Properties

Label 448.2.i.g.193.1
Level $448$
Weight $2$
Character 448.193
Analytic conductor $3.577$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [448,2,Mod(65,448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(448, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("448.65");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 448.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.57729801055\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 224)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 193.1
Root \(-0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 448.193
Dual form 448.2.i.g.65.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.20711 + 2.09077i) q^{3} +(1.91421 + 3.31552i) q^{5} +(1.00000 + 2.44949i) q^{7} +(-1.41421 - 2.44949i) q^{9} +(-0.207107 + 0.358719i) q^{11} +2.82843 q^{13} -9.24264 q^{15} +(2.91421 - 5.04757i) q^{17} +(-1.79289 - 3.10538i) q^{19} +(-6.32843 - 0.866025i) q^{21} +(1.62132 + 2.80821i) q^{23} +(-4.82843 + 8.36308i) q^{25} -0.414214 q^{27} -2.82843 q^{29} +(4.20711 - 7.28692i) q^{31} +(-0.500000 - 0.866025i) q^{33} +(-6.20711 + 8.00436i) q^{35} +(-1.32843 - 2.30090i) q^{37} +(-3.41421 + 5.91359i) q^{39} -1.17157 q^{41} -1.65685 q^{43} +(5.41421 - 9.37769i) q^{45} +(3.79289 + 6.56948i) q^{47} +(-5.00000 + 4.89898i) q^{49} +(7.03553 + 12.1859i) q^{51} +(-0.500000 + 0.866025i) q^{53} -1.58579 q^{55} +8.65685 q^{57} +(4.44975 - 7.70719i) q^{59} +(-1.32843 - 2.30090i) q^{61} +(4.58579 - 5.91359i) q^{63} +(5.41421 + 9.37769i) q^{65} +(5.62132 - 9.73641i) q^{67} -7.82843 q^{69} -2.34315 q^{71} +(1.67157 - 2.89525i) q^{73} +(-11.6569 - 20.1903i) q^{75} +(-1.08579 - 0.148586i) q^{77} +(-4.03553 - 6.98975i) q^{79} +(4.74264 - 8.21449i) q^{81} +15.3137 q^{83} +22.3137 q^{85} +(3.41421 - 5.91359i) q^{87} +(4.50000 + 7.79423i) q^{89} +(2.82843 + 6.92820i) q^{91} +(10.1569 + 17.5922i) q^{93} +(6.86396 - 11.8887i) q^{95} -6.82843 q^{97} +1.17157 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} + 2 q^{5} + 4 q^{7} + 2 q^{11} - 20 q^{15} + 6 q^{17} - 10 q^{19} - 14 q^{21} - 2 q^{23} - 8 q^{25} + 4 q^{27} + 14 q^{31} - 2 q^{33} - 22 q^{35} + 6 q^{37} - 8 q^{39} - 16 q^{41} + 16 q^{43}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.20711 + 2.09077i −0.696923 + 1.20711i 0.272605 + 0.962126i \(0.412115\pi\)
−0.969528 + 0.244981i \(0.921218\pi\)
\(4\) 0 0
\(5\) 1.91421 + 3.31552i 0.856062 + 1.48274i 0.875656 + 0.482935i \(0.160429\pi\)
−0.0195936 + 0.999808i \(0.506237\pi\)
\(6\) 0 0
\(7\) 1.00000 + 2.44949i 0.377964 + 0.925820i
\(8\) 0 0
\(9\) −1.41421 2.44949i −0.471405 0.816497i
\(10\) 0 0
\(11\) −0.207107 + 0.358719i −0.0624450 + 0.108158i −0.895558 0.444945i \(-0.853223\pi\)
0.833113 + 0.553103i \(0.186556\pi\)
\(12\) 0 0
\(13\) 2.82843 0.784465 0.392232 0.919866i \(-0.371703\pi\)
0.392232 + 0.919866i \(0.371703\pi\)
\(14\) 0 0
\(15\) −9.24264 −2.38644
\(16\) 0 0
\(17\) 2.91421 5.04757i 0.706801 1.22421i −0.259237 0.965814i \(-0.583471\pi\)
0.966038 0.258401i \(-0.0831955\pi\)
\(18\) 0 0
\(19\) −1.79289 3.10538i −0.411318 0.712424i 0.583716 0.811958i \(-0.301598\pi\)
−0.995034 + 0.0995342i \(0.968265\pi\)
\(20\) 0 0
\(21\) −6.32843 0.866025i −1.38098 0.188982i
\(22\) 0 0
\(23\) 1.62132 + 2.80821i 0.338069 + 0.585552i 0.984069 0.177785i \(-0.0568931\pi\)
−0.646001 + 0.763337i \(0.723560\pi\)
\(24\) 0 0
\(25\) −4.82843 + 8.36308i −0.965685 + 1.67262i
\(26\) 0 0
\(27\) −0.414214 −0.0797154
\(28\) 0 0
\(29\) −2.82843 −0.525226 −0.262613 0.964901i \(-0.584584\pi\)
−0.262613 + 0.964901i \(0.584584\pi\)
\(30\) 0 0
\(31\) 4.20711 7.28692i 0.755619 1.30877i −0.189447 0.981891i \(-0.560670\pi\)
0.945066 0.326879i \(-0.105997\pi\)
\(32\) 0 0
\(33\) −0.500000 0.866025i −0.0870388 0.150756i
\(34\) 0 0
\(35\) −6.20711 + 8.00436i −1.04919 + 1.35298i
\(36\) 0 0
\(37\) −1.32843 2.30090i −0.218392 0.378266i 0.735924 0.677064i \(-0.236748\pi\)
−0.954317 + 0.298797i \(0.903414\pi\)
\(38\) 0 0
\(39\) −3.41421 + 5.91359i −0.546712 + 0.946932i
\(40\) 0 0
\(41\) −1.17157 −0.182969 −0.0914845 0.995807i \(-0.529161\pi\)
−0.0914845 + 0.995807i \(0.529161\pi\)
\(42\) 0 0
\(43\) −1.65685 −0.252668 −0.126334 0.991988i \(-0.540321\pi\)
−0.126334 + 0.991988i \(0.540321\pi\)
\(44\) 0 0
\(45\) 5.41421 9.37769i 0.807103 1.39794i
\(46\) 0 0
\(47\) 3.79289 + 6.56948i 0.553250 + 0.958258i 0.998037 + 0.0626213i \(0.0199460\pi\)
−0.444787 + 0.895636i \(0.646721\pi\)
\(48\) 0 0
\(49\) −5.00000 + 4.89898i −0.714286 + 0.699854i
\(50\) 0 0
\(51\) 7.03553 + 12.1859i 0.985172 + 1.70637i
\(52\) 0 0
\(53\) −0.500000 + 0.866025i −0.0686803 + 0.118958i −0.898321 0.439340i \(-0.855212\pi\)
0.829640 + 0.558298i \(0.188546\pi\)
\(54\) 0 0
\(55\) −1.58579 −0.213827
\(56\) 0 0
\(57\) 8.65685 1.14663
\(58\) 0 0
\(59\) 4.44975 7.70719i 0.579308 1.00339i −0.416251 0.909250i \(-0.636656\pi\)
0.995559 0.0941408i \(-0.0300104\pi\)
\(60\) 0 0
\(61\) −1.32843 2.30090i −0.170088 0.294600i 0.768363 0.640015i \(-0.221072\pi\)
−0.938450 + 0.345414i \(0.887738\pi\)
\(62\) 0 0
\(63\) 4.58579 5.91359i 0.577755 0.745042i
\(64\) 0 0
\(65\) 5.41421 + 9.37769i 0.671551 + 1.16316i
\(66\) 0 0
\(67\) 5.62132 9.73641i 0.686754 1.18949i −0.286129 0.958191i \(-0.592368\pi\)
0.972882 0.231301i \(-0.0742982\pi\)
\(68\) 0 0
\(69\) −7.82843 −0.942432
\(70\) 0 0
\(71\) −2.34315 −0.278080 −0.139040 0.990287i \(-0.544402\pi\)
−0.139040 + 0.990287i \(0.544402\pi\)
\(72\) 0 0
\(73\) 1.67157 2.89525i 0.195643 0.338863i −0.751468 0.659769i \(-0.770654\pi\)
0.947111 + 0.320906i \(0.103987\pi\)
\(74\) 0 0
\(75\) −11.6569 20.1903i −1.34602 2.33137i
\(76\) 0 0
\(77\) −1.08579 0.148586i −0.123737 0.0169330i
\(78\) 0 0
\(79\) −4.03553 6.98975i −0.454033 0.786408i 0.544599 0.838697i \(-0.316682\pi\)
−0.998632 + 0.0522883i \(0.983349\pi\)
\(80\) 0 0
\(81\) 4.74264 8.21449i 0.526960 0.912722i
\(82\) 0 0
\(83\) 15.3137 1.68090 0.840449 0.541891i \(-0.182291\pi\)
0.840449 + 0.541891i \(0.182291\pi\)
\(84\) 0 0
\(85\) 22.3137 2.42026
\(86\) 0 0
\(87\) 3.41421 5.91359i 0.366042 0.634004i
\(88\) 0 0
\(89\) 4.50000 + 7.79423i 0.476999 + 0.826187i 0.999653 0.0263586i \(-0.00839118\pi\)
−0.522654 + 0.852545i \(0.675058\pi\)
\(90\) 0 0
\(91\) 2.82843 + 6.92820i 0.296500 + 0.726273i
\(92\) 0 0
\(93\) 10.1569 + 17.5922i 1.05322 + 1.82422i
\(94\) 0 0
\(95\) 6.86396 11.8887i 0.704228 1.21976i
\(96\) 0 0
\(97\) −6.82843 −0.693322 −0.346661 0.937991i \(-0.612685\pi\)
−0.346661 + 0.937991i \(0.612685\pi\)
\(98\) 0 0
\(99\) 1.17157 0.117748
\(100\) 0 0
\(101\) −1.74264 + 3.01834i −0.173399 + 0.300336i −0.939606 0.342258i \(-0.888808\pi\)
0.766207 + 0.642594i \(0.222142\pi\)
\(102\) 0 0
\(103\) 2.79289 + 4.83743i 0.275192 + 0.476646i 0.970184 0.242371i \(-0.0779253\pi\)
−0.694992 + 0.719018i \(0.744592\pi\)
\(104\) 0 0
\(105\) −9.24264 22.6398i −0.901989 2.20941i
\(106\) 0 0
\(107\) −3.44975 5.97514i −0.333500 0.577638i 0.649696 0.760194i \(-0.274896\pi\)
−0.983195 + 0.182556i \(0.941563\pi\)
\(108\) 0 0
\(109\) −6.91421 + 11.9758i −0.662262 + 1.14707i 0.317758 + 0.948172i \(0.397070\pi\)
−0.980020 + 0.198899i \(0.936263\pi\)
\(110\) 0 0
\(111\) 6.41421 0.608810
\(112\) 0 0
\(113\) −10.1421 −0.954092 −0.477046 0.878878i \(-0.658292\pi\)
−0.477046 + 0.878878i \(0.658292\pi\)
\(114\) 0 0
\(115\) −6.20711 + 10.7510i −0.578816 + 1.00254i
\(116\) 0 0
\(117\) −4.00000 6.92820i −0.369800 0.640513i
\(118\) 0 0
\(119\) 15.2782 + 2.09077i 1.40055 + 0.191661i
\(120\) 0 0
\(121\) 5.41421 + 9.37769i 0.492201 + 0.852518i
\(122\) 0 0
\(123\) 1.41421 2.44949i 0.127515 0.220863i
\(124\) 0 0
\(125\) −17.8284 −1.59462
\(126\) 0 0
\(127\) −5.65685 −0.501965 −0.250982 0.967992i \(-0.580754\pi\)
−0.250982 + 0.967992i \(0.580754\pi\)
\(128\) 0 0
\(129\) 2.00000 3.46410i 0.176090 0.304997i
\(130\) 0 0
\(131\) 8.86396 + 15.3528i 0.774448 + 1.34138i 0.935104 + 0.354373i \(0.115306\pi\)
−0.160656 + 0.987010i \(0.551361\pi\)
\(132\) 0 0
\(133\) 5.81371 7.49706i 0.504112 0.650077i
\(134\) 0 0
\(135\) −0.792893 1.37333i −0.0682414 0.118198i
\(136\) 0 0
\(137\) 8.57107 14.8455i 0.732276 1.26834i −0.223633 0.974674i \(-0.571792\pi\)
0.955908 0.293665i \(-0.0948751\pi\)
\(138\) 0 0
\(139\) −7.31371 −0.620341 −0.310170 0.950681i \(-0.600386\pi\)
−0.310170 + 0.950681i \(0.600386\pi\)
\(140\) 0 0
\(141\) −18.3137 −1.54229
\(142\) 0 0
\(143\) −0.585786 + 1.01461i −0.0489859 + 0.0848461i
\(144\) 0 0
\(145\) −5.41421 9.37769i −0.449626 0.778775i
\(146\) 0 0
\(147\) −4.20711 16.3674i −0.346996 1.34996i
\(148\) 0 0
\(149\) 5.91421 + 10.2437i 0.484511 + 0.839198i 0.999842 0.0177935i \(-0.00566413\pi\)
−0.515330 + 0.856992i \(0.672331\pi\)
\(150\) 0 0
\(151\) −9.44975 + 16.3674i −0.769010 + 1.33196i 0.169091 + 0.985600i \(0.445917\pi\)
−0.938101 + 0.346363i \(0.887417\pi\)
\(152\) 0 0
\(153\) −16.4853 −1.33276
\(154\) 0 0
\(155\) 32.2132 2.58743
\(156\) 0 0
\(157\) 10.3284 17.8894i 0.824298 1.42773i −0.0781562 0.996941i \(-0.524903\pi\)
0.902454 0.430785i \(-0.141763\pi\)
\(158\) 0 0
\(159\) −1.20711 2.09077i −0.0957298 0.165809i
\(160\) 0 0
\(161\) −5.25736 + 6.77962i −0.414338 + 0.534309i
\(162\) 0 0
\(163\) −7.62132 13.2005i −0.596948 1.03394i −0.993269 0.115832i \(-0.963047\pi\)
0.396321 0.918112i \(-0.370287\pi\)
\(164\) 0 0
\(165\) 1.91421 3.31552i 0.149021 0.258113i
\(166\) 0 0
\(167\) −2.00000 −0.154765 −0.0773823 0.997001i \(-0.524656\pi\)
−0.0773823 + 0.997001i \(0.524656\pi\)
\(168\) 0 0
\(169\) −5.00000 −0.384615
\(170\) 0 0
\(171\) −5.07107 + 8.78335i −0.387794 + 0.671679i
\(172\) 0 0
\(173\) 5.50000 + 9.52628i 0.418157 + 0.724270i 0.995754 0.0920525i \(-0.0293428\pi\)
−0.577597 + 0.816322i \(0.696009\pi\)
\(174\) 0 0
\(175\) −25.3137 3.46410i −1.91354 0.261861i
\(176\) 0 0
\(177\) 10.7426 + 18.6068i 0.807466 + 1.39857i
\(178\) 0 0
\(179\) −4.20711 + 7.28692i −0.314454 + 0.544650i −0.979321 0.202311i \(-0.935155\pi\)
0.664867 + 0.746961i \(0.268488\pi\)
\(180\) 0 0
\(181\) −13.3137 −0.989600 −0.494800 0.869007i \(-0.664759\pi\)
−0.494800 + 0.869007i \(0.664759\pi\)
\(182\) 0 0
\(183\) 6.41421 0.474152
\(184\) 0 0
\(185\) 5.08579 8.80884i 0.373914 0.647639i
\(186\) 0 0
\(187\) 1.20711 + 2.09077i 0.0882724 + 0.152892i
\(188\) 0 0
\(189\) −0.414214 1.01461i −0.0301296 0.0738022i
\(190\) 0 0
\(191\) 5.44975 + 9.43924i 0.394330 + 0.682999i 0.993015 0.117985i \(-0.0376434\pi\)
−0.598686 + 0.800984i \(0.704310\pi\)
\(192\) 0 0
\(193\) −9.57107 + 16.5776i −0.688941 + 1.19328i 0.283240 + 0.959049i \(0.408591\pi\)
−0.972181 + 0.234231i \(0.924743\pi\)
\(194\) 0 0
\(195\) −26.1421 −1.87208
\(196\) 0 0
\(197\) 13.1716 0.938436 0.469218 0.883082i \(-0.344536\pi\)
0.469218 + 0.883082i \(0.344536\pi\)
\(198\) 0 0
\(199\) 1.37868 2.38794i 0.0977320 0.169277i −0.813014 0.582245i \(-0.802175\pi\)
0.910746 + 0.412968i \(0.135508\pi\)
\(200\) 0 0
\(201\) 13.5711 + 23.5058i 0.957229 + 1.65797i
\(202\) 0 0
\(203\) −2.82843 6.92820i −0.198517 0.486265i
\(204\) 0 0
\(205\) −2.24264 3.88437i −0.156633 0.271296i
\(206\) 0 0
\(207\) 4.58579 7.94282i 0.318734 0.552064i
\(208\) 0 0
\(209\) 1.48528 0.102739
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 0 0
\(213\) 2.82843 4.89898i 0.193801 0.335673i
\(214\) 0 0
\(215\) −3.17157 5.49333i −0.216299 0.374642i
\(216\) 0 0
\(217\) 22.0563 + 3.01834i 1.49728 + 0.204898i
\(218\) 0 0
\(219\) 4.03553 + 6.98975i 0.272696 + 0.472324i
\(220\) 0 0
\(221\) 8.24264 14.2767i 0.554460 0.960353i
\(222\) 0 0
\(223\) −13.6569 −0.914531 −0.457265 0.889330i \(-0.651171\pi\)
−0.457265 + 0.889330i \(0.651171\pi\)
\(224\) 0 0
\(225\) 27.3137 1.82091
\(226\) 0 0
\(227\) 0.964466 1.67050i 0.0640139 0.110875i −0.832242 0.554412i \(-0.812943\pi\)
0.896256 + 0.443537i \(0.146276\pi\)
\(228\) 0 0
\(229\) −4.91421 8.51167i −0.324740 0.562467i 0.656719 0.754135i \(-0.271944\pi\)
−0.981460 + 0.191668i \(0.938610\pi\)
\(230\) 0 0
\(231\) 1.62132 2.09077i 0.106675 0.137563i
\(232\) 0 0
\(233\) −3.91421 6.77962i −0.256429 0.444147i 0.708854 0.705355i \(-0.249213\pi\)
−0.965283 + 0.261208i \(0.915879\pi\)
\(234\) 0 0
\(235\) −14.5208 + 25.1508i −0.947234 + 1.64066i
\(236\) 0 0
\(237\) 19.4853 1.26571
\(238\) 0 0
\(239\) 21.3137 1.37867 0.689335 0.724443i \(-0.257903\pi\)
0.689335 + 0.724443i \(0.257903\pi\)
\(240\) 0 0
\(241\) 6.15685 10.6640i 0.396598 0.686928i −0.596706 0.802460i \(-0.703524\pi\)
0.993304 + 0.115532i \(0.0368574\pi\)
\(242\) 0 0
\(243\) 10.8284 + 18.7554i 0.694644 + 1.20316i
\(244\) 0 0
\(245\) −25.8137 7.19988i −1.64918 0.459984i
\(246\) 0 0
\(247\) −5.07107 8.78335i −0.322664 0.558871i
\(248\) 0 0
\(249\) −18.4853 + 32.0174i −1.17146 + 2.02902i
\(250\) 0 0
\(251\) 2.97056 0.187500 0.0937501 0.995596i \(-0.470115\pi\)
0.0937501 + 0.995596i \(0.470115\pi\)
\(252\) 0 0
\(253\) −1.34315 −0.0844428
\(254\) 0 0
\(255\) −26.9350 + 46.6528i −1.68674 + 2.92151i
\(256\) 0 0
\(257\) −10.7426 18.6068i −0.670108 1.16066i −0.977873 0.209198i \(-0.932915\pi\)
0.307766 0.951462i \(-0.400419\pi\)
\(258\) 0 0
\(259\) 4.30761 5.55487i 0.267662 0.345163i
\(260\) 0 0
\(261\) 4.00000 + 6.92820i 0.247594 + 0.428845i
\(262\) 0 0
\(263\) −4.44975 + 7.70719i −0.274383 + 0.475246i −0.969979 0.243187i \(-0.921807\pi\)
0.695596 + 0.718433i \(0.255140\pi\)
\(264\) 0 0
\(265\) −3.82843 −0.235178
\(266\) 0 0
\(267\) −21.7279 −1.32973
\(268\) 0 0
\(269\) 0.671573 1.16320i 0.0409465 0.0709215i −0.844826 0.535041i \(-0.820296\pi\)
0.885772 + 0.464120i \(0.153629\pi\)
\(270\) 0 0
\(271\) 6.10660 + 10.5769i 0.370950 + 0.642504i 0.989712 0.143075i \(-0.0456989\pi\)
−0.618762 + 0.785578i \(0.712366\pi\)
\(272\) 0 0
\(273\) −17.8995 2.44949i −1.08333 0.148250i
\(274\) 0 0
\(275\) −2.00000 3.46410i −0.120605 0.208893i
\(276\) 0 0
\(277\) −6.15685 + 10.6640i −0.369930 + 0.640737i −0.989554 0.144162i \(-0.953952\pi\)
0.619625 + 0.784898i \(0.287285\pi\)
\(278\) 0 0
\(279\) −23.7990 −1.42481
\(280\) 0 0
\(281\) 4.48528 0.267569 0.133785 0.991010i \(-0.457287\pi\)
0.133785 + 0.991010i \(0.457287\pi\)
\(282\) 0 0
\(283\) −4.20711 + 7.28692i −0.250087 + 0.433163i −0.963549 0.267530i \(-0.913792\pi\)
0.713463 + 0.700693i \(0.247126\pi\)
\(284\) 0 0
\(285\) 16.5711 + 28.7019i 0.981585 + 1.70016i
\(286\) 0 0
\(287\) −1.17157 2.86976i −0.0691558 0.169396i
\(288\) 0 0
\(289\) −8.48528 14.6969i −0.499134 0.864526i
\(290\) 0 0
\(291\) 8.24264 14.2767i 0.483192 0.836913i
\(292\) 0 0
\(293\) 16.6274 0.971384 0.485692 0.874130i \(-0.338568\pi\)
0.485692 + 0.874130i \(0.338568\pi\)
\(294\) 0 0
\(295\) 34.0711 1.98369
\(296\) 0 0
\(297\) 0.0857864 0.148586i 0.00497783 0.00862186i
\(298\) 0 0
\(299\) 4.58579 + 7.94282i 0.265203 + 0.459345i
\(300\) 0 0
\(301\) −1.65685 4.05845i −0.0954995 0.233925i
\(302\) 0 0
\(303\) −4.20711 7.28692i −0.241692 0.418623i
\(304\) 0 0
\(305\) 5.08579 8.80884i 0.291211 0.504393i
\(306\) 0 0
\(307\) 25.6569 1.46431 0.732157 0.681136i \(-0.238514\pi\)
0.732157 + 0.681136i \(0.238514\pi\)
\(308\) 0 0
\(309\) −13.4853 −0.767151
\(310\) 0 0
\(311\) −13.6213 + 23.5928i −0.772394 + 1.33783i 0.163853 + 0.986485i \(0.447608\pi\)
−0.936247 + 0.351341i \(0.885726\pi\)
\(312\) 0 0
\(313\) −13.6421 23.6289i −0.771099 1.33558i −0.936961 0.349434i \(-0.886374\pi\)
0.165862 0.986149i \(-0.446959\pi\)
\(314\) 0 0
\(315\) 28.3848 + 3.88437i 1.59930 + 0.218859i
\(316\) 0 0
\(317\) −16.1569 27.9845i −0.907459 1.57177i −0.817582 0.575813i \(-0.804686\pi\)
−0.0898778 0.995953i \(-0.528648\pi\)
\(318\) 0 0
\(319\) 0.585786 1.01461i 0.0327977 0.0568074i
\(320\) 0 0
\(321\) 16.6569 0.929695
\(322\) 0 0
\(323\) −20.8995 −1.16288
\(324\) 0 0
\(325\) −13.6569 + 23.6544i −0.757546 + 1.31211i
\(326\) 0 0
\(327\) −16.6924 28.9121i −0.923091 1.59884i
\(328\) 0 0
\(329\) −12.2990 + 15.8601i −0.678065 + 0.874398i
\(330\) 0 0
\(331\) −12.7929 22.1579i −0.703161 1.21791i −0.967351 0.253440i \(-0.918438\pi\)
0.264190 0.964471i \(-0.414895\pi\)
\(332\) 0 0
\(333\) −3.75736 + 6.50794i −0.205902 + 0.356633i
\(334\) 0 0
\(335\) 43.0416 2.35162
\(336\) 0 0
\(337\) 14.8284 0.807756 0.403878 0.914813i \(-0.367662\pi\)
0.403878 + 0.914813i \(0.367662\pi\)
\(338\) 0 0
\(339\) 12.2426 21.2049i 0.664929 1.15169i
\(340\) 0 0
\(341\) 1.74264 + 3.01834i 0.0943693 + 0.163452i
\(342\) 0 0
\(343\) −17.0000 7.34847i −0.917914 0.396780i
\(344\) 0 0
\(345\) −14.9853 25.9553i −0.806780 1.39738i
\(346\) 0 0
\(347\) −7.55025 + 13.0774i −0.405319 + 0.702033i −0.994359 0.106071i \(-0.966173\pi\)
0.589040 + 0.808104i \(0.299506\pi\)
\(348\) 0 0
\(349\) −10.8284 −0.579632 −0.289816 0.957082i \(-0.593594\pi\)
−0.289816 + 0.957082i \(0.593594\pi\)
\(350\) 0 0
\(351\) −1.17157 −0.0625339
\(352\) 0 0
\(353\) −3.91421 + 6.77962i −0.208333 + 0.360843i −0.951189 0.308608i \(-0.900137\pi\)
0.742857 + 0.669450i \(0.233470\pi\)
\(354\) 0 0
\(355\) −4.48528 7.76874i −0.238054 0.412322i
\(356\) 0 0
\(357\) −22.8137 + 29.4194i −1.20743 + 1.55704i
\(358\) 0 0
\(359\) −12.6924 21.9839i −0.669879 1.16026i −0.977938 0.208897i \(-0.933013\pi\)
0.308059 0.951367i \(-0.400321\pi\)
\(360\) 0 0
\(361\) 3.07107 5.31925i 0.161635 0.279960i
\(362\) 0 0
\(363\) −26.1421 −1.37211
\(364\) 0 0
\(365\) 12.7990 0.669930
\(366\) 0 0
\(367\) 14.8640 25.7451i 0.775892 1.34389i −0.158399 0.987375i \(-0.550633\pi\)
0.934292 0.356510i \(-0.116033\pi\)
\(368\) 0 0
\(369\) 1.65685 + 2.86976i 0.0862524 + 0.149394i
\(370\) 0 0
\(371\) −2.62132 0.358719i −0.136092 0.0186238i
\(372\) 0 0
\(373\) 7.15685 + 12.3960i 0.370568 + 0.641842i 0.989653 0.143482i \(-0.0458298\pi\)
−0.619085 + 0.785324i \(0.712496\pi\)
\(374\) 0 0
\(375\) 21.5208 37.2751i 1.11133 1.92488i
\(376\) 0 0
\(377\) −8.00000 −0.412021
\(378\) 0 0
\(379\) −1.02944 −0.0528786 −0.0264393 0.999650i \(-0.508417\pi\)
−0.0264393 + 0.999650i \(0.508417\pi\)
\(380\) 0 0
\(381\) 6.82843 11.8272i 0.349831 0.605925i
\(382\) 0 0
\(383\) −1.37868 2.38794i −0.0704472 0.122018i 0.828650 0.559767i \(-0.189109\pi\)
−0.899097 + 0.437749i \(0.855776\pi\)
\(384\) 0 0
\(385\) −1.58579 3.88437i −0.0808192 0.197966i
\(386\) 0 0
\(387\) 2.34315 + 4.05845i 0.119109 + 0.206302i
\(388\) 0 0
\(389\) 11.9142 20.6360i 0.604075 1.04629i −0.388122 0.921608i \(-0.626876\pi\)
0.992197 0.124680i \(-0.0397904\pi\)
\(390\) 0 0
\(391\) 18.8995 0.955789
\(392\) 0 0
\(393\) −42.7990 −2.15892
\(394\) 0 0
\(395\) 15.4497 26.7597i 0.777361 1.34643i
\(396\) 0 0
\(397\) −4.91421 8.51167i −0.246637 0.427188i 0.715953 0.698148i \(-0.245992\pi\)
−0.962591 + 0.270960i \(0.912659\pi\)
\(398\) 0 0
\(399\) 8.65685 + 21.2049i 0.433385 + 1.06157i
\(400\) 0 0
\(401\) −1.08579 1.88064i −0.0542216 0.0939145i 0.837641 0.546222i \(-0.183934\pi\)
−0.891862 + 0.452307i \(0.850601\pi\)
\(402\) 0 0
\(403\) 11.8995 20.6105i 0.592756 1.02668i
\(404\) 0 0
\(405\) 36.3137 1.80444
\(406\) 0 0
\(407\) 1.10051 0.0545500
\(408\) 0 0
\(409\) 18.2279 31.5717i 0.901313 1.56112i 0.0755210 0.997144i \(-0.475938\pi\)
0.825792 0.563975i \(-0.190729\pi\)
\(410\) 0 0
\(411\) 20.6924 + 35.8403i 1.02068 + 1.76787i
\(412\) 0 0
\(413\) 23.3284 + 3.19242i 1.14792 + 0.157089i
\(414\) 0 0
\(415\) 29.3137 + 50.7728i 1.43895 + 2.49234i
\(416\) 0 0
\(417\) 8.82843 15.2913i 0.432330 0.748817i
\(418\) 0 0
\(419\) −1.65685 −0.0809426 −0.0404713 0.999181i \(-0.512886\pi\)
−0.0404713 + 0.999181i \(0.512886\pi\)
\(420\) 0 0
\(421\) −0.485281 −0.0236512 −0.0118256 0.999930i \(-0.503764\pi\)
−0.0118256 + 0.999930i \(0.503764\pi\)
\(422\) 0 0
\(423\) 10.7279 18.5813i 0.521609 0.903454i
\(424\) 0 0
\(425\) 28.1421 + 48.7436i 1.36509 + 2.36441i
\(426\) 0 0
\(427\) 4.30761 5.55487i 0.208460 0.268819i
\(428\) 0 0
\(429\) −1.41421 2.44949i −0.0682789 0.118262i
\(430\) 0 0
\(431\) −10.6213 + 18.3967i −0.511611 + 0.886136i 0.488298 + 0.872677i \(0.337618\pi\)
−0.999909 + 0.0134595i \(0.995716\pi\)
\(432\) 0 0
\(433\) 28.4853 1.36892 0.684458 0.729053i \(-0.260039\pi\)
0.684458 + 0.729053i \(0.260039\pi\)
\(434\) 0 0
\(435\) 26.1421 1.25342
\(436\) 0 0
\(437\) 5.81371 10.0696i 0.278107 0.481696i
\(438\) 0 0
\(439\) −18.3492 31.7818i −0.875762 1.51686i −0.855949 0.517060i \(-0.827026\pi\)
−0.0198123 0.999804i \(-0.506307\pi\)
\(440\) 0 0
\(441\) 19.0711 + 5.31925i 0.908146 + 0.253297i
\(442\) 0 0
\(443\) 13.0355 + 22.5782i 0.619337 + 1.07272i 0.989607 + 0.143799i \(0.0459318\pi\)
−0.370270 + 0.928924i \(0.620735\pi\)
\(444\) 0 0
\(445\) −17.2279 + 29.8396i −0.816682 + 1.41453i
\(446\) 0 0
\(447\) −28.5563 −1.35067
\(448\) 0 0
\(449\) 6.82843 0.322253 0.161127 0.986934i \(-0.448487\pi\)
0.161127 + 0.986934i \(0.448487\pi\)
\(450\) 0 0
\(451\) 0.242641 0.420266i 0.0114255 0.0197896i
\(452\) 0 0
\(453\) −22.8137 39.5145i −1.07188 1.85655i
\(454\) 0 0
\(455\) −17.5563 + 22.6398i −0.823054 + 1.06137i
\(456\) 0 0
\(457\) 18.6421 + 32.2891i 0.872042 + 1.51042i 0.859880 + 0.510496i \(0.170538\pi\)
0.0121619 + 0.999926i \(0.496129\pi\)
\(458\) 0 0
\(459\) −1.20711 + 2.09077i −0.0563429 + 0.0975888i
\(460\) 0 0
\(461\) −25.4558 −1.18560 −0.592798 0.805351i \(-0.701977\pi\)
−0.592798 + 0.805351i \(0.701977\pi\)
\(462\) 0 0
\(463\) −11.3137 −0.525793 −0.262896 0.964824i \(-0.584678\pi\)
−0.262896 + 0.964824i \(0.584678\pi\)
\(464\) 0 0
\(465\) −38.8848 + 67.3504i −1.80324 + 3.12330i
\(466\) 0 0
\(467\) −9.27817 16.0703i −0.429343 0.743643i 0.567472 0.823393i \(-0.307921\pi\)
−0.996815 + 0.0797491i \(0.974588\pi\)
\(468\) 0 0
\(469\) 29.4706 + 4.03295i 1.36082 + 0.186225i
\(470\) 0 0
\(471\) 24.9350 + 43.1887i 1.14895 + 1.99003i
\(472\) 0 0
\(473\) 0.343146 0.594346i 0.0157779 0.0273281i
\(474\) 0 0
\(475\) 34.6274 1.58881
\(476\) 0 0
\(477\) 2.82843 0.129505
\(478\) 0 0
\(479\) 15.3492 26.5857i 0.701325 1.21473i −0.266677 0.963786i \(-0.585926\pi\)
0.968002 0.250944i \(-0.0807410\pi\)
\(480\) 0 0
\(481\) −3.75736 6.50794i −0.171321 0.296736i
\(482\) 0 0
\(483\) −7.82843 19.1757i −0.356206 0.872522i
\(484\) 0 0
\(485\) −13.0711 22.6398i −0.593527 1.02802i
\(486\) 0 0
\(487\) 6.86396 11.8887i 0.311036 0.538730i −0.667551 0.744564i \(-0.732657\pi\)
0.978587 + 0.205834i \(0.0659908\pi\)
\(488\) 0 0
\(489\) 36.7990 1.66411
\(490\) 0 0
\(491\) −7.65685 −0.345549 −0.172774 0.984961i \(-0.555273\pi\)
−0.172774 + 0.984961i \(0.555273\pi\)
\(492\) 0 0
\(493\) −8.24264 + 14.2767i −0.371230 + 0.642989i
\(494\) 0 0
\(495\) 2.24264 + 3.88437i 0.100799 + 0.174589i
\(496\) 0 0
\(497\) −2.34315 5.73951i −0.105104 0.257452i
\(498\) 0 0
\(499\) −13.2782 22.9985i −0.594413 1.02955i −0.993629 0.112696i \(-0.964051\pi\)
0.399217 0.916857i \(-0.369282\pi\)
\(500\) 0 0
\(501\) 2.41421 4.18154i 0.107859 0.186817i
\(502\) 0 0
\(503\) 21.6569 0.965631 0.482816 0.875722i \(-0.339614\pi\)
0.482816 + 0.875722i \(0.339614\pi\)
\(504\) 0 0
\(505\) −13.3431 −0.593762
\(506\) 0 0
\(507\) 6.03553 10.4539i 0.268047 0.464272i
\(508\) 0 0
\(509\) 12.2574 + 21.2304i 0.543298 + 0.941020i 0.998712 + 0.0507398i \(0.0161579\pi\)
−0.455414 + 0.890280i \(0.650509\pi\)
\(510\) 0 0
\(511\) 8.76346 + 1.19925i 0.387672 + 0.0530518i
\(512\) 0 0
\(513\) 0.742641 + 1.28629i 0.0327884 + 0.0567912i
\(514\) 0 0
\(515\) −10.6924 + 18.5198i −0.471163 + 0.816078i
\(516\) 0 0
\(517\) −3.14214 −0.138191
\(518\) 0 0
\(519\) −26.5563 −1.16569
\(520\) 0 0
\(521\) −3.50000 + 6.06218i −0.153338 + 0.265589i −0.932453 0.361293i \(-0.882336\pi\)
0.779115 + 0.626881i \(0.215669\pi\)
\(522\) 0 0
\(523\) 3.86396 + 6.69258i 0.168959 + 0.292646i 0.938054 0.346489i \(-0.112626\pi\)
−0.769095 + 0.639134i \(0.779293\pi\)
\(524\) 0 0
\(525\) 37.7990 48.7436i 1.64968 2.12735i
\(526\) 0 0
\(527\) −24.5208 42.4713i −1.06814 1.85008i
\(528\) 0 0
\(529\) 6.24264 10.8126i 0.271419 0.470112i
\(530\) 0 0
\(531\) −25.1716 −1.09235
\(532\) 0 0
\(533\) −3.31371 −0.143533
\(534\) 0 0
\(535\) 13.2071 22.8754i 0.570993 0.988989i
\(536\) 0 0
\(537\) −10.1569 17.5922i −0.438301 0.759159i
\(538\) 0 0
\(539\) −0.721825 2.80821i −0.0310912 0.120958i
\(540\) 0 0
\(541\) −10.0858 17.4691i −0.433622 0.751055i 0.563560 0.826075i \(-0.309431\pi\)
−0.997182 + 0.0750200i \(0.976098\pi\)
\(542\) 0 0
\(543\) 16.0711 27.8359i 0.689676 1.19455i
\(544\) 0 0
\(545\) −52.9411 −2.26775
\(546\) 0 0
\(547\) −22.9706 −0.982150 −0.491075 0.871117i \(-0.663396\pi\)
−0.491075 + 0.871117i \(0.663396\pi\)
\(548\) 0 0
\(549\) −3.75736 + 6.50794i −0.160360 + 0.277752i
\(550\) 0 0
\(551\) 5.07107 + 8.78335i 0.216035 + 0.374183i
\(552\) 0 0
\(553\) 13.0858 16.8747i 0.556464 0.717587i
\(554\) 0 0
\(555\) 12.2782 + 21.2664i 0.521179 + 0.902709i
\(556\) 0 0
\(557\) −2.91421 + 5.04757i −0.123479 + 0.213872i −0.921137 0.389237i \(-0.872739\pi\)
0.797658 + 0.603110i \(0.206072\pi\)
\(558\) 0 0
\(559\) −4.68629 −0.198209
\(560\) 0 0
\(561\) −5.82843 −0.246076
\(562\) 0 0
\(563\) −0.0355339 + 0.0615465i −0.00149758 + 0.00259388i −0.866773 0.498703i \(-0.833810\pi\)
0.865276 + 0.501296i \(0.167143\pi\)
\(564\) 0 0
\(565\) −19.4142 33.6264i −0.816762 1.41467i
\(566\) 0 0
\(567\) 24.8640 + 3.40256i 1.04419 + 0.142894i
\(568\) 0 0
\(569\) −12.6716 21.9478i −0.531220 0.920100i −0.999336 0.0364330i \(-0.988400\pi\)
0.468116 0.883667i \(-0.344933\pi\)
\(570\) 0 0
\(571\) 7.79289 13.4977i 0.326122 0.564861i −0.655616 0.755094i \(-0.727591\pi\)
0.981739 + 0.190233i \(0.0609245\pi\)
\(572\) 0 0
\(573\) −26.3137 −1.09927
\(574\) 0 0
\(575\) −31.3137 −1.30587
\(576\) 0 0
\(577\) −19.5000 + 33.7750i −0.811796 + 1.40607i 0.0998105 + 0.995006i \(0.468176\pi\)
−0.911606 + 0.411065i \(0.865157\pi\)
\(578\) 0 0
\(579\) −23.1066 40.0218i −0.960278 1.66325i
\(580\) 0 0
\(581\) 15.3137 + 37.5108i 0.635320 + 1.55621i
\(582\) 0 0
\(583\) −0.207107 0.358719i −0.00857749 0.0148566i
\(584\) 0 0
\(585\) 15.3137 26.5241i 0.633144 1.09664i
\(586\) 0 0
\(587\) −4.97056 −0.205157 −0.102579 0.994725i \(-0.532709\pi\)
−0.102579 + 0.994725i \(0.532709\pi\)
\(588\) 0 0
\(589\) −30.1716 −1.24320
\(590\) 0 0
\(591\) −15.8995 + 27.5387i −0.654018 + 1.13279i
\(592\) 0 0
\(593\) 5.74264 + 9.94655i 0.235822 + 0.408456i 0.959511 0.281670i \(-0.0908884\pi\)
−0.723689 + 0.690126i \(0.757555\pi\)
\(594\) 0 0
\(595\) 22.3137 + 54.6572i 0.914773 + 2.24073i
\(596\) 0 0
\(597\) 3.32843 + 5.76500i 0.136223 + 0.235946i
\(598\) 0 0
\(599\) −8.93503 + 15.4759i −0.365075 + 0.632329i −0.988788 0.149324i \(-0.952290\pi\)
0.623713 + 0.781654i \(0.285623\pi\)
\(600\) 0 0
\(601\) −2.14214 −0.0873795 −0.0436898 0.999045i \(-0.513911\pi\)
−0.0436898 + 0.999045i \(0.513911\pi\)
\(602\) 0 0
\(603\) −31.7990 −1.29495
\(604\) 0 0
\(605\) −20.7279 + 35.9018i −0.842710 + 1.45962i
\(606\) 0 0
\(607\) −0.692388 1.19925i −0.0281032 0.0486761i 0.851632 0.524141i \(-0.175613\pi\)
−0.879735 + 0.475464i \(0.842280\pi\)
\(608\) 0 0
\(609\) 17.8995 + 2.44949i 0.725324 + 0.0992583i
\(610\) 0 0
\(611\) 10.7279 + 18.5813i 0.434005 + 0.751719i
\(612\) 0 0
\(613\) 10.7426 18.6068i 0.433891 0.751522i −0.563313 0.826243i \(-0.690474\pi\)
0.997204 + 0.0747219i \(0.0238069\pi\)
\(614\) 0 0
\(615\) 10.8284 0.436644
\(616\) 0 0
\(617\) −43.1127 −1.73565 −0.867826 0.496868i \(-0.834483\pi\)
−0.867826 + 0.496868i \(0.834483\pi\)
\(618\) 0 0
\(619\) −16.0355 + 27.7744i −0.644523 + 1.11635i 0.339889 + 0.940466i \(0.389610\pi\)
−0.984412 + 0.175880i \(0.943723\pi\)
\(620\) 0 0
\(621\) −0.671573 1.16320i −0.0269493 0.0466775i
\(622\) 0 0
\(623\) −14.5919 + 18.8169i −0.584611 + 0.753884i
\(624\) 0 0
\(625\) −9.98528 17.2950i −0.399411 0.691801i
\(626\) 0 0
\(627\) −1.79289 + 3.10538i −0.0716013 + 0.124017i
\(628\) 0 0
\(629\) −15.4853 −0.617439
\(630\) 0 0
\(631\) −18.3431 −0.730229 −0.365115 0.930963i \(-0.618970\pi\)
−0.365115 + 0.930963i \(0.618970\pi\)
\(632\) 0 0
\(633\) 14.4853 25.0892i 0.575738 0.997208i
\(634\) 0 0
\(635\) −10.8284 18.7554i −0.429713 0.744285i
\(636\) 0 0
\(637\) −14.1421 + 13.8564i −0.560332 + 0.549011i
\(638\) 0 0
\(639\) 3.31371 + 5.73951i 0.131088 + 0.227052i
\(640\) 0 0
\(641\) 8.50000 14.7224i 0.335730 0.581501i −0.647895 0.761730i \(-0.724350\pi\)
0.983625 + 0.180229i \(0.0576838\pi\)
\(642\) 0 0
\(643\) 44.9706 1.77347 0.886733 0.462282i \(-0.152969\pi\)
0.886733 + 0.462282i \(0.152969\pi\)
\(644\) 0 0
\(645\) 15.3137 0.602977
\(646\) 0 0
\(647\) −12.9350 + 22.4041i −0.508528 + 0.880797i 0.491423 + 0.870921i \(0.336477\pi\)
−0.999951 + 0.00987597i \(0.996856\pi\)
\(648\) 0 0
\(649\) 1.84315 + 3.19242i 0.0723498 + 0.125314i
\(650\) 0 0
\(651\) −32.9350 + 42.4713i −1.29083 + 1.66458i
\(652\) 0 0
\(653\) 14.4706 + 25.0637i 0.566277 + 0.980820i 0.996930 + 0.0783026i \(0.0249500\pi\)
−0.430653 + 0.902518i \(0.641717\pi\)
\(654\) 0 0
\(655\) −33.9350 + 58.7772i −1.32595 + 2.29662i
\(656\) 0 0
\(657\) −9.45584 −0.368908
\(658\) 0 0
\(659\) −10.6274 −0.413985 −0.206993 0.978342i \(-0.566368\pi\)
−0.206993 + 0.978342i \(0.566368\pi\)
\(660\) 0 0
\(661\) −9.67157 + 16.7517i −0.376181 + 0.651564i −0.990503 0.137491i \(-0.956096\pi\)
0.614322 + 0.789055i \(0.289429\pi\)
\(662\) 0 0
\(663\) 19.8995 + 34.4669i 0.772832 + 1.33858i
\(664\) 0 0
\(665\) 35.9853 + 4.92447i 1.39545 + 0.190963i
\(666\) 0 0
\(667\) −4.58579 7.94282i −0.177562 0.307547i
\(668\) 0 0
\(669\) 16.4853 28.5533i 0.637358 1.10394i
\(670\) 0 0
\(671\) 1.10051 0.0424845
\(672\) 0 0
\(673\) 26.1421 1.00771 0.503853 0.863790i \(-0.331915\pi\)
0.503853 + 0.863790i \(0.331915\pi\)
\(674\) 0 0
\(675\) 2.00000 3.46410i 0.0769800 0.133333i
\(676\) 0 0
\(677\) 10.3995 + 18.0125i 0.399685 + 0.692275i 0.993687 0.112189i \(-0.0357862\pi\)
−0.594002 + 0.804464i \(0.702453\pi\)
\(678\) 0 0
\(679\) −6.82843 16.7262i −0.262051 0.641891i
\(680\) 0 0
\(681\) 2.32843 + 4.03295i 0.0892255 + 0.154543i
\(682\) 0 0
\(683\) 24.2782 42.0510i 0.928979 1.60904i 0.143944 0.989586i \(-0.454021\pi\)
0.785034 0.619452i \(-0.212645\pi\)
\(684\) 0 0
\(685\) 65.6274 2.50749
\(686\) 0 0
\(687\) 23.7279 0.905277
\(688\) 0 0
\(689\) −1.41421 + 2.44949i −0.0538772 + 0.0933181i
\(690\) 0 0
\(691\) 10.5208 + 18.2226i 0.400231 + 0.693220i 0.993754 0.111597i \(-0.0355967\pi\)
−0.593523 + 0.804817i \(0.702263\pi\)
\(692\) 0 0
\(693\) 1.17157 + 2.86976i 0.0445044 + 0.109013i
\(694\) 0 0
\(695\) −14.0000 24.2487i −0.531050 0.919806i
\(696\) 0 0
\(697\) −3.41421 + 5.91359i −0.129323 + 0.223993i
\(698\) 0 0
\(699\) 18.8995 0.714845
\(700\) 0 0
\(701\) −14.0000 −0.528773 −0.264386 0.964417i \(-0.585169\pi\)
−0.264386 + 0.964417i \(0.585169\pi\)
\(702\) 0 0
\(703\) −4.76346 + 8.25055i −0.179657 + 0.311175i
\(704\) 0 0
\(705\) −35.0563 60.7194i −1.32030 2.28682i
\(706\) 0 0
\(707\) −9.13604 1.25024i −0.343596 0.0470200i
\(708\) 0 0
\(709\) 21.2990 + 36.8909i 0.799900 + 1.38547i 0.919680 + 0.392668i \(0.128448\pi\)
−0.119780 + 0.992800i \(0.538219\pi\)
\(710\) 0 0
\(711\) −11.4142 + 19.7700i −0.428066 + 0.741433i
\(712\) 0 0
\(713\) 27.2843 1.02180
\(714\) 0 0
\(715\) −4.48528 −0.167740
\(716\) 0 0
\(717\) −25.7279 + 44.5621i −0.960827 + 1.66420i
\(718\) 0 0
\(719\) −8.52082 14.7585i −0.317773 0.550399i 0.662250 0.749283i \(-0.269602\pi\)
−0.980023 + 0.198884i \(0.936268\pi\)
\(720\) 0 0
\(721\) −9.05635 + 11.6786i −0.337276 + 0.434934i
\(722\) 0 0
\(723\) 14.8640 + 25.7451i 0.552797 + 0.957472i
\(724\) 0 0
\(725\) 13.6569 23.6544i 0.507203 0.878501i
\(726\) 0 0
\(727\) −45.6569 −1.69332 −0.846659 0.532135i \(-0.821390\pi\)
−0.846659 + 0.532135i \(0.821390\pi\)
\(728\) 0 0
\(729\) −23.8284 −0.882534
\(730\) 0 0
\(731\) −4.82843 + 8.36308i −0.178586 + 0.309320i
\(732\) 0 0
\(733\) 23.1569 + 40.1088i 0.855318 + 1.48145i 0.876350 + 0.481675i \(0.159972\pi\)
−0.0210318 + 0.999779i \(0.506695\pi\)
\(734\) 0 0
\(735\) 46.2132 45.2795i 1.70460 1.67016i
\(736\) 0 0
\(737\) 2.32843 + 4.03295i 0.0857687 + 0.148556i
\(738\) 0 0
\(739\) −26.3492 + 45.6382i −0.969273 + 1.67883i −0.271603 + 0.962409i \(0.587554\pi\)
−0.697669 + 0.716420i \(0.745779\pi\)
\(740\) 0 0
\(741\) 24.4853 0.899489
\(742\) 0 0
\(743\) −37.6569 −1.38150 −0.690748 0.723096i \(-0.742719\pi\)
−0.690748 + 0.723096i \(0.742719\pi\)
\(744\) 0 0
\(745\) −22.6421 + 39.2173i −0.829544 + 1.43681i
\(746\) 0 0
\(747\) −21.6569 37.5108i −0.792383 1.37245i
\(748\) 0 0
\(749\) 11.1863 14.4253i 0.408738 0.527087i
\(750\) 0 0
\(751\) −1.86396 3.22848i −0.0680169 0.117809i 0.830011 0.557746i \(-0.188334\pi\)
−0.898028 + 0.439938i \(0.855001\pi\)
\(752\) 0 0
\(753\) −3.58579 + 6.21076i −0.130673 + 0.226333i
\(754\) 0 0
\(755\) −72.3553 −2.63328
\(756\) 0 0
\(757\) −22.1421 −0.804770 −0.402385 0.915471i \(-0.631819\pi\)
−0.402385 + 0.915471i \(0.631819\pi\)
\(758\) 0 0
\(759\) 1.62132 2.80821i 0.0588502 0.101932i
\(760\) 0 0
\(761\) −10.0563 17.4181i −0.364542 0.631406i 0.624160 0.781296i \(-0.285441\pi\)
−0.988703 + 0.149890i \(0.952108\pi\)
\(762\) 0 0
\(763\) −36.2487 4.96053i −1.31229 0.179583i
\(764\) 0 0
\(765\) −31.5563 54.6572i −1.14092 1.97614i
\(766\) 0 0
\(767\) 12.5858 21.7992i 0.454446 0.787124i
\(768\) 0 0
\(769\) 42.1421 1.51968 0.759842 0.650108i \(-0.225276\pi\)
0.759842 + 0.650108i \(0.225276\pi\)
\(770\) 0 0
\(771\) 51.8701 1.86805
\(772\) 0 0
\(773\) 9.57107 16.5776i 0.344247 0.596254i −0.640969 0.767566i \(-0.721467\pi\)
0.985217 + 0.171313i \(0.0548008\pi\)
\(774\) 0 0
\(775\) 40.6274 + 70.3688i 1.45938 + 2.52772i
\(776\) 0 0
\(777\) 6.41421 + 15.7116i 0.230109 + 0.563649i
\(778\) 0 0
\(779\) 2.10051 + 3.63818i 0.0752584 + 0.130351i
\(780\) 0 0
\(781\) 0.485281 0.840532i 0.0173647 0.0300766i
\(782\) 0 0
\(783\) 1.17157 0.0418686
\(784\) 0 0
\(785\) 79.0833 2.82260
\(786\) 0 0
\(787\) −1.89340 + 3.27946i −0.0674924 + 0.116900i −0.897797 0.440410i \(-0.854833\pi\)
0.830305 + 0.557310i \(0.188166\pi\)
\(788\) 0 0
\(789\) −10.7426 18.6068i −0.382448 0.662420i
\(790\) 0 0
\(791\) −10.1421 24.8431i −0.360613 0.883317i
\(792\) 0 0
\(793\) −3.75736 6.50794i −0.133428 0.231104i
\(794\) 0 0
\(795\) 4.62132 8.00436i 0.163901 0.283885i
\(796\) 0 0
\(797\) 15.1127 0.535319 0.267660 0.963514i \(-0.413750\pi\)
0.267660 + 0.963514i \(0.413750\pi\)
\(798\) 0 0
\(799\) 44.2132 1.56415
\(800\) 0 0
\(801\) 12.7279 22.0454i 0.449719 0.778936i
\(802\) 0 0
\(803\) 0.692388 + 1.19925i 0.0244338 + 0.0423207i
\(804\) 0 0
\(805\) −32.5416 4.45322i −1.14694 0.156955i
\(806\) 0 0
\(807\) 1.62132 + 2.80821i 0.0570732 + 0.0988536i
\(808\) 0 0
\(809\) −7.98528 + 13.8309i −0.280748 + 0.486269i −0.971569 0.236756i \(-0.923916\pi\)
0.690822 + 0.723025i \(0.257249\pi\)
\(810\) 0 0
\(811\) −6.34315 −0.222738 −0.111369 0.993779i \(-0.535524\pi\)
−0.111369 + 0.993779i \(0.535524\pi\)
\(812\) 0 0
\(813\) −29.4853 −1.03409
\(814\) 0 0
\(815\) 29.1777 50.5372i 1.02205 1.77024i
\(816\) 0 0
\(817\) 2.97056 + 5.14517i 0.103927 + 0.180007i
\(818\) 0 0
\(819\) 12.9706 16.7262i 0.453228 0.584459i
\(820\) 0 0
\(821\) −6.57107 11.3814i −0.229332 0.397214i 0.728278 0.685281i \(-0.240321\pi\)
−0.957610 + 0.288067i \(0.906987\pi\)
\(822\) 0 0
\(823\) 17.0061 29.4554i 0.592795 1.02675i −0.401059 0.916052i \(-0.631358\pi\)
0.993854 0.110699i \(-0.0353090\pi\)
\(824\) 0 0
\(825\) 9.65685 0.336209
\(826\) 0 0
\(827\) 30.3431 1.05513 0.527567 0.849513i \(-0.323104\pi\)
0.527567 + 0.849513i \(0.323104\pi\)
\(828\) 0 0
\(829\) 20.3995 35.3330i 0.708504 1.22716i −0.256908 0.966436i \(-0.582704\pi\)
0.965412 0.260729i \(-0.0839628\pi\)
\(830\) 0 0
\(831\) −14.8640 25.7451i −0.515625 0.893089i
\(832\) 0 0
\(833\) 10.1569 + 39.5145i 0.351914 + 1.36910i
\(834\) 0 0
\(835\) −3.82843 6.63103i −0.132488 0.229476i
\(836\) 0 0
\(837\) −1.74264 + 3.01834i −0.0602345 + 0.104329i
\(838\) 0 0
\(839\) −19.3137 −0.666783 −0.333392 0.942788i \(-0.608193\pi\)
−0.333392 + 0.942788i \(0.608193\pi\)
\(840\) 0 0
\(841\) −21.0000 −0.724138
\(842\) 0 0
\(843\) −5.41421 + 9.37769i −0.186475 + 0.322985i
\(844\) 0 0
\(845\) −9.57107 16.5776i −0.329255 0.570286i
\(846\) 0 0
\(847\) −17.5563 + 22.6398i −0.603243 + 0.777911i
\(848\) 0 0
\(849\) −10.1569 17.5922i −0.348582 0.603762i
\(850\) 0 0
\(851\) 4.30761 7.46100i 0.147663 0.255760i
\(852\) 0 0
\(853\) 23.5147 0.805129 0.402564 0.915392i \(-0.368119\pi\)
0.402564 + 0.915392i \(0.368119\pi\)
\(854\) 0 0
\(855\) −38.8284 −1.32790
\(856\) 0 0
\(857\) −18.3284 + 31.7458i −0.626087 + 1.08441i 0.362242 + 0.932084i \(0.382011\pi\)
−0.988330 + 0.152331i \(0.951322\pi\)
\(858\) 0 0
\(859\) −18.2782 31.6587i −0.623643 1.08018i −0.988802 0.149236i \(-0.952318\pi\)
0.365158 0.930945i \(-0.381015\pi\)
\(860\) 0 0
\(861\) 7.41421 + 1.01461i 0.252676 + 0.0345779i
\(862\) 0 0
\(863\) −1.69239 2.93130i −0.0576096 0.0997827i 0.835782 0.549061i \(-0.185015\pi\)
−0.893392 + 0.449278i \(0.851681\pi\)
\(864\) 0 0
\(865\) −21.0563 + 36.4707i −0.715937 + 1.24004i
\(866\) 0 0
\(867\) 40.9706 1.39143
\(868\) 0 0
\(869\) 3.34315 0.113408
\(870\) 0 0
\(871\) 15.8995 27.5387i 0.538734 0.933114i
\(872\) 0 0
\(873\) 9.65685 + 16.7262i 0.326835 + 0.566095i
\(874\) 0 0
\(875\) −17.8284 43.6705i −0.602711 1.47633i
\(876\) 0 0
\(877\) −16.7132 28.9481i −0.564365 0.977508i −0.997108 0.0759915i \(-0.975788\pi\)
0.432744 0.901517i \(-0.357546\pi\)
\(878\) 0 0
\(879\) −20.0711 + 34.7641i −0.676980 + 1.17256i
\(880\) 0 0
\(881\) −26.0000 −0.875962 −0.437981 0.898984i \(-0.644306\pi\)
−0.437981 + 0.898984i \(0.644306\pi\)
\(882\) 0 0
\(883\) 49.2548 1.65756 0.828779 0.559577i \(-0.189036\pi\)
0.828779 + 0.559577i \(0.189036\pi\)
\(884\) 0 0
\(885\) −41.1274 + 71.2348i −1.38248 + 2.39453i
\(886\) 0 0
\(887\) 25.4497 + 44.0803i 0.854519 + 1.48007i 0.877091 + 0.480325i \(0.159481\pi\)
−0.0225717 + 0.999745i \(0.507185\pi\)
\(888\) 0 0
\(889\) −5.65685 13.8564i −0.189725 0.464729i
\(890\) 0 0
\(891\) 1.96447 + 3.40256i 0.0658121 + 0.113990i
\(892\) 0 0
\(893\) 13.6005 23.5568i 0.455124 0.788297i
\(894\) 0 0
\(895\) −32.2132 −1.07677
\(896\) 0 0
\(897\) −22.1421 −0.739304
\(898\) 0 0
\(899\) −11.8995 + 20.6105i −0.396870 + 0.687400i
\(900\) 0 0
\(901\) 2.91421 + 5.04757i 0.0970865 + 0.168159i
\(902\) 0 0
\(903\) 10.4853 + 1.43488i 0.348928 + 0.0477497i
\(904\) 0 0
\(905\) −25.4853 44.1418i −0.847159 1.46732i
\(906\) 0 0
\(907\) 19.7635 34.2313i 0.656235 1.13663i −0.325348 0.945594i \(-0.605481\pi\)
0.981583 0.191038i \(-0.0611852\pi\)
\(908\) 0 0
\(909\) 9.85786 0.326965
\(910\) 0 0
\(911\) −8.00000 −0.265052 −0.132526 0.991180i \(-0.542309\pi\)
−0.132526 + 0.991180i \(0.542309\pi\)
\(912\) 0 0
\(913\) −3.17157 + 5.49333i −0.104964 + 0.181803i
\(914\) 0 0
\(915\) 12.2782 + 21.2664i 0.405904 + 0.703046i
\(916\) 0 0
\(917\) −28.7426 + 37.0650i −0.949166 + 1.22399i
\(918\) 0 0
\(919\) 12.2782 + 21.2664i 0.405020 + 0.701515i 0.994324 0.106397i \(-0.0339314\pi\)
−0.589304 + 0.807911i \(0.700598\pi\)
\(920\) 0 0
\(921\) −30.9706 + 53.6426i −1.02051 + 1.76758i
\(922\) 0 0
\(923\) −6.62742 −0.218144
\(924\) 0 0
\(925\) 25.6569 0.843592
\(926\) 0 0
\(927\) 7.89949 13.6823i 0.259453 0.449387i
\(928\) 0 0
\(929\) 15.3284 + 26.5496i 0.502909 + 0.871065i 0.999994 + 0.00336273i \(0.00107039\pi\)
−0.497085 + 0.867702i \(0.665596\pi\)
\(930\) 0 0
\(931\) 24.1777 + 6.74356i 0.792391 + 0.221011i
\(932\) 0 0
\(933\) −32.8848 56.9581i −1.07660 1.86472i
\(934\) 0 0
\(935\) −4.62132 + 8.00436i −0.151133 + 0.261771i
\(936\) 0 0
\(937\) −28.6274 −0.935217 −0.467608 0.883936i \(-0.654884\pi\)
−0.467608 + 0.883936i \(0.654884\pi\)
\(938\) 0 0
\(939\) 65.8701 2.14959
\(940\) 0 0
\(941\) 26.1274 45.2540i 0.851729 1.47524i −0.0279168 0.999610i \(-0.508887\pi\)
0.879646 0.475628i \(-0.157779\pi\)
\(942\) 0 0
\(943\) −1.89949 3.29002i −0.0618561 0.107138i
\(944\) 0 0
\(945\) 2.57107 3.31552i 0.0836368 0.107854i
\(946\) 0 0
\(947\) −12.1066 20.9692i −0.393412 0.681409i 0.599485 0.800386i \(-0.295372\pi\)
−0.992897 + 0.118977i \(0.962039\pi\)
\(948\) 0 0
\(949\) 4.72792 8.18900i 0.153475 0.265826i
\(950\) 0 0
\(951\) 78.0122 2.52972
\(952\) 0 0
\(953\) 35.1127 1.13741 0.568706 0.822541i \(-0.307444\pi\)
0.568706 + 0.822541i \(0.307444\pi\)
\(954\) 0 0
\(955\) −20.8640 + 36.1374i −0.675142 + 1.16938i
\(956\) 0 0
\(957\) 1.41421 + 2.44949i 0.0457150 + 0.0791808i
\(958\) 0 0
\(959\) 44.9350 + 6.14922i 1.45103 + 0.198569i
\(960\) 0 0
\(961\) −19.8995 34.4669i −0.641919 1.11184i
\(962\) 0 0
\(963\) −9.75736 + 16.9002i −0.314427 + 0.544603i
\(964\) 0 0
\(965\) −73.2843 −2.35910
\(966\) 0 0
\(967\) 29.6569 0.953700 0.476850 0.878985i \(-0.341778\pi\)
0.476850 + 0.878985i \(0.341778\pi\)
\(968\) 0 0
\(969\) 25.2279 43.6960i 0.810438 1.40372i
\(970\) 0 0
\(971\) 19.2071 + 33.2677i 0.616385 + 1.06761i 0.990140 + 0.140083i \(0.0447370\pi\)
−0.373754 + 0.927528i \(0.621930\pi\)
\(972\) 0 0
\(973\) −7.31371 17.9149i −0.234467 0.574324i
\(974\) 0 0
\(975\) −32.9706 57.1067i −1.05590 1.82888i
\(976\) 0 0
\(977\) 25.7426 44.5876i 0.823580 1.42648i −0.0794196 0.996841i \(-0.525307\pi\)
0.903000 0.429641i \(-0.141360\pi\)
\(978\) 0 0
\(979\) −3.72792 −0.119145
\(980\) 0 0
\(981\) 39.1127 1.24877
\(982\) 0 0
\(983\) −30.4203 + 52.6895i −0.970257 + 1.68053i −0.275484 + 0.961306i \(0.588838\pi\)
−0.694773 + 0.719229i \(0.744495\pi\)
\(984\) 0 0
\(985\) 25.2132 + 43.6705i 0.803359 + 1.39146i
\(986\) 0 0
\(987\) −18.3137 44.8592i −0.582932 1.42789i
\(988\) 0 0
\(989\) −2.68629 4.65279i −0.0854191 0.147950i
\(990\) 0 0
\(991\) 7.34924 12.7293i 0.233456 0.404358i −0.725367 0.688363i \(-0.758330\pi\)
0.958823 + 0.284004i \(0.0916631\pi\)
\(992\) 0 0
\(993\) 61.7696 1.96020
\(994\) 0 0
\(995\) 10.5563 0.334659
\(996\) 0 0
\(997\) 5.64214 9.77247i 0.178688 0.309497i −0.762743 0.646701i \(-0.776148\pi\)
0.941431 + 0.337204i \(0.109481\pi\)
\(998\) 0 0
\(999\) 0.550253 + 0.953065i 0.0174092 + 0.0301537i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.2.i.g.193.1 4
4.3 odd 2 448.2.i.j.193.2 4
7.2 even 3 inner 448.2.i.g.65.1 4
7.3 odd 6 3136.2.a.be.1.1 2
7.4 even 3 3136.2.a.bw.1.2 2
8.3 odd 2 224.2.i.a.193.1 yes 4
8.5 even 2 224.2.i.d.193.2 yes 4
24.5 odd 2 2016.2.s.s.865.2 4
24.11 even 2 2016.2.s.q.865.2 4
28.3 even 6 3136.2.a.bx.1.2 2
28.11 odd 6 3136.2.a.bd.1.1 2
28.23 odd 6 448.2.i.j.65.2 4
56.3 even 6 1568.2.a.j.1.1 2
56.5 odd 6 1568.2.i.o.961.1 4
56.11 odd 6 1568.2.a.w.1.2 2
56.13 odd 2 1568.2.i.o.1537.1 4
56.19 even 6 1568.2.i.x.961.2 4
56.27 even 2 1568.2.i.x.1537.2 4
56.37 even 6 224.2.i.d.65.2 yes 4
56.45 odd 6 1568.2.a.u.1.2 2
56.51 odd 6 224.2.i.a.65.1 4
56.53 even 6 1568.2.a.l.1.1 2
168.107 even 6 2016.2.s.q.289.2 4
168.149 odd 6 2016.2.s.s.289.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
224.2.i.a.65.1 4 56.51 odd 6
224.2.i.a.193.1 yes 4 8.3 odd 2
224.2.i.d.65.2 yes 4 56.37 even 6
224.2.i.d.193.2 yes 4 8.5 even 2
448.2.i.g.65.1 4 7.2 even 3 inner
448.2.i.g.193.1 4 1.1 even 1 trivial
448.2.i.j.65.2 4 28.23 odd 6
448.2.i.j.193.2 4 4.3 odd 2
1568.2.a.j.1.1 2 56.3 even 6
1568.2.a.l.1.1 2 56.53 even 6
1568.2.a.u.1.2 2 56.45 odd 6
1568.2.a.w.1.2 2 56.11 odd 6
1568.2.i.o.961.1 4 56.5 odd 6
1568.2.i.o.1537.1 4 56.13 odd 2
1568.2.i.x.961.2 4 56.19 even 6
1568.2.i.x.1537.2 4 56.27 even 2
2016.2.s.q.289.2 4 168.107 even 6
2016.2.s.q.865.2 4 24.11 even 2
2016.2.s.s.289.2 4 168.149 odd 6
2016.2.s.s.865.2 4 24.5 odd 2
3136.2.a.bd.1.1 2 28.11 odd 6
3136.2.a.be.1.1 2 7.3 odd 6
3136.2.a.bw.1.2 2 7.4 even 3
3136.2.a.bx.1.2 2 28.3 even 6