Properties

Label 392.2.p.g.373.1
Level $392$
Weight $2$
Character 392.373
Analytic conductor $3.130$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [392,2,Mod(165,392)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(392, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("392.165");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 392.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.13013575923\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.951588245534976.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 2 x^{10} - 9 x^{9} + 8 x^{8} - 13 x^{7} + 35 x^{6} - 26 x^{5} + 32 x^{4} - 72 x^{3} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 373.1
Root \(-0.390636 - 1.35919i\) of defining polynomial
Character \(\chi\) \(=\) 392.373
Dual form 392.2.p.g.165.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.40955 - 0.114773i) q^{2} +(0.591141 - 0.341295i) q^{3} +(1.97365 + 0.323556i) q^{4} +(-2.80486 - 1.61939i) q^{5} +(-0.872413 + 0.413225i) q^{6} +(-2.74483 - 0.682591i) q^{8} +(-1.26704 + 2.19457i) q^{9} +(3.76772 + 2.60453i) q^{10} +(-2.08913 + 1.20616i) q^{11} +(1.27714 - 0.482332i) q^{12} +3.09491i q^{13} -2.21076 q^{15} +(3.79062 + 1.27718i) q^{16} +(1.97779 + 3.42563i) q^{17} +(2.03782 - 2.94793i) q^{18} +(2.33831 + 1.35002i) q^{19} +(-5.01186 - 4.10364i) q^{20} +(3.08317 - 1.46037i) q^{22} +(-1.37241 + 2.37709i) q^{23} +(-1.85554 + 0.533289i) q^{24} +(2.74483 + 4.75418i) q^{25} +(0.355213 - 4.36243i) q^{26} +3.77750i q^{27} -2.01745i q^{29} +(3.11617 + 0.253735i) q^{30} +(-1.10538 - 1.91457i) q^{31} +(-5.19648 - 2.23530i) q^{32} +(-0.823314 + 1.42602i) q^{33} +(-2.39462 - 5.05560i) q^{34} +(-3.21076 + 3.92136i) q^{36} +(-4.30285 - 2.48425i) q^{37} +(-3.14101 - 2.17130i) q^{38} +(1.05628 + 1.82953i) q^{39} +(6.59347 + 6.35951i) q^{40} +2.11256 q^{41} +11.5899i q^{43} +(-4.51349 + 1.70459i) q^{44} +(7.10771 - 4.10364i) q^{45} +(2.20731 - 3.19311i) q^{46} +(-3.31613 + 5.74371i) q^{47} +(2.67669 - 0.538731i) q^{48} +(-3.32331 - 7.01628i) q^{50} +(2.33831 + 1.35002i) q^{51} +(-1.00138 + 6.10829i) q^{52} +(-2.23998 + 1.29325i) q^{53} +(0.433555 - 5.32458i) q^{54} +7.81297 q^{55} +1.84302 q^{57} +(-0.231549 + 2.84370i) q^{58} +(-10.6283 + 6.13625i) q^{59} +(-4.36327 - 0.715304i) q^{60} +(-7.54801 - 4.35784i) q^{61} +(1.33834 + 2.82555i) q^{62} +(7.06814 + 3.74718i) q^{64} +(5.01186 - 8.68080i) q^{65} +(1.32417 - 1.91555i) q^{66} +(-5.01858 + 2.89748i) q^{67} +(2.79509 + 7.40094i) q^{68} +1.87359i q^{69} +6.64663 q^{71} +(4.97578 - 5.15884i) q^{72} +(-4.77890 - 8.27729i) q^{73} +(5.77995 + 3.99553i) q^{74} +(3.24516 + 1.87359i) q^{75} +(4.17820 + 3.42105i) q^{76} +(-1.27890 - 2.70004i) q^{78} +(-0.838343 + 1.45205i) q^{79} +(-8.56392 - 9.72078i) q^{80} +(-2.51186 - 4.35067i) q^{81} +(-2.97775 - 0.242465i) q^{82} -6.47755i q^{83} -12.8112i q^{85} +(1.33021 - 16.3365i) q^{86} +(-0.688547 - 1.19260i) q^{87} +(6.55762 - 1.88468i) q^{88} +(6.98965 - 12.1064i) q^{89} +(-10.4897 + 4.96851i) q^{90} +(-3.47779 + 4.24750i) q^{92} +(-1.30687 - 0.754520i) q^{93} +(5.33347 - 7.71544i) q^{94} +(-4.37241 - 7.57324i) q^{95} +(-3.83475 + 0.452156i) q^{96} +1.37709 q^{97} -6.11300i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{2} + 8 q^{6} + 4 q^{8} + 8 q^{10} + 2 q^{12} - 20 q^{15} + 8 q^{16} + 2 q^{17} + 6 q^{18} - 8 q^{20} + 12 q^{22} + 2 q^{23} - 18 q^{24} - 4 q^{25} + 2 q^{26} + 14 q^{30} - 10 q^{31} - 12 q^{32}+ \cdots - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/392\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(297\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.40955 0.114773i −0.996701 0.0811568i
\(3\) 0.591141 0.341295i 0.341295 0.197047i −0.319549 0.947570i \(-0.603532\pi\)
0.660845 + 0.750523i \(0.270198\pi\)
\(4\) 1.97365 + 0.323556i 0.986827 + 0.161778i
\(5\) −2.80486 1.61939i −1.25437 0.724212i −0.282397 0.959298i \(-0.591130\pi\)
−0.971975 + 0.235086i \(0.924463\pi\)
\(6\) −0.872413 + 0.413225i −0.356161 + 0.168698i
\(7\) 0 0
\(8\) −2.74483 0.682591i −0.970443 0.241332i
\(9\) −1.26704 + 2.19457i −0.422345 + 0.731523i
\(10\) 3.76772 + 2.60453i 1.19146 + 0.823624i
\(11\) −2.08913 + 1.20616i −0.629897 + 0.363671i −0.780712 0.624891i \(-0.785144\pi\)
0.150815 + 0.988562i \(0.451810\pi\)
\(12\) 1.27714 0.482332i 0.368677 0.139237i
\(13\) 3.09491i 0.858375i 0.903216 + 0.429187i \(0.141200\pi\)
−0.903216 + 0.429187i \(0.858800\pi\)
\(14\) 0 0
\(15\) −2.21076 −0.570815
\(16\) 3.79062 + 1.27718i 0.947656 + 0.319294i
\(17\) 1.97779 + 3.42563i 0.479685 + 0.830838i 0.999728 0.0233012i \(-0.00741769\pi\)
−0.520044 + 0.854140i \(0.674084\pi\)
\(18\) 2.03782 2.94793i 0.480320 0.694834i
\(19\) 2.33831 + 1.35002i 0.536444 + 0.309716i 0.743637 0.668584i \(-0.233099\pi\)
−0.207192 + 0.978300i \(0.566433\pi\)
\(20\) −5.01186 4.10364i −1.12069 0.917602i
\(21\) 0 0
\(22\) 3.08317 1.46037i 0.657334 0.311351i
\(23\) −1.37241 + 2.37709i −0.286168 + 0.495657i −0.972892 0.231261i \(-0.925715\pi\)
0.686724 + 0.726918i \(0.259048\pi\)
\(24\) −1.85554 + 0.533289i −0.378761 + 0.108857i
\(25\) 2.74483 + 4.75418i 0.548965 + 0.950836i
\(26\) 0.355213 4.36243i 0.0696629 0.855543i
\(27\) 3.77750i 0.726981i
\(28\) 0 0
\(29\) 2.01745i 0.374631i −0.982300 0.187316i \(-0.940021\pi\)
0.982300 0.187316i \(-0.0599787\pi\)
\(30\) 3.11617 + 0.253735i 0.568932 + 0.0463255i
\(31\) −1.10538 1.91457i −0.198532 0.343867i 0.749521 0.661981i \(-0.230284\pi\)
−0.948053 + 0.318114i \(0.896951\pi\)
\(32\) −5.19648 2.23530i −0.918617 0.395150i
\(33\) −0.823314 + 1.42602i −0.143321 + 0.248239i
\(34\) −2.39462 5.05560i −0.410674 0.867027i
\(35\) 0 0
\(36\) −3.21076 + 3.92136i −0.535126 + 0.653561i
\(37\) −4.30285 2.48425i −0.707385 0.408409i 0.102707 0.994712i \(-0.467249\pi\)
−0.810092 + 0.586303i \(0.800583\pi\)
\(38\) −3.14101 2.17130i −0.509539 0.352231i
\(39\) 1.05628 + 1.82953i 0.169140 + 0.292959i
\(40\) 6.59347 + 6.35951i 1.04252 + 1.00553i
\(41\) 2.11256 0.329926 0.164963 0.986300i \(-0.447249\pi\)
0.164963 + 0.986300i \(0.447249\pi\)
\(42\) 0 0
\(43\) 11.5899i 1.76745i 0.468011 + 0.883723i \(0.344971\pi\)
−0.468011 + 0.883723i \(0.655029\pi\)
\(44\) −4.51349 + 1.70459i −0.680434 + 0.256977i
\(45\) 7.10771 4.10364i 1.05956 0.611734i
\(46\) 2.20731 3.19311i 0.325450 0.470798i
\(47\) −3.31613 + 5.74371i −0.483708 + 0.837807i −0.999825 0.0187115i \(-0.994044\pi\)
0.516117 + 0.856518i \(0.327377\pi\)
\(48\) 2.67669 0.538731i 0.386346 0.0777591i
\(49\) 0 0
\(50\) −3.32331 7.01628i −0.469988 0.992251i
\(51\) 2.33831 + 1.35002i 0.327428 + 0.189041i
\(52\) −1.00138 + 6.10829i −0.138866 + 0.847067i
\(53\) −2.23998 + 1.29325i −0.307684 + 0.177642i −0.645890 0.763431i \(-0.723513\pi\)
0.338205 + 0.941072i \(0.390180\pi\)
\(54\) 0.433555 5.32458i 0.0589994 0.724583i
\(55\) 7.81297 1.05350
\(56\) 0 0
\(57\) 1.84302 0.244114
\(58\) −0.231549 + 2.84370i −0.0304039 + 0.373396i
\(59\) −10.6283 + 6.13625i −1.38369 + 0.798872i −0.992594 0.121479i \(-0.961236\pi\)
−0.391093 + 0.920351i \(0.627903\pi\)
\(60\) −4.36327 0.715304i −0.563295 0.0923453i
\(61\) −7.54801 4.35784i −0.966424 0.557965i −0.0682795 0.997666i \(-0.521751\pi\)
−0.898144 + 0.439701i \(0.855084\pi\)
\(62\) 1.33834 + 2.82555i 0.169970 + 0.358845i
\(63\) 0 0
\(64\) 7.06814 + 3.74718i 0.883518 + 0.468398i
\(65\) 5.01186 8.68080i 0.621645 1.07672i
\(66\) 1.32417 1.91555i 0.162994 0.235788i
\(67\) −5.01858 + 2.89748i −0.613117 + 0.353983i −0.774184 0.632960i \(-0.781840\pi\)
0.161067 + 0.986943i \(0.448506\pi\)
\(68\) 2.79509 + 7.40094i 0.338954 + 0.897496i
\(69\) 1.87359i 0.225554i
\(70\) 0 0
\(71\) 6.64663 0.788810 0.394405 0.918937i \(-0.370951\pi\)
0.394405 + 0.918937i \(0.370951\pi\)
\(72\) 4.97578 5.15884i 0.586402 0.607976i
\(73\) −4.77890 8.27729i −0.559328 0.968784i −0.997553 0.0699184i \(-0.977726\pi\)
0.438225 0.898865i \(-0.355607\pi\)
\(74\) 5.77995 + 3.99553i 0.671906 + 0.464470i
\(75\) 3.24516 + 1.87359i 0.374718 + 0.216344i
\(76\) 4.17820 + 3.42105i 0.479272 + 0.392421i
\(77\) 0 0
\(78\) −1.27890 2.70004i −0.144806 0.305720i
\(79\) −0.838343 + 1.45205i −0.0943209 + 0.163369i −0.909325 0.416087i \(-0.863401\pi\)
0.815004 + 0.579455i \(0.196735\pi\)
\(80\) −8.56392 9.72078i −0.957476 1.08682i
\(81\) −2.51186 4.35067i −0.279096 0.483408i
\(82\) −2.97775 0.242465i −0.328838 0.0267757i
\(83\) 6.47755i 0.711003i −0.934676 0.355502i \(-0.884310\pi\)
0.934676 0.355502i \(-0.115690\pi\)
\(84\) 0 0
\(85\) 12.8112i 1.38957i
\(86\) 1.33021 16.3365i 0.143440 1.76161i
\(87\) −0.688547 1.19260i −0.0738200 0.127860i
\(88\) 6.55762 1.88468i 0.699045 0.200908i
\(89\) 6.98965 12.1064i 0.740902 1.28328i −0.211184 0.977446i \(-0.567732\pi\)
0.952085 0.305833i \(-0.0989349\pi\)
\(90\) −10.4897 + 4.96851i −1.10571 + 0.523726i
\(91\) 0 0
\(92\) −3.47779 + 4.24750i −0.362585 + 0.442832i
\(93\) −1.30687 0.754520i −0.135516 0.0782401i
\(94\) 5.33347 7.71544i 0.550106 0.795787i
\(95\) −4.37241 7.57324i −0.448600 0.776998i
\(96\) −3.83475 + 0.452156i −0.391383 + 0.0461479i
\(97\) 1.37709 0.139823 0.0699113 0.997553i \(-0.477728\pi\)
0.0699113 + 0.997553i \(0.477728\pi\)
\(98\) 0 0
\(99\) 6.11300i 0.614379i
\(100\) 3.87909 + 10.2712i 0.387909 + 1.02712i
\(101\) 0.689470 0.398066i 0.0686048 0.0396090i −0.465305 0.885150i \(-0.654055\pi\)
0.533910 + 0.845541i \(0.320722\pi\)
\(102\) −3.14101 2.17130i −0.311006 0.214990i
\(103\) −1.32799 + 2.30015i −0.130851 + 0.226641i −0.924005 0.382381i \(-0.875104\pi\)
0.793154 + 0.609022i \(0.208438\pi\)
\(104\) 2.11256 8.49500i 0.207153 0.833003i
\(105\) 0 0
\(106\) 3.30579 1.56581i 0.321086 0.152085i
\(107\) −4.70287 2.71520i −0.454643 0.262489i 0.255146 0.966903i \(-0.417877\pi\)
−0.709789 + 0.704414i \(0.751210\pi\)
\(108\) −1.22224 + 7.45549i −0.117610 + 0.717405i
\(109\) 11.9614 6.90593i 1.14570 0.661468i 0.197862 0.980230i \(-0.436600\pi\)
0.947835 + 0.318762i \(0.103267\pi\)
\(110\) −11.0128 0.896718i −1.05003 0.0854987i
\(111\) −3.39145 −0.321903
\(112\) 0 0
\(113\) 4.53407 0.426529 0.213265 0.976994i \(-0.431590\pi\)
0.213265 + 0.976994i \(0.431590\pi\)
\(114\) −2.59783 0.211529i −0.243309 0.0198115i
\(115\) 7.69885 4.44493i 0.717922 0.414492i
\(116\) 0.652759 3.98175i 0.0606072 0.369697i
\(117\) −6.79200 3.92136i −0.627921 0.362530i
\(118\) 15.6854 7.42950i 1.44396 0.683941i
\(119\) 0 0
\(120\) 6.06814 + 1.50904i 0.553943 + 0.137756i
\(121\) −2.59035 + 4.48662i −0.235486 + 0.407874i
\(122\) 10.1391 + 7.00890i 0.917953 + 0.634556i
\(123\) 1.24882 0.721006i 0.112602 0.0650109i
\(124\) −1.56216 4.13635i −0.140286 0.371455i
\(125\) 1.58587i 0.141845i
\(126\) 0 0
\(127\) −15.4897 −1.37448 −0.687242 0.726428i \(-0.741179\pi\)
−0.687242 + 0.726428i \(0.741179\pi\)
\(128\) −9.53281 6.09307i −0.842589 0.538556i
\(129\) 3.95558 + 6.85127i 0.348270 + 0.603221i
\(130\) −8.06078 + 11.6608i −0.706977 + 1.02272i
\(131\) 14.5574 + 8.40471i 1.27189 + 0.734323i 0.975343 0.220696i \(-0.0708330\pi\)
0.296543 + 0.955020i \(0.404166\pi\)
\(132\) −2.08634 + 2.54809i −0.181592 + 0.221782i
\(133\) 0 0
\(134\) 7.40648 3.50814i 0.639823 0.303057i
\(135\) 6.11724 10.5954i 0.526488 0.911904i
\(136\) −3.09039 10.7528i −0.264998 0.922044i
\(137\) 0.443721 + 0.768547i 0.0379096 + 0.0656614i 0.884358 0.466810i \(-0.154597\pi\)
−0.846448 + 0.532471i \(0.821263\pi\)
\(138\) 0.215038 2.64092i 0.0183052 0.224810i
\(139\) 2.44264i 0.207182i −0.994620 0.103591i \(-0.966967\pi\)
0.994620 0.103591i \(-0.0330333\pi\)
\(140\) 0 0
\(141\) 4.52712i 0.381253i
\(142\) −9.36875 0.762854i −0.786208 0.0640172i
\(143\) −3.73296 6.46568i −0.312166 0.540688i
\(144\) −7.60570 + 6.70056i −0.633809 + 0.558380i
\(145\) −3.26704 + 5.65867i −0.271312 + 0.469927i
\(146\) 5.78608 + 12.2157i 0.478859 + 1.01098i
\(147\) 0 0
\(148\) −7.68855 6.29527i −0.631995 0.517468i
\(149\) 8.16541 + 4.71430i 0.668936 + 0.386210i 0.795673 0.605726i \(-0.207117\pi\)
−0.126737 + 0.991936i \(0.540451\pi\)
\(150\) −4.35917 3.01338i −0.355925 0.246041i
\(151\) 3.52689 + 6.10875i 0.287014 + 0.497123i 0.973096 0.230402i \(-0.0740040\pi\)
−0.686081 + 0.727525i \(0.740671\pi\)
\(152\) −5.49673 5.30168i −0.445844 0.430023i
\(153\) −10.0237 −0.810370
\(154\) 0 0
\(155\) 7.16014i 0.575116i
\(156\) 1.49277 + 3.95262i 0.119518 + 0.316463i
\(157\) −7.54801 + 4.35784i −0.602397 + 0.347794i −0.769984 0.638063i \(-0.779736\pi\)
0.167587 + 0.985857i \(0.446402\pi\)
\(158\) 1.34834 1.95052i 0.107268 0.155175i
\(159\) −0.882761 + 1.52899i −0.0700075 + 0.121257i
\(160\) 10.9556 + 14.6848i 0.866115 + 1.16094i
\(161\) 0 0
\(162\) 3.04125 + 6.42078i 0.238943 + 0.504464i
\(163\) 17.1711 + 9.91376i 1.34495 + 0.776505i 0.987529 0.157439i \(-0.0503239\pi\)
0.357418 + 0.933945i \(0.383657\pi\)
\(164\) 4.16946 + 0.683532i 0.325580 + 0.0533748i
\(165\) 4.61856 2.66653i 0.359555 0.207589i
\(166\) −0.743448 + 9.13042i −0.0577027 + 0.708658i
\(167\) −22.1600 −1.71479 −0.857396 0.514657i \(-0.827919\pi\)
−0.857396 + 0.514657i \(0.827919\pi\)
\(168\) 0 0
\(169\) 3.42151 0.263193
\(170\) −1.47038 + 18.0581i −0.112773 + 1.38499i
\(171\) −5.92543 + 3.42105i −0.453129 + 0.261614i
\(172\) −3.74999 + 22.8745i −0.285934 + 1.74416i
\(173\) 18.8200 + 10.8657i 1.43086 + 0.826105i 0.997186 0.0749674i \(-0.0238853\pi\)
0.433669 + 0.901072i \(0.357219\pi\)
\(174\) 0.833662 + 1.76005i 0.0631998 + 0.133429i
\(175\) 0 0
\(176\) −9.45960 + 1.90391i −0.713044 + 0.143513i
\(177\) −4.18855 + 7.25478i −0.314830 + 0.545302i
\(178\) −11.2417 + 16.2624i −0.842604 + 1.21892i
\(179\) 3.27141 1.88875i 0.244517 0.141172i −0.372734 0.927938i \(-0.621580\pi\)
0.617251 + 0.786766i \(0.288246\pi\)
\(180\) 15.3559 5.79942i 1.14456 0.432263i
\(181\) 14.0326i 1.04303i −0.853242 0.521516i \(-0.825367\pi\)
0.853242 0.521516i \(-0.174633\pi\)
\(182\) 0 0
\(183\) −5.94925 −0.439781
\(184\) 5.38961 5.58790i 0.397328 0.411945i
\(185\) 8.04593 + 13.9360i 0.591549 + 1.02459i
\(186\) 1.75550 + 1.21353i 0.128719 + 0.0889801i
\(187\) −8.26374 4.77107i −0.604304 0.348895i
\(188\) −8.40332 + 10.2631i −0.612875 + 0.748517i
\(189\) 0 0
\(190\) 5.29392 + 11.1767i 0.384062 + 0.810842i
\(191\) −3.63945 + 6.30371i −0.263341 + 0.456120i −0.967128 0.254291i \(-0.918158\pi\)
0.703786 + 0.710412i \(0.251491\pi\)
\(192\) 5.45716 0.197209i 0.393837 0.0142324i
\(193\) −4.76704 8.25675i −0.343139 0.594334i 0.641875 0.766809i \(-0.278157\pi\)
−0.985014 + 0.172476i \(0.944823\pi\)
\(194\) −1.94108 0.158053i −0.139361 0.0113476i
\(195\) 6.84210i 0.489973i
\(196\) 0 0
\(197\) 11.6667i 0.831221i 0.909543 + 0.415611i \(0.136432\pi\)
−0.909543 + 0.415611i \(0.863568\pi\)
\(198\) −0.701607 + 8.61656i −0.0498610 + 0.612353i
\(199\) 9.48247 + 16.4241i 0.672195 + 1.16428i 0.977280 + 0.211950i \(0.0679815\pi\)
−0.305086 + 0.952325i \(0.598685\pi\)
\(200\) −4.28891 14.9230i −0.303272 1.05521i
\(201\) −1.97779 + 3.42563i −0.139503 + 0.241626i
\(202\) −1.01753 + 0.481960i −0.0715930 + 0.0339106i
\(203\) 0 0
\(204\) 4.17820 + 3.42105i 0.292532 + 0.239521i
\(205\) −5.92543 3.42105i −0.413850 0.238936i
\(206\) 2.13587 3.08976i 0.148813 0.215274i
\(207\) −3.47779 6.02371i −0.241723 0.418677i
\(208\) −3.95275 + 11.7316i −0.274074 + 0.813443i
\(209\) −6.51337 −0.450540
\(210\) 0 0
\(211\) 16.1268i 1.11022i −0.831778 0.555109i \(-0.812677\pi\)
0.831778 0.555109i \(-0.187323\pi\)
\(212\) −4.83938 + 1.82767i −0.332370 + 0.125525i
\(213\) 3.92909 2.26846i 0.269217 0.155433i
\(214\) 6.31729 + 4.36697i 0.431841 + 0.298520i
\(215\) 18.7685 32.5081i 1.28000 2.21703i
\(216\) 2.57849 10.3686i 0.175444 0.705493i
\(217\) 0 0
\(218\) −17.6528 + 8.36140i −1.19560 + 0.566305i
\(219\) −5.65000 3.26203i −0.381792 0.220428i
\(220\) 15.4201 + 2.52793i 1.03962 + 0.170433i
\(221\) −10.6020 + 6.12109i −0.713170 + 0.411749i
\(222\) 4.78042 + 0.389247i 0.320841 + 0.0261246i
\(223\) 7.71477 0.516619 0.258310 0.966062i \(-0.416835\pi\)
0.258310 + 0.966062i \(0.416835\pi\)
\(224\) 0 0
\(225\) −13.9112 −0.927411
\(226\) −6.39099 0.520389i −0.425122 0.0346158i
\(227\) −1.83996 + 1.06230i −0.122122 + 0.0705074i −0.559817 0.828616i \(-0.689129\pi\)
0.437694 + 0.899124i \(0.355795\pi\)
\(228\) 3.63749 + 0.596322i 0.240899 + 0.0394924i
\(229\) 8.11289 + 4.68398i 0.536115 + 0.309526i 0.743503 0.668733i \(-0.233163\pi\)
−0.207388 + 0.978259i \(0.566496\pi\)
\(230\) −11.3621 + 5.38173i −0.749192 + 0.354861i
\(231\) 0 0
\(232\) −1.37709 + 5.53756i −0.0904106 + 0.363558i
\(233\) 4.41366 7.64469i 0.289149 0.500820i −0.684458 0.729052i \(-0.739961\pi\)
0.973607 + 0.228232i \(0.0732945\pi\)
\(234\) 9.12359 + 6.30689i 0.596428 + 0.412294i
\(235\) 18.6026 10.7402i 1.21350 0.700614i
\(236\) −22.9620 + 8.67199i −1.49470 + 0.564498i
\(237\) 1.14449i 0.0743426i
\(238\) 0 0
\(239\) 5.93489 0.383896 0.191948 0.981405i \(-0.438520\pi\)
0.191948 + 0.981405i \(0.438520\pi\)
\(240\) −8.38014 2.82353i −0.540936 0.182258i
\(241\) −5.34302 9.25439i −0.344174 0.596128i 0.641029 0.767517i \(-0.278508\pi\)
−0.985203 + 0.171389i \(0.945174\pi\)
\(242\) 4.16617 6.02680i 0.267811 0.387418i
\(243\) −12.7840 7.38083i −0.820092 0.473480i
\(244\) −13.4872 11.0431i −0.863426 0.706961i
\(245\) 0 0
\(246\) −1.84302 + 0.872962i −0.117507 + 0.0556581i
\(247\) −4.17820 + 7.23685i −0.265852 + 0.460470i
\(248\) 1.72720 + 6.00968i 0.109677 + 0.381615i
\(249\) −2.21076 3.82914i −0.140101 0.242662i
\(250\) −0.182015 + 2.23536i −0.0115117 + 0.141377i
\(251\) 3.82402i 0.241370i −0.992691 0.120685i \(-0.961491\pi\)
0.992691 0.120685i \(-0.0385091\pi\)
\(252\) 0 0
\(253\) 6.62141i 0.416284i
\(254\) 21.8334 + 1.77779i 1.36995 + 0.111549i
\(255\) −4.37241 7.57324i −0.273811 0.474255i
\(256\) 12.7376 + 9.68259i 0.796103 + 0.605162i
\(257\) 6.20291 10.7438i 0.386927 0.670177i −0.605108 0.796144i \(-0.706870\pi\)
0.992034 + 0.125967i \(0.0402033\pi\)
\(258\) −4.78924 10.1112i −0.298165 0.629495i
\(259\) 0 0
\(260\) 12.7004 15.5113i 0.787646 0.961968i
\(261\) 4.42744 + 2.55618i 0.274052 + 0.158224i
\(262\) −19.5547 13.5176i −1.20809 0.835123i
\(263\) 0.672005 + 1.16395i 0.0414376 + 0.0717720i 0.886000 0.463685i \(-0.153473\pi\)
−0.844563 + 0.535457i \(0.820140\pi\)
\(264\) 3.23324 3.35220i 0.198992 0.206313i
\(265\) 8.37709 0.514601
\(266\) 0 0
\(267\) 9.54214i 0.583970i
\(268\) −10.8424 + 4.09483i −0.662307 + 0.250131i
\(269\) −1.68912 + 0.975212i −0.102987 + 0.0594597i −0.550609 0.834763i \(-0.685604\pi\)
0.447622 + 0.894223i \(0.352271\pi\)
\(270\) −9.83861 + 14.2326i −0.598759 + 0.866168i
\(271\) −13.0190 + 22.5496i −0.790850 + 1.36979i 0.134590 + 0.990901i \(0.457028\pi\)
−0.925441 + 0.378892i \(0.876305\pi\)
\(272\) 3.12192 + 15.5113i 0.189294 + 0.940509i
\(273\) 0 0
\(274\) −0.537238 1.13423i −0.0324557 0.0685214i
\(275\) −11.4686 6.62141i −0.691583 0.399286i
\(276\) −0.606212 + 3.69782i −0.0364897 + 0.222583i
\(277\) −13.9578 + 8.05852i −0.838641 + 0.484189i −0.856802 0.515646i \(-0.827552\pi\)
0.0181613 + 0.999835i \(0.494219\pi\)
\(278\) −0.280349 + 3.44302i −0.0168142 + 0.206499i
\(279\) 5.60221 0.335396
\(280\) 0 0
\(281\) −16.1313 −0.962312 −0.481156 0.876635i \(-0.659783\pi\)
−0.481156 + 0.876635i \(0.659783\pi\)
\(282\) 0.519592 6.38120i 0.0309412 0.379995i
\(283\) 22.7949 13.1606i 1.35501 0.782318i 0.366068 0.930588i \(-0.380704\pi\)
0.988947 + 0.148270i \(0.0473706\pi\)
\(284\) 13.1181 + 2.15056i 0.778419 + 0.127612i
\(285\) −5.16942 2.98457i −0.306210 0.176791i
\(286\) 4.51971 + 9.54214i 0.267256 + 0.564239i
\(287\) 0 0
\(288\) 11.4897 8.57183i 0.677034 0.505100i
\(289\) 0.676686 1.17205i 0.0398050 0.0689444i
\(290\) 5.25451 7.60120i 0.308555 0.446358i
\(291\) 0.814056 0.469996i 0.0477208 0.0275516i
\(292\) −6.75372 17.8828i −0.395232 1.04651i
\(293\) 9.64929i 0.563718i 0.959456 + 0.281859i \(0.0909510\pi\)
−0.959456 + 0.281859i \(0.909049\pi\)
\(294\) 0 0
\(295\) 39.7479 2.31421
\(296\) 10.1149 + 9.75593i 0.587914 + 0.567052i
\(297\) −4.55628 7.89171i −0.264382 0.457923i
\(298\) −10.9685 7.58220i −0.635386 0.439225i
\(299\) −7.35688 4.24750i −0.425460 0.245639i
\(300\) 5.79861 + 4.74781i 0.334783 + 0.274115i
\(301\) 0 0
\(302\) −4.27020 9.01537i −0.245723 0.518777i
\(303\) 0.271716 0.470626i 0.0156097 0.0270367i
\(304\) 7.13942 + 8.10385i 0.409474 + 0.464788i
\(305\) 14.1141 + 24.4463i 0.808169 + 1.39979i
\(306\) 14.1289 + 1.15045i 0.807697 + 0.0657670i
\(307\) 25.2741i 1.44247i 0.692691 + 0.721235i \(0.256425\pi\)
−0.692691 + 0.721235i \(0.743575\pi\)
\(308\) 0 0
\(309\) 1.81295i 0.103135i
\(310\) 0.821790 10.0926i 0.0466746 0.573219i
\(311\) 11.2742 + 19.5275i 0.639302 + 1.10730i 0.985586 + 0.169174i \(0.0541100\pi\)
−0.346284 + 0.938130i \(0.612557\pi\)
\(312\) −1.65048 5.74275i −0.0934402 0.325119i
\(313\) −12.6901 + 21.9798i −0.717285 + 1.24237i 0.244787 + 0.969577i \(0.421282\pi\)
−0.962072 + 0.272797i \(0.912051\pi\)
\(314\) 11.1394 5.27629i 0.628635 0.297758i
\(315\) 0 0
\(316\) −2.12442 + 2.59460i −0.119508 + 0.145958i
\(317\) 14.8384 + 8.56693i 0.833405 + 0.481167i 0.855017 0.518600i \(-0.173547\pi\)
−0.0216120 + 0.999766i \(0.506880\pi\)
\(318\) 1.41978 2.05386i 0.0796174 0.115175i
\(319\) 2.43337 + 4.21473i 0.136243 + 0.235979i
\(320\) −13.7570 21.9564i −0.769040 1.22740i
\(321\) −3.70674 −0.206890
\(322\) 0 0
\(323\) 10.6802i 0.594264i
\(324\) −3.54986 9.39945i −0.197214 0.522192i
\(325\) −14.7138 + 8.49500i −0.816173 + 0.471218i
\(326\) −23.0657 15.9447i −1.27749 0.883095i
\(327\) 4.71392 8.16475i 0.260681 0.451512i
\(328\) −5.79861 1.44201i −0.320174 0.0796218i
\(329\) 0 0
\(330\) −6.81613 + 3.22851i −0.375216 + 0.177724i
\(331\) −7.43566 4.29298i −0.408701 0.235963i 0.281531 0.959552i \(-0.409158\pi\)
−0.690231 + 0.723589i \(0.742491\pi\)
\(332\) 2.09585 12.7844i 0.115025 0.701637i
\(333\) 10.9037 6.29527i 0.597521 0.344979i
\(334\) 31.2356 + 2.54337i 1.70914 + 0.139167i
\(335\) 18.7685 1.02544
\(336\) 0 0
\(337\) −3.18070 −0.173264 −0.0866319 0.996240i \(-0.527610\pi\)
−0.0866319 + 0.996240i \(0.527610\pi\)
\(338\) −4.82279 0.392697i −0.262325 0.0213599i
\(339\) 2.68027 1.54746i 0.145572 0.0840463i
\(340\) 4.14515 25.2849i 0.224803 1.37127i
\(341\) 4.61856 + 2.66653i 0.250109 + 0.144401i
\(342\) 8.74483 4.14206i 0.472866 0.223977i
\(343\) 0 0
\(344\) 7.91116 31.8123i 0.426541 1.71520i
\(345\) 3.03407 5.25516i 0.163349 0.282929i
\(346\) −25.2806 17.4758i −1.35909 0.939503i
\(347\) −19.0373 + 10.9912i −1.02198 + 0.590039i −0.914676 0.404187i \(-0.867554\pi\)
−0.107302 + 0.994226i \(0.534221\pi\)
\(348\) −0.973081 2.57656i −0.0521626 0.138118i
\(349\) 15.5480i 0.832265i −0.909304 0.416132i \(-0.863385\pi\)
0.909304 0.416132i \(-0.136615\pi\)
\(350\) 0 0
\(351\) −11.6910 −0.624022
\(352\) 13.5523 1.59795i 0.722339 0.0851710i
\(353\) −13.2804 23.0023i −0.706845 1.22429i −0.966022 0.258461i \(-0.916785\pi\)
0.259177 0.965830i \(-0.416549\pi\)
\(354\) 6.73661 9.74523i 0.358047 0.517953i
\(355\) −18.6429 10.7635i −0.989460 0.571265i
\(356\) 17.7123 21.6324i 0.938748 1.14651i
\(357\) 0 0
\(358\) −4.82799 + 2.28682i −0.255167 + 0.120862i
\(359\) 15.5062 26.8575i 0.818386 1.41749i −0.0884855 0.996077i \(-0.528203\pi\)
0.906871 0.421408i \(-0.138464\pi\)
\(360\) −22.3105 + 6.41212i −1.17587 + 0.337948i
\(361\) −5.85488 10.1410i −0.308152 0.533735i
\(362\) −1.61056 + 19.7796i −0.0846491 + 1.03959i
\(363\) 3.53630i 0.185607i
\(364\) 0 0
\(365\) 30.9555i 1.62029i
\(366\) 8.38575 + 0.682813i 0.438330 + 0.0356912i
\(367\) −6.38677 11.0622i −0.333387 0.577443i 0.649787 0.760117i \(-0.274858\pi\)
−0.983174 + 0.182674i \(0.941525\pi\)
\(368\) −8.23826 + 7.25783i −0.429449 + 0.378341i
\(369\) −2.67669 + 4.63616i −0.139343 + 0.241349i
\(370\) −9.74166 20.5669i −0.506445 1.06922i
\(371\) 0 0
\(372\) −2.33518 1.91201i −0.121073 0.0991330i
\(373\) −5.73431 3.31070i −0.296911 0.171422i 0.344143 0.938917i \(-0.388169\pi\)
−0.641054 + 0.767495i \(0.721503\pi\)
\(374\) 11.1005 + 7.67351i 0.573996 + 0.396788i
\(375\) −0.541251 0.937474i −0.0279501 0.0484109i
\(376\) 13.0228 13.5019i 0.671600 0.696309i
\(377\) 6.24384 0.321574
\(378\) 0 0
\(379\) 18.7804i 0.964683i −0.875983 0.482341i \(-0.839786\pi\)
0.875983 0.482341i \(-0.160214\pi\)
\(380\) −6.17926 16.3617i −0.316989 0.839337i
\(381\) −9.15656 + 5.28654i −0.469105 + 0.270838i
\(382\) 5.85347 8.46767i 0.299490 0.433244i
\(383\) −10.2179 + 17.6980i −0.522112 + 0.904325i 0.477557 + 0.878601i \(0.341522\pi\)
−0.999669 + 0.0257240i \(0.991811\pi\)
\(384\) −7.71477 0.348359i −0.393693 0.0177771i
\(385\) 0 0
\(386\) 5.77172 + 12.1854i 0.293773 + 0.620221i
\(387\) −25.4349 14.6848i −1.29293 0.746472i
\(388\) 2.71791 + 0.445567i 0.137981 + 0.0226203i
\(389\) −2.05734 + 1.18781i −0.104311 + 0.0602242i −0.551248 0.834341i \(-0.685848\pi\)
0.446937 + 0.894566i \(0.352515\pi\)
\(390\) −0.785288 + 9.64427i −0.0397646 + 0.488357i
\(391\) −10.8574 −0.549082
\(392\) 0 0
\(393\) 11.4740 0.578785
\(394\) 1.33903 16.4448i 0.0674592 0.828479i
\(395\) 4.70287 2.71520i 0.236627 0.136617i
\(396\) 1.97790 12.0649i 0.0993931 0.606286i
\(397\) 19.1993 + 11.0847i 0.963583 + 0.556325i 0.897274 0.441474i \(-0.145544\pi\)
0.0663091 + 0.997799i \(0.478878\pi\)
\(398\) −11.4810 24.2389i −0.575488 1.21499i
\(399\) 0 0
\(400\) 4.33268 + 21.5269i 0.216634 + 1.07635i
\(401\) −13.1585 + 22.7912i −0.657104 + 1.13814i 0.324258 + 0.945969i \(0.394885\pi\)
−0.981362 + 0.192168i \(0.938448\pi\)
\(402\) 3.18096 4.60160i 0.158652 0.229507i
\(403\) 5.92543 3.42105i 0.295167 0.170415i
\(404\) 1.48957 0.562562i 0.0741090 0.0279885i
\(405\) 16.2707i 0.808497i
\(406\) 0 0
\(407\) 11.9856 0.594106
\(408\) −5.49673 5.30168i −0.272129 0.262472i
\(409\) −0.331162 0.573590i −0.0163749 0.0283622i 0.857722 0.514114i \(-0.171879\pi\)
−0.874097 + 0.485752i \(0.838546\pi\)
\(410\) 7.95954 + 5.50221i 0.393094 + 0.271735i
\(411\) 0.524603 + 0.302880i 0.0258768 + 0.0149399i
\(412\) −3.36523 + 4.11003i −0.165793 + 0.202487i
\(413\) 0 0
\(414\) 4.21076 + 8.88987i 0.206947 + 0.436913i
\(415\) −10.4897 + 18.1686i −0.514917 + 0.891862i
\(416\) 6.91807 16.0827i 0.339186 0.788517i
\(417\) −0.833662 1.44395i −0.0408246 0.0707103i
\(418\) 9.18092 + 0.747560i 0.449053 + 0.0365643i
\(419\) 7.55501i 0.369086i 0.982824 + 0.184543i \(0.0590805\pi\)
−0.982824 + 0.184543i \(0.940919\pi\)
\(420\) 0 0
\(421\) 12.5905i 0.613625i 0.951770 + 0.306813i \(0.0992625\pi\)
−0.951770 + 0.306813i \(0.900737\pi\)
\(422\) −1.85093 + 22.7316i −0.0901017 + 1.10656i
\(423\) −8.40332 14.5550i −0.408583 0.707687i
\(424\) 7.03111 2.02076i 0.341461 0.0981369i
\(425\) −10.8574 + 18.8055i −0.526661 + 0.912203i
\(426\) −5.79861 + 2.74655i −0.280943 + 0.133071i
\(427\) 0 0
\(428\) −8.40332 6.88051i −0.406190 0.332582i
\(429\) −4.41342 2.54809i −0.213082 0.123023i
\(430\) −30.1862 + 43.6676i −1.45571 + 2.10584i
\(431\) 6.45241 + 11.1759i 0.310802 + 0.538325i 0.978536 0.206075i \(-0.0660691\pi\)
−0.667734 + 0.744400i \(0.732736\pi\)
\(432\) −4.82454 + 14.3191i −0.232121 + 0.688928i
\(433\) 40.5815 1.95022 0.975112 0.221715i \(-0.0711654\pi\)
0.975112 + 0.221715i \(0.0711654\pi\)
\(434\) 0 0
\(435\) 4.46009i 0.213845i
\(436\) 25.8422 9.75973i 1.23762 0.467406i
\(437\) −6.41824 + 3.70557i −0.307026 + 0.177262i
\(438\) 7.58956 + 5.24646i 0.362643 + 0.250685i
\(439\) 18.2273 31.5706i 0.869941 1.50678i 0.00788596 0.999969i \(-0.497490\pi\)
0.862055 0.506814i \(-0.169177\pi\)
\(440\) −21.4452 5.33306i −1.02236 0.254244i
\(441\) 0 0
\(442\) 15.6466 7.41115i 0.744234 0.352512i
\(443\) 28.1274 + 16.2393i 1.33637 + 0.771555i 0.986267 0.165156i \(-0.0528128\pi\)
0.350104 + 0.936711i \(0.386146\pi\)
\(444\) −6.69356 1.09733i −0.317662 0.0520768i
\(445\) −39.2100 + 22.6379i −1.85873 + 1.07314i
\(446\) −10.8743 0.885447i −0.514915 0.0419271i
\(447\) 6.43587 0.304406
\(448\) 0 0
\(449\) 25.9823 1.22618 0.613091 0.790012i \(-0.289926\pi\)
0.613091 + 0.790012i \(0.289926\pi\)
\(450\) 19.6085 + 1.59663i 0.924352 + 0.0752657i
\(451\) −4.41342 + 2.54809i −0.207820 + 0.119985i
\(452\) 8.94869 + 1.46703i 0.420911 + 0.0690031i
\(453\) 4.16978 + 2.40742i 0.195913 + 0.113111i
\(454\) 2.71544 1.28619i 0.127442 0.0603638i
\(455\) 0 0
\(456\) −5.05878 1.25803i −0.236899 0.0589127i
\(457\) 5.73448 9.93241i 0.268248 0.464618i −0.700162 0.713984i \(-0.746889\pi\)
0.968409 + 0.249366i \(0.0802221\pi\)
\(458\) −10.8979 7.53344i −0.509226 0.352014i
\(459\) −12.9403 + 7.47111i −0.604004 + 0.348722i
\(460\) 16.6331 6.28175i 0.775520 0.292888i
\(461\) 25.1973i 1.17355i 0.809749 + 0.586777i \(0.199604\pi\)
−0.809749 + 0.586777i \(0.800396\pi\)
\(462\) 0 0
\(463\) −31.8223 −1.47891 −0.739454 0.673207i \(-0.764916\pi\)
−0.739454 + 0.673207i \(0.764916\pi\)
\(464\) 2.57664 7.64740i 0.119618 0.355022i
\(465\) 2.44372 + 4.23265i 0.113325 + 0.196284i
\(466\) −7.09868 + 10.2690i −0.328840 + 0.475702i
\(467\) −12.3089 7.10656i −0.569589 0.328852i 0.187396 0.982284i \(-0.439995\pi\)
−0.756985 + 0.653432i \(0.773329\pi\)
\(468\) −12.1363 9.93701i −0.561000 0.459338i
\(469\) 0 0
\(470\) −27.4539 + 13.0038i −1.26636 + 0.599819i
\(471\) −2.97462 + 5.15220i −0.137063 + 0.237401i
\(472\) 33.3614 9.58817i 1.53558 0.441331i
\(473\) −13.9793 24.2129i −0.642769 1.11331i
\(474\) 0.131357 1.61321i 0.00603341 0.0740974i
\(475\) 14.8223i 0.680094i
\(476\) 0 0
\(477\) 6.55438i 0.300104i
\(478\) −8.36551 0.681165i −0.382630 0.0311558i
\(479\) −5.77020 9.99428i −0.263647 0.456650i 0.703561 0.710635i \(-0.251592\pi\)
−0.967208 + 0.253984i \(0.918259\pi\)
\(480\) 11.4882 + 4.94171i 0.524360 + 0.225557i
\(481\) 7.68855 13.3170i 0.350568 0.607201i
\(482\) 6.46910 + 13.6577i 0.294659 + 0.622093i
\(483\) 0 0
\(484\) −6.56413 + 8.01691i −0.298369 + 0.364405i
\(485\) −3.86255 2.23005i −0.175390 0.101261i
\(486\) 17.1725 + 11.8709i 0.778961 + 0.538475i
\(487\) 8.80829 + 15.2564i 0.399142 + 0.691333i 0.993620 0.112778i \(-0.0359749\pi\)
−0.594479 + 0.804111i \(0.702642\pi\)
\(488\) 17.7433 + 17.1137i 0.803204 + 0.774702i
\(489\) 13.5341 0.612032
\(490\) 0 0
\(491\) 26.8502i 1.21173i −0.795567 0.605866i \(-0.792827\pi\)
0.795567 0.605866i \(-0.207173\pi\)
\(492\) 2.69802 1.01895i 0.121636 0.0459380i
\(493\) 6.91105 3.99010i 0.311258 0.179705i
\(494\) 6.71997 9.72115i 0.302346 0.437375i
\(495\) −9.89930 + 17.1461i −0.444941 + 0.770660i
\(496\) −1.74483 8.66918i −0.0783450 0.389258i
\(497\) 0 0
\(498\) 2.67669 + 5.65110i 0.119945 + 0.253232i
\(499\) 2.21925 + 1.28129i 0.0993474 + 0.0573583i 0.548851 0.835921i \(-0.315066\pi\)
−0.449503 + 0.893279i \(0.648399\pi\)
\(500\) 0.513119 3.12996i 0.0229474 0.139976i
\(501\) −13.0997 + 7.56310i −0.585251 + 0.337895i
\(502\) −0.438894 + 5.39014i −0.0195888 + 0.240574i
\(503\) 14.6941 0.655176 0.327588 0.944821i \(-0.393764\pi\)
0.327588 + 0.944821i \(0.393764\pi\)
\(504\) 0 0
\(505\) −2.57849 −0.114741
\(506\) −0.759959 + 9.33319i −0.0337843 + 0.414911i
\(507\) 2.02259 1.16775i 0.0898266 0.0518614i
\(508\) −30.5712 5.01177i −1.35638 0.222362i
\(509\) −11.0283 6.36720i −0.488821 0.282221i 0.235264 0.971932i \(-0.424405\pi\)
−0.724085 + 0.689710i \(0.757738\pi\)
\(510\) 5.29392 + 11.1767i 0.234419 + 0.494912i
\(511\) 0 0
\(512\) −16.8430 15.1100i −0.744364 0.667775i
\(513\) −5.09971 + 8.83296i −0.225158 + 0.389985i
\(514\) −9.97639 + 14.4319i −0.440040 + 0.636564i
\(515\) 7.44968 4.30107i 0.328272 0.189528i
\(516\) 5.59018 + 14.8019i 0.246094 + 0.651617i
\(517\) 15.9992i 0.703643i
\(518\) 0 0
\(519\) 14.8337 0.651126
\(520\) −19.6821 + 20.4062i −0.863118 + 0.894872i
\(521\) 17.0134 + 29.4680i 0.745369 + 1.29102i 0.950022 + 0.312183i \(0.101060\pi\)
−0.204652 + 0.978835i \(0.565606\pi\)
\(522\) −5.94731 4.11121i −0.260307 0.179943i
\(523\) −5.88515 3.39779i −0.257340 0.148575i 0.365781 0.930701i \(-0.380802\pi\)
−0.623120 + 0.782126i \(0.714135\pi\)
\(524\) 26.0119 + 21.2981i 1.13633 + 0.930413i
\(525\) 0 0
\(526\) −0.813634 1.71777i −0.0354761 0.0748982i
\(527\) 4.37241 7.57324i 0.190465 0.329896i
\(528\) −4.94216 + 4.35399i −0.215080 + 0.189483i
\(529\) 7.73296 + 13.3939i 0.336216 + 0.582343i
\(530\) −11.8079 0.961464i −0.512903 0.0417633i
\(531\) 31.0994i 1.34960i
\(532\) 0 0
\(533\) 6.53819i 0.283200i
\(534\) −1.09518 + 13.4501i −0.0473931 + 0.582043i
\(535\) 8.79392 + 15.2315i 0.380195 + 0.658516i
\(536\) 15.7529 4.52744i 0.680422 0.195556i
\(537\) 1.28924 2.23304i 0.0556350 0.0963626i
\(538\) 2.49282 1.18074i 0.107473 0.0509055i
\(539\) 0 0
\(540\) 15.5015 18.9323i 0.667079 0.814718i
\(541\) −21.3952 12.3525i −0.919852 0.531077i −0.0362640 0.999342i \(-0.511546\pi\)
−0.883588 + 0.468266i \(0.844879\pi\)
\(542\) 20.9391 30.2906i 0.899410 1.30109i
\(543\) −4.78924 8.29521i −0.205526 0.355982i
\(544\) −2.62022 22.2222i −0.112341 0.952769i
\(545\) −44.7335 −1.91617
\(546\) 0 0
\(547\) 27.5793i 1.17920i 0.807694 + 0.589602i \(0.200716\pi\)
−0.807694 + 0.589602i \(0.799284\pi\)
\(548\) 0.627083 + 1.66041i 0.0267877 + 0.0709294i
\(549\) 19.1272 11.0431i 0.816328 0.471307i
\(550\) 15.4056 + 10.6495i 0.656897 + 0.454095i
\(551\) 2.72360 4.71742i 0.116029 0.200969i
\(552\) 1.27890 5.14268i 0.0544334 0.218887i
\(553\) 0 0
\(554\) 20.5990 9.75690i 0.875169 0.414531i
\(555\) 9.51256 + 5.49208i 0.403785 + 0.233126i
\(556\) 0.790332 4.82093i 0.0335175 0.204453i
\(557\) 39.1575 22.6076i 1.65916 0.957914i 0.686050 0.727555i \(-0.259343\pi\)
0.973106 0.230359i \(-0.0739902\pi\)
\(558\) −7.89659 0.642983i −0.334289 0.0272196i
\(559\) −35.8698 −1.51713
\(560\) 0 0
\(561\) −6.51337 −0.274995
\(562\) 22.7378 + 1.85144i 0.959137 + 0.0780981i
\(563\) −13.1895 + 7.61497i −0.555872 + 0.320933i −0.751487 0.659748i \(-0.770663\pi\)
0.195615 + 0.980681i \(0.437330\pi\)
\(564\) −1.46478 + 8.93498i −0.0616783 + 0.376230i
\(565\) −12.7174 7.34241i −0.535026 0.308898i
\(566\) −33.6410 + 15.9343i −1.41404 + 0.669769i
\(567\) 0 0
\(568\) −18.2438 4.53693i −0.765495 0.190365i
\(569\) −7.04343 + 12.1996i −0.295276 + 0.511433i −0.975049 0.221989i \(-0.928745\pi\)
0.679773 + 0.733423i \(0.262078\pi\)
\(570\) 6.94400 + 4.80020i 0.290852 + 0.201058i
\(571\) 19.2480 11.1129i 0.805505 0.465058i −0.0398876 0.999204i \(-0.512700\pi\)
0.845392 + 0.534146i \(0.179367\pi\)
\(572\) −5.27557 13.9689i −0.220583 0.584067i
\(573\) 4.96851i 0.207562i
\(574\) 0 0
\(575\) −15.0681 −0.628385
\(576\) −17.1790 + 10.7637i −0.715793 + 0.448488i
\(577\) 4.68070 + 8.10721i 0.194860 + 0.337507i 0.946855 0.321662i \(-0.104241\pi\)
−0.751995 + 0.659169i \(0.770908\pi\)
\(578\) −1.08834 + 1.57440i −0.0452690 + 0.0654865i
\(579\) −5.63598 3.25393i −0.234223 0.135229i
\(580\) −8.27890 + 10.1112i −0.343762 + 0.419844i
\(581\) 0 0
\(582\) −1.20139 + 0.569050i −0.0497994 + 0.0235879i
\(583\) 3.11974 5.40355i 0.129206 0.223792i
\(584\) 7.46724 + 25.9818i 0.308997 + 1.07513i
\(585\) 12.7004 + 21.9978i 0.525097 + 0.909495i
\(586\) 1.10748 13.6011i 0.0457495 0.561858i
\(587\) 13.0157i 0.537217i −0.963249 0.268608i \(-0.913436\pi\)
0.963249 0.268608i \(-0.0865637\pi\)
\(588\) 0 0
\(589\) 5.96914i 0.245954i
\(590\) −56.0265 4.56198i −2.30658 0.187814i
\(591\) 3.98180 + 6.89669i 0.163790 + 0.283692i
\(592\) −13.1377 14.9124i −0.539954 0.612894i
\(593\) −0.698895 + 1.21052i −0.0287002 + 0.0497101i −0.880019 0.474939i \(-0.842470\pi\)
0.851319 + 0.524649i \(0.175803\pi\)
\(594\) 5.51654 + 11.6467i 0.226346 + 0.477869i
\(595\) 0 0
\(596\) 14.5903 + 11.9464i 0.597644 + 0.489342i
\(597\) 11.2110 + 6.47265i 0.458834 + 0.264908i
\(598\) 9.88239 + 6.83143i 0.404121 + 0.279358i
\(599\) 15.9302 + 27.5919i 0.650891 + 1.12738i 0.982907 + 0.184102i \(0.0589377\pi\)
−0.332017 + 0.943274i \(0.607729\pi\)
\(600\) −7.62850 7.35780i −0.311432 0.300381i
\(601\) −34.4927 −1.40699 −0.703493 0.710702i \(-0.748377\pi\)
−0.703493 + 0.710702i \(0.748377\pi\)
\(602\) 0 0
\(603\) 14.6848i 0.598012i
\(604\) 4.98434 + 13.1977i 0.202810 + 0.537007i
\(605\) 14.5311 8.38955i 0.590775 0.341084i
\(606\) −0.437012 + 0.632184i −0.0177524 + 0.0256807i
\(607\) −4.61573 + 7.99467i −0.187347 + 0.324494i −0.944365 0.328900i \(-0.893322\pi\)
0.757018 + 0.653394i \(0.226655\pi\)
\(608\) −9.13325 12.2422i −0.370402 0.496486i
\(609\) 0 0
\(610\) −17.0887 36.0781i −0.691901 1.46076i
\(611\) −17.7763 10.2631i −0.719152 0.415202i
\(612\) −19.7834 3.24324i −0.799695 0.131100i
\(613\) 28.0431 16.1907i 1.13265 0.653935i 0.188049 0.982160i \(-0.439784\pi\)
0.944600 + 0.328225i \(0.106450\pi\)
\(614\) 2.90079 35.6251i 0.117066 1.43771i
\(615\) −4.67035 −0.188327
\(616\) 0 0
\(617\) −10.1600 −0.409026 −0.204513 0.978864i \(-0.565561\pi\)
−0.204513 + 0.978864i \(0.565561\pi\)
\(618\) 0.208078 2.55545i 0.00837013 0.102795i
\(619\) 32.1866 18.5829i 1.29369 0.746911i 0.314382 0.949297i \(-0.398203\pi\)
0.979306 + 0.202385i \(0.0648694\pi\)
\(620\) −2.31671 + 14.1316i −0.0930412 + 0.567540i
\(621\) −8.97946 5.18430i −0.360333 0.208039i
\(622\) −13.6503 28.8190i −0.547328 1.15553i
\(623\) 0 0
\(624\) 1.66732 + 8.28411i 0.0667464 + 0.331630i
\(625\) 11.1560 19.3227i 0.446240 0.772910i
\(626\) 20.4099 29.5252i 0.815746 1.18006i
\(627\) −3.85032 + 2.22298i −0.153767 + 0.0887774i
\(628\) −16.3072 + 6.15867i −0.650727 + 0.245758i
\(629\) 19.6533i 0.783630i
\(630\) 0 0
\(631\) −7.31198 −0.291085 −0.145543 0.989352i \(-0.546493\pi\)
−0.145543 + 0.989352i \(0.546493\pi\)
\(632\) 3.29226 3.41339i 0.130959 0.135777i
\(633\) −5.50401 9.53323i −0.218765 0.378912i
\(634\) −19.9321 13.7785i −0.791606 0.547216i
\(635\) 43.4463 + 25.0837i 1.72411 + 0.995418i
\(636\) −2.23698 + 2.73207i −0.0887019 + 0.108334i
\(637\) 0 0
\(638\) −2.94622 6.22015i −0.116642 0.246258i
\(639\) −8.42151 + 14.5865i −0.333150 + 0.577032i
\(640\) 16.8712 + 32.5275i 0.666891 + 1.28576i
\(641\) −6.85337 11.8704i −0.270692 0.468852i 0.698347 0.715759i \(-0.253919\pi\)
−0.969039 + 0.246907i \(0.920586\pi\)
\(642\) 5.22483 + 0.425434i 0.206208 + 0.0167905i
\(643\) 30.5812i 1.20600i 0.797740 + 0.603002i \(0.206029\pi\)
−0.797740 + 0.603002i \(0.793971\pi\)
\(644\) 0 0
\(645\) 25.6225i 1.00888i
\(646\) 1.22580 15.0543i 0.0482286 0.592304i
\(647\) 21.2979 + 36.8891i 0.837308 + 1.45026i 0.892137 + 0.451765i \(0.149205\pi\)
−0.0548287 + 0.998496i \(0.517461\pi\)
\(648\) 3.92490 + 13.6564i 0.154184 + 0.536474i
\(649\) 14.8026 25.6389i 0.581054 1.00641i
\(650\) 21.7148 10.2854i 0.851723 0.403425i
\(651\) 0 0
\(652\) 30.6822 + 25.1222i 1.20161 + 0.983859i
\(653\) 26.9273 + 15.5465i 1.05375 + 0.608381i 0.923696 0.383126i \(-0.125152\pi\)
0.130051 + 0.991507i \(0.458486\pi\)
\(654\) −7.58160 + 10.9676i −0.296464 + 0.428867i
\(655\) −27.2210 47.1481i −1.06361 1.84223i
\(656\) 8.00791 + 2.69811i 0.312656 + 0.105343i
\(657\) 24.2201 0.944917
\(658\) 0 0
\(659\) 35.8472i 1.39641i 0.715899 + 0.698204i \(0.246017\pi\)
−0.715899 + 0.698204i \(0.753983\pi\)
\(660\) 9.97822 3.76844i 0.388402 0.146686i
\(661\) −23.6297 + 13.6426i −0.919087 + 0.530635i −0.883344 0.468726i \(-0.844713\pi\)
−0.0357432 + 0.999361i \(0.511380\pi\)
\(662\) 9.98820 + 6.90457i 0.388202 + 0.268354i
\(663\) −4.17820 + 7.23685i −0.162268 + 0.281056i
\(664\) −4.42151 + 17.7797i −0.171588 + 0.689988i
\(665\) 0 0
\(666\) −16.0919 + 7.62204i −0.623547 + 0.295348i
\(667\) 4.79566 + 2.76878i 0.185689 + 0.107208i
\(668\) −43.7362 7.17001i −1.69220 0.277416i
\(669\) 4.56051 2.63301i 0.176320 0.101798i
\(670\) −26.4552 2.15412i −1.02205 0.0832210i
\(671\) 21.0251 0.811663
\(672\) 0 0
\(673\) −32.2963 −1.24493 −0.622465 0.782648i \(-0.713869\pi\)
−0.622465 + 0.782648i \(0.713869\pi\)
\(674\) 4.48335 + 0.365058i 0.172692 + 0.0140615i
\(675\) −17.9589 + 10.3686i −0.691239 + 0.399087i
\(676\) 6.75288 + 1.10705i 0.259726 + 0.0425789i
\(677\) 13.5785 + 7.83953i 0.521863 + 0.301298i 0.737697 0.675132i \(-0.235914\pi\)
−0.215834 + 0.976430i \(0.569247\pi\)
\(678\) −3.95558 + 1.87359i −0.151913 + 0.0719549i
\(679\) 0 0
\(680\) −8.74483 + 35.1646i −0.335349 + 1.34850i
\(681\) −0.725117 + 1.25594i −0.0277865 + 0.0481277i
\(682\) −6.20404 4.28869i −0.237565 0.164222i
\(683\) −16.5012 + 9.52698i −0.631401 + 0.364540i −0.781295 0.624162i \(-0.785440\pi\)
0.149893 + 0.988702i \(0.452107\pi\)
\(684\) −12.8017 + 4.83476i −0.489483 + 0.184862i
\(685\) 2.87422i 0.109818i
\(686\) 0 0
\(687\) 6.39448 0.243965
\(688\) −14.8024 + 43.9330i −0.564335 + 1.67493i
\(689\) −4.00250 6.93253i −0.152483 0.264108i
\(690\) −4.87982 + 7.05918i −0.185772 + 0.268738i
\(691\) 26.9066 + 15.5345i 1.02358 + 0.590961i 0.915138 0.403142i \(-0.132082\pi\)
0.108438 + 0.994103i \(0.465415\pi\)
\(692\) 33.6284 + 27.5345i 1.27836 + 1.04670i
\(693\) 0 0
\(694\) 28.0956 13.3077i 1.06649 0.505153i
\(695\) −3.95558 + 6.85127i −0.150044 + 0.259883i
\(696\) 1.07589 + 3.74347i 0.0407813 + 0.141896i
\(697\) 4.17820 + 7.23685i 0.158261 + 0.274115i
\(698\) −1.78449 + 21.9156i −0.0675439 + 0.829519i
\(699\) 6.02545i 0.227903i
\(700\) 0 0
\(701\) 33.5258i 1.26625i −0.774048 0.633127i \(-0.781771\pi\)
0.774048 0.633127i \(-0.218229\pi\)
\(702\) 16.4791 + 1.34182i 0.621963 + 0.0506436i
\(703\) −6.70759 11.6179i −0.252981 0.438177i
\(704\) −19.2860 + 0.696952i −0.726868 + 0.0262674i
\(705\) 7.33116 12.6979i 0.276108 0.478232i
\(706\) 16.0793 + 33.9472i 0.605154 + 1.27762i
\(707\) 0 0
\(708\) −10.6141 + 12.9632i −0.398901 + 0.487186i
\(709\) −7.16576 4.13715i −0.269116 0.155374i 0.359370 0.933195i \(-0.382992\pi\)
−0.628486 + 0.777821i \(0.716325\pi\)
\(710\) 25.0427 + 17.3113i 0.939834 + 0.649682i
\(711\) −2.12442 3.67960i −0.0796720 0.137996i
\(712\) −27.4491 + 28.4590i −1.02870 + 1.06655i
\(713\) 6.06814 0.227254
\(714\) 0 0
\(715\) 24.1805i 0.904298i
\(716\) 7.06776 2.66926i 0.264135 0.0997548i
\(717\) 3.50835 2.02555i 0.131022 0.0756455i
\(718\) −24.9393 + 36.0773i −0.930725 + 1.34639i
\(719\) −1.81462 + 3.14301i −0.0676739 + 0.117215i −0.897877 0.440246i \(-0.854891\pi\)
0.830203 + 0.557461i \(0.188224\pi\)
\(720\) 32.1837 6.47755i 1.19942 0.241404i
\(721\) 0 0
\(722\) 7.08884 + 14.9662i 0.263819 + 0.556983i
\(723\) −6.31696 3.64710i −0.234930 0.135637i
\(724\) 4.54032 27.6954i 0.168740 1.02929i
\(725\) 9.59133 5.53756i 0.356213 0.205660i
\(726\) 0.405871 4.98458i 0.0150633 0.184995i
\(727\) −28.1550 −1.04421 −0.522106 0.852881i \(-0.674853\pi\)
−0.522106 + 0.852881i \(0.674853\pi\)
\(728\) 0 0
\(729\) 4.99500 0.185000
\(730\) 3.55286 43.6333i 0.131497 1.61494i
\(731\) −39.7028 + 22.9224i −1.46846 + 0.847816i
\(732\) −11.7418 1.92492i −0.433988 0.0711470i
\(733\) −25.4264 14.6799i −0.939145 0.542215i −0.0494525 0.998776i \(-0.515748\pi\)
−0.889692 + 0.456561i \(0.849081\pi\)
\(734\) 7.73282 + 16.3258i 0.285424 + 0.602595i
\(735\) 0 0
\(736\) 12.4452 9.28474i 0.458737 0.342240i
\(737\) 6.98965 12.1064i 0.257467 0.445946i
\(738\) 4.30502 6.22768i 0.158470 0.229244i
\(739\) −11.2457 + 6.49271i −0.413680 + 0.238838i −0.692370 0.721543i \(-0.743433\pi\)
0.278690 + 0.960381i \(0.410100\pi\)
\(740\) 11.3708 + 30.1081i 0.418000 + 1.10680i
\(741\) 5.70400i 0.209542i
\(742\) 0 0
\(743\) 21.8510 0.801637 0.400819 0.916157i \(-0.368726\pi\)
0.400819 + 0.916157i \(0.368726\pi\)
\(744\) 3.07210 + 2.96308i 0.112629 + 0.108632i
\(745\) −15.2685 26.4459i −0.559396 0.968903i
\(746\) 7.70280 + 5.32474i 0.282020 + 0.194953i
\(747\) 14.2154 + 8.20728i 0.520115 + 0.300289i
\(748\) −14.7660 12.0902i −0.539900 0.442062i
\(749\) 0 0
\(750\) 0.655322 + 1.38354i 0.0239290 + 0.0505196i
\(751\) −6.03724 + 10.4568i −0.220302 + 0.381574i −0.954900 0.296929i \(-0.904038\pi\)
0.734598 + 0.678503i \(0.237371\pi\)
\(752\) −19.9059 + 17.5370i −0.725895 + 0.639507i
\(753\) −1.30512 2.26053i −0.0475612 0.0823783i
\(754\) −8.80100 0.716624i −0.320513 0.0260979i
\(755\) 22.8456i 0.831436i
\(756\) 0 0
\(757\) 27.2309i 0.989725i −0.868971 0.494862i \(-0.835218\pi\)
0.868971 0.494862i \(-0.164782\pi\)
\(758\) −2.15548 + 26.4718i −0.0782905 + 0.961501i
\(759\) −2.25985 3.91418i −0.0820275 0.142076i
\(760\) 6.83209 + 23.7718i 0.247826 + 0.862294i
\(761\) 15.2423 26.4005i 0.552534 0.957017i −0.445557 0.895254i \(-0.646994\pi\)
0.998091 0.0617632i \(-0.0196724\pi\)
\(762\) 13.5134 6.40072i 0.489538 0.231873i
\(763\) 0 0
\(764\) −9.22262 + 11.2638i −0.333663 + 0.407509i
\(765\) 28.1151 + 16.2323i 1.01650 + 0.586879i
\(766\) 16.4339 23.7734i 0.593782 0.858969i
\(767\) −18.9912 32.8937i −0.685731 1.18772i
\(768\) 10.8344 + 1.37648i 0.390951 + 0.0496693i
\(769\) −36.6991 −1.32340 −0.661701 0.749768i \(-0.730165\pi\)
−0.661701 + 0.749768i \(0.730165\pi\)
\(770\) 0 0
\(771\) 8.46809i 0.304971i
\(772\) −6.73696 17.8384i −0.242468 0.642017i
\(773\) 28.6220 16.5249i 1.02946 0.594359i 0.112631 0.993637i \(-0.464072\pi\)
0.916830 + 0.399277i \(0.130739\pi\)
\(774\) 34.1663 + 23.6182i 1.22808 + 0.848939i
\(775\) 6.06814 10.5103i 0.217974 0.377542i
\(776\) −3.77988 0.939991i −0.135690 0.0337437i
\(777\) 0 0
\(778\) 3.03625 1.43814i 0.108855 0.0515600i
\(779\) 4.93981 + 2.85200i 0.176987 + 0.102183i
\(780\) 2.21380 13.5039i 0.0792669 0.483518i
\(781\) −13.8857 + 8.01691i −0.496869 + 0.286867i
\(782\) 15.3040 + 1.24613i 0.547270 + 0.0445617i
\(783\) 7.62093 0.272350
\(784\) 0 0
\(785\) 28.2281 1.00751
\(786\) −16.1731 1.31690i −0.576875 0.0469723i
\(787\) −14.9922 + 8.65572i −0.534413 + 0.308543i −0.742811 0.669501i \(-0.766508\pi\)
0.208399 + 0.978044i \(0.433175\pi\)
\(788\) −3.77485 + 23.0261i −0.134473 + 0.820271i
\(789\) 0.794499 + 0.458704i 0.0282849 + 0.0163303i
\(790\) −6.94055 + 3.28745i −0.246934 + 0.116962i
\(791\) 0 0
\(792\) −4.17267 + 16.7791i −0.148269 + 0.596220i
\(793\) 13.4872 23.3604i 0.478943 0.829553i
\(794\) −25.7901 17.8280i −0.915255 0.632691i
\(795\) 4.95204 2.85906i 0.175631 0.101400i
\(796\) 13.4010 + 35.4837i 0.474986 + 1.25768i
\(797\) 41.7331i 1.47826i −0.673561 0.739131i \(-0.735236\pi\)
0.673561 0.739131i \(-0.264764\pi\)
\(798\) 0 0
\(799\) −26.2345 −0.928109
\(800\) −3.63641 30.8405i −0.128566 1.09038i
\(801\) 17.7123 + 30.6786i 0.625832 + 1.08397i
\(802\) 21.1633 30.6150i 0.747304 1.08105i
\(803\) 19.9675 + 11.5282i 0.704638 + 0.406823i
\(804\) −5.01186 + 6.12109i −0.176755 + 0.215874i
\(805\) 0 0
\(806\) −8.74483 + 4.14206i −0.308023 + 0.145898i
\(807\) −0.665670 + 1.15297i −0.0234327 + 0.0405866i
\(808\) −2.16419 + 0.621995i −0.0761360 + 0.0218817i
\(809\) 4.86273 + 8.42250i 0.170965 + 0.296119i 0.938757 0.344579i \(-0.111978\pi\)
−0.767793 + 0.640698i \(0.778645\pi\)
\(810\) 1.86744 22.9343i 0.0656150 0.805831i
\(811\) 55.3405i 1.94327i −0.236492 0.971633i \(-0.575998\pi\)
0.236492 0.971633i \(-0.424002\pi\)
\(812\) 0 0
\(813\) 17.7733i 0.623339i
\(814\) −16.8943 1.37563i −0.592146 0.0482157i
\(815\) −32.1084 55.6134i −1.12471 1.94805i
\(816\) 7.13942 + 8.10385i 0.249930 + 0.283692i
\(817\) −15.6466 + 27.1008i −0.547406 + 0.948135i
\(818\) 0.400957 + 0.846511i 0.0140191 + 0.0295976i
\(819\) 0 0
\(820\) −10.5878 8.66918i −0.369744 0.302741i
\(821\) −36.5157 21.0823i −1.27441 0.735779i −0.298592 0.954381i \(-0.596517\pi\)
−0.975814 + 0.218602i \(0.929850\pi\)
\(822\) −0.704691 0.487134i −0.0245789 0.0169907i
\(823\) −7.60689 13.1755i −0.265160 0.459270i 0.702446 0.711737i \(-0.252091\pi\)
−0.967605 + 0.252467i \(0.918758\pi\)
\(824\) 5.21518 5.40705i 0.181679 0.188363i
\(825\) −9.03942 −0.314712
\(826\) 0 0
\(827\) 1.24390i 0.0432548i 0.999766 + 0.0216274i \(0.00688475\pi\)
−0.999766 + 0.0216274i \(0.993115\pi\)
\(828\) −4.91495 13.0140i −0.170806 0.452267i
\(829\) −18.4517 + 10.6531i −0.640855 + 0.369998i −0.784944 0.619567i \(-0.787308\pi\)
0.144089 + 0.989565i \(0.453975\pi\)
\(830\) 16.8709 24.4056i 0.585599 0.847131i
\(831\) −5.50067 + 9.52744i −0.190816 + 0.330503i
\(832\) −11.5972 + 21.8753i −0.402061 + 0.758389i
\(833\) 0 0
\(834\) 1.00936 + 2.13099i 0.0349513 + 0.0737902i
\(835\) 62.1557 + 35.8856i 2.15099 + 1.24187i
\(836\) −12.8551 2.10744i −0.444605 0.0728874i
\(837\) 7.23230 4.17557i 0.249985 0.144329i
\(838\) 0.867111 10.6492i 0.0299539 0.367869i
\(839\) 20.9379 0.722857 0.361429 0.932400i \(-0.382289\pi\)
0.361429 + 0.932400i \(0.382289\pi\)
\(840\) 0 0
\(841\) 24.9299 0.859651
\(842\) 1.44505 17.7470i 0.0497999 0.611601i
\(843\) −9.53586 + 5.50553i −0.328432 + 0.189621i
\(844\) 5.21794 31.8288i 0.179609 1.09559i
\(845\) −9.59686 5.54075i −0.330142 0.190608i
\(846\) 10.1744 + 21.4804i 0.349802 + 0.738512i
\(847\) 0 0
\(848\) −10.1426 + 2.04138i −0.348299 + 0.0701013i
\(849\) 8.98332 15.5596i 0.308307 0.534003i
\(850\) 17.4624 25.2612i 0.598955 0.866452i
\(851\) 11.8106 6.81884i 0.404861 0.233747i
\(852\) 8.48865 3.20588i 0.290816 0.109832i
\(853\) 17.4758i 0.598361i 0.954197 + 0.299180i \(0.0967133\pi\)
−0.954197 + 0.299180i \(0.903287\pi\)
\(854\) 0 0
\(855\) 22.1600 0.757856
\(856\) 11.0552 + 10.6629i 0.377858 + 0.364450i
\(857\) 1.75517 + 3.04005i 0.0599556 + 0.103846i 0.894445 0.447177i \(-0.147571\pi\)
−0.834490 + 0.551024i \(0.814237\pi\)
\(858\) 5.92847 + 4.09819i 0.202395 + 0.139910i
\(859\) −4.45370 2.57134i −0.151958 0.0877331i 0.422093 0.906553i \(-0.361296\pi\)
−0.574051 + 0.818819i \(0.694629\pi\)
\(860\) 47.5608 58.0870i 1.62181 1.98075i
\(861\) 0 0
\(862\) −7.81230 16.4936i −0.266088 0.561773i
\(863\) 20.1410 34.8852i 0.685606 1.18750i −0.287640 0.957739i \(-0.592871\pi\)
0.973246 0.229766i \(-0.0737962\pi\)
\(864\) 8.44387 19.6297i 0.287266 0.667817i
\(865\) −35.1916 60.9536i −1.19655 2.07248i
\(866\) −57.2016 4.65766i −1.94379 0.158274i
\(867\) 0.923798i 0.0313738i
\(868\) 0 0
\(869\) 4.04471i 0.137207i
\(870\) 0.511898 6.28672i 0.0173550 0.213140i
\(871\) −8.96744 15.5321i −0.303850 0.526284i
\(872\) −37.5460 + 10.7908i −1.27147 + 0.365423i
\(873\) −1.74483 + 3.02213i −0.0590534 + 0.102284i
\(874\) 9.47212 4.48655i 0.320399 0.151760i
\(875\) 0 0
\(876\) −10.0957 8.26621i −0.341102 0.279289i
\(877\) −36.3471 20.9850i −1.22735 0.708613i −0.260878 0.965372i \(-0.584012\pi\)
−0.966476 + 0.256759i \(0.917345\pi\)
\(878\) −29.3157 + 42.4083i −0.989357 + 1.43121i
\(879\) 3.29326 + 5.70409i 0.111079 + 0.192394i
\(880\) 29.6160 + 9.97854i 0.998355 + 0.336376i
\(881\) 16.5992 0.559241 0.279620 0.960111i \(-0.409791\pi\)
0.279620 + 0.960111i \(0.409791\pi\)
\(882\) 0 0
\(883\) 12.8210i 0.431462i 0.976453 + 0.215731i \(0.0692135\pi\)
−0.976453 + 0.215731i \(0.930787\pi\)
\(884\) −22.9053 + 8.65056i −0.770388 + 0.290950i
\(885\) 23.4966 13.5658i 0.789829 0.456008i
\(886\) −37.7831 26.1184i −1.26935 0.877465i
\(887\) 4.14980 7.18766i 0.139337 0.241338i −0.787909 0.615792i \(-0.788836\pi\)
0.927246 + 0.374454i \(0.122170\pi\)
\(888\) 9.30895 + 2.31497i 0.312388 + 0.0776855i
\(889\) 0 0
\(890\) 57.8666 27.4090i 1.93969 0.918751i
\(891\) 10.4952 + 6.05942i 0.351603 + 0.202998i
\(892\) 15.2263 + 2.49616i 0.509814 + 0.0835777i
\(893\) −15.5083 + 8.95370i −0.518964 + 0.299624i
\(894\) −9.07168 0.738664i −0.303402 0.0247046i
\(895\) −12.2345 −0.408954
\(896\) 0 0
\(897\) −5.79861 −0.193610
\(898\) −36.6234 2.98207i −1.22214 0.0995130i
\(899\) −3.86255 + 2.23005i −0.128823 + 0.0743762i
\(900\) −27.4558 4.50104i −0.915194 0.150035i
\(901\) −8.86041 5.11556i −0.295183 0.170424i
\(902\) 6.51337 3.08511i 0.216872 0.102723i
\(903\) 0 0
\(904\) −12.4452 3.09491i −0.413922 0.102935i
\(905\) −22.7241 + 39.3593i −0.755376 + 1.30835i
\(906\) −5.60120 3.87196i −0.186087 0.128637i
\(907\) 14.2277 8.21434i 0.472422 0.272753i −0.244831 0.969566i \(-0.578733\pi\)
0.717253 + 0.696813i \(0.245399\pi\)
\(908\) −3.97516 + 1.50129i −0.131920 + 0.0498219i
\(909\) 2.01745i 0.0669147i
\(910\) 0 0
\(911\) −37.1630 −1.23127 −0.615633 0.788033i \(-0.711100\pi\)
−0.615633 + 0.788033i \(0.711100\pi\)
\(912\) 6.98621 + 2.35387i 0.231336 + 0.0779443i
\(913\) 7.81297 + 13.5325i 0.258571 + 0.447859i
\(914\) −9.22300 + 13.3420i −0.305070 + 0.441316i
\(915\) 16.6868 + 9.63413i 0.551649 + 0.318495i
\(916\) 14.4965 + 11.8695i 0.478978 + 0.392180i
\(917\) 0 0
\(918\) 19.0975 9.04569i 0.630312 0.298552i
\(919\) 18.1528 31.4416i 0.598806 1.03716i −0.394191 0.919028i \(-0.628975\pi\)
0.992998 0.118135i \(-0.0376914\pi\)
\(920\) −24.1661 + 6.94541i −0.796732 + 0.228983i
\(921\) 8.62593 + 14.9406i 0.284234 + 0.492308i
\(922\) 2.89197 35.5168i 0.0952419 1.16968i
\(923\) 20.5707i 0.677094i
\(924\) 0 0
\(925\) 27.2754i 0.896809i
\(926\) 44.8551 + 3.65234i 1.47403 + 0.120023i
\(927\) −3.36523 5.82875i −0.110529 0.191441i
\(928\) −4.50962 + 10.4837i −0.148035 + 0.344143i
\(929\) −10.8263 + 18.7518i −0.355201 + 0.615226i −0.987152 0.159782i \(-0.948921\pi\)
0.631952 + 0.775008i \(0.282254\pi\)
\(930\) −2.95875 6.24660i −0.0970212 0.204834i
\(931\) 0 0
\(932\) 11.1845 13.6599i 0.366362 0.447445i
\(933\) 13.3293 + 7.69567i 0.436382 + 0.251945i
\(934\) 16.5344 + 11.4298i 0.541022 + 0.373994i
\(935\) 15.4524 + 26.7644i 0.505348 + 0.875288i
\(936\) 15.9662 + 15.3996i 0.521871 + 0.503352i
\(937\) 15.8637 0.518245 0.259123 0.965844i \(-0.416567\pi\)
0.259123 + 0.965844i \(0.416567\pi\)
\(938\) 0 0
\(939\) 17.3242i 0.565355i
\(940\) 40.1901 15.1785i 1.31086 0.495067i
\(941\) 12.7230 7.34561i 0.414757 0.239460i −0.278075 0.960559i \(-0.589696\pi\)
0.692832 + 0.721099i \(0.256363\pi\)
\(942\) 4.78421 6.92087i 0.155878 0.225494i
\(943\) −2.89930 + 5.02174i −0.0944143 + 0.163530i
\(944\) −48.1249 + 9.68600i −1.56633 + 0.315252i
\(945\) 0 0
\(946\) 16.9255 + 35.7337i 0.550296 + 1.16180i
\(947\) −12.0598 6.96270i −0.391889 0.226257i 0.291089 0.956696i \(-0.405982\pi\)
−0.682978 + 0.730439i \(0.739316\pi\)
\(948\) −0.370307 + 2.25883i −0.0120270 + 0.0733633i
\(949\) 25.6175 14.7903i 0.831579 0.480112i
\(950\) 1.70120 20.8927i 0.0551942 0.677850i
\(951\) 11.6954 0.379250
\(952\) 0 0
\(953\) 11.2883 0.365663 0.182831 0.983144i \(-0.441474\pi\)
0.182831 + 0.983144i \(0.441474\pi\)
\(954\) −0.752266 + 9.23871i −0.0243555 + 0.299114i
\(955\) 20.4163 11.7873i 0.660655 0.381430i
\(956\) 11.7134 + 1.92027i 0.378839 + 0.0621060i
\(957\) 2.87693 + 1.66100i 0.0929980 + 0.0536924i
\(958\) 6.98631 + 14.7497i 0.225717 + 0.476541i
\(959\) 0 0
\(960\) −15.6259 8.28411i −0.504325 0.267369i
\(961\) 13.0563 22.6141i 0.421170 0.729488i
\(962\) −12.3658 + 17.8885i −0.398690 + 0.576747i
\(963\) 11.9174 6.88051i 0.384033 0.221721i
\(964\) −7.55097 19.9937i −0.243200 0.643955i
\(965\) 30.8787i 0.994020i
\(966\) 0 0
\(967\) −36.4276 −1.17143 −0.585716 0.810517i \(-0.699187\pi\)
−0.585716 + 0.810517i \(0.699187\pi\)
\(968\) 10.1726 10.5468i 0.326959 0.338988i
\(969\) 3.64512 + 6.31352i 0.117098 + 0.202820i
\(970\) 5.18851 + 3.58668i 0.166593 + 0.115161i
\(971\) −5.75503 3.32267i −0.184688 0.106629i 0.404806 0.914403i \(-0.367339\pi\)
−0.589493 + 0.807773i \(0.700673\pi\)
\(972\) −22.8430 18.7035i −0.732690 0.599916i
\(973\) 0 0
\(974\) −10.6647 22.5156i −0.341719 0.721446i
\(975\) −5.79861 + 10.0435i −0.185704 + 0.321649i
\(976\) −23.0459 26.1591i −0.737682 0.837332i
\(977\) 22.7226 + 39.3567i 0.726961 + 1.25913i 0.958162 + 0.286227i \(0.0924012\pi\)
−0.231201 + 0.972906i \(0.574265\pi\)
\(978\) −19.0769 1.55335i −0.610013 0.0496705i
\(979\) 33.7226i 1.07778i
\(980\) 0 0
\(981\) 35.0002i 1.11747i
\(982\) −3.08168 + 37.8466i −0.0983402 + 1.20773i
\(983\) −9.26538 16.0481i −0.295520 0.511855i 0.679586 0.733596i \(-0.262159\pi\)
−0.975106 + 0.221741i \(0.928826\pi\)
\(984\) −3.91994 + 1.12660i −0.124963 + 0.0359148i
\(985\) 18.8930 32.7236i 0.601980 1.04266i
\(986\) −10.1994 + 4.83104i −0.324816 + 0.153852i
\(987\) 0 0
\(988\) −10.5878 + 12.9312i −0.336844 + 0.411395i
\(989\) −27.5503 15.9061i −0.876047 0.505786i
\(990\) 15.9215 23.0321i 0.506017 0.732008i
\(991\) 18.2392 + 31.5911i 0.579386 + 1.00353i 0.995550 + 0.0942363i \(0.0300409\pi\)
−0.416164 + 0.909290i \(0.636626\pi\)
\(992\) 1.46443 + 12.4199i 0.0464957 + 0.394332i
\(993\) −5.86069 −0.185983
\(994\) 0 0
\(995\) 61.4232i 1.94724i
\(996\) −3.12433 8.27271i −0.0989980 0.262131i
\(997\) −13.2738 + 7.66365i −0.420386 + 0.242710i −0.695243 0.718775i \(-0.744703\pi\)
0.274856 + 0.961485i \(0.411370\pi\)
\(998\) −2.98109 2.06075i −0.0943647 0.0652318i
\(999\) 9.38427 16.2540i 0.296905 0.514255i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 392.2.p.g.373.1 12
4.3 odd 2 1568.2.t.g.177.3 12
7.2 even 3 392.2.b.f.197.4 6
7.3 odd 6 56.2.p.a.53.5 yes 12
7.4 even 3 inner 392.2.p.g.165.5 12
7.5 odd 6 392.2.b.e.197.4 6
7.6 odd 2 56.2.p.a.37.1 12
8.3 odd 2 1568.2.t.g.177.4 12
8.5 even 2 inner 392.2.p.g.373.5 12
21.17 even 6 504.2.cj.c.109.2 12
21.20 even 2 504.2.cj.c.37.6 12
28.3 even 6 224.2.t.a.81.3 12
28.11 odd 6 1568.2.t.g.753.4 12
28.19 even 6 1568.2.b.f.785.4 6
28.23 odd 6 1568.2.b.e.785.3 6
28.27 even 2 224.2.t.a.177.4 12
56.3 even 6 224.2.t.a.81.4 12
56.5 odd 6 392.2.b.e.197.3 6
56.11 odd 6 1568.2.t.g.753.3 12
56.13 odd 2 56.2.p.a.37.5 yes 12
56.19 even 6 1568.2.b.f.785.3 6
56.27 even 2 224.2.t.a.177.3 12
56.37 even 6 392.2.b.f.197.3 6
56.45 odd 6 56.2.p.a.53.1 yes 12
56.51 odd 6 1568.2.b.e.785.4 6
56.53 even 6 inner 392.2.p.g.165.1 12
84.59 odd 6 2016.2.cr.c.1873.6 12
84.83 odd 2 2016.2.cr.c.1297.1 12
168.59 odd 6 2016.2.cr.c.1873.1 12
168.83 odd 2 2016.2.cr.c.1297.6 12
168.101 even 6 504.2.cj.c.109.6 12
168.125 even 2 504.2.cj.c.37.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.2.p.a.37.1 12 7.6 odd 2
56.2.p.a.37.5 yes 12 56.13 odd 2
56.2.p.a.53.1 yes 12 56.45 odd 6
56.2.p.a.53.5 yes 12 7.3 odd 6
224.2.t.a.81.3 12 28.3 even 6
224.2.t.a.81.4 12 56.3 even 6
224.2.t.a.177.3 12 56.27 even 2
224.2.t.a.177.4 12 28.27 even 2
392.2.b.e.197.3 6 56.5 odd 6
392.2.b.e.197.4 6 7.5 odd 6
392.2.b.f.197.3 6 56.37 even 6
392.2.b.f.197.4 6 7.2 even 3
392.2.p.g.165.1 12 56.53 even 6 inner
392.2.p.g.165.5 12 7.4 even 3 inner
392.2.p.g.373.1 12 1.1 even 1 trivial
392.2.p.g.373.5 12 8.5 even 2 inner
504.2.cj.c.37.2 12 168.125 even 2
504.2.cj.c.37.6 12 21.20 even 2
504.2.cj.c.109.2 12 21.17 even 6
504.2.cj.c.109.6 12 168.101 even 6
1568.2.b.e.785.3 6 28.23 odd 6
1568.2.b.e.785.4 6 56.51 odd 6
1568.2.b.f.785.3 6 56.19 even 6
1568.2.b.f.785.4 6 28.19 even 6
1568.2.t.g.177.3 12 4.3 odd 2
1568.2.t.g.177.4 12 8.3 odd 2
1568.2.t.g.753.3 12 56.11 odd 6
1568.2.t.g.753.4 12 28.11 odd 6
2016.2.cr.c.1297.1 12 84.83 odd 2
2016.2.cr.c.1297.6 12 168.83 odd 2
2016.2.cr.c.1873.1 12 168.59 odd 6
2016.2.cr.c.1873.6 12 84.59 odd 6