Properties

Label 1568.2.t.g.753.3
Level $1568$
Weight $2$
Character 1568.753
Analytic conductor $12.521$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1568,2,Mod(177,1568)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1568, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1568.177");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1568 = 2^{5} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1568.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5205430369\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.951588245534976.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 2 x^{10} - 9 x^{9} + 8 x^{8} - 13 x^{7} + 35 x^{6} - 26 x^{5} + 32 x^{4} - 72 x^{3} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 753.3
Root \(-0.390636 - 1.35919i\) of defining polynomial
Character \(\chi\) \(=\) 1568.753
Dual form 1568.2.t.g.177.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.591141 - 0.341295i) q^{3} +(-2.80486 + 1.61939i) q^{5} +(-1.26704 - 2.19457i) q^{9} +(2.08913 + 1.20616i) q^{11} -3.09491i q^{13} +2.21076 q^{15} +(1.97779 - 3.42563i) q^{17} +(-2.33831 + 1.35002i) q^{19} +(1.37241 + 2.37709i) q^{23} +(2.74483 - 4.75418i) q^{25} +3.77750i q^{27} +2.01745i q^{29} +(1.10538 - 1.91457i) q^{31} +(-0.823314 - 1.42602i) q^{33} +(-4.30285 + 2.48425i) q^{37} +(-1.05628 + 1.82953i) q^{39} +2.11256 q^{41} +11.5899i q^{43} +(7.10771 + 4.10364i) q^{45} +(3.31613 + 5.74371i) q^{47} +(-2.33831 + 1.35002i) q^{51} +(-2.23998 - 1.29325i) q^{53} -7.81297 q^{55} +1.84302 q^{57} +(10.6283 + 6.13625i) q^{59} +(-7.54801 + 4.35784i) q^{61} +(5.01186 + 8.68080i) q^{65} +(5.01858 + 2.89748i) q^{67} -1.87359i q^{69} -6.64663 q^{71} +(-4.77890 + 8.27729i) q^{73} +(-3.24516 + 1.87359i) q^{75} +(0.838343 + 1.45205i) q^{79} +(-2.51186 + 4.35067i) q^{81} -6.47755i q^{83} +12.8112i q^{85} +(0.688547 - 1.19260i) q^{87} +(6.98965 + 12.1064i) q^{89} +(-1.30687 + 0.754520i) q^{93} +(4.37241 - 7.57324i) q^{95} +1.37709 q^{97} -6.11300i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 20 q^{15} + 2 q^{17} - 2 q^{23} - 4 q^{25} + 10 q^{31} + 14 q^{33} - 4 q^{39} + 8 q^{41} + 30 q^{47} + 4 q^{55} - 4 q^{57} + 8 q^{65} - 32 q^{71} + 10 q^{73} + 22 q^{79} + 22 q^{81} - 20 q^{87} + 10 q^{89}+ \cdots - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1568\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(1471\) \(1473\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.591141 0.341295i −0.341295 0.197047i 0.319549 0.947570i \(-0.396468\pi\)
−0.660845 + 0.750523i \(0.729802\pi\)
\(4\) 0 0
\(5\) −2.80486 + 1.61939i −1.25437 + 0.724212i −0.971975 0.235086i \(-0.924463\pi\)
−0.282397 + 0.959298i \(0.591130\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −1.26704 2.19457i −0.422345 0.731523i
\(10\) 0 0
\(11\) 2.08913 + 1.20616i 0.629897 + 0.363671i 0.780712 0.624891i \(-0.214856\pi\)
−0.150815 + 0.988562i \(0.548190\pi\)
\(12\) 0 0
\(13\) 3.09491i 0.858375i −0.903216 0.429187i \(-0.858800\pi\)
0.903216 0.429187i \(-0.141200\pi\)
\(14\) 0 0
\(15\) 2.21076 0.570815
\(16\) 0 0
\(17\) 1.97779 3.42563i 0.479685 0.830838i −0.520044 0.854140i \(-0.674084\pi\)
0.999728 + 0.0233012i \(0.00741769\pi\)
\(18\) 0 0
\(19\) −2.33831 + 1.35002i −0.536444 + 0.309716i −0.743637 0.668584i \(-0.766901\pi\)
0.207192 + 0.978300i \(0.433567\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.37241 + 2.37709i 0.286168 + 0.495657i 0.972892 0.231261i \(-0.0742852\pi\)
−0.686724 + 0.726918i \(0.740952\pi\)
\(24\) 0 0
\(25\) 2.74483 4.75418i 0.548965 0.950836i
\(26\) 0 0
\(27\) 3.77750i 0.726981i
\(28\) 0 0
\(29\) 2.01745i 0.374631i 0.982300 + 0.187316i \(0.0599787\pi\)
−0.982300 + 0.187316i \(0.940021\pi\)
\(30\) 0 0
\(31\) 1.10538 1.91457i 0.198532 0.343867i −0.749521 0.661981i \(-0.769716\pi\)
0.948053 + 0.318114i \(0.103049\pi\)
\(32\) 0 0
\(33\) −0.823314 1.42602i −0.143321 0.248239i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4.30285 + 2.48425i −0.707385 + 0.408409i −0.810092 0.586303i \(-0.800583\pi\)
0.102707 + 0.994712i \(0.467249\pi\)
\(38\) 0 0
\(39\) −1.05628 + 1.82953i −0.169140 + 0.292959i
\(40\) 0 0
\(41\) 2.11256 0.329926 0.164963 0.986300i \(-0.447249\pi\)
0.164963 + 0.986300i \(0.447249\pi\)
\(42\) 0 0
\(43\) 11.5899i 1.76745i 0.468011 + 0.883723i \(0.344971\pi\)
−0.468011 + 0.883723i \(0.655029\pi\)
\(44\) 0 0
\(45\) 7.10771 + 4.10364i 1.05956 + 0.611734i
\(46\) 0 0
\(47\) 3.31613 + 5.74371i 0.483708 + 0.837807i 0.999825 0.0187115i \(-0.00595640\pi\)
−0.516117 + 0.856518i \(0.672623\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −2.33831 + 1.35002i −0.327428 + 0.189041i
\(52\) 0 0
\(53\) −2.23998 1.29325i −0.307684 0.177642i 0.338205 0.941072i \(-0.390180\pi\)
−0.645890 + 0.763431i \(0.723513\pi\)
\(54\) 0 0
\(55\) −7.81297 −1.05350
\(56\) 0 0
\(57\) 1.84302 0.244114
\(58\) 0 0
\(59\) 10.6283 + 6.13625i 1.38369 + 0.798872i 0.992594 0.121479i \(-0.0387638\pi\)
0.391093 + 0.920351i \(0.372097\pi\)
\(60\) 0 0
\(61\) −7.54801 + 4.35784i −0.966424 + 0.557965i −0.898144 0.439701i \(-0.855084\pi\)
−0.0682795 + 0.997666i \(0.521751\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 5.01186 + 8.68080i 0.621645 + 1.07672i
\(66\) 0 0
\(67\) 5.01858 + 2.89748i 0.613117 + 0.353983i 0.774184 0.632960i \(-0.218160\pi\)
−0.161067 + 0.986943i \(0.551494\pi\)
\(68\) 0 0
\(69\) 1.87359i 0.225554i
\(70\) 0 0
\(71\) −6.64663 −0.788810 −0.394405 0.918937i \(-0.629049\pi\)
−0.394405 + 0.918937i \(0.629049\pi\)
\(72\) 0 0
\(73\) −4.77890 + 8.27729i −0.559328 + 0.968784i 0.438225 + 0.898865i \(0.355607\pi\)
−0.997553 + 0.0699184i \(0.977726\pi\)
\(74\) 0 0
\(75\) −3.24516 + 1.87359i −0.374718 + 0.216344i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0.838343 + 1.45205i 0.0943209 + 0.163369i 0.909325 0.416087i \(-0.136599\pi\)
−0.815004 + 0.579455i \(0.803265\pi\)
\(80\) 0 0
\(81\) −2.51186 + 4.35067i −0.279096 + 0.483408i
\(82\) 0 0
\(83\) 6.47755i 0.711003i −0.934676 0.355502i \(-0.884310\pi\)
0.934676 0.355502i \(-0.115690\pi\)
\(84\) 0 0
\(85\) 12.8112i 1.38957i
\(86\) 0 0
\(87\) 0.688547 1.19260i 0.0738200 0.127860i
\(88\) 0 0
\(89\) 6.98965 + 12.1064i 0.740902 + 1.28328i 0.952085 + 0.305833i \(0.0989349\pi\)
−0.211184 + 0.977446i \(0.567732\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −1.30687 + 0.754520i −0.135516 + 0.0782401i
\(94\) 0 0
\(95\) 4.37241 7.57324i 0.448600 0.776998i
\(96\) 0 0
\(97\) 1.37709 0.139823 0.0699113 0.997553i \(-0.477728\pi\)
0.0699113 + 0.997553i \(0.477728\pi\)
\(98\) 0 0
\(99\) 6.11300i 0.614379i
\(100\) 0 0
\(101\) 0.689470 + 0.398066i 0.0686048 + 0.0396090i 0.533910 0.845541i \(-0.320722\pi\)
−0.465305 + 0.885150i \(0.654055\pi\)
\(102\) 0 0
\(103\) 1.32799 + 2.30015i 0.130851 + 0.226641i 0.924005 0.382381i \(-0.124896\pi\)
−0.793154 + 0.609022i \(0.791562\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.70287 2.71520i 0.454643 0.262489i −0.255146 0.966903i \(-0.582123\pi\)
0.709789 + 0.704414i \(0.248790\pi\)
\(108\) 0 0
\(109\) 11.9614 + 6.90593i 1.14570 + 0.661468i 0.947835 0.318762i \(-0.103267\pi\)
0.197862 + 0.980230i \(0.436600\pi\)
\(110\) 0 0
\(111\) 3.39145 0.321903
\(112\) 0 0
\(113\) 4.53407 0.426529 0.213265 0.976994i \(-0.431590\pi\)
0.213265 + 0.976994i \(0.431590\pi\)
\(114\) 0 0
\(115\) −7.69885 4.44493i −0.717922 0.414492i
\(116\) 0 0
\(117\) −6.79200 + 3.92136i −0.627921 + 0.362530i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −2.59035 4.48662i −0.235486 0.407874i
\(122\) 0 0
\(123\) −1.24882 0.721006i −0.112602 0.0650109i
\(124\) 0 0
\(125\) 1.58587i 0.141845i
\(126\) 0 0
\(127\) 15.4897 1.37448 0.687242 0.726428i \(-0.258821\pi\)
0.687242 + 0.726428i \(0.258821\pi\)
\(128\) 0 0
\(129\) 3.95558 6.85127i 0.348270 0.603221i
\(130\) 0 0
\(131\) −14.5574 + 8.40471i −1.27189 + 0.734323i −0.975343 0.220696i \(-0.929167\pi\)
−0.296543 + 0.955020i \(0.595834\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −6.11724 10.5954i −0.526488 0.911904i
\(136\) 0 0
\(137\) 0.443721 0.768547i 0.0379096 0.0656614i −0.846448 0.532471i \(-0.821263\pi\)
0.884358 + 0.466810i \(0.154597\pi\)
\(138\) 0 0
\(139\) 2.44264i 0.207182i −0.994620 0.103591i \(-0.966967\pi\)
0.994620 0.103591i \(-0.0330333\pi\)
\(140\) 0 0
\(141\) 4.52712i 0.381253i
\(142\) 0 0
\(143\) 3.73296 6.46568i 0.312166 0.540688i
\(144\) 0 0
\(145\) −3.26704 5.65867i −0.271312 0.469927i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 8.16541 4.71430i 0.668936 0.386210i −0.126737 0.991936i \(-0.540451\pi\)
0.795673 + 0.605726i \(0.207117\pi\)
\(150\) 0 0
\(151\) −3.52689 + 6.10875i −0.287014 + 0.497123i −0.973096 0.230402i \(-0.925996\pi\)
0.686081 + 0.727525i \(0.259329\pi\)
\(152\) 0 0
\(153\) −10.0237 −0.810370
\(154\) 0 0
\(155\) 7.16014i 0.575116i
\(156\) 0 0
\(157\) −7.54801 4.35784i −0.602397 0.347794i 0.167587 0.985857i \(-0.446402\pi\)
−0.769984 + 0.638063i \(0.779736\pi\)
\(158\) 0 0
\(159\) 0.882761 + 1.52899i 0.0700075 + 0.121257i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −17.1711 + 9.91376i −1.34495 + 0.776505i −0.987529 0.157439i \(-0.949676\pi\)
−0.357418 + 0.933945i \(0.616343\pi\)
\(164\) 0 0
\(165\) 4.61856 + 2.66653i 0.359555 + 0.207589i
\(166\) 0 0
\(167\) 22.1600 1.71479 0.857396 0.514657i \(-0.172081\pi\)
0.857396 + 0.514657i \(0.172081\pi\)
\(168\) 0 0
\(169\) 3.42151 0.263193
\(170\) 0 0
\(171\) 5.92543 + 3.42105i 0.453129 + 0.261614i
\(172\) 0 0
\(173\) 18.8200 10.8657i 1.43086 0.826105i 0.433669 0.901072i \(-0.357219\pi\)
0.997186 + 0.0749674i \(0.0238853\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −4.18855 7.25478i −0.314830 0.545302i
\(178\) 0 0
\(179\) −3.27141 1.88875i −0.244517 0.141172i 0.372734 0.927938i \(-0.378420\pi\)
−0.617251 + 0.786766i \(0.711754\pi\)
\(180\) 0 0
\(181\) 14.0326i 1.04303i 0.853242 + 0.521516i \(0.174633\pi\)
−0.853242 + 0.521516i \(0.825367\pi\)
\(182\) 0 0
\(183\) 5.94925 0.439781
\(184\) 0 0
\(185\) 8.04593 13.9360i 0.591549 1.02459i
\(186\) 0 0
\(187\) 8.26374 4.77107i 0.604304 0.348895i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.63945 + 6.30371i 0.263341 + 0.456120i 0.967128 0.254291i \(-0.0818422\pi\)
−0.703786 + 0.710412i \(0.748509\pi\)
\(192\) 0 0
\(193\) −4.76704 + 8.25675i −0.343139 + 0.594334i −0.985014 0.172476i \(-0.944823\pi\)
0.641875 + 0.766809i \(0.278157\pi\)
\(194\) 0 0
\(195\) 6.84210i 0.489973i
\(196\) 0 0
\(197\) 11.6667i 0.831221i −0.909543 0.415611i \(-0.863568\pi\)
0.909543 0.415611i \(-0.136432\pi\)
\(198\) 0 0
\(199\) −9.48247 + 16.4241i −0.672195 + 1.16428i 0.305086 + 0.952325i \(0.401315\pi\)
−0.977280 + 0.211950i \(0.932018\pi\)
\(200\) 0 0
\(201\) −1.97779 3.42563i −0.139503 0.241626i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −5.92543 + 3.42105i −0.413850 + 0.238936i
\(206\) 0 0
\(207\) 3.47779 6.02371i 0.241723 0.418677i
\(208\) 0 0
\(209\) −6.51337 −0.450540
\(210\) 0 0
\(211\) 16.1268i 1.11022i −0.831778 0.555109i \(-0.812677\pi\)
0.831778 0.555109i \(-0.187323\pi\)
\(212\) 0 0
\(213\) 3.92909 + 2.26846i 0.269217 + 0.155433i
\(214\) 0 0
\(215\) −18.7685 32.5081i −1.28000 2.21703i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 5.65000 3.26203i 0.381792 0.220428i
\(220\) 0 0
\(221\) −10.6020 6.12109i −0.713170 0.411749i
\(222\) 0 0
\(223\) −7.71477 −0.516619 −0.258310 0.966062i \(-0.583165\pi\)
−0.258310 + 0.966062i \(0.583165\pi\)
\(224\) 0 0
\(225\) −13.9112 −0.927411
\(226\) 0 0
\(227\) 1.83996 + 1.06230i 0.122122 + 0.0705074i 0.559817 0.828616i \(-0.310871\pi\)
−0.437694 + 0.899124i \(0.644205\pi\)
\(228\) 0 0
\(229\) 8.11289 4.68398i 0.536115 0.309526i −0.207388 0.978259i \(-0.566496\pi\)
0.743503 + 0.668733i \(0.233163\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4.41366 + 7.64469i 0.289149 + 0.500820i 0.973607 0.228232i \(-0.0732945\pi\)
−0.684458 + 0.729052i \(0.739961\pi\)
\(234\) 0 0
\(235\) −18.6026 10.7402i −1.21350 0.700614i
\(236\) 0 0
\(237\) 1.14449i 0.0743426i
\(238\) 0 0
\(239\) −5.93489 −0.383896 −0.191948 0.981405i \(-0.561480\pi\)
−0.191948 + 0.981405i \(0.561480\pi\)
\(240\) 0 0
\(241\) −5.34302 + 9.25439i −0.344174 + 0.596128i −0.985203 0.171389i \(-0.945174\pi\)
0.641029 + 0.767517i \(0.278508\pi\)
\(242\) 0 0
\(243\) 12.7840 7.38083i 0.820092 0.473480i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 4.17820 + 7.23685i 0.265852 + 0.460470i
\(248\) 0 0
\(249\) −2.21076 + 3.82914i −0.140101 + 0.242662i
\(250\) 0 0
\(251\) 3.82402i 0.241370i −0.992691 0.120685i \(-0.961491\pi\)
0.992691 0.120685i \(-0.0385091\pi\)
\(252\) 0 0
\(253\) 6.62141i 0.416284i
\(254\) 0 0
\(255\) 4.37241 7.57324i 0.273811 0.474255i
\(256\) 0 0
\(257\) 6.20291 + 10.7438i 0.386927 + 0.670177i 0.992034 0.125967i \(-0.0402033\pi\)
−0.605108 + 0.796144i \(0.706870\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 4.42744 2.55618i 0.274052 0.158224i
\(262\) 0 0
\(263\) −0.672005 + 1.16395i −0.0414376 + 0.0717720i −0.886000 0.463685i \(-0.846527\pi\)
0.844563 + 0.535457i \(0.179860\pi\)
\(264\) 0 0
\(265\) 8.37709 0.514601
\(266\) 0 0
\(267\) 9.54214i 0.583970i
\(268\) 0 0
\(269\) −1.68912 0.975212i −0.102987 0.0594597i 0.447622 0.894223i \(-0.352271\pi\)
−0.550609 + 0.834763i \(0.685604\pi\)
\(270\) 0 0
\(271\) 13.0190 + 22.5496i 0.790850 + 1.36979i 0.925441 + 0.378892i \(0.123695\pi\)
−0.134590 + 0.990901i \(0.542972\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 11.4686 6.62141i 0.691583 0.399286i
\(276\) 0 0
\(277\) −13.9578 8.05852i −0.838641 0.484189i 0.0181613 0.999835i \(-0.494219\pi\)
−0.856802 + 0.515646i \(0.827552\pi\)
\(278\) 0 0
\(279\) −5.60221 −0.335396
\(280\) 0 0
\(281\) −16.1313 −0.962312 −0.481156 0.876635i \(-0.659783\pi\)
−0.481156 + 0.876635i \(0.659783\pi\)
\(282\) 0 0
\(283\) −22.7949 13.1606i −1.35501 0.782318i −0.366068 0.930588i \(-0.619296\pi\)
−0.988947 + 0.148270i \(0.952629\pi\)
\(284\) 0 0
\(285\) −5.16942 + 2.98457i −0.306210 + 0.176791i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 0.676686 + 1.17205i 0.0398050 + 0.0689444i
\(290\) 0 0
\(291\) −0.814056 0.469996i −0.0477208 0.0275516i
\(292\) 0 0
\(293\) 9.64929i 0.563718i −0.959456 0.281859i \(-0.909049\pi\)
0.959456 0.281859i \(-0.0909510\pi\)
\(294\) 0 0
\(295\) −39.7479 −2.31421
\(296\) 0 0
\(297\) −4.55628 + 7.89171i −0.264382 + 0.457923i
\(298\) 0 0
\(299\) 7.35688 4.24750i 0.425460 0.245639i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −0.271716 0.470626i −0.0156097 0.0270367i
\(304\) 0 0
\(305\) 14.1141 24.4463i 0.808169 1.39979i
\(306\) 0 0
\(307\) 25.2741i 1.44247i 0.692691 + 0.721235i \(0.256425\pi\)
−0.692691 + 0.721235i \(0.743575\pi\)
\(308\) 0 0
\(309\) 1.81295i 0.103135i
\(310\) 0 0
\(311\) −11.2742 + 19.5275i −0.639302 + 1.10730i 0.346284 + 0.938130i \(0.387443\pi\)
−0.985586 + 0.169174i \(0.945890\pi\)
\(312\) 0 0
\(313\) −12.6901 21.9798i −0.717285 1.24237i −0.962072 0.272797i \(-0.912051\pi\)
0.244787 0.969577i \(-0.421282\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 14.8384 8.56693i 0.833405 0.481167i −0.0216120 0.999766i \(-0.506880\pi\)
0.855017 + 0.518600i \(0.173547\pi\)
\(318\) 0 0
\(319\) −2.43337 + 4.21473i −0.136243 + 0.235979i
\(320\) 0 0
\(321\) −3.70674 −0.206890
\(322\) 0 0
\(323\) 10.6802i 0.594264i
\(324\) 0 0
\(325\) −14.7138 8.49500i −0.816173 0.471218i
\(326\) 0 0
\(327\) −4.71392 8.16475i −0.260681 0.451512i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 7.43566 4.29298i 0.408701 0.235963i −0.281531 0.959552i \(-0.590842\pi\)
0.690231 + 0.723589i \(0.257509\pi\)
\(332\) 0 0
\(333\) 10.9037 + 6.29527i 0.597521 + 0.344979i
\(334\) 0 0
\(335\) −18.7685 −1.02544
\(336\) 0 0
\(337\) −3.18070 −0.173264 −0.0866319 0.996240i \(-0.527610\pi\)
−0.0866319 + 0.996240i \(0.527610\pi\)
\(338\) 0 0
\(339\) −2.68027 1.54746i −0.145572 0.0840463i
\(340\) 0 0
\(341\) 4.61856 2.66653i 0.250109 0.144401i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 3.03407 + 5.25516i 0.163349 + 0.282929i
\(346\) 0 0
\(347\) 19.0373 + 10.9912i 1.02198 + 0.590039i 0.914676 0.404187i \(-0.132446\pi\)
0.107302 + 0.994226i \(0.465779\pi\)
\(348\) 0 0
\(349\) 15.5480i 0.832265i 0.909304 + 0.416132i \(0.136615\pi\)
−0.909304 + 0.416132i \(0.863385\pi\)
\(350\) 0 0
\(351\) 11.6910 0.624022
\(352\) 0 0
\(353\) −13.2804 + 23.0023i −0.706845 + 1.22429i 0.259177 + 0.965830i \(0.416549\pi\)
−0.966022 + 0.258461i \(0.916785\pi\)
\(354\) 0 0
\(355\) 18.6429 10.7635i 0.989460 0.571265i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −15.5062 26.8575i −0.818386 1.41749i −0.906871 0.421408i \(-0.861536\pi\)
0.0884855 0.996077i \(-0.471797\pi\)
\(360\) 0 0
\(361\) −5.85488 + 10.1410i −0.308152 + 0.533735i
\(362\) 0 0
\(363\) 3.53630i 0.185607i
\(364\) 0 0
\(365\) 30.9555i 1.62029i
\(366\) 0 0
\(367\) 6.38677 11.0622i 0.333387 0.577443i −0.649787 0.760117i \(-0.725142\pi\)
0.983174 + 0.182674i \(0.0584751\pi\)
\(368\) 0 0
\(369\) −2.67669 4.63616i −0.139343 0.241349i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −5.73431 + 3.31070i −0.296911 + 0.171422i −0.641054 0.767495i \(-0.721503\pi\)
0.344143 + 0.938917i \(0.388169\pi\)
\(374\) 0 0
\(375\) 0.541251 0.937474i 0.0279501 0.0484109i
\(376\) 0 0
\(377\) 6.24384 0.321574
\(378\) 0 0
\(379\) 18.7804i 0.964683i −0.875983 0.482341i \(-0.839786\pi\)
0.875983 0.482341i \(-0.160214\pi\)
\(380\) 0 0
\(381\) −9.15656 5.28654i −0.469105 0.270838i
\(382\) 0 0
\(383\) 10.2179 + 17.6980i 0.522112 + 0.904325i 0.999669 + 0.0257240i \(0.00818910\pi\)
−0.477557 + 0.878601i \(0.658478\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 25.4349 14.6848i 1.29293 0.746472i
\(388\) 0 0
\(389\) −2.05734 1.18781i −0.104311 0.0602242i 0.446937 0.894566i \(-0.352515\pi\)
−0.551248 + 0.834341i \(0.685848\pi\)
\(390\) 0 0
\(391\) 10.8574 0.549082
\(392\) 0 0
\(393\) 11.4740 0.578785
\(394\) 0 0
\(395\) −4.70287 2.71520i −0.236627 0.136617i
\(396\) 0 0
\(397\) 19.1993 11.0847i 0.963583 0.556325i 0.0663091 0.997799i \(-0.478878\pi\)
0.897274 + 0.441474i \(0.145544\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −13.1585 22.7912i −0.657104 1.13814i −0.981362 0.192168i \(-0.938448\pi\)
0.324258 0.945969i \(-0.394885\pi\)
\(402\) 0 0
\(403\) −5.92543 3.42105i −0.295167 0.170415i
\(404\) 0 0
\(405\) 16.2707i 0.808497i
\(406\) 0 0
\(407\) −11.9856 −0.594106
\(408\) 0 0
\(409\) −0.331162 + 0.573590i −0.0163749 + 0.0283622i −0.874097 0.485752i \(-0.838546\pi\)
0.857722 + 0.514114i \(0.171879\pi\)
\(410\) 0 0
\(411\) −0.524603 + 0.302880i −0.0258768 + 0.0149399i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 10.4897 + 18.1686i 0.514917 + 0.891862i
\(416\) 0 0
\(417\) −0.833662 + 1.44395i −0.0408246 + 0.0707103i
\(418\) 0 0
\(419\) 7.55501i 0.369086i 0.982824 + 0.184543i \(0.0590805\pi\)
−0.982824 + 0.184543i \(0.940919\pi\)
\(420\) 0 0
\(421\) 12.5905i 0.613625i −0.951770 0.306813i \(-0.900737\pi\)
0.951770 0.306813i \(-0.0992625\pi\)
\(422\) 0 0
\(423\) 8.40332 14.5550i 0.408583 0.707687i
\(424\) 0 0
\(425\) −10.8574 18.8055i −0.526661 0.912203i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −4.41342 + 2.54809i −0.213082 + 0.123023i
\(430\) 0 0
\(431\) −6.45241 + 11.1759i −0.310802 + 0.538325i −0.978536 0.206075i \(-0.933931\pi\)
0.667734 + 0.744400i \(0.267264\pi\)
\(432\) 0 0
\(433\) 40.5815 1.95022 0.975112 0.221715i \(-0.0711654\pi\)
0.975112 + 0.221715i \(0.0711654\pi\)
\(434\) 0 0
\(435\) 4.46009i 0.213845i
\(436\) 0 0
\(437\) −6.41824 3.70557i −0.307026 0.177262i
\(438\) 0 0
\(439\) −18.2273 31.5706i −0.869941 1.50678i −0.862055 0.506814i \(-0.830823\pi\)
−0.00788596 0.999969i \(-0.502510\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −28.1274 + 16.2393i −1.33637 + 0.771555i −0.986267 0.165156i \(-0.947187\pi\)
−0.350104 + 0.936711i \(0.613854\pi\)
\(444\) 0 0
\(445\) −39.2100 22.6379i −1.85873 1.07314i
\(446\) 0 0
\(447\) −6.43587 −0.304406
\(448\) 0 0
\(449\) 25.9823 1.22618 0.613091 0.790012i \(-0.289926\pi\)
0.613091 + 0.790012i \(0.289926\pi\)
\(450\) 0 0
\(451\) 4.41342 + 2.54809i 0.207820 + 0.119985i
\(452\) 0 0
\(453\) 4.16978 2.40742i 0.195913 0.113111i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 5.73448 + 9.93241i 0.268248 + 0.464618i 0.968409 0.249366i \(-0.0802221\pi\)
−0.700162 + 0.713984i \(0.746889\pi\)
\(458\) 0 0
\(459\) 12.9403 + 7.47111i 0.604004 + 0.348722i
\(460\) 0 0
\(461\) 25.1973i 1.17355i −0.809749 0.586777i \(-0.800396\pi\)
0.809749 0.586777i \(-0.199604\pi\)
\(462\) 0 0
\(463\) 31.8223 1.47891 0.739454 0.673207i \(-0.235084\pi\)
0.739454 + 0.673207i \(0.235084\pi\)
\(464\) 0 0
\(465\) 2.44372 4.23265i 0.113325 0.196284i
\(466\) 0 0
\(467\) 12.3089 7.10656i 0.569589 0.328852i −0.187396 0.982284i \(-0.560005\pi\)
0.756985 + 0.653432i \(0.226671\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 2.97462 + 5.15220i 0.137063 + 0.237401i
\(472\) 0 0
\(473\) −13.9793 + 24.2129i −0.642769 + 1.11331i
\(474\) 0 0
\(475\) 14.8223i 0.680094i
\(476\) 0 0
\(477\) 6.55438i 0.300104i
\(478\) 0 0
\(479\) 5.77020 9.99428i 0.263647 0.456650i −0.703561 0.710635i \(-0.748408\pi\)
0.967208 + 0.253984i \(0.0817412\pi\)
\(480\) 0 0
\(481\) 7.68855 + 13.3170i 0.350568 + 0.607201i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3.86255 + 2.23005i −0.175390 + 0.101261i
\(486\) 0 0
\(487\) −8.80829 + 15.2564i −0.399142 + 0.691333i −0.993620 0.112778i \(-0.964025\pi\)
0.594479 + 0.804111i \(0.297358\pi\)
\(488\) 0 0
\(489\) 13.5341 0.612032
\(490\) 0 0
\(491\) 26.8502i 1.21173i −0.795567 0.605866i \(-0.792827\pi\)
0.795567 0.605866i \(-0.207173\pi\)
\(492\) 0 0
\(493\) 6.91105 + 3.99010i 0.311258 + 0.179705i
\(494\) 0 0
\(495\) 9.89930 + 17.1461i 0.444941 + 0.770660i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −2.21925 + 1.28129i −0.0993474 + 0.0573583i −0.548851 0.835921i \(-0.684934\pi\)
0.449503 + 0.893279i \(0.351601\pi\)
\(500\) 0 0
\(501\) −13.0997 7.56310i −0.585251 0.337895i
\(502\) 0 0
\(503\) −14.6941 −0.655176 −0.327588 0.944821i \(-0.606236\pi\)
−0.327588 + 0.944821i \(0.606236\pi\)
\(504\) 0 0
\(505\) −2.57849 −0.114741
\(506\) 0 0
\(507\) −2.02259 1.16775i −0.0898266 0.0518614i
\(508\) 0 0
\(509\) −11.0283 + 6.36720i −0.488821 + 0.282221i −0.724085 0.689710i \(-0.757738\pi\)
0.235264 + 0.971932i \(0.424405\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −5.09971 8.83296i −0.225158 0.389985i
\(514\) 0 0
\(515\) −7.44968 4.30107i −0.328272 0.189528i
\(516\) 0 0
\(517\) 15.9992i 0.703643i
\(518\) 0 0
\(519\) −14.8337 −0.651126
\(520\) 0 0
\(521\) 17.0134 29.4680i 0.745369 1.29102i −0.204652 0.978835i \(-0.565606\pi\)
0.950022 0.312183i \(-0.101060\pi\)
\(522\) 0 0
\(523\) 5.88515 3.39779i 0.257340 0.148575i −0.365781 0.930701i \(-0.619198\pi\)
0.623120 + 0.782126i \(0.285865\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4.37241 7.57324i −0.190465 0.329896i
\(528\) 0 0
\(529\) 7.73296 13.3939i 0.336216 0.582343i
\(530\) 0 0
\(531\) 31.0994i 1.34960i
\(532\) 0 0
\(533\) 6.53819i 0.283200i
\(534\) 0 0
\(535\) −8.79392 + 15.2315i −0.380195 + 0.658516i
\(536\) 0 0
\(537\) 1.28924 + 2.23304i 0.0556350 + 0.0963626i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −21.3952 + 12.3525i −0.919852 + 0.531077i −0.883588 0.468266i \(-0.844879\pi\)
−0.0362640 + 0.999342i \(0.511546\pi\)
\(542\) 0 0
\(543\) 4.78924 8.29521i 0.205526 0.355982i
\(544\) 0 0
\(545\) −44.7335 −1.91617
\(546\) 0 0
\(547\) 27.5793i 1.17920i 0.807694 + 0.589602i \(0.200716\pi\)
−0.807694 + 0.589602i \(0.799284\pi\)
\(548\) 0 0
\(549\) 19.1272 + 11.0431i 0.816328 + 0.471307i
\(550\) 0 0
\(551\) −2.72360 4.71742i −0.116029 0.200969i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −9.51256 + 5.49208i −0.403785 + 0.233126i
\(556\) 0 0
\(557\) 39.1575 + 22.6076i 1.65916 + 0.957914i 0.973106 + 0.230359i \(0.0739902\pi\)
0.686050 + 0.727555i \(0.259343\pi\)
\(558\) 0 0
\(559\) 35.8698 1.51713
\(560\) 0 0
\(561\) −6.51337 −0.274995
\(562\) 0 0
\(563\) 13.1895 + 7.61497i 0.555872 + 0.320933i 0.751487 0.659748i \(-0.229337\pi\)
−0.195615 + 0.980681i \(0.562670\pi\)
\(564\) 0 0
\(565\) −12.7174 + 7.34241i −0.535026 + 0.308898i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7.04343 12.1996i −0.295276 0.511433i 0.679773 0.733423i \(-0.262078\pi\)
−0.975049 + 0.221989i \(0.928745\pi\)
\(570\) 0 0
\(571\) −19.2480 11.1129i −0.805505 0.465058i 0.0398876 0.999204i \(-0.487300\pi\)
−0.845392 + 0.534146i \(0.820633\pi\)
\(572\) 0 0
\(573\) 4.96851i 0.207562i
\(574\) 0 0
\(575\) 15.0681 0.628385
\(576\) 0 0
\(577\) 4.68070 8.10721i 0.194860 0.337507i −0.751995 0.659169i \(-0.770908\pi\)
0.946855 + 0.321662i \(0.104241\pi\)
\(578\) 0 0
\(579\) 5.63598 3.25393i 0.234223 0.135229i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −3.11974 5.40355i −0.129206 0.223792i
\(584\) 0 0
\(585\) 12.7004 21.9978i 0.525097 0.909495i
\(586\) 0 0
\(587\) 13.0157i 0.537217i −0.963249 0.268608i \(-0.913436\pi\)
0.963249 0.268608i \(-0.0865637\pi\)
\(588\) 0 0
\(589\) 5.96914i 0.245954i
\(590\) 0 0
\(591\) −3.98180 + 6.89669i −0.163790 + 0.283692i
\(592\) 0 0
\(593\) −0.698895 1.21052i −0.0287002 0.0497101i 0.851319 0.524649i \(-0.175803\pi\)
−0.880019 + 0.474939i \(0.842470\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 11.2110 6.47265i 0.458834 0.264908i
\(598\) 0 0
\(599\) −15.9302 + 27.5919i −0.650891 + 1.12738i 0.332017 + 0.943274i \(0.392271\pi\)
−0.982907 + 0.184102i \(0.941062\pi\)
\(600\) 0 0
\(601\) −34.4927 −1.40699 −0.703493 0.710702i \(-0.748377\pi\)
−0.703493 + 0.710702i \(0.748377\pi\)
\(602\) 0 0
\(603\) 14.6848i 0.598012i
\(604\) 0 0
\(605\) 14.5311 + 8.38955i 0.590775 + 0.341084i
\(606\) 0 0
\(607\) 4.61573 + 7.99467i 0.187347 + 0.324494i 0.944365 0.328900i \(-0.106678\pi\)
−0.757018 + 0.653394i \(0.773345\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 17.7763 10.2631i 0.719152 0.415202i
\(612\) 0 0
\(613\) 28.0431 + 16.1907i 1.13265 + 0.653935i 0.944600 0.328225i \(-0.106450\pi\)
0.188049 + 0.982160i \(0.439784\pi\)
\(614\) 0 0
\(615\) 4.67035 0.188327
\(616\) 0 0
\(617\) −10.1600 −0.409026 −0.204513 0.978864i \(-0.565561\pi\)
−0.204513 + 0.978864i \(0.565561\pi\)
\(618\) 0 0
\(619\) −32.1866 18.5829i −1.29369 0.746911i −0.314382 0.949297i \(-0.601797\pi\)
−0.979306 + 0.202385i \(0.935131\pi\)
\(620\) 0 0
\(621\) −8.97946 + 5.18430i −0.360333 + 0.208039i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 11.1560 + 19.3227i 0.446240 + 0.772910i
\(626\) 0 0
\(627\) 3.85032 + 2.22298i 0.153767 + 0.0887774i
\(628\) 0 0
\(629\) 19.6533i 0.783630i
\(630\) 0 0
\(631\) 7.31198 0.291085 0.145543 0.989352i \(-0.453507\pi\)
0.145543 + 0.989352i \(0.453507\pi\)
\(632\) 0 0
\(633\) −5.50401 + 9.53323i −0.218765 + 0.378912i
\(634\) 0 0
\(635\) −43.4463 + 25.0837i −1.72411 + 0.995418i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 8.42151 + 14.5865i 0.333150 + 0.577032i
\(640\) 0 0
\(641\) −6.85337 + 11.8704i −0.270692 + 0.468852i −0.969039 0.246907i \(-0.920586\pi\)
0.698347 + 0.715759i \(0.253919\pi\)
\(642\) 0 0
\(643\) 30.5812i 1.20600i 0.797740 + 0.603002i \(0.206029\pi\)
−0.797740 + 0.603002i \(0.793971\pi\)
\(644\) 0 0
\(645\) 25.6225i 1.00888i
\(646\) 0 0
\(647\) −21.2979 + 36.8891i −0.837308 + 1.45026i 0.0548287 + 0.998496i \(0.482539\pi\)
−0.892137 + 0.451765i \(0.850795\pi\)
\(648\) 0 0
\(649\) 14.8026 + 25.6389i 0.581054 + 1.00641i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 26.9273 15.5465i 1.05375 0.608381i 0.130051 0.991507i \(-0.458486\pi\)
0.923696 + 0.383126i \(0.125152\pi\)
\(654\) 0 0
\(655\) 27.2210 47.1481i 1.06361 1.84223i
\(656\) 0 0
\(657\) 24.2201 0.944917
\(658\) 0 0
\(659\) 35.8472i 1.39641i 0.715899 + 0.698204i \(0.246017\pi\)
−0.715899 + 0.698204i \(0.753983\pi\)
\(660\) 0 0
\(661\) −23.6297 13.6426i −0.919087 0.530635i −0.0357432 0.999361i \(-0.511380\pi\)
−0.883344 + 0.468726i \(0.844713\pi\)
\(662\) 0 0
\(663\) 4.17820 + 7.23685i 0.162268 + 0.281056i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −4.79566 + 2.76878i −0.185689 + 0.107208i
\(668\) 0 0
\(669\) 4.56051 + 2.63301i 0.176320 + 0.101798i
\(670\) 0 0
\(671\) −21.0251 −0.811663
\(672\) 0 0
\(673\) −32.2963 −1.24493 −0.622465 0.782648i \(-0.713869\pi\)
−0.622465 + 0.782648i \(0.713869\pi\)
\(674\) 0 0
\(675\) 17.9589 + 10.3686i 0.691239 + 0.399087i
\(676\) 0 0
\(677\) 13.5785 7.83953i 0.521863 0.301298i −0.215834 0.976430i \(-0.569247\pi\)
0.737697 + 0.675132i \(0.235914\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −0.725117 1.25594i −0.0277865 0.0481277i
\(682\) 0 0
\(683\) 16.5012 + 9.52698i 0.631401 + 0.364540i 0.781295 0.624162i \(-0.214560\pi\)
−0.149893 + 0.988702i \(0.547893\pi\)
\(684\) 0 0
\(685\) 2.87422i 0.109818i
\(686\) 0 0
\(687\) −6.39448 −0.243965
\(688\) 0 0
\(689\) −4.00250 + 6.93253i −0.152483 + 0.264108i
\(690\) 0 0
\(691\) −26.9066 + 15.5345i −1.02358 + 0.590961i −0.915138 0.403142i \(-0.867918\pi\)
−0.108438 + 0.994103i \(0.534585\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.95558 + 6.85127i 0.150044 + 0.259883i
\(696\) 0 0
\(697\) 4.17820 7.23685i 0.158261 0.274115i
\(698\) 0 0
\(699\) 6.02545i 0.227903i
\(700\) 0 0
\(701\) 33.5258i 1.26625i 0.774048 + 0.633127i \(0.218229\pi\)
−0.774048 + 0.633127i \(0.781771\pi\)
\(702\) 0 0
\(703\) 6.70759 11.6179i 0.252981 0.438177i
\(704\) 0 0
\(705\) 7.33116 + 12.6979i 0.276108 + 0.478232i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −7.16576 + 4.13715i −0.269116 + 0.155374i −0.628486 0.777821i \(-0.716325\pi\)
0.359370 + 0.933195i \(0.382992\pi\)
\(710\) 0 0
\(711\) 2.12442 3.67960i 0.0796720 0.137996i
\(712\) 0 0
\(713\) 6.06814 0.227254
\(714\) 0 0
\(715\) 24.1805i 0.904298i
\(716\) 0 0
\(717\) 3.50835 + 2.02555i 0.131022 + 0.0756455i
\(718\) 0 0
\(719\) 1.81462 + 3.14301i 0.0676739 + 0.117215i 0.897877 0.440246i \(-0.145109\pi\)
−0.830203 + 0.557461i \(0.811776\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 6.31696 3.64710i 0.234930 0.135637i
\(724\) 0 0
\(725\) 9.59133 + 5.53756i 0.356213 + 0.205660i
\(726\) 0 0
\(727\) 28.1550 1.04421 0.522106 0.852881i \(-0.325147\pi\)
0.522106 + 0.852881i \(0.325147\pi\)
\(728\) 0 0
\(729\) 4.99500 0.185000
\(730\) 0 0
\(731\) 39.7028 + 22.9224i 1.46846 + 0.847816i
\(732\) 0 0
\(733\) −25.4264 + 14.6799i −0.939145 + 0.542215i −0.889692 0.456561i \(-0.849081\pi\)
−0.0494525 + 0.998776i \(0.515748\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6.98965 + 12.1064i 0.257467 + 0.445946i
\(738\) 0 0
\(739\) 11.2457 + 6.49271i 0.413680 + 0.238838i 0.692370 0.721543i \(-0.256567\pi\)
−0.278690 + 0.960381i \(0.589900\pi\)
\(740\) 0 0
\(741\) 5.70400i 0.209542i
\(742\) 0 0
\(743\) −21.8510 −0.801637 −0.400819 0.916157i \(-0.631274\pi\)
−0.400819 + 0.916157i \(0.631274\pi\)
\(744\) 0 0
\(745\) −15.2685 + 26.4459i −0.559396 + 0.968903i
\(746\) 0 0
\(747\) −14.2154 + 8.20728i −0.520115 + 0.300289i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 6.03724 + 10.4568i 0.220302 + 0.381574i 0.954900 0.296929i \(-0.0959624\pi\)
−0.734598 + 0.678503i \(0.762629\pi\)
\(752\) 0 0
\(753\) −1.30512 + 2.26053i −0.0475612 + 0.0823783i
\(754\) 0 0
\(755\) 22.8456i 0.831436i
\(756\) 0 0
\(757\) 27.2309i 0.989725i 0.868971 + 0.494862i \(0.164782\pi\)
−0.868971 + 0.494862i \(0.835218\pi\)
\(758\) 0 0
\(759\) 2.25985 3.91418i 0.0820275 0.142076i
\(760\) 0 0
\(761\) 15.2423 + 26.4005i 0.552534 + 0.957017i 0.998091 + 0.0617632i \(0.0196724\pi\)
−0.445557 + 0.895254i \(0.646994\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 28.1151 16.2323i 1.01650 0.586879i
\(766\) 0 0
\(767\) 18.9912 32.8937i 0.685731 1.18772i
\(768\) 0 0
\(769\) −36.6991 −1.32340 −0.661701 0.749768i \(-0.730165\pi\)
−0.661701 + 0.749768i \(0.730165\pi\)
\(770\) 0 0
\(771\) 8.46809i 0.304971i
\(772\) 0 0
\(773\) 28.6220 + 16.5249i 1.02946 + 0.594359i 0.916830 0.399277i \(-0.130739\pi\)
0.112631 + 0.993637i \(0.464072\pi\)
\(774\) 0 0
\(775\) −6.06814 10.5103i −0.217974 0.377542i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4.93981 + 2.85200i −0.176987 + 0.102183i
\(780\) 0 0
\(781\) −13.8857 8.01691i −0.496869 0.286867i
\(782\) 0 0
\(783\) −7.62093 −0.272350
\(784\) 0 0
\(785\) 28.2281 1.00751
\(786\) 0 0
\(787\) 14.9922 + 8.65572i 0.534413 + 0.308543i 0.742811 0.669501i \(-0.233492\pi\)
−0.208399 + 0.978044i \(0.566825\pi\)
\(788\) 0 0
\(789\) 0.794499 0.458704i 0.0282849 0.0163303i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 13.4872 + 23.3604i 0.478943 + 0.829553i
\(794\) 0 0
\(795\) −4.95204 2.85906i −0.175631 0.101400i
\(796\) 0 0
\(797\) 41.7331i 1.47826i 0.673561 + 0.739131i \(0.264764\pi\)
−0.673561 + 0.739131i \(0.735236\pi\)
\(798\) 0 0
\(799\) 26.2345 0.928109
\(800\) 0 0
\(801\) 17.7123 30.6786i 0.625832 1.08397i
\(802\) 0 0
\(803\) −19.9675 + 11.5282i −0.704638 + 0.406823i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0.665670 + 1.15297i 0.0234327 + 0.0405866i
\(808\) 0 0
\(809\) 4.86273 8.42250i 0.170965 0.296119i −0.767793 0.640698i \(-0.778645\pi\)
0.938757 + 0.344579i \(0.111978\pi\)
\(810\) 0 0
\(811\) 55.3405i 1.94327i −0.236492 0.971633i \(-0.575998\pi\)
0.236492 0.971633i \(-0.424002\pi\)
\(812\) 0 0
\(813\) 17.7733i 0.623339i
\(814\) 0 0
\(815\) 32.1084 55.6134i 1.12471 1.94805i
\(816\) 0 0
\(817\) −15.6466 27.1008i −0.547406 0.948135i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −36.5157 + 21.0823i −1.27441 + 0.735779i −0.975814 0.218602i \(-0.929850\pi\)
−0.298592 + 0.954381i \(0.596517\pi\)
\(822\) 0 0
\(823\) 7.60689 13.1755i 0.265160 0.459270i −0.702446 0.711737i \(-0.747909\pi\)
0.967605 + 0.252467i \(0.0812420\pi\)
\(824\) 0 0
\(825\) −9.03942 −0.314712
\(826\) 0 0
\(827\) 1.24390i 0.0432548i 0.999766 + 0.0216274i \(0.00688475\pi\)
−0.999766 + 0.0216274i \(0.993115\pi\)
\(828\) 0 0
\(829\) −18.4517 10.6531i −0.640855 0.369998i 0.144089 0.989565i \(-0.453975\pi\)
−0.784944 + 0.619567i \(0.787308\pi\)
\(830\) 0 0
\(831\) 5.50067 + 9.52744i 0.190816 + 0.330503i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −62.1557 + 35.8856i −2.15099 + 1.24187i
\(836\) 0 0
\(837\) 7.23230 + 4.17557i 0.249985 + 0.144329i
\(838\) 0 0
\(839\) −20.9379 −0.722857 −0.361429 0.932400i \(-0.617711\pi\)
−0.361429 + 0.932400i \(0.617711\pi\)
\(840\) 0 0
\(841\) 24.9299 0.859651
\(842\) 0 0
\(843\) 9.53586 + 5.50553i 0.328432 + 0.189621i
\(844\) 0 0
\(845\) −9.59686 + 5.54075i −0.330142 + 0.190608i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 8.98332 + 15.5596i 0.308307 + 0.534003i
\(850\) 0 0
\(851\) −11.8106 6.81884i −0.404861 0.233747i
\(852\) 0 0
\(853\) 17.4758i 0.598361i −0.954197 0.299180i \(-0.903287\pi\)
0.954197 0.299180i \(-0.0967133\pi\)
\(854\) 0 0
\(855\) −22.1600 −0.757856
\(856\) 0 0
\(857\) 1.75517 3.04005i 0.0599556 0.103846i −0.834490 0.551024i \(-0.814237\pi\)
0.894445 + 0.447177i \(0.147571\pi\)
\(858\) 0 0
\(859\) 4.45370 2.57134i 0.151958 0.0877331i −0.422093 0.906553i \(-0.638704\pi\)
0.574051 + 0.818819i \(0.305371\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −20.1410 34.8852i −0.685606 1.18750i −0.973246 0.229766i \(-0.926204\pi\)
0.287640 0.957739i \(-0.407129\pi\)
\(864\) 0 0
\(865\) −35.1916 + 60.9536i −1.19655 + 2.07248i
\(866\) 0 0
\(867\) 0.923798i 0.0313738i
\(868\) 0 0
\(869\) 4.04471i 0.137207i
\(870\) 0 0
\(871\) 8.96744 15.5321i 0.303850 0.526284i
\(872\) 0 0
\(873\) −1.74483 3.02213i −0.0590534 0.102284i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −36.3471 + 20.9850i −1.22735 + 0.708613i −0.966476 0.256759i \(-0.917345\pi\)
−0.260878 + 0.965372i \(0.584012\pi\)
\(878\) 0 0
\(879\) −3.29326 + 5.70409i −0.111079 + 0.192394i
\(880\) 0 0
\(881\) 16.5992 0.559241 0.279620 0.960111i \(-0.409791\pi\)
0.279620 + 0.960111i \(0.409791\pi\)
\(882\) 0 0
\(883\) 12.8210i 0.431462i 0.976453 + 0.215731i \(0.0692135\pi\)
−0.976453 + 0.215731i \(0.930787\pi\)
\(884\) 0 0
\(885\) 23.4966 + 13.5658i 0.789829 + 0.456008i
\(886\) 0 0
\(887\) −4.14980 7.18766i −0.139337 0.241338i 0.787909 0.615792i \(-0.211164\pi\)
−0.927246 + 0.374454i \(0.877830\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −10.4952 + 6.05942i −0.351603 + 0.202998i
\(892\) 0 0
\(893\) −15.5083 8.95370i −0.518964 0.299624i
\(894\) 0 0
\(895\) 12.2345 0.408954
\(896\) 0 0
\(897\) −5.79861 −0.193610
\(898\) 0 0
\(899\) 3.86255 + 2.23005i 0.128823 + 0.0743762i
\(900\) 0 0
\(901\) −8.86041 + 5.11556i −0.295183 + 0.170424i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −22.7241 39.3593i −0.755376 1.30835i
\(906\) 0 0
\(907\) −14.2277 8.21434i −0.472422 0.272753i 0.244831 0.969566i \(-0.421267\pi\)
−0.717253 + 0.696813i \(0.754601\pi\)
\(908\) 0 0
\(909\) 2.01745i 0.0669147i
\(910\) 0 0
\(911\) 37.1630 1.23127 0.615633 0.788033i \(-0.288900\pi\)
0.615633 + 0.788033i \(0.288900\pi\)
\(912\) 0 0
\(913\) 7.81297 13.5325i 0.258571 0.447859i
\(914\) 0 0
\(915\) −16.6868 + 9.63413i −0.551649 + 0.318495i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −18.1528 31.4416i −0.598806 1.03716i −0.992998 0.118135i \(-0.962309\pi\)
0.394191 0.919028i \(-0.371025\pi\)
\(920\) 0 0
\(921\) 8.62593 14.9406i 0.284234 0.492308i
\(922\) 0 0
\(923\) 20.5707i 0.677094i
\(924\) 0 0
\(925\) 27.2754i 0.896809i
\(926\) 0 0
\(927\) 3.36523 5.82875i 0.110529 0.191441i
\(928\) 0 0
\(929\) −10.8263 18.7518i −0.355201 0.615226i 0.631952 0.775008i \(-0.282254\pi\)
−0.987152 + 0.159782i \(0.948921\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 13.3293 7.69567i 0.436382 0.251945i
\(934\) 0 0
\(935\) −15.4524 + 26.7644i −0.505348 + 0.875288i
\(936\) 0 0
\(937\) 15.8637 0.518245 0.259123 0.965844i \(-0.416567\pi\)
0.259123 + 0.965844i \(0.416567\pi\)
\(938\) 0 0
\(939\) 17.3242i 0.565355i
\(940\) 0 0
\(941\) 12.7230 + 7.34561i 0.414757 + 0.239460i 0.692832 0.721099i \(-0.256363\pi\)
−0.278075 + 0.960559i \(0.589696\pi\)
\(942\) 0 0
\(943\) 2.89930 + 5.02174i 0.0944143 + 0.163530i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 12.0598 6.96270i 0.391889 0.226257i −0.291089 0.956696i \(-0.594018\pi\)
0.682978 + 0.730439i \(0.260684\pi\)
\(948\) 0 0
\(949\) 25.6175 + 14.7903i 0.831579 + 0.480112i
\(950\) 0 0
\(951\) −11.6954 −0.379250
\(952\) 0 0
\(953\) 11.2883 0.365663 0.182831 0.983144i \(-0.441474\pi\)
0.182831 + 0.983144i \(0.441474\pi\)
\(954\) 0 0
\(955\) −20.4163 11.7873i −0.660655 0.381430i
\(956\) 0 0
\(957\) 2.87693 1.66100i 0.0929980 0.0536924i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 13.0563 + 22.6141i 0.421170 + 0.729488i
\(962\) 0 0
\(963\) −11.9174 6.88051i −0.384033 0.221721i
\(964\) 0 0
\(965\) 30.8787i 0.994020i
\(966\) 0 0
\(967\) 36.4276 1.17143 0.585716 0.810517i \(-0.300813\pi\)
0.585716 + 0.810517i \(0.300813\pi\)
\(968\) 0 0
\(969\) 3.64512 6.31352i 0.117098 0.202820i
\(970\) 0 0
\(971\) 5.75503 3.32267i 0.184688 0.106629i −0.404806 0.914403i \(-0.632661\pi\)
0.589493 + 0.807773i \(0.299327\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 5.79861 + 10.0435i 0.185704 + 0.321649i
\(976\) 0 0
\(977\) 22.7226 39.3567i 0.726961 1.25913i −0.231201 0.972906i \(-0.574265\pi\)
0.958162 0.286227i \(-0.0924012\pi\)
\(978\) 0 0
\(979\) 33.7226i 1.07778i
\(980\) 0 0
\(981\) 35.0002i 1.11747i
\(982\) 0 0
\(983\) 9.26538 16.0481i 0.295520 0.511855i −0.679586 0.733596i \(-0.737841\pi\)
0.975106 + 0.221741i \(0.0711738\pi\)
\(984\) 0 0
\(985\) 18.8930 + 32.7236i 0.601980 + 1.04266i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −27.5503 + 15.9061i −0.876047 + 0.505786i
\(990\) 0 0
\(991\) −18.2392 + 31.5911i −0.579386 + 1.00353i 0.416164 + 0.909290i \(0.363374\pi\)
−0.995550 + 0.0942363i \(0.969959\pi\)
\(992\) 0 0
\(993\) −5.86069 −0.185983
\(994\) 0 0
\(995\) 61.4232i 1.94724i
\(996\) 0 0
\(997\) −13.2738 7.66365i −0.420386 0.242710i 0.274856 0.961485i \(-0.411370\pi\)
−0.695243 + 0.718775i \(0.744703\pi\)
\(998\) 0 0
\(999\) −9.38427 16.2540i −0.296905 0.514255i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1568.2.t.g.753.3 12
4.3 odd 2 392.2.p.g.165.1 12
7.2 even 3 inner 1568.2.t.g.177.4 12
7.3 odd 6 1568.2.b.f.785.3 6
7.4 even 3 1568.2.b.e.785.4 6
7.5 odd 6 224.2.t.a.177.3 12
7.6 odd 2 224.2.t.a.81.4 12
8.3 odd 2 392.2.p.g.165.5 12
8.5 even 2 inner 1568.2.t.g.753.4 12
21.5 even 6 2016.2.cr.c.1297.6 12
21.20 even 2 2016.2.cr.c.1873.1 12
28.3 even 6 392.2.b.e.197.3 6
28.11 odd 6 392.2.b.f.197.3 6
28.19 even 6 56.2.p.a.37.5 yes 12
28.23 odd 6 392.2.p.g.373.5 12
28.27 even 2 56.2.p.a.53.1 yes 12
56.3 even 6 392.2.b.e.197.4 6
56.5 odd 6 224.2.t.a.177.4 12
56.11 odd 6 392.2.b.f.197.4 6
56.13 odd 2 224.2.t.a.81.3 12
56.19 even 6 56.2.p.a.37.1 12
56.27 even 2 56.2.p.a.53.5 yes 12
56.37 even 6 inner 1568.2.t.g.177.3 12
56.45 odd 6 1568.2.b.f.785.4 6
56.51 odd 6 392.2.p.g.373.1 12
56.53 even 6 1568.2.b.e.785.3 6
84.47 odd 6 504.2.cj.c.37.2 12
84.83 odd 2 504.2.cj.c.109.6 12
168.5 even 6 2016.2.cr.c.1297.1 12
168.83 odd 2 504.2.cj.c.109.2 12
168.125 even 2 2016.2.cr.c.1873.6 12
168.131 odd 6 504.2.cj.c.37.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.2.p.a.37.1 12 56.19 even 6
56.2.p.a.37.5 yes 12 28.19 even 6
56.2.p.a.53.1 yes 12 28.27 even 2
56.2.p.a.53.5 yes 12 56.27 even 2
224.2.t.a.81.3 12 56.13 odd 2
224.2.t.a.81.4 12 7.6 odd 2
224.2.t.a.177.3 12 7.5 odd 6
224.2.t.a.177.4 12 56.5 odd 6
392.2.b.e.197.3 6 28.3 even 6
392.2.b.e.197.4 6 56.3 even 6
392.2.b.f.197.3 6 28.11 odd 6
392.2.b.f.197.4 6 56.11 odd 6
392.2.p.g.165.1 12 4.3 odd 2
392.2.p.g.165.5 12 8.3 odd 2
392.2.p.g.373.1 12 56.51 odd 6
392.2.p.g.373.5 12 28.23 odd 6
504.2.cj.c.37.2 12 84.47 odd 6
504.2.cj.c.37.6 12 168.131 odd 6
504.2.cj.c.109.2 12 168.83 odd 2
504.2.cj.c.109.6 12 84.83 odd 2
1568.2.b.e.785.3 6 56.53 even 6
1568.2.b.e.785.4 6 7.4 even 3
1568.2.b.f.785.3 6 7.3 odd 6
1568.2.b.f.785.4 6 56.45 odd 6
1568.2.t.g.177.3 12 56.37 even 6 inner
1568.2.t.g.177.4 12 7.2 even 3 inner
1568.2.t.g.753.3 12 1.1 even 1 trivial
1568.2.t.g.753.4 12 8.5 even 2 inner
2016.2.cr.c.1297.1 12 168.5 even 6
2016.2.cr.c.1297.6 12 21.5 even 6
2016.2.cr.c.1873.1 12 21.20 even 2
2016.2.cr.c.1873.6 12 168.125 even 2