Properties

Label 392.2.b.f.197.3
Level $392$
Weight $2$
Character 392.197
Analytic conductor $3.130$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [392,2,Mod(197,392)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(392, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("392.197");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 392.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.13013575923\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.1142512.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - x^{4} + 5x^{3} - 2x^{2} - 4x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 197.3
Root \(-1.37241 + 0.341295i\) of defining polynomial
Character \(\chi\) \(=\) 392.197
Dual form 392.2.b.f.197.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.605378 - 1.27809i) q^{2} -0.682591i q^{3} +(-1.26704 - 1.54746i) q^{4} -3.23877i q^{5} +(-0.872413 - 0.413225i) q^{6} +(-2.74483 + 0.682591i) q^{8} +2.53407 q^{9} +(-4.13945 - 1.96068i) q^{10} +2.41232i q^{11} +(-1.05628 + 0.864866i) q^{12} -3.09491i q^{13} -2.21076 q^{15} +(-0.789244 + 3.92136i) q^{16} -3.95558 q^{17} +(1.53407 - 3.23877i) q^{18} +2.70004i q^{19} +(-5.01186 + 4.10364i) q^{20} +(3.08317 + 1.46037i) q^{22} +2.74483 q^{23} +(0.465930 + 1.87359i) q^{24} -5.48965 q^{25} +(-3.95558 - 1.87359i) q^{26} -3.77750i q^{27} +2.01745i q^{29} +(-1.33834 + 2.82555i) q^{30} +2.21076 q^{31} +(4.53407 + 3.38263i) q^{32} +1.64663 q^{33} +(-2.39462 + 5.05560i) q^{34} +(-3.21076 - 3.92136i) q^{36} -4.96851i q^{37} +(3.45090 + 1.63455i) q^{38} -2.11256 q^{39} +(2.21076 + 8.88987i) q^{40} +2.11256 q^{41} -11.5899i q^{43} +(3.73296 - 3.05650i) q^{44} -8.20728i q^{45} +(1.66166 - 3.50814i) q^{46} +6.63227 q^{47} +(2.67669 + 0.538731i) q^{48} +(-3.32331 + 7.01628i) q^{50} +2.70004i q^{51} +(-4.78924 + 3.92136i) q^{52} +2.58650i q^{53} +(-4.82799 - 2.28682i) q^{54} +7.81297 q^{55} +1.84302 q^{57} +(2.57849 + 1.22132i) q^{58} +12.2725i q^{59} +(2.80111 + 3.42105i) q^{60} -8.71569i q^{61} +(1.33834 - 2.82555i) q^{62} +(7.06814 - 3.74718i) q^{64} -10.0237 q^{65} +(0.996833 - 2.10454i) q^{66} +5.79496i q^{67} +(5.01186 + 6.12109i) q^{68} -1.87359i q^{69} +6.64663 q^{71} +(-6.95558 + 1.72973i) q^{72} +9.55779 q^{73} +(-6.35020 - 3.00782i) q^{74} +3.74718i q^{75} +(4.17820 - 3.42105i) q^{76} +(-1.27890 + 2.70004i) q^{78} +1.67669 q^{79} +(12.7004 + 2.55618i) q^{80} +5.02372 q^{81} +(1.27890 - 2.70004i) q^{82} +6.47755i q^{83} +12.8112i q^{85} +(-14.8130 - 7.01628i) q^{86} +1.37709 q^{87} +(-1.64663 - 6.62141i) q^{88} -13.9793 q^{89} +(-10.4897 - 4.96851i) q^{90} +(-3.47779 - 4.24750i) q^{92} -1.50904i q^{93} +(4.01503 - 8.47664i) q^{94} +8.74483 q^{95} +(2.30895 - 3.09491i) q^{96} +1.37709 q^{97} +6.11300i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + 4 q^{6} + 2 q^{8} - 8 q^{10} - 2 q^{12} - 10 q^{15} - 8 q^{16} - 2 q^{17} - 6 q^{18} - 4 q^{20} + 6 q^{22} - 2 q^{23} + 18 q^{24} + 4 q^{25} - 2 q^{26} - 14 q^{30} + 10 q^{31} + 12 q^{32}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/392\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(297\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.605378 1.27809i 0.428067 0.903747i
\(3\) 0.682591i 0.394094i −0.980394 0.197047i \(-0.936865\pi\)
0.980394 0.197047i \(-0.0631351\pi\)
\(4\) −1.26704 1.54746i −0.633518 0.773728i
\(5\) 3.23877i 1.44842i −0.689578 0.724212i \(-0.742204\pi\)
0.689578 0.724212i \(-0.257796\pi\)
\(6\) −0.872413 0.413225i −0.356161 0.168698i
\(7\) 0 0
\(8\) −2.74483 + 0.682591i −0.970443 + 0.241332i
\(9\) 2.53407 0.844690
\(10\) −4.13945 1.96068i −1.30901 0.620022i
\(11\) 2.41232i 0.727343i 0.931527 + 0.363671i \(0.118477\pi\)
−0.931527 + 0.363671i \(0.881523\pi\)
\(12\) −1.05628 + 0.864866i −0.304922 + 0.249665i
\(13\) 3.09491i 0.858375i −0.903216 0.429187i \(-0.858800\pi\)
0.903216 0.429187i \(-0.141200\pi\)
\(14\) 0 0
\(15\) −2.21076 −0.570815
\(16\) −0.789244 + 3.92136i −0.197311 + 0.980341i
\(17\) −3.95558 −0.959370 −0.479685 0.877441i \(-0.659249\pi\)
−0.479685 + 0.877441i \(0.659249\pi\)
\(18\) 1.53407 3.23877i 0.361584 0.763386i
\(19\) 2.70004i 0.619432i 0.950829 + 0.309716i \(0.100234\pi\)
−0.950829 + 0.309716i \(0.899766\pi\)
\(20\) −5.01186 + 4.10364i −1.12069 + 0.917602i
\(21\) 0 0
\(22\) 3.08317 + 1.46037i 0.657334 + 0.311351i
\(23\) 2.74483 0.572336 0.286168 0.958179i \(-0.407618\pi\)
0.286168 + 0.958179i \(0.407618\pi\)
\(24\) 0.465930 + 1.87359i 0.0951075 + 0.382445i
\(25\) −5.48965 −1.09793
\(26\) −3.95558 1.87359i −0.775753 0.367442i
\(27\) 3.77750i 0.726981i
\(28\) 0 0
\(29\) 2.01745i 0.374631i 0.982300 + 0.187316i \(0.0599787\pi\)
−0.982300 + 0.187316i \(0.940021\pi\)
\(30\) −1.33834 + 2.82555i −0.244347 + 0.515872i
\(31\) 2.21076 0.397063 0.198532 0.980094i \(-0.436383\pi\)
0.198532 + 0.980094i \(0.436383\pi\)
\(32\) 4.53407 + 3.38263i 0.801518 + 0.597971i
\(33\) 1.64663 0.286641
\(34\) −2.39462 + 5.05560i −0.410674 + 0.867027i
\(35\) 0 0
\(36\) −3.21076 3.92136i −0.535126 0.653561i
\(37\) 4.96851i 0.816817i −0.912799 0.408409i \(-0.866084\pi\)
0.912799 0.408409i \(-0.133916\pi\)
\(38\) 3.45090 + 1.63455i 0.559810 + 0.265158i
\(39\) −2.11256 −0.338280
\(40\) 2.21076 + 8.88987i 0.349551 + 1.40561i
\(41\) 2.11256 0.329926 0.164963 0.986300i \(-0.447249\pi\)
0.164963 + 0.986300i \(0.447249\pi\)
\(42\) 0 0
\(43\) 11.5899i 1.76745i −0.468011 0.883723i \(-0.655029\pi\)
0.468011 0.883723i \(-0.344971\pi\)
\(44\) 3.73296 3.05650i 0.562766 0.460784i
\(45\) 8.20728i 1.22347i
\(46\) 1.66166 3.50814i 0.244998 0.517247i
\(47\) 6.63227 0.967416 0.483708 0.875230i \(-0.339290\pi\)
0.483708 + 0.875230i \(0.339290\pi\)
\(48\) 2.67669 + 0.538731i 0.386346 + 0.0777591i
\(49\) 0 0
\(50\) −3.32331 + 7.01628i −0.469988 + 0.992251i
\(51\) 2.70004i 0.378082i
\(52\) −4.78924 + 3.92136i −0.664149 + 0.543795i
\(53\) 2.58650i 0.355283i 0.984095 + 0.177642i \(0.0568468\pi\)
−0.984095 + 0.177642i \(0.943153\pi\)
\(54\) −4.82799 2.28682i −0.657007 0.311196i
\(55\) 7.81297 1.05350
\(56\) 0 0
\(57\) 1.84302 0.244114
\(58\) 2.57849 + 1.22132i 0.338572 + 0.160367i
\(59\) 12.2725i 1.59774i 0.601501 + 0.798872i \(0.294569\pi\)
−0.601501 + 0.798872i \(0.705431\pi\)
\(60\) 2.80111 + 3.42105i 0.361621 + 0.441656i
\(61\) 8.71569i 1.11593i −0.829865 0.557965i \(-0.811582\pi\)
0.829865 0.557965i \(-0.188418\pi\)
\(62\) 1.33834 2.82555i 0.169970 0.358845i
\(63\) 0 0
\(64\) 7.06814 3.74718i 0.883518 0.468398i
\(65\) −10.0237 −1.24329
\(66\) 0.996833 2.10454i 0.122702 0.259051i
\(67\) 5.79496i 0.707967i 0.935252 + 0.353983i \(0.115173\pi\)
−0.935252 + 0.353983i \(0.884827\pi\)
\(68\) 5.01186 + 6.12109i 0.607777 + 0.742291i
\(69\) 1.87359i 0.225554i
\(70\) 0 0
\(71\) 6.64663 0.788810 0.394405 0.918937i \(-0.370951\pi\)
0.394405 + 0.918937i \(0.370951\pi\)
\(72\) −6.95558 + 1.72973i −0.819723 + 0.203851i
\(73\) 9.55779 1.11866 0.559328 0.828947i \(-0.311059\pi\)
0.559328 + 0.828947i \(0.311059\pi\)
\(74\) −6.35020 3.00782i −0.738196 0.349652i
\(75\) 3.74718i 0.432688i
\(76\) 4.17820 3.42105i 0.479272 0.392421i
\(77\) 0 0
\(78\) −1.27890 + 2.70004i −0.144806 + 0.305720i
\(79\) 1.67669 0.188642 0.0943209 0.995542i \(-0.469932\pi\)
0.0943209 + 0.995542i \(0.469932\pi\)
\(80\) 12.7004 + 2.55618i 1.41995 + 0.285790i
\(81\) 5.02372 0.558191
\(82\) 1.27890 2.70004i 0.141230 0.298170i
\(83\) 6.47755i 0.711003i 0.934676 + 0.355502i \(0.115690\pi\)
−0.934676 + 0.355502i \(0.884310\pi\)
\(84\) 0 0
\(85\) 12.8112i 1.38957i
\(86\) −14.8130 7.01628i −1.59732 0.756585i
\(87\) 1.37709 0.147640
\(88\) −1.64663 6.62141i −0.175531 0.705844i
\(89\) −13.9793 −1.48180 −0.740902 0.671614i \(-0.765602\pi\)
−0.740902 + 0.671614i \(0.765602\pi\)
\(90\) −10.4897 4.96851i −1.10571 0.523726i
\(91\) 0 0
\(92\) −3.47779 4.24750i −0.362585 0.442832i
\(93\) 1.50904i 0.156480i
\(94\) 4.01503 8.47664i 0.414119 0.874299i
\(95\) 8.74483 0.897200
\(96\) 2.30895 3.09491i 0.235657 0.315873i
\(97\) 1.37709 0.139823 0.0699113 0.997553i \(-0.477728\pi\)
0.0699113 + 0.997553i \(0.477728\pi\)
\(98\) 0 0
\(99\) 6.11300i 0.614379i
\(100\) 6.95558 + 8.49500i 0.695558 + 0.849500i
\(101\) 0.796131i 0.0792180i −0.999215 0.0396090i \(-0.987389\pi\)
0.999215 0.0396090i \(-0.0126112\pi\)
\(102\) 3.45090 + 1.63455i 0.341690 + 0.161844i
\(103\) 2.65599 0.261702 0.130851 0.991402i \(-0.458229\pi\)
0.130851 + 0.991402i \(0.458229\pi\)
\(104\) 2.11256 + 8.49500i 0.207153 + 0.833003i
\(105\) 0 0
\(106\) 3.30579 + 1.56581i 0.321086 + 0.152085i
\(107\) 5.43040i 0.524977i −0.964935 0.262489i \(-0.915457\pi\)
0.964935 0.262489i \(-0.0845432\pi\)
\(108\) −5.84552 + 4.78623i −0.562486 + 0.460555i
\(109\) 13.8119i 1.32294i −0.749973 0.661468i \(-0.769934\pi\)
0.749973 0.661468i \(-0.230066\pi\)
\(110\) 4.72980 9.98569i 0.450969 0.952098i
\(111\) −3.39145 −0.321903
\(112\) 0 0
\(113\) 4.53407 0.426529 0.213265 0.976994i \(-0.431590\pi\)
0.213265 + 0.976994i \(0.431590\pi\)
\(114\) 1.11573 2.35555i 0.104497 0.220618i
\(115\) 8.88987i 0.828985i
\(116\) 3.12192 2.55618i 0.289863 0.237336i
\(117\) 7.84273i 0.725060i
\(118\) 15.6854 + 7.42950i 1.44396 + 0.683941i
\(119\) 0 0
\(120\) 6.06814 1.50904i 0.553943 0.137756i
\(121\) 5.18070 0.470973
\(122\) −11.1394 5.27629i −1.00852 0.477693i
\(123\) 1.44201i 0.130022i
\(124\) −2.80111 3.42105i −0.251547 0.307219i
\(125\) 1.58587i 0.141845i
\(126\) 0 0
\(127\) −15.4897 −1.37448 −0.687242 0.726428i \(-0.741179\pi\)
−0.687242 + 0.726428i \(0.741179\pi\)
\(128\) −0.510348 11.3022i −0.0451088 0.998982i
\(129\) −7.91116 −0.696539
\(130\) −6.06814 + 12.8112i −0.532211 + 1.12362i
\(131\) 16.8094i 1.46865i 0.678800 + 0.734323i \(0.262500\pi\)
−0.678800 + 0.734323i \(0.737500\pi\)
\(132\) −2.08634 2.54809i −0.181592 0.221782i
\(133\) 0 0
\(134\) 7.40648 + 3.50814i 0.639823 + 0.303057i
\(135\) −12.2345 −1.05298
\(136\) 10.8574 2.70004i 0.931013 0.231527i
\(137\) −0.887442 −0.0758192 −0.0379096 0.999281i \(-0.512070\pi\)
−0.0379096 + 0.999281i \(0.512070\pi\)
\(138\) −2.39462 1.13423i −0.203844 0.0965522i
\(139\) 2.44264i 0.207182i 0.994620 + 0.103591i \(0.0330333\pi\)
−0.994620 + 0.103591i \(0.966967\pi\)
\(140\) 0 0
\(141\) 4.52712i 0.381253i
\(142\) 4.02372 8.49500i 0.337663 0.712884i
\(143\) 7.46593 0.624332
\(144\) −2.00000 + 9.93701i −0.166667 + 0.828084i
\(145\) 6.53407 0.542625
\(146\) 5.78608 12.2157i 0.478859 1.01098i
\(147\) 0 0
\(148\) −7.68855 + 6.29527i −0.631995 + 0.517468i
\(149\) 9.42860i 0.772421i 0.922411 + 0.386210i \(0.126216\pi\)
−0.922411 + 0.386210i \(0.873784\pi\)
\(150\) 4.78924 + 2.26846i 0.391040 + 0.185219i
\(151\) −7.05378 −0.574028 −0.287014 0.957926i \(-0.592663\pi\)
−0.287014 + 0.957926i \(0.592663\pi\)
\(152\) −1.84302 7.41115i −0.149489 0.601123i
\(153\) −10.0237 −0.810370
\(154\) 0 0
\(155\) 7.16014i 0.575116i
\(156\) 2.67669 + 3.26909i 0.214306 + 0.261737i
\(157\) 8.71569i 0.695588i 0.937571 + 0.347794i \(0.113069\pi\)
−0.937571 + 0.347794i \(0.886931\pi\)
\(158\) 1.01503 2.14296i 0.0807513 0.170485i
\(159\) 1.76552 0.140015
\(160\) 10.9556 14.6848i 0.866115 1.16094i
\(161\) 0 0
\(162\) 3.04125 6.42078i 0.238943 0.504464i
\(163\) 19.8275i 1.55301i 0.630111 + 0.776505i \(0.283009\pi\)
−0.630111 + 0.776505i \(0.716991\pi\)
\(164\) −2.67669 3.26909i −0.209014 0.255273i
\(165\) 5.33306i 0.415178i
\(166\) 8.27890 + 3.92136i 0.642567 + 0.304357i
\(167\) −22.1600 −1.71479 −0.857396 0.514657i \(-0.827919\pi\)
−0.857396 + 0.514657i \(0.827919\pi\)
\(168\) 0 0
\(169\) 3.42151 0.263193
\(170\) 16.3739 + 7.75564i 1.25582 + 0.594830i
\(171\) 6.84210i 0.523228i
\(172\) −17.9349 + 14.6848i −1.36752 + 1.11971i
\(173\) 21.7314i 1.65221i 0.563517 + 0.826105i \(0.309448\pi\)
−0.563517 + 0.826105i \(0.690552\pi\)
\(174\) 0.833662 1.76005i 0.0631998 0.133429i
\(175\) 0 0
\(176\) −9.45960 1.90391i −0.713044 0.143513i
\(177\) 8.37709 0.629661
\(178\) −8.46276 + 17.8668i −0.634311 + 1.33918i
\(179\) 3.77750i 0.282344i −0.989985 0.141172i \(-0.954913\pi\)
0.989985 0.141172i \(-0.0450870\pi\)
\(180\) −12.7004 + 10.3989i −0.946633 + 0.775089i
\(181\) 14.0326i 1.04303i 0.853242 + 0.521516i \(0.174633\pi\)
−0.853242 + 0.521516i \(0.825367\pi\)
\(182\) 0 0
\(183\) −5.94925 −0.439781
\(184\) −7.53407 + 1.87359i −0.555419 + 0.138123i
\(185\) −16.0919 −1.18310
\(186\) −1.92869 0.913540i −0.141419 0.0669840i
\(187\) 9.54214i 0.697790i
\(188\) −8.40332 10.2631i −0.612875 0.748517i
\(189\) 0 0
\(190\) 5.29392 11.1767i 0.384062 0.810842i
\(191\) 7.27890 0.526682 0.263341 0.964703i \(-0.415175\pi\)
0.263341 + 0.964703i \(0.415175\pi\)
\(192\) −2.55779 4.82465i −0.184593 0.348189i
\(193\) 9.53407 0.686277 0.343139 0.939285i \(-0.388510\pi\)
0.343139 + 0.939285i \(0.388510\pi\)
\(194\) 0.833662 1.76005i 0.0598535 0.126364i
\(195\) 6.84210i 0.489973i
\(196\) 0 0
\(197\) 11.6667i 0.831221i −0.909543 0.415611i \(-0.863568\pi\)
0.909543 0.415611i \(-0.136432\pi\)
\(198\) 7.81297 + 3.70067i 0.555243 + 0.262995i
\(199\) −18.9649 −1.34439 −0.672195 0.740375i \(-0.734648\pi\)
−0.672195 + 0.740375i \(0.734648\pi\)
\(200\) 15.0681 3.74718i 1.06548 0.264966i
\(201\) 3.95558 0.279005
\(202\) −1.01753 0.481960i −0.0715930 0.0339106i
\(203\) 0 0
\(204\) 4.17820 3.42105i 0.292532 0.239521i
\(205\) 6.84210i 0.477873i
\(206\) 1.60788 3.39460i 0.112026 0.236513i
\(207\) 6.95558 0.483446
\(208\) 12.1363 + 2.44264i 0.841500 + 0.169367i
\(209\) −6.51337 −0.450540
\(210\) 0 0
\(211\) 16.1268i 1.11022i 0.831778 + 0.555109i \(0.187323\pi\)
−0.831778 + 0.555109i \(0.812677\pi\)
\(212\) 4.00250 3.27719i 0.274893 0.225078i
\(213\) 4.53693i 0.310865i
\(214\) −6.94055 3.28745i −0.474446 0.224725i
\(215\) −37.5371 −2.56001
\(216\) 2.57849 + 10.3686i 0.175444 + 0.705493i
\(217\) 0 0
\(218\) −17.6528 8.36140i −1.19560 0.566305i
\(219\) 6.52406i 0.440855i
\(220\) −9.89930 12.0902i −0.667411 0.815123i
\(221\) 12.2422i 0.823498i
\(222\) −2.05311 + 4.33459i −0.137796 + 0.290919i
\(223\) 7.71477 0.516619 0.258310 0.966062i \(-0.416835\pi\)
0.258310 + 0.966062i \(0.416835\pi\)
\(224\) 0 0
\(225\) −13.9112 −0.927411
\(226\) 2.74483 5.79496i 0.182583 0.385475i
\(227\) 2.12460i 0.141015i 0.997511 + 0.0705074i \(0.0224618\pi\)
−0.997511 + 0.0705074i \(0.977538\pi\)
\(228\) −2.33518 2.85200i −0.154651 0.188878i
\(229\) 9.36796i 0.619052i 0.950891 + 0.309526i \(0.100170\pi\)
−0.950891 + 0.309526i \(0.899830\pi\)
\(230\) −11.3621 5.38173i −0.749192 0.354861i
\(231\) 0 0
\(232\) −1.37709 5.53756i −0.0904106 0.363558i
\(233\) −8.82733 −0.578297 −0.289149 0.957284i \(-0.593372\pi\)
−0.289149 + 0.957284i \(0.593372\pi\)
\(234\) −10.0237 4.74781i −0.655271 0.310374i
\(235\) 21.4804i 1.40123i
\(236\) 18.9912 15.5497i 1.23622 1.01220i
\(237\) 1.14449i 0.0743426i
\(238\) 0 0
\(239\) 5.93489 0.383896 0.191948 0.981405i \(-0.438520\pi\)
0.191948 + 0.981405i \(0.438520\pi\)
\(240\) 1.74483 8.66918i 0.112628 0.559593i
\(241\) 10.6860 0.688349 0.344174 0.938906i \(-0.388159\pi\)
0.344174 + 0.938906i \(0.388159\pi\)
\(242\) 3.13628 6.62141i 0.201608 0.425640i
\(243\) 14.7617i 0.946961i
\(244\) −13.4872 + 11.0431i −0.863426 + 0.706961i
\(245\) 0 0
\(246\) −1.84302 0.872962i −0.117507 0.0556581i
\(247\) 8.35640 0.531705
\(248\) −6.06814 + 1.50904i −0.385327 + 0.0958242i
\(249\) 4.42151 0.280202
\(250\) 2.02689 + 0.960052i 0.128192 + 0.0607190i
\(251\) 3.82402i 0.241370i 0.992691 + 0.120685i \(0.0385091\pi\)
−0.992691 + 0.120685i \(0.961491\pi\)
\(252\) 0 0
\(253\) 6.62141i 0.416284i
\(254\) −9.37709 + 19.7972i −0.588371 + 1.24219i
\(255\) 8.74483 0.547622
\(256\) −14.7542 6.18983i −0.922137 0.386864i
\(257\) −12.4058 −0.773854 −0.386927 0.922110i \(-0.626463\pi\)
−0.386927 + 0.922110i \(0.626463\pi\)
\(258\) −4.78924 + 10.1112i −0.298165 + 0.629495i
\(259\) 0 0
\(260\) 12.7004 + 15.5113i 0.787646 + 0.961968i
\(261\) 5.11237i 0.316447i
\(262\) 21.4840 + 10.1761i 1.32729 + 0.628679i
\(263\) −1.34401 −0.0828752 −0.0414376 0.999141i \(-0.513194\pi\)
−0.0414376 + 0.999141i \(0.513194\pi\)
\(264\) −4.51971 + 1.12397i −0.278169 + 0.0691758i
\(265\) 8.37709 0.514601
\(266\) 0 0
\(267\) 9.54214i 0.583970i
\(268\) 8.96744 7.34241i 0.547774 0.448509i
\(269\) 1.95042i 0.118919i 0.998231 + 0.0594597i \(0.0189378\pi\)
−0.998231 + 0.0594597i \(0.981062\pi\)
\(270\) −7.40648 + 15.6368i −0.450744 + 0.951624i
\(271\) 26.0381 1.58170 0.790850 0.612009i \(-0.209639\pi\)
0.790850 + 0.612009i \(0.209639\pi\)
\(272\) 3.12192 15.5113i 0.189294 0.940509i
\(273\) 0 0
\(274\) −0.537238 + 1.13423i −0.0324557 + 0.0685214i
\(275\) 13.2428i 0.798572i
\(276\) −2.89930 + 2.37391i −0.174518 + 0.142892i
\(277\) 16.1170i 0.968379i 0.874963 + 0.484189i \(0.160885\pi\)
−0.874963 + 0.484189i \(0.839115\pi\)
\(278\) 3.12192 + 1.47872i 0.187240 + 0.0886878i
\(279\) 5.60221 0.335396
\(280\) 0 0
\(281\) −16.1313 −0.962312 −0.481156 0.876635i \(-0.659783\pi\)
−0.481156 + 0.876635i \(0.659783\pi\)
\(282\) −5.78608 2.74062i −0.344556 0.163202i
\(283\) 26.3212i 1.56464i −0.622879 0.782318i \(-0.714037\pi\)
0.622879 0.782318i \(-0.285963\pi\)
\(284\) −8.42151 10.2854i −0.499725 0.610324i
\(285\) 5.96914i 0.353581i
\(286\) 4.51971 9.54214i 0.267256 0.564239i
\(287\) 0 0
\(288\) 11.4897 + 8.57183i 0.677034 + 0.505100i
\(289\) −1.35337 −0.0796101
\(290\) 3.95558 8.35114i 0.232280 0.490396i
\(291\) 0.939991i 0.0551033i
\(292\) −12.1101 14.7903i −0.708688 0.865535i
\(293\) 9.64929i 0.563718i −0.959456 0.281859i \(-0.909049\pi\)
0.959456 0.281859i \(-0.0909510\pi\)
\(294\) 0 0
\(295\) 39.7479 2.31421
\(296\) 3.39145 + 13.6377i 0.197124 + 0.792674i
\(297\) 9.11256 0.528764
\(298\) 12.0506 + 5.70787i 0.698073 + 0.330648i
\(299\) 8.49500i 0.491278i
\(300\) 5.79861 4.74781i 0.334783 0.274115i
\(301\) 0 0
\(302\) −4.27020 + 9.01537i −0.245723 + 0.518777i
\(303\) −0.543432 −0.0312193
\(304\) −10.5878 2.13099i −0.607255 0.122221i
\(305\) −28.2281 −1.61634
\(306\) −6.06814 + 12.8112i −0.346892 + 0.732369i
\(307\) 25.2741i 1.44247i −0.692691 0.721235i \(-0.743575\pi\)
0.692691 0.721235i \(-0.256425\pi\)
\(308\) 0 0
\(309\) 1.81295i 0.103135i
\(310\) −9.15131 4.33459i −0.519759 0.246188i
\(311\) −22.5484 −1.27860 −0.639302 0.768956i \(-0.720777\pi\)
−0.639302 + 0.768956i \(0.720777\pi\)
\(312\) 5.79861 1.44201i 0.328281 0.0816379i
\(313\) 25.3801 1.43457 0.717285 0.696780i \(-0.245385\pi\)
0.717285 + 0.696780i \(0.245385\pi\)
\(314\) 11.1394 + 5.27629i 0.628635 + 0.297758i
\(315\) 0 0
\(316\) −2.12442 2.59460i −0.119508 0.145958i
\(317\) 17.1339i 0.962333i 0.876629 + 0.481167i \(0.159787\pi\)
−0.876629 + 0.481167i \(0.840213\pi\)
\(318\) 1.06881 2.25650i 0.0599358 0.126538i
\(319\) −4.86675 −0.272485
\(320\) −12.1363 22.8921i −0.678439 1.27971i
\(321\) −3.70674 −0.206890
\(322\) 0 0
\(323\) 10.6802i 0.594264i
\(324\) −6.36523 7.77399i −0.353624 0.431888i
\(325\) 16.9900i 0.942435i
\(326\) 25.3414 + 12.0031i 1.40353 + 0.664792i
\(327\) −9.42785 −0.521361
\(328\) −5.79861 + 1.44201i −0.320174 + 0.0796218i
\(329\) 0 0
\(330\) −6.81613 3.22851i −0.375216 0.177724i
\(331\) 8.58596i 0.471927i −0.971762 0.235963i \(-0.924175\pi\)
0.971762 0.235963i \(-0.0758246\pi\)
\(332\) 10.0237 8.20728i 0.550123 0.450433i
\(333\) 12.5905i 0.689957i
\(334\) −13.4152 + 28.3225i −0.734046 + 1.54974i
\(335\) 18.7685 1.02544
\(336\) 0 0
\(337\) −3.18070 −0.173264 −0.0866319 0.996240i \(-0.527610\pi\)
−0.0866319 + 0.996240i \(0.527610\pi\)
\(338\) 2.07131 4.37300i 0.112664 0.237860i
\(339\) 3.09491i 0.168093i
\(340\) 19.8248 16.2323i 1.07515 0.880319i
\(341\) 5.33306i 0.288801i
\(342\) 8.74483 + 4.14206i 0.472866 + 0.223977i
\(343\) 0 0
\(344\) 7.91116 + 31.8123i 0.426541 + 1.71520i
\(345\) −6.06814 −0.326698
\(346\) 27.7747 + 13.1557i 1.49318 + 0.707256i
\(347\) 21.9824i 1.18008i 0.807374 + 0.590039i \(0.200888\pi\)
−0.807374 + 0.590039i \(0.799112\pi\)
\(348\) −1.74483 2.13099i −0.0935325 0.114233i
\(349\) 15.5480i 0.832265i 0.909304 + 0.416132i \(0.136615\pi\)
−0.909304 + 0.416132i \(0.863385\pi\)
\(350\) 0 0
\(351\) −11.6910 −0.624022
\(352\) −8.16000 + 10.9376i −0.434930 + 0.582978i
\(353\) 26.5608 1.41369 0.706845 0.707369i \(-0.250118\pi\)
0.706845 + 0.707369i \(0.250118\pi\)
\(354\) 5.07131 10.7067i 0.269537 0.569054i
\(355\) 21.5269i 1.14253i
\(356\) 17.7123 + 21.6324i 0.938748 + 1.14651i
\(357\) 0 0
\(358\) −4.82799 2.28682i −0.255167 0.120862i
\(359\) −31.0124 −1.63677 −0.818386 0.574669i \(-0.805131\pi\)
−0.818386 + 0.574669i \(0.805131\pi\)
\(360\) 5.60221 + 22.5276i 0.295262 + 1.18731i
\(361\) 11.7098 0.616304
\(362\) 17.9349 + 8.49500i 0.942637 + 0.446487i
\(363\) 3.53630i 0.185607i
\(364\) 0 0
\(365\) 30.9555i 1.62029i
\(366\) −3.60154 + 7.60368i −0.188256 + 0.397451i
\(367\) 12.7735 0.666774 0.333387 0.942790i \(-0.391808\pi\)
0.333387 + 0.942790i \(0.391808\pi\)
\(368\) −2.16634 + 10.7635i −0.112928 + 0.561084i
\(369\) 5.35337 0.278685
\(370\) −9.74166 + 20.5669i −0.506445 + 1.06922i
\(371\) 0 0
\(372\) −2.33518 + 1.91201i −0.121073 + 0.0991330i
\(373\) 6.62141i 0.342843i −0.985198 0.171422i \(-0.945164\pi\)
0.985198 0.171422i \(-0.0548361\pi\)
\(374\) −12.1957 5.77660i −0.630626 0.298701i
\(375\) 1.08250 0.0559001
\(376\) −18.2044 + 4.52712i −0.938821 + 0.233469i
\(377\) 6.24384 0.321574
\(378\) 0 0
\(379\) 18.7804i 0.964683i 0.875983 + 0.482341i \(0.160214\pi\)
−0.875983 + 0.482341i \(0.839786\pi\)
\(380\) −11.0800 13.5322i −0.568392 0.694189i
\(381\) 10.5731i 0.541676i
\(382\) 4.40648 9.30309i 0.225455 0.475988i
\(383\) 20.4359 1.04422 0.522112 0.852877i \(-0.325144\pi\)
0.522112 + 0.852877i \(0.325144\pi\)
\(384\) −7.71477 + 0.348359i −0.393693 + 0.0177771i
\(385\) 0 0
\(386\) 5.77172 12.1854i 0.293773 0.620221i
\(387\) 29.3697i 1.49294i
\(388\) −1.74483 2.13099i −0.0885801 0.108185i
\(389\) 2.37561i 0.120448i 0.998185 + 0.0602242i \(0.0191816\pi\)
−0.998185 + 0.0602242i \(0.980818\pi\)
\(390\) 8.74483 + 4.14206i 0.442811 + 0.209741i
\(391\) −10.8574 −0.549082
\(392\) 0 0
\(393\) 11.4740 0.578785
\(394\) −14.9112 7.06279i −0.751214 0.355818i
\(395\) 5.43040i 0.273233i
\(396\) 9.45960 7.74538i 0.475363 0.389220i
\(397\) 22.1694i 1.11265i 0.830965 + 0.556325i \(0.187789\pi\)
−0.830965 + 0.556325i \(0.812211\pi\)
\(398\) −11.4810 + 24.2389i −0.575488 + 1.21499i
\(399\) 0 0
\(400\) 4.33268 21.5269i 0.216634 1.07635i
\(401\) 26.3170 1.31421 0.657104 0.753800i \(-0.271781\pi\)
0.657104 + 0.753800i \(0.271781\pi\)
\(402\) 2.39462 5.05560i 0.119433 0.252150i
\(403\) 6.84210i 0.340829i
\(404\) −1.23198 + 1.00873i −0.0612932 + 0.0501860i
\(405\) 16.2707i 0.808497i
\(406\) 0 0
\(407\) 11.9856 0.594106
\(408\) −1.84302 7.41115i −0.0912433 0.366906i
\(409\) 0.662325 0.0327498 0.0163749 0.999866i \(-0.494787\pi\)
0.0163749 + 0.999866i \(0.494787\pi\)
\(410\) −8.74483 4.14206i −0.431876 0.204562i
\(411\) 0.605759i 0.0298799i
\(412\) −3.36523 4.11003i −0.165793 0.202487i
\(413\) 0 0
\(414\) 4.21076 8.88987i 0.206947 0.436913i
\(415\) 20.9793 1.02983
\(416\) 10.4690 14.0326i 0.513283 0.688003i
\(417\) 1.66732 0.0816492
\(418\) −3.94305 + 8.32469i −0.192861 + 0.407174i
\(419\) 7.55501i 0.369086i −0.982824 0.184543i \(-0.940919\pi\)
0.982824 0.184543i \(-0.0590805\pi\)
\(420\) 0 0
\(421\) 12.5905i 0.613625i −0.951770 0.306813i \(-0.900737\pi\)
0.951770 0.306813i \(-0.0992625\pi\)
\(422\) 20.6116 + 9.76283i 1.00336 + 0.475247i
\(423\) 16.8066 0.817166
\(424\) −1.76552 7.09950i −0.0857413 0.344782i
\(425\) 21.7148 1.05332
\(426\) −5.79861 2.74655i −0.280943 0.133071i
\(427\) 0 0
\(428\) −8.40332 + 6.88051i −0.406190 + 0.332582i
\(429\) 5.09617i 0.246046i
\(430\) −22.7241 + 47.9758i −1.09585 + 2.31360i
\(431\) −12.9048 −0.621604 −0.310802 0.950475i \(-0.600598\pi\)
−0.310802 + 0.950475i \(0.600598\pi\)
\(432\) 14.8130 + 2.98137i 0.712689 + 0.143441i
\(433\) 40.5815 1.95022 0.975112 0.221715i \(-0.0711654\pi\)
0.975112 + 0.221715i \(0.0711654\pi\)
\(434\) 0 0
\(435\) 4.46009i 0.213845i
\(436\) −21.3733 + 17.5001i −1.02359 + 0.838104i
\(437\) 7.41115i 0.354523i
\(438\) −8.33834 3.94952i −0.398421 0.188715i
\(439\) −36.4546 −1.73988 −0.869941 0.493155i \(-0.835844\pi\)
−0.869941 + 0.493155i \(0.835844\pi\)
\(440\) −21.4452 + 5.33306i −1.02236 + 0.254244i
\(441\) 0 0
\(442\) 15.6466 + 7.41115i 0.744234 + 0.352512i
\(443\) 32.4787i 1.54311i 0.636163 + 0.771555i \(0.280521\pi\)
−0.636163 + 0.771555i \(0.719479\pi\)
\(444\) 4.29709 + 5.24813i 0.203931 + 0.249065i
\(445\) 45.2758i 2.14628i
\(446\) 4.67035 9.86018i 0.221148 0.466893i
\(447\) 6.43587 0.304406
\(448\) 0 0
\(449\) 25.9823 1.22618 0.613091 0.790012i \(-0.289926\pi\)
0.613091 + 0.790012i \(0.289926\pi\)
\(450\) −8.42151 + 17.7797i −0.396994 + 0.838145i
\(451\) 5.09617i 0.239969i
\(452\) −5.74483 7.01628i −0.270214 0.330018i
\(453\) 4.81484i 0.226221i
\(454\) 2.71544 + 1.28619i 0.127442 + 0.0603638i
\(455\) 0 0
\(456\) −5.05878 + 1.25803i −0.236899 + 0.0589127i
\(457\) −11.4690 −0.536495 −0.268248 0.963350i \(-0.586445\pi\)
−0.268248 + 0.963350i \(0.586445\pi\)
\(458\) 11.9731 + 5.67116i 0.559467 + 0.264996i
\(459\) 14.9422i 0.697443i
\(460\) −13.7567 + 11.2638i −0.641409 + 0.525176i
\(461\) 25.1973i 1.17355i −0.809749 0.586777i \(-0.800396\pi\)
0.809749 0.586777i \(-0.199604\pi\)
\(462\) 0 0
\(463\) −31.8223 −1.47891 −0.739454 0.673207i \(-0.764916\pi\)
−0.739454 + 0.673207i \(0.764916\pi\)
\(464\) −7.91116 1.59226i −0.367267 0.0739189i
\(465\) −4.88744 −0.226650
\(466\) −5.34387 + 11.2821i −0.247550 + 0.522635i
\(467\) 14.2131i 0.657705i −0.944381 0.328852i \(-0.893338\pi\)
0.944381 0.328852i \(-0.106662\pi\)
\(468\) −12.1363 + 9.93701i −0.561000 + 0.459338i
\(469\) 0 0
\(470\) −27.4539 13.0038i −1.26636 0.599819i
\(471\) 5.94925 0.274127
\(472\) −8.37709 33.6859i −0.385587 1.55052i
\(473\) 27.9586 1.28554
\(474\) −1.46276 0.692849i −0.0671869 0.0318236i
\(475\) 14.8223i 0.680094i
\(476\) 0 0
\(477\) 6.55438i 0.300104i
\(478\) 3.59285 7.58533i 0.164333 0.346945i
\(479\) 11.5404 0.527295 0.263647 0.964619i \(-0.415075\pi\)
0.263647 + 0.964619i \(0.415075\pi\)
\(480\) −10.0237 7.47818i −0.457518 0.341330i
\(481\) −15.3771 −0.701135
\(482\) 6.46910 13.6577i 0.294659 0.622093i
\(483\) 0 0
\(484\) −6.56413 8.01691i −0.298369 0.364405i
\(485\) 4.46009i 0.202522i
\(486\) −18.8667 8.93638i −0.855813 0.405362i
\(487\) −17.6166 −0.798283 −0.399142 0.916889i \(-0.630692\pi\)
−0.399142 + 0.916889i \(0.630692\pi\)
\(488\) 5.94925 + 23.9231i 0.269310 + 1.08295i
\(489\) 13.5341 0.612032
\(490\) 0 0
\(491\) 26.8502i 1.21173i 0.795567 + 0.605866i \(0.207173\pi\)
−0.795567 + 0.605866i \(0.792827\pi\)
\(492\) −2.23145 + 1.82708i −0.100602 + 0.0823711i
\(493\) 7.98020i 0.359410i
\(494\) 5.05878 10.6802i 0.227605 0.480527i
\(495\) 19.7986 0.889881
\(496\) −1.74483 + 8.66918i −0.0783450 + 0.389258i
\(497\) 0 0
\(498\) 2.67669 5.65110i 0.119945 0.253232i
\(499\) 2.56257i 0.114717i 0.998354 + 0.0573583i \(0.0182677\pi\)
−0.998354 + 0.0573583i \(0.981732\pi\)
\(500\) 2.45407 2.00936i 0.109749 0.0898611i
\(501\) 15.1262i 0.675789i
\(502\) 4.88744 + 2.31497i 0.218137 + 0.103322i
\(503\) 14.6941 0.655176 0.327588 0.944821i \(-0.393764\pi\)
0.327588 + 0.944821i \(0.393764\pi\)
\(504\) 0 0
\(505\) −2.57849 −0.114741
\(506\) 8.46276 + 4.00845i 0.376216 + 0.178197i
\(507\) 2.33549i 0.103723i
\(508\) 19.6259 + 23.9696i 0.870760 + 1.06348i
\(509\) 12.7344i 0.564442i −0.959349 0.282221i \(-0.908929\pi\)
0.959349 0.282221i \(-0.0910712\pi\)
\(510\) 5.29392 11.1767i 0.234419 0.494912i
\(511\) 0 0
\(512\) −16.8430 + 15.1100i −0.744364 + 0.667775i
\(513\) 10.1994 0.450315
\(514\) −7.51021 + 15.8558i −0.331261 + 0.699368i
\(515\) 8.60215i 0.379056i
\(516\) 10.0237 + 12.2422i 0.441270 + 0.538932i
\(517\) 15.9992i 0.703643i
\(518\) 0 0
\(519\) 14.8337 0.651126
\(520\) 27.5134 6.84210i 1.20654 0.300046i
\(521\) −34.0267 −1.49074 −0.745369 0.666652i \(-0.767727\pi\)
−0.745369 + 0.666652i \(0.767727\pi\)
\(522\) 6.53407 + 3.09491i 0.285988 + 0.135461i
\(523\) 6.79559i 0.297150i −0.988901 0.148575i \(-0.952531\pi\)
0.988901 0.148575i \(-0.0474687\pi\)
\(524\) 26.0119 21.2981i 1.13633 0.930413i
\(525\) 0 0
\(526\) −0.813634 + 1.71777i −0.0354761 + 0.0748982i
\(527\) −8.74483 −0.380931
\(528\) −1.29959 + 6.45703i −0.0565575 + 0.281006i
\(529\) −15.4659 −0.672432
\(530\) 5.07131 10.7067i 0.220284 0.465069i
\(531\) 31.0994i 1.34960i
\(532\) 0 0
\(533\) 6.53819i 0.283200i
\(534\) 12.1957 + 5.77660i 0.527761 + 0.249978i
\(535\) −17.5878 −0.760389
\(536\) −3.95558 15.9061i −0.170855 0.687041i
\(537\) −2.57849 −0.111270
\(538\) 2.49282 + 1.18074i 0.107473 + 0.0509055i
\(539\) 0 0
\(540\) 15.5015 + 18.9323i 0.667079 + 0.814718i
\(541\) 24.7051i 1.06215i −0.847324 0.531077i \(-0.821788\pi\)
0.847324 0.531077i \(-0.178212\pi\)
\(542\) 15.7629 33.2790i 0.677074 1.42946i
\(543\) 9.57849 0.411052
\(544\) −17.9349 13.3803i −0.768952 0.573675i
\(545\) −44.7335 −1.91617
\(546\) 0 0
\(547\) 27.5793i 1.17920i −0.807694 0.589602i \(-0.799284\pi\)
0.807694 0.589602i \(-0.200716\pi\)
\(548\) 1.12442 + 1.37328i 0.0480328 + 0.0586635i
\(549\) 22.0862i 0.942615i
\(550\) −16.9255 8.01691i −0.721707 0.341842i
\(551\) −5.44721 −0.232059
\(552\) 1.27890 + 5.14268i 0.0544334 + 0.218887i
\(553\) 0 0
\(554\) 20.5990 + 9.75690i 0.875169 + 0.414531i
\(555\) 10.9842i 0.466251i
\(556\) 3.77988 3.09491i 0.160303 0.131254i
\(557\) 45.2152i 1.91583i −0.287056 0.957914i \(-0.592677\pi\)
0.287056 0.957914i \(-0.407323\pi\)
\(558\) 3.39145 7.16014i 0.143572 0.303113i
\(559\) −35.8698 −1.51713
\(560\) 0 0
\(561\) −6.51337 −0.274995
\(562\) −9.76552 + 20.6173i −0.411934 + 0.869686i
\(563\) 15.2299i 0.641866i 0.947102 + 0.320933i \(0.103996\pi\)
−0.947102 + 0.320933i \(0.896004\pi\)
\(564\) −7.00553 + 5.73602i −0.294986 + 0.241530i
\(565\) 14.6848i 0.617795i
\(566\) −33.6410 15.9343i −1.41404 0.669769i
\(567\) 0 0
\(568\) −18.2438 + 4.53693i −0.765495 + 0.190365i
\(569\) 14.0869 0.590552 0.295276 0.955412i \(-0.404588\pi\)
0.295276 + 0.955412i \(0.404588\pi\)
\(570\) −7.62910 3.61358i −0.319548 0.151356i
\(571\) 22.2257i 0.930117i −0.885280 0.465058i \(-0.846033\pi\)
0.885280 0.465058i \(-0.153967\pi\)
\(572\) −9.45960 11.5532i −0.395526 0.483064i
\(573\) 4.96851i 0.207562i
\(574\) 0 0
\(575\) −15.0681 −0.628385
\(576\) 17.9112 9.49563i 0.746298 0.395651i
\(577\) −9.36140 −0.389720 −0.194860 0.980831i \(-0.562425\pi\)
−0.194860 + 0.980831i \(0.562425\pi\)
\(578\) −0.819301 + 1.72973i −0.0340784 + 0.0719474i
\(579\) 6.50787i 0.270458i
\(580\) −8.27890 10.1112i −0.343762 0.419844i
\(581\) 0 0
\(582\) −1.20139 0.569050i −0.0497994 0.0235879i
\(583\) −6.23948 −0.258413
\(584\) −26.2345 + 6.52406i −1.08559 + 0.269967i
\(585\) −25.4008 −1.05019
\(586\) −12.3327 5.84147i −0.509458 0.241309i
\(587\) 13.0157i 0.537217i 0.963249 + 0.268608i \(0.0865637\pi\)
−0.963249 + 0.268608i \(0.913436\pi\)
\(588\) 0 0
\(589\) 5.96914i 0.245954i
\(590\) 24.0625 50.8014i 0.990636 2.09146i
\(591\) −7.96361 −0.327579
\(592\) 19.4833 + 3.92136i 0.800759 + 0.161167i
\(593\) 1.39779 0.0574003 0.0287002 0.999588i \(-0.490863\pi\)
0.0287002 + 0.999588i \(0.490863\pi\)
\(594\) 5.51654 11.6467i 0.226346 0.477869i
\(595\) 0 0
\(596\) 14.5903 11.9464i 0.597644 0.489342i
\(597\) 12.9453i 0.529815i
\(598\) −10.8574 5.14268i −0.443991 0.210300i
\(599\) −31.8604 −1.30178 −0.650891 0.759172i \(-0.725604\pi\)
−0.650891 + 0.759172i \(0.725604\pi\)
\(600\) −2.55779 10.2854i −0.104421 0.419898i
\(601\) −34.4927 −1.40699 −0.703493 0.710702i \(-0.748377\pi\)
−0.703493 + 0.710702i \(0.748377\pi\)
\(602\) 0 0
\(603\) 14.6848i 0.598012i
\(604\) 8.93739 + 10.9154i 0.363657 + 0.444142i
\(605\) 16.7791i 0.682168i
\(606\) −0.328981 + 0.694555i −0.0133640 + 0.0282144i
\(607\) 9.23145 0.374693 0.187347 0.982294i \(-0.440011\pi\)
0.187347 + 0.982294i \(0.440011\pi\)
\(608\) −9.13325 + 12.2422i −0.370402 + 0.496486i
\(609\) 0 0
\(610\) −17.0887 + 36.0781i −0.691901 + 1.46076i
\(611\) 20.5263i 0.830405i
\(612\) 12.7004 + 15.5113i 0.513384 + 0.627006i
\(613\) 32.3813i 1.30787i −0.756551 0.653935i \(-0.773117\pi\)
0.756551 0.653935i \(-0.226883\pi\)
\(614\) −32.3026 15.3004i −1.30363 0.617473i
\(615\) −4.67035 −0.188327
\(616\) 0 0
\(617\) −10.1600 −0.409026 −0.204513 0.978864i \(-0.565561\pi\)
−0.204513 + 0.978864i \(0.565561\pi\)
\(618\) −2.31712 1.09752i −0.0932082 0.0441488i
\(619\) 37.1659i 1.49382i −0.664924 0.746911i \(-0.731536\pi\)
0.664924 0.746911i \(-0.268464\pi\)
\(620\) −11.0800 + 9.07214i −0.444984 + 0.364346i
\(621\) 10.3686i 0.416077i
\(622\) −13.6503 + 28.8190i −0.547328 + 1.15553i
\(623\) 0 0
\(624\) 1.66732 8.28411i 0.0667464 0.331630i
\(625\) −22.3120 −0.892479
\(626\) 15.3646 32.4381i 0.614092 1.29649i
\(627\) 4.44597i 0.177555i
\(628\) 13.4872 11.0431i 0.538196 0.440667i
\(629\) 19.6533i 0.783630i
\(630\) 0 0
\(631\) −7.31198 −0.291085 −0.145543 0.989352i \(-0.546493\pi\)
−0.145543 + 0.989352i \(0.546493\pi\)
\(632\) −4.60221 + 1.14449i −0.183066 + 0.0455254i
\(633\) 11.0080 0.437530
\(634\) 21.8986 + 10.3725i 0.869706 + 0.411943i
\(635\) 50.1675i 1.99084i
\(636\) −2.23698 2.73207i −0.0887019 0.108334i
\(637\) 0 0
\(638\) −2.94622 + 6.22015i −0.116642 + 0.246258i
\(639\) 16.8430 0.666300
\(640\) −36.6052 + 1.65290i −1.44695 + 0.0653366i
\(641\) 13.7067 0.541384 0.270692 0.962666i \(-0.412748\pi\)
0.270692 + 0.962666i \(0.412748\pi\)
\(642\) −2.24398 + 4.73756i −0.0885628 + 0.186976i
\(643\) 30.5812i 1.20600i −0.797740 0.603002i \(-0.793971\pi\)
0.797740 0.603002i \(-0.206029\pi\)
\(644\) 0 0
\(645\) 25.6225i 1.00888i
\(646\) −13.6503 6.46558i −0.537065 0.254385i
\(647\) −42.5959 −1.67462 −0.837308 0.546731i \(-0.815872\pi\)
−0.837308 + 0.546731i \(0.815872\pi\)
\(648\) −13.7892 + 3.42915i −0.541693 + 0.134710i
\(649\) −29.6052 −1.16211
\(650\) 21.7148 + 10.2854i 0.851723 + 0.403425i
\(651\) 0 0
\(652\) 30.6822 25.1222i 1.20161 0.983859i
\(653\) 31.0930i 1.21676i 0.793645 + 0.608381i \(0.208181\pi\)
−0.793645 + 0.608381i \(0.791819\pi\)
\(654\) −5.70741 + 12.0496i −0.223177 + 0.471179i
\(655\) 54.4419 2.12722
\(656\) −1.66732 + 8.28411i −0.0650981 + 0.323440i
\(657\) 24.2201 0.944917
\(658\) 0 0
\(659\) 35.8472i 1.39641i −0.715899 0.698204i \(-0.753983\pi\)
0.715899 0.698204i \(-0.246017\pi\)
\(660\) −8.25267 + 6.75717i −0.321235 + 0.263022i
\(661\) 27.2852i 1.06127i 0.847600 + 0.530635i \(0.178047\pi\)
−0.847600 + 0.530635i \(0.821953\pi\)
\(662\) −10.9736 5.19775i −0.426503 0.202016i
\(663\) 8.35640 0.324536
\(664\) −4.42151 17.7797i −0.171588 0.689988i
\(665\) 0 0
\(666\) −16.0919 7.62204i −0.623547 0.295348i
\(667\) 5.53756i 0.214415i
\(668\) 28.0775 + 34.2916i 1.08635 + 1.32678i
\(669\) 5.26603i 0.203596i
\(670\) 11.3621 23.9879i 0.438955 0.926734i
\(671\) 21.0251 0.811663
\(672\) 0 0
\(673\) −32.2963 −1.24493 −0.622465 0.782648i \(-0.713869\pi\)
−0.622465 + 0.782648i \(0.713869\pi\)
\(674\) −1.92552 + 4.06522i −0.0741684 + 0.156587i
\(675\) 20.7372i 0.798175i
\(676\) −4.33518 5.29464i −0.166738 0.203640i
\(677\) 15.6791i 0.602595i 0.953530 + 0.301298i \(0.0974198\pi\)
−0.953530 + 0.301298i \(0.902580\pi\)
\(678\) −3.95558 1.87359i −0.151913 0.0719549i
\(679\) 0 0
\(680\) −8.74483 35.1646i −0.335349 1.34850i
\(681\) 1.45023 0.0555731
\(682\) 6.81613 + 3.22851i 0.261003 + 0.123626i
\(683\) 19.0540i 0.729080i 0.931188 + 0.364540i \(0.118774\pi\)
−0.931188 + 0.364540i \(0.881226\pi\)
\(684\) 10.5878 8.66918i 0.404837 0.331474i
\(685\) 2.87422i 0.109818i
\(686\) 0 0
\(687\) 6.39448 0.243965
\(688\) 45.4483 + 9.14727i 1.73270 + 0.348736i
\(689\) 8.00500 0.304966
\(690\) −3.67352 + 7.75564i −0.139848 + 0.295252i
\(691\) 31.0691i 1.18192i 0.806700 + 0.590961i \(0.201251\pi\)
−0.806700 + 0.590961i \(0.798749\pi\)
\(692\) 33.6284 27.5345i 1.27836 1.04670i
\(693\) 0 0
\(694\) 28.0956 + 13.3077i 1.06649 + 0.505153i
\(695\) 7.91116 0.300088
\(696\) −3.77988 + 0.939991i −0.143276 + 0.0356303i
\(697\) −8.35640 −0.316521
\(698\) 19.8717 + 9.41241i 0.752157 + 0.356265i
\(699\) 6.02545i 0.227903i
\(700\) 0 0
\(701\) 33.5258i 1.26625i 0.774048 + 0.633127i \(0.218229\pi\)
−0.774048 + 0.633127i \(0.781771\pi\)
\(702\) −7.07750 + 14.9422i −0.267123 + 0.563958i
\(703\) 13.4152 0.505963
\(704\) 9.03942 + 17.0506i 0.340686 + 0.642620i
\(705\) −14.6623 −0.552215
\(706\) 16.0793 33.9472i 0.605154 1.27762i
\(707\) 0 0
\(708\) −10.6141 12.9632i −0.398901 0.487186i
\(709\) 8.27431i 0.310748i −0.987856 0.155374i \(-0.950342\pi\)
0.987856 0.155374i \(-0.0496583\pi\)
\(710\) −27.5134 13.0319i −1.03256 0.489079i
\(711\) 4.24884 0.159344
\(712\) 38.3708 9.54214i 1.43800 0.357607i
\(713\) 6.06814 0.227254
\(714\) 0 0
\(715\) 24.1805i 0.904298i
\(716\) −5.84552 + 4.78623i −0.218457 + 0.178870i
\(717\) 4.05110i 0.151291i
\(718\) −18.7742 + 39.6367i −0.700648 + 1.47923i
\(719\) 3.62924 0.135348 0.0676739 0.997707i \(-0.478442\pi\)
0.0676739 + 0.997707i \(0.478442\pi\)
\(720\) 32.1837 + 6.47755i 1.19942 + 0.241404i
\(721\) 0 0
\(722\) 7.08884 14.9662i 0.263819 0.556983i
\(723\) 7.29419i 0.271274i
\(724\) 21.7148 17.7797i 0.807023 0.660779i
\(725\) 11.0751i 0.411319i
\(726\) −4.51971 2.14080i −0.167742 0.0794524i
\(727\) −28.1550 −1.04421 −0.522106 0.852881i \(-0.674853\pi\)
−0.522106 + 0.852881i \(0.674853\pi\)
\(728\) 0 0
\(729\) 4.99500 0.185000
\(730\) −39.5640 18.7398i −1.46433 0.693591i
\(731\) 45.8448i 1.69563i
\(732\) 7.53791 + 9.20620i 0.278609 + 0.340271i
\(733\) 29.3598i 1.08443i −0.840240 0.542215i \(-0.817586\pi\)
0.840240 0.542215i \(-0.182414\pi\)
\(734\) 7.73282 16.3258i 0.285424 0.602595i
\(735\) 0 0
\(736\) 12.4452 + 9.28474i 0.458737 + 0.342240i
\(737\) −13.9793 −0.514934
\(738\) 3.24081 6.84210i 0.119296 0.251861i
\(739\) 12.9854i 0.477676i 0.971059 + 0.238838i \(0.0767665\pi\)
−0.971059 + 0.238838i \(0.923233\pi\)
\(740\) 20.3890 + 24.9015i 0.749513 + 0.915396i
\(741\) 5.70400i 0.209542i
\(742\) 0 0
\(743\) 21.8510 0.801637 0.400819 0.916157i \(-0.368726\pi\)
0.400819 + 0.916157i \(0.368726\pi\)
\(744\) 1.03006 + 4.14206i 0.0377637 + 0.151855i
\(745\) 30.5371 1.11879
\(746\) −8.46276 4.00845i −0.309844 0.146760i
\(747\) 16.4146i 0.600577i
\(748\) −14.7660 + 12.0902i −0.539900 + 0.442062i
\(749\) 0 0
\(750\) 0.655322 1.38354i 0.0239290 0.0505196i
\(751\) 12.0745 0.440604 0.220302 0.975432i \(-0.429296\pi\)
0.220302 + 0.975432i \(0.429296\pi\)
\(752\) −5.23448 + 26.0075i −0.190882 + 0.948397i
\(753\) 2.61024 0.0951223
\(754\) 3.77988 7.98020i 0.137655 0.290622i
\(755\) 22.8456i 0.831436i
\(756\) 0 0
\(757\) 27.2309i 0.989725i 0.868971 + 0.494862i \(0.164782\pi\)
−0.868971 + 0.494862i \(0.835218\pi\)
\(758\) 24.0030 + 11.3692i 0.871829 + 0.412949i
\(759\) 4.51971 0.164055
\(760\) −24.0030 + 5.96914i −0.870681 + 0.216523i
\(761\) −30.4847 −1.10507 −0.552534 0.833490i \(-0.686339\pi\)
−0.552534 + 0.833490i \(0.686339\pi\)
\(762\) 13.5134 + 6.40072i 0.489538 + 0.231873i
\(763\) 0 0
\(764\) −9.22262 11.2638i −0.333663 0.407509i
\(765\) 32.4646i 1.17376i
\(766\) 12.3714 26.1189i 0.446998 0.943715i
\(767\) 37.9823 1.37146
\(768\) −4.22512 + 10.0711i −0.152461 + 0.363408i
\(769\) −36.6991 −1.32340 −0.661701 0.749768i \(-0.730165\pi\)
−0.661701 + 0.749768i \(0.730165\pi\)
\(770\) 0 0
\(771\) 8.46809i 0.304971i
\(772\) −12.0800 14.7536i −0.434769 0.530992i
\(773\) 33.0498i 1.18872i −0.804200 0.594359i \(-0.797406\pi\)
0.804200 0.594359i \(-0.202594\pi\)
\(774\) −37.5371 17.7797i −1.34924 0.639080i
\(775\) −12.1363 −0.435948
\(776\) −3.77988 + 0.939991i −0.135690 + 0.0337437i
\(777\) 0 0
\(778\) 3.03625 + 1.43814i 0.108855 + 0.0515600i
\(779\) 5.70400i 0.204367i
\(780\) 10.5878 8.66918i 0.379106 0.310406i
\(781\) 16.0338i 0.573735i
\(782\) −6.57282 + 13.8767i −0.235044 + 0.496231i
\(783\) 7.62093 0.272350
\(784\) 0 0
\(785\) 28.2281 1.00751
\(786\) 6.94608 14.6648i 0.247758 0.523075i
\(787\) 17.3114i 0.617087i 0.951210 + 0.308543i \(0.0998415\pi\)
−0.951210 + 0.308543i \(0.900159\pi\)
\(788\) −18.0538 + 14.7822i −0.643139 + 0.526593i
\(789\) 0.917408i 0.0326606i
\(790\) −6.94055 3.28745i −0.246934 0.116962i
\(791\) 0 0
\(792\) −4.17267 16.7791i −0.148269 0.596220i
\(793\) −26.9743 −0.957886
\(794\) 28.3345 + 13.4209i 1.00555 + 0.476289i
\(795\) 5.71812i 0.202801i
\(796\) 24.0292 + 29.3474i 0.851694 + 1.04019i
\(797\) 41.7331i 1.47826i 0.673561 + 0.739131i \(0.264764\pi\)
−0.673561 + 0.739131i \(0.735236\pi\)
\(798\) 0 0
\(799\) −26.2345 −0.928109
\(800\) −24.8905 18.5695i −0.880011 0.656530i
\(801\) −35.4245 −1.25166
\(802\) 15.9317 33.6355i 0.562569 1.18771i
\(803\) 23.0565i 0.813646i
\(804\) −5.01186 6.12109i −0.176755 0.215874i
\(805\) 0 0
\(806\) −8.74483 4.14206i −0.308023 0.145898i
\(807\) 1.33134 0.0468654
\(808\) 0.543432 + 2.18524i 0.0191179 + 0.0768765i
\(809\) −9.72547 −0.341929 −0.170965 0.985277i \(-0.554688\pi\)
−0.170965 + 0.985277i \(0.554688\pi\)
\(810\) −20.7954 9.84992i −0.730677 0.346091i
\(811\) 55.3405i 1.94327i 0.236492 + 0.971633i \(0.424002\pi\)
−0.236492 + 0.971633i \(0.575998\pi\)
\(812\) 0 0
\(813\) 17.7733i 0.623339i
\(814\) 7.25584 15.3187i 0.254317 0.536922i
\(815\) 64.2168 2.24942
\(816\) −10.5878 2.13099i −0.370649 0.0745997i
\(817\) 31.2933 1.09481
\(818\) 0.400957 0.846511i 0.0140191 0.0295976i
\(819\) 0 0
\(820\) −10.5878 + 8.66918i −0.369744 + 0.302741i
\(821\) 42.1647i 1.47156i −0.677222 0.735779i \(-0.736816\pi\)
0.677222 0.735779i \(-0.263184\pi\)
\(822\) 0.774216 + 0.366713i 0.0270039 + 0.0127906i
\(823\) 15.2138 0.530319 0.265160 0.964205i \(-0.414575\pi\)
0.265160 + 0.964205i \(0.414575\pi\)
\(824\) −7.29023 + 1.81295i −0.253967 + 0.0631572i
\(825\) −9.03942 −0.314712
\(826\) 0 0
\(827\) 1.24390i 0.0432548i −0.999766 0.0216274i \(-0.993115\pi\)
0.999766 0.0216274i \(-0.00688475\pi\)
\(828\) −8.81297 10.7635i −0.306272 0.374056i
\(829\) 21.3062i 0.739996i 0.929033 + 0.369998i \(0.120642\pi\)
−0.929033 + 0.369998i \(0.879358\pi\)
\(830\) 12.7004 26.8135i 0.440838 0.930709i
\(831\) 11.0013 0.381632
\(832\) −11.5972 21.8753i −0.402061 0.758389i
\(833\) 0 0
\(834\) 1.00936 2.13099i 0.0349513 0.0737902i
\(835\) 71.7712i 2.48375i
\(836\) 8.25267 + 10.0792i 0.285425 + 0.348595i
\(837\) 8.35114i 0.288658i
\(838\) −9.65599 4.57363i −0.333561 0.157994i
\(839\) 20.9379 0.722857 0.361429 0.932400i \(-0.382289\pi\)
0.361429 + 0.932400i \(0.382289\pi\)
\(840\) 0 0
\(841\) 24.9299 0.859651
\(842\) −16.0919 7.62204i −0.554562 0.262673i
\(843\) 11.0111i 0.379241i
\(844\) 24.9556 20.4333i 0.859007 0.703342i
\(845\) 11.0815i 0.381215i
\(846\) 10.1744 21.4804i 0.349802 0.738512i
\(847\) 0 0
\(848\) −10.1426 2.04138i −0.348299 0.0701013i
\(849\) −17.9666 −0.616613
\(850\) 13.1456 27.7535i 0.450892 0.951936i
\(851\) 13.6377i 0.467494i
\(852\) −7.02070 + 5.74844i −0.240525 + 0.196938i
\(853\) 17.4758i 0.598361i −0.954197 0.299180i \(-0.903287\pi\)
0.954197 0.299180i \(-0.0967133\pi\)
\(854\) 0 0
\(855\) 22.1600 0.757856
\(856\) 3.70674 + 14.9055i 0.126694 + 0.509460i
\(857\) −3.51035 −0.119911 −0.0599556 0.998201i \(-0.519096\pi\)
−0.0599556 + 0.998201i \(0.519096\pi\)
\(858\) −6.51337 3.08511i −0.222363 0.105324i
\(859\) 5.14268i 0.175466i −0.996144 0.0877331i \(-0.972038\pi\)
0.996144 0.0877331i \(-0.0279623\pi\)
\(860\) 47.5608 + 58.0870i 1.62181 + 1.98075i
\(861\) 0 0
\(862\) −7.81230 + 16.4936i −0.266088 + 0.561773i
\(863\) −40.2819 −1.37121 −0.685606 0.727973i \(-0.740463\pi\)
−0.685606 + 0.727973i \(0.740463\pi\)
\(864\) 12.7779 17.1275i 0.434713 0.582688i
\(865\) 70.3831 2.39310
\(866\) 24.5672 51.8669i 0.834826 1.76251i
\(867\) 0.923798i 0.0313738i
\(868\) 0 0
\(869\) 4.04471i 0.137207i
\(870\) −5.70041 2.70004i −0.193262 0.0915400i
\(871\) 17.9349 0.607700
\(872\) 9.42785 + 37.9112i 0.319267 + 1.28383i
\(873\) 3.48965 0.118107
\(874\) 9.47212 + 4.48655i 0.320399 + 0.151760i
\(875\) 0 0
\(876\) −10.0957 + 8.26621i −0.341102 + 0.279289i
\(877\) 41.9700i 1.41723i −0.705597 0.708613i \(-0.749321\pi\)
0.705597 0.708613i \(-0.250679\pi\)
\(878\) −22.0688 + 46.5923i −0.744786 + 1.57241i
\(879\) −6.58651 −0.222158
\(880\) −6.16634 + 30.6375i −0.207867 + 1.03279i
\(881\) 16.5992 0.559241 0.279620 0.960111i \(-0.409791\pi\)
0.279620 + 0.960111i \(0.409791\pi\)
\(882\) 0 0
\(883\) 12.8210i 0.431462i −0.976453 0.215731i \(-0.930787\pi\)
0.976453 0.215731i \(-0.0692135\pi\)
\(884\) 18.9442 15.5113i 0.637164 0.521701i
\(885\) 27.1315i 0.912016i
\(886\) 41.5107 + 19.6619i 1.39458 + 0.660554i
\(887\) −8.29959 −0.278673 −0.139337 0.990245i \(-0.544497\pi\)
−0.139337 + 0.990245i \(0.544497\pi\)
\(888\) 9.30895 2.31497i 0.312388 0.0776855i
\(889\) 0 0
\(890\) 57.8666 + 27.4090i 1.93969 + 0.918751i
\(891\) 12.1188i 0.405996i
\(892\) −9.77488 11.9383i −0.327287 0.399723i
\(893\) 17.9074i 0.599248i
\(894\) 3.89614 8.22563i 0.130306 0.275106i
\(895\) −12.2345 −0.408954
\(896\) 0 0
\(897\) −5.79861 −0.193610
\(898\) 15.7291 33.2078i 0.524888 1.10816i
\(899\) 4.46009i 0.148752i
\(900\) 17.6259 + 21.5269i 0.587531 + 0.717564i
\(901\) 10.2311i 0.340848i
\(902\) 6.51337 + 3.08511i 0.216872 + 0.102723i
\(903\) 0 0
\(904\) −12.4452 + 3.09491i −0.413922 + 0.102935i
\(905\) 45.4483 1.51075
\(906\) 6.15381 + 2.91480i 0.204447 + 0.0968377i
\(907\) 16.4287i 0.545506i −0.962084 0.272753i \(-0.912066\pi\)
0.962084 0.272753i \(-0.0879341\pi\)
\(908\) 3.28773 2.69195i 0.109107 0.0893354i
\(909\) 2.01745i 0.0669147i
\(910\) 0 0
\(911\) −37.1630 −1.23127 −0.615633 0.788033i \(-0.711100\pi\)
−0.615633 + 0.788033i \(0.711100\pi\)
\(912\) −1.45460 + 7.22717i −0.0481665 + 0.239315i
\(913\) −15.6259 −0.517143
\(914\) −6.94305 + 14.6584i −0.229656 + 0.484856i
\(915\) 19.2683i 0.636989i
\(916\) 14.4965 11.8695i 0.478978 0.392180i
\(917\) 0 0
\(918\) 19.0975 + 9.04569i 0.630312 + 0.298552i
\(919\) −36.3056 −1.19761 −0.598806 0.800894i \(-0.704358\pi\)
−0.598806 + 0.800894i \(0.704358\pi\)
\(920\) 6.06814 + 24.4011i 0.200061 + 0.804482i
\(921\) −17.2519 −0.568468
\(922\) −32.2044 15.2539i −1.06060 0.502360i
\(923\) 20.5707i 0.677094i
\(924\) 0 0
\(925\) 27.2754i 0.896809i
\(926\) −19.2645 + 40.6718i −0.633072 + 1.33656i
\(927\) 6.73047 0.221057
\(928\) −6.82430 + 9.14727i −0.224019 + 0.300274i
\(929\) 21.6527 0.710401 0.355201 0.934790i \(-0.384413\pi\)
0.355201 + 0.934790i \(0.384413\pi\)
\(930\) −2.95875 + 6.24660i −0.0970212 + 0.204834i
\(931\) 0 0
\(932\) 11.1845 + 13.6599i 0.366362 + 0.447445i
\(933\) 15.3913i 0.503890i
\(934\) −18.1657 8.60431i −0.594399 0.281542i
\(935\) −30.9048 −1.01070
\(936\) 5.35337 + 21.5269i 0.174980 + 0.703629i
\(937\) 15.8637 0.518245 0.259123 0.965844i \(-0.416567\pi\)
0.259123 + 0.965844i \(0.416567\pi\)
\(938\) 0 0
\(939\) 17.3242i 0.565355i
\(940\) −33.2400 + 27.2164i −1.08417 + 0.887702i
\(941\) 14.6912i 0.478920i −0.970906 0.239460i \(-0.923030\pi\)
0.970906 0.239460i \(-0.0769704\pi\)
\(942\) 3.60154 7.60368i 0.117345 0.247741i
\(943\) 5.79861 0.188829
\(944\) −48.1249 9.68600i −1.56633 0.315252i
\(945\) 0 0
\(946\) 16.9255 35.7337i 0.550296 1.16180i
\(947\) 13.9254i 0.452515i −0.974068 0.226257i \(-0.927351\pi\)
0.974068 0.226257i \(-0.0726491\pi\)
\(948\) −1.77105 + 1.45011i −0.0575210 + 0.0470973i
\(949\) 29.5805i 0.960225i
\(950\) −18.9442 8.97309i −0.614633 0.291126i
\(951\) 11.6954 0.379250
\(952\) 0 0
\(953\) 11.2883 0.365663 0.182831 0.983144i \(-0.441474\pi\)
0.182831 + 0.983144i \(0.441474\pi\)
\(954\) 8.37709 + 3.96788i 0.271218 + 0.128465i
\(955\) 23.5747i 0.762859i
\(956\) −7.51971 9.18398i −0.243205 0.297031i
\(957\) 3.32199i 0.107385i
\(958\) 6.98631 14.7497i 0.225717 0.476541i
\(959\) 0 0
\(960\) −15.6259 + 8.28411i −0.504325 + 0.267369i
\(961\) −26.1126 −0.842341
\(962\) −9.30895 + 19.6533i −0.300133 + 0.633649i
\(963\) 13.7610i 0.443443i
\(964\) −13.5396 16.5362i −0.436081 0.532595i
\(965\) 30.8787i 0.994020i
\(966\) 0 0
\(967\) −36.4276 −1.17143 −0.585716 0.810517i \(-0.699187\pi\)
−0.585716 + 0.810517i \(0.699187\pi\)
\(968\) −14.2201 + 3.53630i −0.457052 + 0.113661i
\(969\) −7.29023 −0.234196
\(970\) −5.70041 2.70004i −0.183029 0.0866931i
\(971\) 6.64534i 0.213259i −0.994299 0.106629i \(-0.965994\pi\)
0.994299 0.106629i \(-0.0340059\pi\)
\(972\) −22.8430 + 18.7035i −0.732690 + 0.599916i
\(973\) 0 0
\(974\) −10.6647 + 22.5156i −0.341719 + 0.721446i
\(975\) 11.5972 0.371408
\(976\) 34.1774 + 6.87881i 1.09399 + 0.220185i
\(977\) −45.4452 −1.45392 −0.726961 0.686679i \(-0.759068\pi\)
−0.726961 + 0.686679i \(0.759068\pi\)
\(978\) 8.19323 17.2978i 0.261991 0.553122i
\(979\) 33.7226i 1.07778i
\(980\) 0 0
\(981\) 35.0002i 1.11747i
\(982\) 34.3170 + 16.2545i 1.09510 + 0.518702i
\(983\) 18.5308 0.591040 0.295520 0.955337i \(-0.404507\pi\)
0.295520 + 0.955337i \(0.404507\pi\)
\(984\) 0.984304 + 3.95807i 0.0313785 + 0.126179i
\(985\) −37.7859 −1.20396
\(986\) −10.1994 4.83104i −0.324816 0.153852i
\(987\) 0 0
\(988\) −10.5878 12.9312i −0.336844 0.411395i
\(989\) 31.8123i 1.01157i
\(990\) 11.9856 25.3044i 0.380929 0.804227i
\(991\) −36.4783 −1.15877 −0.579386 0.815053i \(-0.696708\pi\)
−0.579386 + 0.815053i \(0.696708\pi\)
\(992\) 10.0237 + 7.47818i 0.318254 + 0.237432i
\(993\) −5.86069 −0.185983
\(994\) 0 0
\(995\) 61.4232i 1.94724i
\(996\) −5.60221 6.84210i −0.177513 0.216800i
\(997\) 15.3273i 0.485420i 0.970099 + 0.242710i \(0.0780364\pi\)
−0.970099 + 0.242710i \(0.921964\pi\)
\(998\) 3.27520 + 1.55132i 0.103675 + 0.0491063i
\(999\) −18.7685 −0.593811
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 392.2.b.f.197.3 6
4.3 odd 2 1568.2.b.e.785.4 6
7.2 even 3 392.2.p.g.165.1 12
7.3 odd 6 56.2.p.a.37.5 yes 12
7.4 even 3 392.2.p.g.373.5 12
7.5 odd 6 56.2.p.a.53.1 yes 12
7.6 odd 2 392.2.b.e.197.3 6
8.3 odd 2 1568.2.b.e.785.3 6
8.5 even 2 inner 392.2.b.f.197.4 6
21.5 even 6 504.2.cj.c.109.6 12
21.17 even 6 504.2.cj.c.37.2 12
28.3 even 6 224.2.t.a.177.3 12
28.11 odd 6 1568.2.t.g.177.4 12
28.19 even 6 224.2.t.a.81.4 12
28.23 odd 6 1568.2.t.g.753.3 12
28.27 even 2 1568.2.b.f.785.3 6
56.3 even 6 224.2.t.a.177.4 12
56.5 odd 6 56.2.p.a.53.5 yes 12
56.11 odd 6 1568.2.t.g.177.3 12
56.13 odd 2 392.2.b.e.197.4 6
56.19 even 6 224.2.t.a.81.3 12
56.27 even 2 1568.2.b.f.785.4 6
56.37 even 6 392.2.p.g.165.5 12
56.45 odd 6 56.2.p.a.37.1 12
56.51 odd 6 1568.2.t.g.753.4 12
56.53 even 6 392.2.p.g.373.1 12
84.47 odd 6 2016.2.cr.c.1873.1 12
84.59 odd 6 2016.2.cr.c.1297.6 12
168.5 even 6 504.2.cj.c.109.2 12
168.59 odd 6 2016.2.cr.c.1297.1 12
168.101 even 6 504.2.cj.c.37.6 12
168.131 odd 6 2016.2.cr.c.1873.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.2.p.a.37.1 12 56.45 odd 6
56.2.p.a.37.5 yes 12 7.3 odd 6
56.2.p.a.53.1 yes 12 7.5 odd 6
56.2.p.a.53.5 yes 12 56.5 odd 6
224.2.t.a.81.3 12 56.19 even 6
224.2.t.a.81.4 12 28.19 even 6
224.2.t.a.177.3 12 28.3 even 6
224.2.t.a.177.4 12 56.3 even 6
392.2.b.e.197.3 6 7.6 odd 2
392.2.b.e.197.4 6 56.13 odd 2
392.2.b.f.197.3 6 1.1 even 1 trivial
392.2.b.f.197.4 6 8.5 even 2 inner
392.2.p.g.165.1 12 7.2 even 3
392.2.p.g.165.5 12 56.37 even 6
392.2.p.g.373.1 12 56.53 even 6
392.2.p.g.373.5 12 7.4 even 3
504.2.cj.c.37.2 12 21.17 even 6
504.2.cj.c.37.6 12 168.101 even 6
504.2.cj.c.109.2 12 168.5 even 6
504.2.cj.c.109.6 12 21.5 even 6
1568.2.b.e.785.3 6 8.3 odd 2
1568.2.b.e.785.4 6 4.3 odd 2
1568.2.b.f.785.3 6 28.27 even 2
1568.2.b.f.785.4 6 56.27 even 2
1568.2.t.g.177.3 12 56.11 odd 6
1568.2.t.g.177.4 12 28.11 odd 6
1568.2.t.g.753.3 12 28.23 odd 6
1568.2.t.g.753.4 12 56.51 odd 6
2016.2.cr.c.1297.1 12 168.59 odd 6
2016.2.cr.c.1297.6 12 84.59 odd 6
2016.2.cr.c.1873.1 12 84.47 odd 6
2016.2.cr.c.1873.6 12 168.131 odd 6