 18.2279 + 31.5717i 0.901313 + 1.56112i 0.825792 + 0.563975i \(0.190729\pi\)
0.0755210 + 0.997144i \(0.475938\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 23.3284 3.19242i 1.14792 0.157089i
\(414\) 0 0
\(415\) −29.3137 + 50.7728i −1.43895 + 2.49234i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1.65685 0.0809426 0.0404713 0.999181i \(-0.487114\pi\)
0.0404713 + 0.999181i \(0.487114\pi\)
\(420\) 0 0
\(421\) 0.485281 0.0236512 0.0118256 0.999930i \(-0.496236\pi\)
0.0118256 + 0.999930i \(0.496236\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −28.1421 + 48.7436i −1.36509 + 2.36441i
\(426\) 0 0
\(427\) 4.30761 + 5.55487i 0.208460 + 0.268819i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −10.6213 18.3967i −0.511611 0.886136i −0.999909 0.0134595i \(-0.995716\pi\)
0.488298 0.872677i \(-0.337618\pi\)
\(432\) 0 0
\(433\) 28.4853 1.36892 0.684458 0.729053i \(-0.260039\pi\)
0.684458 + 0.729053i \(0.260039\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.81371 + 10.0696i 0.278107 + 0.481696i
\(438\) 0 0
\(439\) 18.3492 31.7818i 0.875762 1.51686i 0.0198123 0.999804i \(-0.493693\pi\)
0.855949 0.517060i \(-0.172974\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −13.0355 + 22.5782i −0.619337 + 1.07272i 0.370270 + 0.928924i \(0.379265\pi\)
−0.989607 + 0.143799i \(0.954068\pi\)
\(444\) 0 0
\(445\) 17.2279 + 29.8396i 0.816682 + 1.41453i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −6.82843 −0.322253 −0.161127 0.986934i \(-0.551513\pi\)
−0.161127 + 0.986934i \(0.551513\pi\)
\(450\) 0 0
\(451\) 0.242641 + 0.420266i 0.0114255 + 0.0197896i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −17.5563 22.6398i −0.823054 1.06137i
\(456\) 0 0
\(457\) 18.6421 32.2891i 0.872042 1.51042i 0.0121619 0.999926i \(-0.496129\pi\)
0.859880 0.510496i \(-0.170538\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −25.4558 −1.18560 −0.592798 0.805351i \(-0.701977\pi\)
−0.592798 + 0.805351i \(0.701977\pi\)
\(462\) 0 0
\(463\) 11.3137 0.525793 0.262896 0.964824i \(-0.415322\pi\)
0.262896 + 0.964824i \(0.415322\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 9.27817 16.0703i 0.429343 0.743643i −0.567472 0.823393i \(-0.692079\pi\)
0.996815 + 0.0797491i \(0.0254119\pi\)
\(468\) 0 0
\(469\) −29.4706 + 4.03295i −1.36082 + 0.186225i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.343146 0.594346i −0.0157779 0.0273281i
\(474\) 0 0
\(475\) 34.6274 1.58881
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 15.3492 + 26.5857i 0.701325 + 1.21473i 0.968002 + 0.250944i \(0.0807410\pi\)
−0.266677 + 0.963786i \(0.585926\pi\)
\(480\) 0 0
\(481\) −3.75736 + 6.50794i −0.171321 + 0.296736i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −13.0711 + 22.6398i −0.593527 + 1.02802i
\(486\) 0 0
\(487\) −6.86396 11.8887i −0.311036 0.538730i 0.667551 0.744564i \(-0.267343\pi\)
−0.978587 + 0.205834i \(0.934009\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 7.65685 0.345549 0.172774 0.984961i \(-0.444727\pi\)
0.172774 + 0.984961i \(0.444727\pi\)
\(492\) 0 0
\(493\) 8.24264 + 14.2767i 0.371230 + 0.642989i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.34315 5.73951i 0.105104 0.257452i
\(498\) 0 0
\(499\) −13.2782 + 22.9985i −0.594413 + 1.02955i 0.399217 + 0.916857i \(0.369282\pi\)
−0.993629 + 0.112696i \(0.964051\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 21.6569 0.965631 0.482816 0.875722i \(-0.339614\pi\)
0.482816 + 0.875722i \(0.339614\pi\)
\(504\) 0 0
\(505\) −13.3431 −0.593762
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 12.2574 21.2304i 0.543298 0.941020i −0.455414 0.890280i \(-0.650509\pi\)
0.998712 0.0507398i \(-0.0161579\pi\)
\(510\) 0 0
\(511\) −8.76346 + 1.19925i −0.387672 + 0.0530518i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 10.6924 + 18.5198i 0.471163 + 0.816078i
\(516\) 0 0
\(517\) 3.14214 0.138191
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 3.50000 + 6.06218i 0.153338 + 0.265589i 0.932453 0.361293i \(-0.117664\pi\)
−0.779115 + 0.626881i \(0.784331\pi\)
\(522\) 0 0
\(523\) 3.86396 6.69258i 0.168959 0.292646i −0.769095 0.639134i \(-0.779293\pi\)
0.938054 + 0.346489i \(0.112626\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −24.5208 + 42.4713i −1.06814 + 1.85008i
\(528\) 0 0
\(529\) 6.24264 + 10.8126i 0.271419 + 0.470112i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −3.31371 −0.143533
\(534\) 0 0
\(535\) −13.2071 22.8754i −0.570993 0.988989i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.721825 2.80821i 0.0310912 0.120958i
\(540\) 0 0
\(541\) 10.0858 17.4691i 0.433622 0.751055i −0.563560 0.826075i \(-0.690569\pi\)
0.997182 + 0.0750200i \(0.0239021\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 52.9411 2.26775
\(546\) 0 0
\(547\) −22.9706 −0.982150 −0.491075 0.871117i \(-0.663396\pi\)
−0.491075 + 0.871117i \(0.663396\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 5.07107 8.78335i 0.216035 0.374183i
\(552\) 0 0
\(553\) 13.0858 + 16.8747i 0.556464 + 0.717587i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2.91421 5.04757i −0.123479 0.213872i 0.797658 0.603110i \(-0.206072\pi\)
−0.921137 + 0.389237i \(0.872739\pi\)
\(558\) 0 0
\(559\) 4.68629 0.198209
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0.0355339 + 0.0615465i 0.00149758 + 0.00259388i 0.866773 0.498703i \(-0.166190\pi\)
−0.865276 + 0.501296i \(0.832857\pi\)
\(564\) 0 0
\(565\) 19.4142 33.6264i 0.816762 1.41467i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 12.6716 21.9478i 0.531220 0.920100i −0.468116 0.883667i \(-0.655067\pi\)
0.999336 0.0364330i \(-0.0115996\pi\)
\(570\) 0 0
\(571\) 7.79289 + 13.4977i 0.326122 + 0.564861i 0.981739 0.190233i \(-0.0609245\pi\)
−0.655616 + 0.755094i \(0.727591\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −31.3137 −1.30587
\(576\) 0 0
\(577\) −19.5000 33.7750i −0.811796 1.40607i −0.911606 0.411065i \(-0.865157\pi\)
0.0998105 0.995006i \(-0.468176\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 15.3137 37.5108i 0.635320 1.55621i
\(582\) 0 0
\(583\) 0.207107 0.358719i 0.00857749 0.0148566i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 4.97056 0.205157 0.102579 0.994725i \(-0.467291\pi\)
0.102579 + 0.994725i \(0.467291\pi\)
\(588\) 0 0
\(589\) 30.1716 1.24320
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −5.74264 + 9.94655i −0.235822 + 0.408456i −0.959511 0.281670i \(-0.909112\pi\)
0.723689 + 0.690126i \(0.242445\pi\)
\(594\) 0 0
\(595\) 22.3137 54.6572i 0.914773 2.24073i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −8.93503 15.4759i −0.365075 0.632329i 0.623713 0.781654i \(-0.285623\pi\)
−0.988788 + 0.149324i \(0.952290\pi\)
\(600\) 0 0
\(601\) −2.14214 −0.0873795 −0.0436898 0.999045i \(-0.513911\pi\)
−0.0436898 + 0.999045i \(0.513911\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −20.7279 35.9018i −0.842710 1.45962i
\(606\) 0 0
\(607\) 0.692388 1.19925i 0.0281032 0.0486761i −0.851632 0.524141i \(-0.824387\pi\)
0.879735 + 0.475464i \(0.157720\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −10.7279 + 18.5813i −0.434005 + 0.751719i
\(612\) 0 0
\(613\) −10.7426 18.6068i −0.433891 0.751522i 0.563313 0.826243i \(-0.309526\pi\)
−0.997204 + 0.0747219i \(0.976193\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 43.1127 1.73565 0.867826 0.496868i \(-0.165517\pi\)
0.867826 + 0.496868i \(0.165517\pi\)
\(618\) 0 0
\(619\) −16.0355 27.7744i −0.644523 1.11635i −0.984412 0.175880i \(-0.943723\pi\)
0.339889 0.940466i \(-0.389610\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −14.5919 18.8169i −0.584611 0.753884i
\(624\) 0 0
\(625\) −9.98528 + 17.2950i −0.399411 + 0.691801i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −15.4853 −0.617439
\(630\) 0 0
\(631\) 18.3431 0.730229 0.365115 0.930963i \(-0.381030\pi\)
0.365115 + 0.930963i \(0.381030\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 10.8284 18.7554i 0.429713 0.744285i
\(636\) 0 0
\(637\) 14.1421 + 13.8564i 0.560332 + 0.549011i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −8.50000 14.7224i −0.335730 0.581501i 0.647895 0.761730i \(-0.275650\pi\)
−0.983625 + 0.180229i \(0.942316\pi\)
\(642\) 0 0
\(643\) 44.9706 1.77347 0.886733 0.462282i \(-0.152969\pi\)
0.886733 + 0.462282i \(0.152969\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −12.9350 22.4041i −0.508528 0.880797i −0.999951 0.00987597i \(-0.996856\pi\)
0.491423 0.870921i \(-0.336477\pi\)
\(648\) 0 0
\(649\) 1.84315 3.19242i 0.0723498 0.125314i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 14.4706 25.0637i 0.566277 0.980820i −0.430653 0.902518i \(-0.641717\pi\)
0.996930 0.0783026i \(-0.0249500\pi\)
\(654\) 0 0
\(655\) 33.9350 + 58.7772i 1.32595 + 2.29662i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 10.6274 0.413985 0.206993 0.978342i \(-0.433632\pi\)
0.206993 + 0.978342i \(0.433632\pi\)
\(660\) 0 0
\(661\) 9.67157 + 16.7517i 0.376181 + 0.651564i 0.990503 0.137491i \(-0.0439039\pi\)
−0.614322 + 0.789055i \(0.710571\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −35.9853 + 4.92447i −1.39545 + 0.190963i
\(666\) 0 0
\(667\) −4.58579 + 7.94282i −0.177562 + 0.307547i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.10051 0.0424845
\(672\) 0 0
\(673\) 26.1421 1.00771 0.503853 0.863790i \(-0.331915\pi\)
0.503853 + 0.863790i \(0.331915\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 10.3995 18.0125i 0.399685 0.692275i −0.594002 0.804464i \(-0.702453\pi\)
0.993687 + 0.112189i \(0.0357862\pi\)
\(678\) 0 0
\(679\) 6.82843 16.7262i 0.262051 0.641891i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −24.2782 42.0510i −0.928979 1.60904i −0.785034 0.619452i \(-0.787355\pi\)
−0.143944 0.989586i \(-0.545979\pi\)
\(684\) 0 0
\(685\) −65.6274 −2.50749
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.41421 + 2.44949i 0.0538772 + 0.0933181i
\(690\) 0 0
\(691\) 10.5208 18.2226i 0.400231 0.693220i −0.593523 0.804817i \(-0.702263\pi\)
0.993754 + 0.111597i \(0.0355967\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −14.0000 + 24.2487i −0.531050 + 0.919806i
\(696\) 0 0
\(697\) −3.41421 5.91359i −0.129323 0.223993i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −14.0000 −0.528773 −0.264386 0.964417i \(-0.585169\pi\)
−0.264386 + 0.964417i \(0.585169\pi\)
\(702\) 0 0
\(703\) 4.76346 + 8.25055i 0.179657 + 0.311175i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 9.13604 1.25024i 0.343596 0.0470200i
\(708\) 0 0
\(709\) −21.2990 + 36.8909i −0.799900 + 1.38547i 0.119780 + 0.992800i \(0.461781\pi\)
−0.919680 + 0.392668i \(0.871552\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −27.2843 −1.02180
\(714\) 0 0
\(715\) −4.48528 −0.167740
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −8.52082 + 14.7585i −0.317773 + 0.550399i −0.980023 0.198884i \(-0.936268\pi\)
0.662250 + 0.749283i \(0.269602\pi\)
\(720\) 0 0
\(721\) −9.05635 11.6786i −0.337276 0.434934i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 13.6569 + 23.6544i 0.507203 + 0.878501i
\(726\) 0 0
\(727\) 45.6569 1.69332 0.846659 0.532135i \(-0.178610\pi\)
0.846659 + 0.532135i \(0.178610\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 4.82843 + 8.36308i 0.178586 + 0.309320i
\(732\) 0 0
\(733\) −23.1569 + 40.1088i −0.855318 + 1.48145i 0.0210318 + 0.999779i \(0.493305\pi\)
−0.876350 + 0.481675i \(0.840028\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2.32843 + 4.03295i −0.0857687 + 0.148556i
\(738\) 0 0
\(739\) −26.3492 45.6382i −0.969273 1.67883i −0.697669 0.716420i \(-0.745779\pi\)
−0.271603 0.962409i \(-0.587554\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −37.6569 −1.38150 −0.690748 0.723096i \(-0.742719\pi\)
−0.690748 + 0.723096i \(0.742719\pi\)
\(744\) 0 0
\(745\) −22.6421 39.2173i −0.829544 1.43681i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 11.1863 + 14.4253i 0.408738 + 0.527087i
\(750\) 0 0
\(751\) 1.86396 3.22848i 0.0680169 0.117809i −0.830011 0.557746i \(-0.811666\pi\)
0.898028 + 0.439938i \(0.144999\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 72.3553 2.63328
\(756\) 0 0
\(757\) 22.1421 0.804770 0.402385 0.915471i \(-0.368181\pi\)
0.402385 + 0.915471i \(0.368181\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 10.0563 17.4181i 0.364542 0.631406i −0.624160 0.781296i \(-0.714559\pi\)
0.988703 + 0.149890i \(0.0478921\pi\)
\(762\) 0 0
\(763\) −36.2487 + 4.96053i −1.31229 + 0.179583i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 12.5858 + 21.7992i 0.454446 + 0.787124i
\(768\) 0 0
\(769\) 42.1421 1.51968 0.759842 0.650108i \(-0.225276\pi\)
0.759842 + 0.650108i \(0.225276\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 9.57107 + 16.5776i 0.344247 + 0.596254i 0.985217 0.171313i \(-0.0548008\pi\)
−0.640969 + 0.767566i \(0.721467\pi\)
\(774\) 0 0
\(775\) −40.6274 + 70.3688i −1.45938 + 2.52772i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.10051 + 3.63818i −0.0752584 + 0.130351i
\(780\) 0 0
\(781\) −0.485281 0.840532i −0.0173647 0.0300766i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −79.0833 −2.82260
\(786\) 0 0
\(787\) −1.89340 3.27946i −0.0674924 0.116900i 0.830305 0.557310i \(-0.188166\pi\)
−0.897797 + 0.440410i \(0.854833\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −10.1421 + 24.8431i −0.360613 + 0.883317i
\(792\) 0 0
\(793\) −3.75736 + 6.50794i −0.133428 + 0.231104i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 15.1127 0.535319 0.267660 0.963514i \(-0.413750\pi\)
0.267660 + 0.963514i \(0.413750\pi\)
\(798\) 0 0
\(799\) −44.2132 −1.56415
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −0.692388 + 1.19925i −0.0244338 + 0.0423207i
\(804\) 0 0
\(805\) 32.5416 4.45322i 1.14694 0.156955i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 7.98528 + 13.8309i 0.280748 + 0.486269i 0.971569 0.236756i \(-0.0760843\pi\)
−0.690822 + 0.723025i \(0.742751\pi\)
\(810\) 0 0
\(811\) −6.34315 −0.222738 −0.111369 0.993779i \(-0.535524\pi\)
−0.111369 + 0.993779i \(0.535524\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 29.1777 + 50.5372i 1.02205 + 1.77024i
\(816\) 0 0
\(817\) 2.97056 5.14517i 0.103927 0.180007i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −6.57107 + 11.3814i −0.229332 + 0.397214i −0.957610 0.288067i \(-0.906987\pi\)
0.728278 + 0.685281i \(0.240321\pi\)
\(822\) 0 0
\(823\) −17.0061 29.4554i −0.592795 1.02675i −0.993854 0.110699i \(-0.964691\pi\)
0.401059 0.916052i \(-0.368642\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −30.3431 −1.05513 −0.527567 0.849513i \(-0.676896\pi\)
−0.527567 + 0.849513i \(0.676896\pi\)
\(828\) 0 0
\(829\) −20.3995 35.3330i −0.708504 1.22716i −0.965412 0.260729i \(-0.916037\pi\)
0.256908 0.966436i \(-0.417296\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −10.1569 + 39.5145i −0.351914 + 1.36910i
\(834\) 0 0
\(835\) −3.82843 + 6.63103i −0.132488 + 0.229476i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −19.3137 −0.666783 −0.333392 0.942788i \(-0.608193\pi\)
−0.333392 + 0.942788i \(0.608193\pi\)
\(840\) 0 0
\(841\) −21.0000 −0.724138
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −9.57107 + 16.5776i −0.329255 + 0.570286i
\(846\) 0 0
\(847\) 17.5563 + 22.6398i 0.603243 + 0.777911i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −4.30761 7.46100i −0.147663 0.255760i
\(852\) 0 0
\(853\) −23.5147 −0.805129 −0.402564 0.915392i \(-0.631881\pi\)
−0.402564 + 0.915392i \(0.631881\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 18.3284 + 31.7458i 0.626087 + 1.08441i 0.988330 + 0.152331i \(0.0486779\pi\)
−0.362242 + 0.932084i \(0.617989\pi\)
\(858\) 0 0
\(859\) −18.2782 + 31.6587i −0.623643 + 1.08018i 0.365158 + 0.930945i \(0.381015\pi\)
−0.988802 + 0.149236i \(0.952318\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.69239 + 2.93130i −0.0576096 + 0.0997827i −0.893392 0.449278i \(-0.851681\pi\)
0.835782 + 0.549061i \(0.185015\pi\)
\(864\) 0 0
\(865\) −21.0563 36.4707i −0.715937 1.24004i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3.34315 0.113408
\(870\) 0 0
\(871\) −15.8995 27.5387i −0.538734 0.933114i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 17.8284 43.6705i 0.602711 1.47633i
\(876\) 0 0
\(877\) 16.7132 28.9481i 0.564365 0.977508i −0.432744 0.901517i \(-0.642454\pi\)
0.997108 0.0759915i \(-0.0242122\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 26.0000 0.875962 0.437981 0.898984i \(-0.355694\pi\)
0.437981 + 0.898984i \(0.355694\pi\)
\(882\) 0 0
\(883\) 49.2548 1.65756 0.828779 0.559577i \(-0.189036\pi\)
0.828779 + 0.559577i \(0.189036\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 25.4497 44.0803i 0.854519 1.48007i −0.0225717 0.999745i \(-0.507185\pi\)
0.877091 0.480325i \(-0.159481\pi\)
\(888\) 0 0
\(889\) −5.65685 + 13.8564i −0.189725 + 0.464729i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 13.6005 + 23.5568i 0.455124 + 0.788297i
\(894\) 0 0
\(895\) 32.2132 1.07677
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 11.8995 + 20.6105i 0.396870 + 0.687400i
\(900\) 0 0
\(901\) −2.91421 + 5.04757i −0.0970865 + 0.168159i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 25.4853 44.1418i 0.847159 1.46732i
\(906\) 0 0
\(907\) 19.7635 + 34.2313i 0.656235 + 1.13663i 0.981583 + 0.191038i \(0.0611852\pi\)
−0.325348 + 0.945594i \(0.605481\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −8.00000 −0.265052 −0.132526 0.991180i \(-0.542309\pi\)
−0.132526 + 0.991180i \(0.542309\pi\)
\(912\) 0 0
\(913\) −3.17157 5.49333i −0.104964 0.181803i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −28.7426 37.0650i −0.949166 1.22399i
\(918\) 0 0
\(919\) −12.2782 + 21.2664i −0.405020 + 0.701515i −0.994324 0.106397i \(-0.966069\pi\)
0.589304 + 0.807911i \(0.299402\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 6.62742 0.218144
\(924\) 0 0
\(925\) −25.6569 −0.843592
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −15.3284 + 26.5496i −0.502909 + 0.871065i 0.497085 + 0.867702i \(0.334404\pi\)
−0.999994 + 0.00336273i \(0.998930\pi\)
\(930\) 0 0
\(931\) 24.1777 6.74356i 0.792391 0.221011i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −4.62132 8.00436i −0.151133 0.261771i
\(936\) 0 0
\(937\) −28.6274 −0.935217 −0.467608 0.883936i \(-0.654884\pi\)
−0.467608 + 0.883936i \(0.654884\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 26.1274 + 45.2540i 0.851729 + 1.47524i 0.879646 + 0.475628i \(0.157779\pi\)
−0.0279168 + 0.999610i \(0.508887\pi\)
\(942\) 0 0
\(943\) 1.89949 3.29002i 0.0618561 0.107138i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 12.1066 20.9692i 0.393412 0.681409i −0.599485 0.800386i \(-0.704628\pi\)
0.992897 + 0.118977i \(0.0379614\pi\)
\(948\) 0 0
\(949\) −4.72792 8.18900i −0.153475 0.265826i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −35.1127 −1.13741 −0.568706 0.822541i \(-0.692556\pi\)
−0.568706 + 0.822541i \(0.692556\pi\)
\(954\) 0 0
\(955\) −20.8640 36.1374i −0.675142 1.16938i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 44.9350 6.14922i 1.45103 0.198569i
\(960\) 0 0
\(961\) −19.8995 + 34.4669i −0.641919 + 1.11184i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −73.2843 −2.35910
\(966\) 0 0
\(967\) −29.6569 −0.953700 −0.476850 0.878985i \(-0.658222\pi\)
−0.476850 + 0.878985i \(0.658222\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −19.2071 + 33.2677i −0.616385 + 1.06761i 0.373754 + 0.927528i \(0.378070\pi\)
−0.990140 + 0.140083i \(0.955263\pi\)
\(972\) 0 0
\(973\) 7.31371 17.9149i 0.234467 0.574324i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −25.7426 44.5876i −0.823580 1.42648i −0.903000 0.429641i \(-0.858640\pi\)
0.0794196 0.996841i \(-0.474693\pi\)
\(978\) 0 0
\(979\) −3.72792 −0.119145
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −30.4203 52.6895i −0.970257 1.68053i −0.694773 0.719229i \(-0.744495\pi\)
−0.275484 0.961306i \(-0.588838\pi\)
\(984\) 0 0
\(985\) 25.2132 43.6705i 0.803359 1.39146i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2.68629 + 4.65279i −0.0854191 + 0.147950i
\(990\) 0 0
\(991\) −7.34924 12.7293i −0.233456 0.404358i 0.725367 0.688363i \(-0.241670\pi\)
−0.958823 + 0.284004i \(0.908337\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −10.5563 −0.334659
\(996\) 0 0
\(997\) −5.64214 9.77247i −0.178688 0.309497i 0.762743 0.646701i \(-0.223852\pi\)
−0.941431 + 0.337204i \(0.890519\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2016.2.s.q.289.2 4
3.2 odd 2 224.2.i.a.65.1 4
4.3 odd 2 2016.2.s.s.289.2 4
7.4 even 3 inner 2016.2.s.q.865.2 4
12.11 even 2 224.2.i.d.65.2 yes 4
21.2 odd 6 1568.2.a.w.1.2 2
21.5 even 6 1568.2.a.j.1.1 2
21.11 odd 6 224.2.i.a.193.1 yes 4
21.17 even 6 1568.2.i.x.1537.2 4
21.20 even 2 1568.2.i.x.961.2 4
24.5 odd 2 448.2.i.j.65.2 4
24.11 even 2 448.2.i.g.65.1 4
28.11 odd 6 2016.2.s.s.865.2 4
84.11 even 6 224.2.i.d.193.2 yes 4
84.23 even 6 1568.2.a.l.1.1 2
84.47 odd 6 1568.2.a.u.1.2 2
84.59 odd 6 1568.2.i.o.1537.1 4
84.83 odd 2 1568.2.i.o.961.1 4
168.5 even 6 3136.2.a.bx.1.2 2
168.11 even 6 448.2.i.g.193.1 4
168.53 odd 6 448.2.i.j.193.2 4
168.107 even 6 3136.2.a.bw.1.2 2
168.131 odd 6 3136.2.a.be.1.1 2
168.149 odd 6 3136.2.a.bd.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
224.2.i.a.65.1 4 3.2 odd 2
224.2.i.a.193.1 yes 4 21.11 odd 6
224.2.i.d.65.2 yes 4 12.11 even 2
224.2.i.d.193.2 yes 4 84.11 even 6
448.2.i.g.65.1 4 24.11 even 2
448.2.i.g.193.1 4 168.11 even 6
448.2.i.j.65.2 4 24.5 odd 2
448.2.i.j.193.2 4 168.53 odd 6
1568.2.a.j.1.1 2 21.5 even 6
1568.2.a.l.1.1 2 84.23 even 6
1568.2.a.u.1.2 2 84.47 odd 6
1568.2.a.w.1.2 2 21.2 odd 6
1568.2.i.o.961.1 4 84.83 odd 2
1568.2.i.o.1537.1 4 84.59 odd 6
1568.2.i.x.961.2 4 21.20 even 2
1568.2.i.x.1537.2 4 21.17 even 6
2016.2.s.q.289.2 4 1.1 even 1 trivial
2016.2.s.q.865.2 4 7.4 even 3 inner
2016.2.s.s.289.2 4 4.3 odd 2
2016.2.s.s.865.2 4 28.11 odd 6
3136.2.a.bd.1.1 2 168.149 odd 6
3136.2.a.be.1.1 2 168.131 odd 6
3136.2.a.bw.1.2 2 168.107 even 6
3136.2.a.bx.1.2 2 168.5 even 6