Properties

Label 1584.2.cd.c.161.3
Level $1584$
Weight $2$
Character 1584.161
Analytic conductor $12.648$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1584,2,Mod(17,1584)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1584, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 5, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1584.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1584 = 2^{4} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1584.cd (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.6483036802\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 2x^{14} - 16x^{12} - 72x^{10} + 26x^{8} + 360x^{6} + 725x^{4} + 1000x^{2} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 161.3
Root \(-0.0783900 + 1.17295i\) of defining polynomial
Character \(\chi\) \(=\) 1584.161
Dual form 1584.2.cd.c.305.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.71735 + 2.36373i) q^{5} +(-2.58586 + 0.840196i) q^{7} +(2.71994 + 1.89788i) q^{11} +(-1.67869 + 2.31052i) q^{13} +(-3.60998 + 2.62280i) q^{17} +(1.81761 + 0.590579i) q^{19} -0.816370i q^{23} +(-1.09283 + 3.36340i) q^{25} +(-2.95006 - 9.07936i) q^{29} +(-4.84281 - 3.51851i) q^{31} +(-6.42681 - 4.66935i) q^{35} +(1.83750 + 5.65524i) q^{37} +(-2.60604 + 8.02058i) q^{41} +11.8763i q^{43} +(-7.34041 - 2.38504i) q^{47} +(0.317615 - 0.230761i) q^{49} +(6.14564 - 8.45874i) q^{53} +(0.185009 + 9.68851i) q^{55} +(0.0887332 - 0.0288312i) q^{59} +(1.26024 + 1.73457i) q^{61} -8.34434 q^{65} +1.40778 q^{67} +(-2.12141 - 2.91987i) q^{71} +(-1.67338 + 0.543714i) q^{73} +(-8.62796 - 2.62237i) q^{77} +(4.19260 - 5.77063i) q^{79} +(-6.33808 + 4.60488i) q^{83} +(-12.3992 - 4.02874i) q^{85} -2.06830i q^{89} +(2.39957 - 7.38512i) q^{91} +(1.72551 + 5.31057i) q^{95} +(-1.35141 - 0.981858i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 32 q^{25} - 16 q^{31} - 12 q^{37} - 24 q^{49} - 16 q^{55} - 96 q^{67} - 20 q^{73} - 100 q^{85} + 72 q^{91} + 60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1584\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(353\) \(991\) \(1189\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.71735 + 2.36373i 0.768021 + 1.05709i 0.996504 + 0.0835427i \(0.0266235\pi\)
−0.228483 + 0.973548i \(0.573376\pi\)
\(6\) 0 0
\(7\) −2.58586 + 0.840196i −0.977363 + 0.317564i −0.753785 0.657122i \(-0.771774\pi\)
−0.223578 + 0.974686i \(0.571774\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.71994 + 1.89788i 0.820092 + 0.572232i
\(12\) 0 0
\(13\) −1.67869 + 2.31052i −0.465586 + 0.640824i −0.975655 0.219309i \(-0.929620\pi\)
0.510070 + 0.860133i \(0.329620\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.60998 + 2.62280i −0.875549 + 0.636124i −0.932070 0.362278i \(-0.881999\pi\)
0.0565211 + 0.998401i \(0.481999\pi\)
\(18\) 0 0
\(19\) 1.81761 + 0.590579i 0.416989 + 0.135488i 0.509995 0.860178i \(-0.329647\pi\)
−0.0930053 + 0.995666i \(0.529647\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.816370i 0.170225i −0.996371 0.0851124i \(-0.972875\pi\)
0.996371 0.0851124i \(-0.0271249\pi\)
\(24\) 0 0
\(25\) −1.09283 + 3.36340i −0.218567 + 0.672680i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.95006 9.07936i −0.547813 1.68599i −0.714207 0.699935i \(-0.753212\pi\)
0.166394 0.986059i \(-0.446788\pi\)
\(30\) 0 0
\(31\) −4.84281 3.51851i −0.869795 0.631943i 0.0607369 0.998154i \(-0.480655\pi\)
−0.930532 + 0.366211i \(0.880655\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −6.42681 4.66935i −1.08633 0.789265i
\(36\) 0 0
\(37\) 1.83750 + 5.65524i 0.302083 + 0.929717i 0.980750 + 0.195270i \(0.0625583\pi\)
−0.678666 + 0.734447i \(0.737442\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.60604 + 8.02058i −0.406996 + 1.25260i 0.512221 + 0.858853i \(0.328823\pi\)
−0.919217 + 0.393751i \(0.871177\pi\)
\(42\) 0 0
\(43\) 11.8763i 1.81112i 0.424214 + 0.905562i \(0.360550\pi\)
−0.424214 + 0.905562i \(0.639450\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −7.34041 2.38504i −1.07071 0.347894i −0.279945 0.960016i \(-0.590316\pi\)
−0.790764 + 0.612122i \(0.790316\pi\)
\(48\) 0 0
\(49\) 0.317615 0.230761i 0.0453735 0.0329658i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.14564 8.45874i 0.844168 1.16190i −0.140950 0.990017i \(-0.545016\pi\)
0.985118 0.171881i \(-0.0549845\pi\)
\(54\) 0 0
\(55\) 0.185009 + 9.68851i 0.0249466 + 1.30640i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.0887332 0.0288312i 0.0115521 0.00375350i −0.303235 0.952916i \(-0.598067\pi\)
0.314787 + 0.949162i \(0.398067\pi\)
\(60\) 0 0
\(61\) 1.26024 + 1.73457i 0.161357 + 0.222089i 0.882038 0.471177i \(-0.156171\pi\)
−0.720681 + 0.693267i \(0.756171\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −8.34434 −1.03499
\(66\) 0 0
\(67\) 1.40778 0.171988 0.0859941 0.996296i \(-0.472593\pi\)
0.0859941 + 0.996296i \(0.472593\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −2.12141 2.91987i −0.251765 0.346525i 0.664363 0.747410i \(-0.268703\pi\)
−0.916128 + 0.400885i \(0.868703\pi\)
\(72\) 0 0
\(73\) −1.67338 + 0.543714i −0.195854 + 0.0636369i −0.405302 0.914183i \(-0.632833\pi\)
0.209447 + 0.977820i \(0.432833\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −8.62796 2.62237i −0.983247 0.298846i
\(78\) 0 0
\(79\) 4.19260 5.77063i 0.471705 0.649246i −0.505180 0.863014i \(-0.668574\pi\)
0.976884 + 0.213768i \(0.0685737\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −6.33808 + 4.60488i −0.695695 + 0.505452i −0.878527 0.477692i \(-0.841473\pi\)
0.182833 + 0.983144i \(0.441473\pi\)
\(84\) 0 0
\(85\) −12.3992 4.02874i −1.34488 0.436978i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.06830i 0.219240i −0.993974 0.109620i \(-0.965037\pi\)
0.993974 0.109620i \(-0.0349633\pi\)
\(90\) 0 0
\(91\) 2.39957 7.38512i 0.251543 0.774171i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.72551 + 5.31057i 0.177034 + 0.544853i
\(96\) 0 0
\(97\) −1.35141 0.981858i −0.137215 0.0996926i 0.517060 0.855949i \(-0.327026\pi\)
−0.654275 + 0.756256i \(0.727026\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −7.31972 5.31809i −0.728339 0.529170i 0.160698 0.987004i \(-0.448625\pi\)
−0.889038 + 0.457834i \(0.848625\pi\)
\(102\) 0 0
\(103\) 5.12132 + 15.7618i 0.504618 + 1.55306i 0.801411 + 0.598114i \(0.204083\pi\)
−0.296793 + 0.954942i \(0.595917\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.19803 + 6.76484i −0.212492 + 0.653982i 0.786830 + 0.617169i \(0.211721\pi\)
−0.999322 + 0.0368130i \(0.988279\pi\)
\(108\) 0 0
\(109\) 8.62045i 0.825690i 0.910801 + 0.412845i \(0.135465\pi\)
−0.910801 + 0.412845i \(0.864535\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 10.8495 + 3.52523i 1.02064 + 0.331626i 0.771083 0.636735i \(-0.219715\pi\)
0.249556 + 0.968360i \(0.419715\pi\)
\(114\) 0 0
\(115\) 1.92967 1.40199i 0.179943 0.130736i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 7.13123 9.81529i 0.653719 0.899767i
\(120\) 0 0
\(121\) 3.79611 + 10.3242i 0.345101 + 0.938566i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 4.06670 1.32135i 0.363737 0.118185i
\(126\) 0 0
\(127\) 1.69463 + 2.33246i 0.150374 + 0.206973i 0.877558 0.479470i \(-0.159171\pi\)
−0.727184 + 0.686443i \(0.759171\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −2.10155 −0.183613 −0.0918067 0.995777i \(-0.529264\pi\)
−0.0918067 + 0.995777i \(0.529264\pi\)
\(132\) 0 0
\(133\) −5.19630 −0.450576
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.98245 + 4.10498i 0.254808 + 0.350712i 0.917188 0.398455i \(-0.130454\pi\)
−0.662380 + 0.749168i \(0.730454\pi\)
\(138\) 0 0
\(139\) −16.6282 + 5.40283i −1.41039 + 0.458262i −0.912535 0.409000i \(-0.865878\pi\)
−0.497852 + 0.867262i \(0.665878\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −8.95103 + 3.09852i −0.748523 + 0.259111i
\(144\) 0 0
\(145\) 16.3948 22.5656i 1.36152 1.87397i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.57623 3.32483i 0.374900 0.272381i −0.384340 0.923192i \(-0.625571\pi\)
0.759240 + 0.650811i \(0.225571\pi\)
\(150\) 0 0
\(151\) −8.72640 2.83538i −0.710145 0.230740i −0.0683995 0.997658i \(-0.521789\pi\)
−0.641745 + 0.766918i \(0.721789\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 17.4896i 1.40480i
\(156\) 0 0
\(157\) −0.943653 + 2.90426i −0.0753117 + 0.231785i −0.981625 0.190821i \(-0.938885\pi\)
0.906313 + 0.422607i \(0.138885\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.685911 + 2.11102i 0.0540573 + 0.166371i
\(162\) 0 0
\(163\) 6.39488 + 4.64615i 0.500885 + 0.363914i 0.809355 0.587320i \(-0.199817\pi\)
−0.308470 + 0.951234i \(0.599817\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 13.3065 + 9.66777i 1.02969 + 0.748115i 0.968247 0.249996i \(-0.0804292\pi\)
0.0614446 + 0.998110i \(0.480429\pi\)
\(168\) 0 0
\(169\) 1.49672 + 4.60642i 0.115132 + 0.354340i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −4.79669 + 14.7627i −0.364686 + 1.12239i 0.585492 + 0.810678i \(0.300901\pi\)
−0.950178 + 0.311709i \(0.899099\pi\)
\(174\) 0 0
\(175\) 9.61547i 0.726861i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.93538 + 1.60360i 0.368888 + 0.119859i 0.487594 0.873071i \(-0.337875\pi\)
−0.118706 + 0.992929i \(0.537875\pi\)
\(180\) 0 0
\(181\) −4.29773 + 3.12248i −0.319448 + 0.232092i −0.735940 0.677047i \(-0.763259\pi\)
0.416492 + 0.909139i \(0.363259\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −10.2118 + 14.0554i −0.750788 + 1.03337i
\(186\) 0 0
\(187\) −14.7967 + 0.282553i −1.08204 + 0.0206624i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 10.3662 3.36817i 0.750069 0.243712i 0.0910582 0.995846i \(-0.470975\pi\)
0.659011 + 0.752133i \(0.270975\pi\)
\(192\) 0 0
\(193\) 9.03216 + 12.4317i 0.650149 + 0.894853i 0.999106 0.0422855i \(-0.0134639\pi\)
−0.348956 + 0.937139i \(0.613464\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 7.24149 0.515935 0.257967 0.966154i \(-0.416947\pi\)
0.257967 + 0.966154i \(0.416947\pi\)
\(198\) 0 0
\(199\) 11.3726 0.806181 0.403090 0.915160i \(-0.367936\pi\)
0.403090 + 0.915160i \(0.367936\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 15.2569 + 20.9993i 1.07082 + 1.47386i
\(204\) 0 0
\(205\) −23.4339 + 7.61415i −1.63670 + 0.531795i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3.82295 + 5.05595i 0.264439 + 0.349727i
\(210\) 0 0
\(211\) 2.17376 2.99193i 0.149648 0.205973i −0.727611 0.685990i \(-0.759369\pi\)
0.877259 + 0.480017i \(0.159369\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −28.0724 + 20.3958i −1.91452 + 1.39098i
\(216\) 0 0
\(217\) 15.4791 + 5.02946i 1.05079 + 0.341422i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 12.7438i 0.857243i
\(222\) 0 0
\(223\) 0.0875209 0.269362i 0.00586083 0.0180378i −0.948083 0.318022i \(-0.896981\pi\)
0.953944 + 0.299984i \(0.0969814\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5.64140 17.3625i −0.374433 1.15239i −0.943860 0.330345i \(-0.892835\pi\)
0.569427 0.822042i \(-0.307165\pi\)
\(228\) 0 0
\(229\) −21.3385 15.5033i −1.41009 1.02449i −0.993310 0.115479i \(-0.963160\pi\)
−0.416777 0.909009i \(-0.636840\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −8.73916 6.34937i −0.572521 0.415961i 0.263499 0.964660i \(-0.415123\pi\)
−0.836020 + 0.548699i \(0.815123\pi\)
\(234\) 0 0
\(235\) −6.96844 21.4467i −0.454571 1.39903i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.29393 7.06000i 0.148382 0.456673i −0.849048 0.528315i \(-0.822824\pi\)
0.997430 + 0.0716420i \(0.0228239\pi\)
\(240\) 0 0
\(241\) 2.66873i 0.171908i 0.996299 + 0.0859539i \(0.0273938\pi\)
−0.996299 + 0.0859539i \(0.972606\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.09091 + 0.354458i 0.0696957 + 0.0226455i
\(246\) 0 0
\(247\) −4.41576 + 3.20824i −0.280968 + 0.204135i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 14.2630 19.6313i 0.900271 1.23912i −0.0701107 0.997539i \(-0.522335\pi\)
0.970382 0.241577i \(-0.0776647\pi\)
\(252\) 0 0
\(253\) 1.54937 2.22047i 0.0974081 0.139600i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 15.9360 5.17791i 0.994059 0.322989i 0.233570 0.972340i \(-0.424959\pi\)
0.760489 + 0.649351i \(0.224959\pi\)
\(258\) 0 0
\(259\) −9.50303 13.0798i −0.590490 0.812739i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 10.9146 0.673021 0.336511 0.941680i \(-0.390753\pi\)
0.336511 + 0.941680i \(0.390753\pi\)
\(264\) 0 0
\(265\) 30.5484 1.87657
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −9.22041 12.6908i −0.562178 0.773772i 0.429423 0.903103i \(-0.358717\pi\)
−0.991601 + 0.129331i \(0.958717\pi\)
\(270\) 0 0
\(271\) 2.76289 0.897717i 0.167834 0.0545324i −0.223895 0.974613i \(-0.571877\pi\)
0.391728 + 0.920081i \(0.371877\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −9.35577 + 7.07416i −0.564174 + 0.426588i
\(276\) 0 0
\(277\) 12.4111 17.0824i 0.745709 1.02638i −0.252561 0.967581i \(-0.581273\pi\)
0.998270 0.0587992i \(-0.0187272\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.50015 1.81647i 0.149147 0.108361i −0.510709 0.859753i \(-0.670617\pi\)
0.659856 + 0.751392i \(0.270617\pi\)
\(282\) 0 0
\(283\) 21.3272 + 6.92961i 1.26777 + 0.411923i 0.864256 0.503052i \(-0.167789\pi\)
0.403512 + 0.914975i \(0.367789\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 22.9297i 1.35350i
\(288\) 0 0
\(289\) 0.899570 2.76859i 0.0529159 0.162858i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6.40930 + 19.7258i 0.374435 + 1.15239i 0.943859 + 0.330349i \(0.107167\pi\)
−0.569423 + 0.822044i \(0.692833\pi\)
\(294\) 0 0
\(295\) 0.220535 + 0.160228i 0.0128400 + 0.00932883i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.88624 + 1.37043i 0.109084 + 0.0792543i
\(300\) 0 0
\(301\) −9.97845 30.7105i −0.575148 1.77012i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.93578 + 5.95772i −0.110843 + 0.341138i
\(306\) 0 0
\(307\) 15.0077i 0.856533i 0.903652 + 0.428267i \(0.140876\pi\)
−0.903652 + 0.428267i \(0.859124\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.95824 + 0.636270i 0.111042 + 0.0360796i 0.364011 0.931395i \(-0.381407\pi\)
−0.252969 + 0.967474i \(0.581407\pi\)
\(312\) 0 0
\(313\) 20.1223 14.6197i 1.13738 0.826355i 0.150628 0.988591i \(-0.451870\pi\)
0.986752 + 0.162236i \(0.0518705\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.254351 0.350085i 0.0142858 0.0196627i −0.801814 0.597573i \(-0.796132\pi\)
0.816100 + 0.577910i \(0.196132\pi\)
\(318\) 0 0
\(319\) 9.20754 30.2941i 0.515523 1.69615i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −8.11053 + 2.63527i −0.451282 + 0.146630i
\(324\) 0 0
\(325\) −5.93668 8.17113i −0.329308 0.453253i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 20.9852 1.15695
\(330\) 0 0
\(331\) 17.3090 0.951391 0.475696 0.879610i \(-0.342196\pi\)
0.475696 + 0.879610i \(0.342196\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2.41766 + 3.32762i 0.132091 + 0.181807i
\(336\) 0 0
\(337\) 23.8381 7.74548i 1.29855 0.421923i 0.423471 0.905910i \(-0.360812\pi\)
0.875076 + 0.483986i \(0.160812\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −6.49444 18.7612i −0.351694 1.01598i
\(342\) 0 0
\(343\) 10.5596 14.5341i 0.570166 0.784766i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 16.8866 12.2688i 0.906519 0.658625i −0.0336127 0.999435i \(-0.510701\pi\)
0.940132 + 0.340810i \(0.110701\pi\)
\(348\) 0 0
\(349\) −17.1385 5.56865i −0.917405 0.298083i −0.188003 0.982168i \(-0.560202\pi\)
−0.729402 + 0.684085i \(0.760202\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 16.2953i 0.867313i −0.901078 0.433656i \(-0.857223\pi\)
0.901078 0.433656i \(-0.142777\pi\)
\(354\) 0 0
\(355\) 3.25858 10.0289i 0.172947 0.532277i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 7.65875 + 23.5712i 0.404213 + 1.24404i 0.921550 + 0.388259i \(0.126923\pi\)
−0.517337 + 0.855782i \(0.673077\pi\)
\(360\) 0 0
\(361\) −12.4164 9.02103i −0.653494 0.474791i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −4.15897 3.02167i −0.217690 0.158161i
\(366\) 0 0
\(367\) −2.76683 8.51544i −0.144428 0.444502i 0.852509 0.522712i \(-0.175080\pi\)
−0.996937 + 0.0782097i \(0.975080\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −8.78474 + 27.0367i −0.456081 + 1.40367i
\(372\) 0 0
\(373\) 16.9007i 0.875088i 0.899197 + 0.437544i \(0.144152\pi\)
−0.899197 + 0.437544i \(0.855848\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 25.9303 + 8.42527i 1.33548 + 0.433923i
\(378\) 0 0
\(379\) 15.9625 11.5975i 0.819940 0.595722i −0.0967550 0.995308i \(-0.530846\pi\)
0.916695 + 0.399587i \(0.130846\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −2.93889 + 4.04503i −0.150170 + 0.206691i −0.877474 0.479624i \(-0.840773\pi\)
0.727304 + 0.686315i \(0.240773\pi\)
\(384\) 0 0
\(385\) −8.61865 24.8977i −0.439247 1.26890i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −9.37115 + 3.04487i −0.475136 + 0.154381i −0.536789 0.843716i \(-0.680363\pi\)
0.0616527 + 0.998098i \(0.480363\pi\)
\(390\) 0 0
\(391\) 2.14118 + 2.94708i 0.108284 + 0.149040i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 20.8403 1.04859
\(396\) 0 0
\(397\) −19.0245 −0.954812 −0.477406 0.878683i \(-0.658423\pi\)
−0.477406 + 0.878683i \(0.658423\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 18.0482 + 24.8413i 0.901286 + 1.24051i 0.970056 + 0.242881i \(0.0780926\pi\)
−0.0687699 + 0.997633i \(0.521907\pi\)
\(402\) 0 0
\(403\) 16.2592 5.28293i 0.809928 0.263162i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −5.73509 + 18.8693i −0.284278 + 0.935315i
\(408\) 0 0
\(409\) −6.97905 + 9.60583i −0.345092 + 0.474978i −0.945920 0.324400i \(-0.894838\pi\)
0.600828 + 0.799378i \(0.294838\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −0.205228 + 0.149107i −0.0100986 + 0.00733706i
\(414\) 0 0
\(415\) −21.7694 7.07330i −1.06862 0.347215i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 10.0629i 0.491606i 0.969320 + 0.245803i \(0.0790516\pi\)
−0.969320 + 0.245803i \(0.920948\pi\)
\(420\) 0 0
\(421\) −1.93337 + 5.95029i −0.0942265 + 0.289999i −0.987051 0.160405i \(-0.948720\pi\)
0.892825 + 0.450404i \(0.148720\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −4.87643 15.0081i −0.236541 0.728000i
\(426\) 0 0
\(427\) −4.71618 3.42651i −0.228232 0.165820i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −15.8885 11.5436i −0.765321 0.556038i 0.135217 0.990816i \(-0.456827\pi\)
−0.900538 + 0.434778i \(0.856827\pi\)
\(432\) 0 0
\(433\) 9.66882 + 29.7576i 0.464654 + 1.43006i 0.859418 + 0.511274i \(0.170826\pi\)
−0.394764 + 0.918783i \(0.629174\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.482131 1.48385i 0.0230634 0.0709820i
\(438\) 0 0
\(439\) 20.1935i 0.963782i 0.876231 + 0.481891i \(0.160050\pi\)
−0.876231 + 0.481891i \(0.839950\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 23.1752 + 7.53009i 1.10109 + 0.357765i 0.802521 0.596624i \(-0.203491\pi\)
0.298567 + 0.954389i \(0.403491\pi\)
\(444\) 0 0
\(445\) 4.88890 3.55199i 0.231756 0.168381i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −1.94082 + 2.67131i −0.0915930 + 0.126067i −0.852354 0.522965i \(-0.824826\pi\)
0.760761 + 0.649032i \(0.224826\pi\)
\(450\) 0 0
\(451\) −22.3104 + 16.8695i −1.05055 + 0.794354i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 21.5773 7.01089i 1.01156 0.328675i
\(456\) 0 0
\(457\) −9.17968 12.6347i −0.429407 0.591028i 0.538410 0.842683i \(-0.319025\pi\)
−0.967817 + 0.251655i \(0.919025\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 36.5685 1.70316 0.851582 0.524221i \(-0.175644\pi\)
0.851582 + 0.524221i \(0.175644\pi\)
\(462\) 0 0
\(463\) −4.45531 −0.207056 −0.103528 0.994627i \(-0.533013\pi\)
−0.103528 + 0.994627i \(0.533013\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −24.4676 33.6768i −1.13223 1.55838i −0.783769 0.621052i \(-0.786706\pi\)
−0.348458 0.937325i \(-0.613294\pi\)
\(468\) 0 0
\(469\) −3.64033 + 1.18282i −0.168095 + 0.0546173i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −22.5398 + 32.3029i −1.03638 + 1.48529i
\(474\) 0 0
\(475\) −3.97270 + 5.46796i −0.182280 + 0.250887i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2.84896 2.06989i 0.130172 0.0945756i −0.520794 0.853682i \(-0.674364\pi\)
0.650966 + 0.759107i \(0.274364\pi\)
\(480\) 0 0
\(481\) −16.1512 5.24783i −0.736430 0.239281i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.88056i 0.221615i
\(486\) 0 0
\(487\) −9.85775 + 30.3390i −0.446697 + 1.37479i 0.433914 + 0.900954i \(0.357132\pi\)
−0.880611 + 0.473839i \(0.842868\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 7.54595 + 23.2241i 0.340544 + 1.04809i 0.963926 + 0.266170i \(0.0857581\pi\)
−0.623382 + 0.781917i \(0.714242\pi\)
\(492\) 0 0
\(493\) 34.4630 + 25.0389i 1.55214 + 1.12769i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 7.93893 + 5.76797i 0.356110 + 0.258729i
\(498\) 0 0
\(499\) 7.19057 + 22.1303i 0.321894 + 0.990689i 0.972823 + 0.231550i \(0.0743797\pi\)
−0.650929 + 0.759139i \(0.725620\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 11.2856 34.7334i 0.503199 1.54869i −0.300579 0.953757i \(-0.597180\pi\)
0.803778 0.594930i \(-0.202820\pi\)
\(504\) 0 0
\(505\) 26.4348i 1.17633i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 23.6347 + 7.67938i 1.04759 + 0.340383i 0.781722 0.623627i \(-0.214341\pi\)
0.265868 + 0.964009i \(0.414341\pi\)
\(510\) 0 0
\(511\) 3.87030 2.81193i 0.171212 0.124393i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −28.4615 + 39.1739i −1.25416 + 1.72621i
\(516\) 0 0
\(517\) −15.4389 20.4184i −0.679003 0.897999i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −9.26334 + 3.00984i −0.405834 + 0.131864i −0.504819 0.863225i \(-0.668441\pi\)
0.0989844 + 0.995089i \(0.468441\pi\)
\(522\) 0 0
\(523\) −19.5526 26.9118i −0.854975 1.17677i −0.982744 0.184968i \(-0.940782\pi\)
0.127769 0.991804i \(-0.459218\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 26.7108 1.16354
\(528\) 0 0
\(529\) 22.3335 0.971023
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −14.1570 19.4854i −0.613207 0.844007i
\(534\) 0 0
\(535\) −19.7650 + 6.42205i −0.854517 + 0.277649i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.30185 0.0248597i 0.0560746 0.00107078i
\(540\) 0 0
\(541\) −6.85075 + 9.42925i −0.294537 + 0.405395i −0.930481 0.366340i \(-0.880611\pi\)
0.635944 + 0.771735i \(0.280611\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −20.3764 + 14.8043i −0.872829 + 0.634147i
\(546\) 0 0
\(547\) −0.773004 0.251164i −0.0330513 0.0107390i 0.292445 0.956282i \(-0.405531\pi\)
−0.325496 + 0.945543i \(0.605531\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 18.2450i 0.777264i
\(552\) 0 0
\(553\) −5.99302 + 18.4446i −0.254849 + 0.784345i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2.14843 6.61219i −0.0910320 0.280168i 0.895167 0.445730i \(-0.147056\pi\)
−0.986199 + 0.165563i \(0.947056\pi\)
\(558\) 0 0
\(559\) −27.4405 19.9367i −1.16061 0.843233i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −23.2654 16.9033i −0.980519 0.712388i −0.0226941 0.999742i \(-0.507224\pi\)
−0.957824 + 0.287354i \(0.907224\pi\)
\(564\) 0 0
\(565\) 10.2998 + 31.6994i 0.433314 + 1.33360i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3.22890 9.93752i 0.135362 0.416602i −0.860284 0.509815i \(-0.829714\pi\)
0.995646 + 0.0932129i \(0.0297137\pi\)
\(570\) 0 0
\(571\) 21.2530i 0.889409i −0.895677 0.444704i \(-0.853309\pi\)
0.895677 0.444704i \(-0.146691\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.74578 + 0.892157i 0.114507 + 0.0372055i
\(576\) 0 0
\(577\) −12.6856 + 9.21665i −0.528110 + 0.383694i −0.819650 0.572864i \(-0.805832\pi\)
0.291541 + 0.956558i \(0.405832\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 12.5204 17.2328i 0.519432 0.714937i
\(582\) 0 0
\(583\) 32.7694 11.3436i 1.35717 0.469803i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −19.1691 + 6.22843i −0.791195 + 0.257075i −0.676613 0.736339i \(-0.736553\pi\)
−0.114582 + 0.993414i \(0.536553\pi\)
\(588\) 0 0
\(589\) −6.72441 9.25536i −0.277075 0.381360i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −40.5694 −1.66599 −0.832993 0.553284i \(-0.813374\pi\)
−0.832993 + 0.553284i \(0.813374\pi\)
\(594\) 0 0
\(595\) 35.4475 1.45320
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −6.42889 8.84861i −0.262678 0.361545i 0.657223 0.753696i \(-0.271731\pi\)
−0.919901 + 0.392151i \(0.871731\pi\)
\(600\) 0 0
\(601\) 15.5556 5.05433i 0.634527 0.206170i 0.0259478 0.999663i \(-0.491740\pi\)
0.608580 + 0.793493i \(0.291740\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −17.8844 + 26.7032i −0.727104 + 1.08564i
\(606\) 0 0
\(607\) 14.0272 19.3068i 0.569348 0.783641i −0.423129 0.906069i \(-0.639068\pi\)
0.992477 + 0.122429i \(0.0390683\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 17.8330 12.9564i 0.721445 0.524161i
\(612\) 0 0
\(613\) 0.0461533 + 0.0149961i 0.00186411 + 0.000605687i 0.309949 0.950753i \(-0.399688\pi\)
−0.308085 + 0.951359i \(0.599688\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 8.24561i 0.331956i −0.986129 0.165978i \(-0.946922\pi\)
0.986129 0.165978i \(-0.0530780\pi\)
\(618\) 0 0
\(619\) 0.537464 1.65414i 0.0216025 0.0664857i −0.939674 0.342071i \(-0.888872\pi\)
0.961277 + 0.275585i \(0.0888717\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1.73778 + 5.34834i 0.0696227 + 0.214277i
\(624\) 0 0
\(625\) 24.4126 + 17.7368i 0.976506 + 0.709473i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −21.4659 15.5959i −0.855903 0.621850i
\(630\) 0 0
\(631\) 8.14182 + 25.0580i 0.324121 + 0.997541i 0.971836 + 0.235659i \(0.0757248\pi\)
−0.647715 + 0.761883i \(0.724275\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −2.60303 + 8.01130i −0.103298 + 0.317919i
\(636\) 0 0
\(637\) 1.12123i 0.0444249i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 8.27017 + 2.68714i 0.326652 + 0.106136i 0.467752 0.883860i \(-0.345064\pi\)
−0.141100 + 0.989995i \(0.545064\pi\)
\(642\) 0 0
\(643\) −17.4877 + 12.7055i −0.689646 + 0.501057i −0.876544 0.481322i \(-0.840157\pi\)
0.186897 + 0.982379i \(0.440157\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −17.2616 + 23.7586i −0.678625 + 0.934048i −0.999916 0.0129330i \(-0.995883\pi\)
0.321291 + 0.946980i \(0.395883\pi\)
\(648\) 0 0
\(649\) 0.296067 + 0.0899860i 0.0116216 + 0.00353226i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 22.5339 7.32170i 0.881818 0.286520i 0.167106 0.985939i \(-0.446558\pi\)
0.714712 + 0.699419i \(0.246558\pi\)
\(654\) 0 0
\(655\) −3.60909 4.96749i −0.141019 0.194096i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 34.5941 1.34759 0.673797 0.738916i \(-0.264662\pi\)
0.673797 + 0.738916i \(0.264662\pi\)
\(660\) 0 0
\(661\) 35.4913 1.38045 0.690225 0.723595i \(-0.257512\pi\)
0.690225 + 0.723595i \(0.257512\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −8.92385 12.2826i −0.346052 0.476300i
\(666\) 0 0
\(667\) −7.41211 + 2.40834i −0.286998 + 0.0932513i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0.135765 + 7.10971i 0.00524115 + 0.274467i
\(672\) 0 0
\(673\) −12.2854 + 16.9095i −0.473569 + 0.651812i −0.977253 0.212076i \(-0.931978\pi\)
0.503684 + 0.863888i \(0.331978\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −19.6090 + 14.2468i −0.753634 + 0.547547i −0.896951 0.442130i \(-0.854223\pi\)
0.143317 + 0.989677i \(0.454223\pi\)
\(678\) 0 0
\(679\) 4.31951 + 1.40350i 0.165768 + 0.0538612i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 17.6311i 0.674636i −0.941391 0.337318i \(-0.890480\pi\)
0.941391 0.337318i \(-0.109520\pi\)
\(684\) 0 0
\(685\) −4.58116 + 14.0994i −0.175037 + 0.538709i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 9.22748 + 28.3993i 0.351539 + 1.08193i
\(690\) 0 0
\(691\) 23.5718 + 17.1259i 0.896713 + 0.651500i 0.937620 0.347663i \(-0.113024\pi\)
−0.0409063 + 0.999163i \(0.513024\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −41.3272 30.0260i −1.56763 1.13895i
\(696\) 0 0
\(697\) −11.6286 35.7893i −0.440466 1.35562i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 4.54301 13.9820i 0.171587 0.528091i −0.827874 0.560914i \(-0.810450\pi\)
0.999461 + 0.0328229i \(0.0104497\pi\)
\(702\) 0 0
\(703\) 11.3642i 0.428611i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 23.3960 + 7.60182i 0.879897 + 0.285896i
\(708\) 0 0
\(709\) −8.72312 + 6.33772i −0.327604 + 0.238018i −0.739413 0.673252i \(-0.764897\pi\)
0.411810 + 0.911270i \(0.364897\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −2.87241 + 3.95353i −0.107572 + 0.148061i
\(714\) 0 0
\(715\) −22.6961 15.8366i −0.848785 0.592254i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 30.1960 9.81128i 1.12612 0.365899i 0.314020 0.949416i \(-0.398324\pi\)
0.812101 + 0.583517i \(0.198324\pi\)
\(720\) 0 0
\(721\) −26.4860 36.4549i −0.986390 1.35765i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 33.7614 1.25387
\(726\) 0 0
\(727\) −23.6418 −0.876828 −0.438414 0.898773i \(-0.644460\pi\)
−0.438414 + 0.898773i \(0.644460\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −31.1493 42.8733i −1.15210 1.58573i
\(732\) 0 0
\(733\) 15.6206 5.07543i 0.576959 0.187465i −0.00597872 0.999982i \(-0.501903\pi\)
0.582938 + 0.812517i \(0.301903\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.82908 + 2.67181i 0.141046 + 0.0984172i
\(738\) 0 0
\(739\) −20.4813 + 28.1901i −0.753417 + 1.03699i 0.244316 + 0.969696i \(0.421437\pi\)
−0.997733 + 0.0672942i \(0.978563\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −42.7101 + 31.0307i −1.56688 + 1.13841i −0.636813 + 0.771019i \(0.719748\pi\)
−0.930068 + 0.367387i \(0.880252\pi\)
\(744\) 0 0
\(745\) 15.7180 + 5.10708i 0.575862 + 0.187109i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 19.3397i 0.706657i
\(750\) 0 0
\(751\) −15.8766 + 48.8631i −0.579345 + 1.78304i 0.0415382 + 0.999137i \(0.486774\pi\)
−0.620883 + 0.783903i \(0.713226\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −8.28421 25.4962i −0.301493 0.927900i
\(756\) 0 0
\(757\) 5.71877 + 4.15493i 0.207852 + 0.151013i 0.686841 0.726807i \(-0.258997\pi\)
−0.478989 + 0.877821i \(0.658997\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −23.5688 17.1238i −0.854370 0.620736i 0.0719775 0.997406i \(-0.477069\pi\)
−0.926347 + 0.376670i \(0.877069\pi\)
\(762\) 0 0
\(763\) −7.24287 22.2913i −0.262210 0.806998i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −0.0823407 + 0.253419i −0.00297315 + 0.00915042i
\(768\) 0 0
\(769\) 44.2408i 1.59536i 0.603079 + 0.797682i \(0.293940\pi\)
−0.603079 + 0.797682i \(0.706060\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −38.0786 12.3725i −1.36959 0.445007i −0.470358 0.882476i \(-0.655875\pi\)
−0.899234 + 0.437468i \(0.855875\pi\)
\(774\) 0 0
\(775\) 17.1266 12.4432i 0.615204 0.446972i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −9.47357 + 13.0393i −0.339426 + 0.467180i
\(780\) 0 0
\(781\) −0.228538 11.9680i −0.00817775 0.428250i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −8.48547 + 2.75709i −0.302859 + 0.0984049i
\(786\) 0 0
\(787\) 16.6720 + 22.9470i 0.594292 + 0.817973i 0.995171 0.0981579i \(-0.0312950\pi\)
−0.400878 + 0.916131i \(0.631295\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −31.0173 −1.10285
\(792\) 0 0
\(793\) −6.12332 −0.217446
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −8.78371 12.0897i −0.311135 0.428241i 0.624600 0.780945i \(-0.285262\pi\)
−0.935735 + 0.352704i \(0.885262\pi\)
\(798\) 0 0
\(799\) 32.7542 10.6425i 1.15876 0.376504i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −5.58339 1.69700i −0.197034 0.0598860i
\(804\) 0 0
\(805\) −3.81192 + 5.24666i −0.134352 + 0.184920i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −24.0892 + 17.5019i −0.846933 + 0.615333i −0.924299 0.381670i \(-0.875349\pi\)
0.0773660 + 0.997003i \(0.475349\pi\)
\(810\) 0 0
\(811\) −41.9856 13.6420i −1.47432 0.479034i −0.541906 0.840439i \(-0.682297\pi\)
−0.932409 + 0.361405i \(0.882297\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 23.0948i 0.808975i
\(816\) 0 0
\(817\) −7.01391 + 21.5866i −0.245386 + 0.755220i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.23760 + 3.80893i 0.0431924 + 0.132933i 0.970327 0.241795i \(-0.0777362\pi\)
−0.927135 + 0.374728i \(0.877736\pi\)
\(822\) 0 0
\(823\) 34.1262 + 24.7941i 1.18956 + 0.864268i 0.993218 0.116266i \(-0.0370926\pi\)
0.196345 + 0.980535i \(0.437093\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −21.5183 15.6340i −0.748266 0.543647i 0.147023 0.989133i \(-0.453031\pi\)
−0.895289 + 0.445486i \(0.853031\pi\)
\(828\) 0 0
\(829\) 3.77976 + 11.6329i 0.131276 + 0.404027i 0.994992 0.0999518i \(-0.0318689\pi\)
−0.863716 + 0.503979i \(0.831869\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.541343 + 1.66608i −0.0187564 + 0.0577264i
\(834\) 0 0
\(835\) 48.0560i 1.66305i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −9.17434 2.98092i −0.316733 0.102913i 0.146336 0.989235i \(-0.453252\pi\)
−0.463069 + 0.886322i \(0.653252\pi\)
\(840\) 0 0
\(841\) −50.2704 + 36.5236i −1.73346 + 1.25943i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −8.31793 + 11.4486i −0.286146 + 0.393846i
\(846\) 0 0
\(847\) −18.4906 23.5075i −0.635344 0.807727i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 4.61677 1.50008i 0.158261 0.0514221i
\(852\) 0 0
\(853\) −6.89976 9.49670i −0.236243 0.325161i 0.674391 0.738374i \(-0.264406\pi\)
−0.910634 + 0.413214i \(0.864406\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 48.7738 1.66608 0.833041 0.553212i \(-0.186598\pi\)
0.833041 + 0.553212i \(0.186598\pi\)
\(858\) 0 0
\(859\) 31.0880 1.06071 0.530355 0.847776i \(-0.322059\pi\)
0.530355 + 0.847776i \(0.322059\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 30.6459 + 42.1805i 1.04320 + 1.43584i 0.894559 + 0.446950i \(0.147490\pi\)
0.148641 + 0.988891i \(0.452510\pi\)
\(864\) 0 0
\(865\) −43.1325 + 14.0146i −1.46655 + 0.476511i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 22.3556 7.73868i 0.758361 0.262517i
\(870\) 0 0
\(871\) −2.36324 + 3.25272i −0.0800753 + 0.110214i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −9.40572 + 6.83366i −0.317971 + 0.231020i
\(876\) 0 0
\(877\) 16.1564 + 5.24952i 0.545561 + 0.177264i 0.568814 0.822466i \(-0.307402\pi\)
−0.0232530 + 0.999730i \(0.507402\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 50.3115i 1.69504i −0.530765 0.847519i \(-0.678095\pi\)
0.530765 0.847519i \(-0.321905\pi\)
\(882\) 0 0
\(883\) −4.44037 + 13.6660i −0.149430 + 0.459899i −0.997554 0.0698990i \(-0.977732\pi\)
0.848124 + 0.529798i \(0.177732\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 12.7625 + 39.2790i 0.428523 + 1.31886i 0.899580 + 0.436756i \(0.143873\pi\)
−0.471057 + 0.882103i \(0.656127\pi\)
\(888\) 0 0
\(889\) −6.34181 4.60760i −0.212698 0.154534i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −11.9335 8.67018i −0.399339 0.290136i
\(894\) 0 0
\(895\) 4.68529 + 14.4198i 0.156612 + 0.482002i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −17.6592 + 54.3495i −0.588968 + 1.81266i
\(900\) 0 0
\(901\) 46.6547i 1.55429i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −14.7614 4.79627i −0.490685 0.159433i
\(906\) 0 0
\(907\) −21.1288 + 15.3510i −0.701571 + 0.509721i −0.880444 0.474151i \(-0.842755\pi\)
0.178872 + 0.983872i \(0.442755\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 26.6929 36.7397i 0.884377 1.21724i −0.0908128 0.995868i \(-0.528946\pi\)
0.975189 0.221372i \(-0.0710535\pi\)
\(912\) 0 0
\(913\) −25.9787 + 0.496082i −0.859769 + 0.0164179i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5.43431 1.76572i 0.179457 0.0583091i
\(918\) 0 0
\(919\) 16.3737 + 22.5365i 0.540119 + 0.743410i 0.988630 0.150367i \(-0.0480456\pi\)
−0.448511 + 0.893777i \(0.648046\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 10.3076 0.339280
\(924\) 0 0
\(925\) −21.0289 −0.691427
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −29.2450 40.2523i −0.959497 1.32063i −0.947178 0.320710i \(-0.896079\pi\)
−0.0123191 0.999924i \(-0.503921\pi\)
\(930\) 0 0
\(931\) 0.713584 0.231857i 0.0233868 0.00759882i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −26.0789 34.4901i −0.852872 1.12795i
\(936\) 0 0
\(937\) 11.9943 16.5087i 0.391837 0.539317i −0.566835 0.823831i \(-0.691832\pi\)
0.958672 + 0.284514i \(0.0918323\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −14.1929 + 10.3117i −0.462675 + 0.336153i −0.794580 0.607160i \(-0.792309\pi\)
0.331904 + 0.943313i \(0.392309\pi\)
\(942\) 0 0
\(943\) 6.54776 + 2.12750i 0.213224 + 0.0692808i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 47.0672i 1.52948i −0.644340 0.764739i \(-0.722868\pi\)
0.644340 0.764739i \(-0.277132\pi\)
\(948\) 0 0
\(949\) 1.55283 4.77911i 0.0504069 0.155136i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 15.9545 + 49.1029i 0.516817 + 1.59060i 0.779952 + 0.625839i \(0.215243\pi\)
−0.263136 + 0.964759i \(0.584757\pi\)
\(954\) 0 0
\(955\) 25.7637 + 18.7185i 0.833695 + 0.605715i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −11.1612 8.10907i −0.360413 0.261855i
\(960\) 0 0
\(961\) 1.49341 + 4.59623i 0.0481744 + 0.148266i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −13.8738 + 42.6991i −0.446613 + 1.37453i
\(966\) 0 0
\(967\) 33.6964i 1.08360i −0.840506 0.541802i \(-0.817742\pi\)
0.840506 0.541802i \(-0.182258\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 53.1467 + 17.2684i 1.70556 + 0.554170i 0.989584 0.143955i \(-0.0459822\pi\)
0.715976 + 0.698125i \(0.245982\pi\)
\(972\) 0 0
\(973\) 38.4588 27.9419i 1.23293 0.895777i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −12.1432 + 16.7137i −0.388496 + 0.534719i −0.957810 0.287401i \(-0.907209\pi\)
0.569314 + 0.822120i \(0.307209\pi\)
\(978\) 0 0
\(979\) 3.92539 5.62565i 0.125456 0.179797i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −47.6740 + 15.4902i −1.52056 + 0.494061i −0.945936 0.324354i \(-0.894853\pi\)
−0.574628 + 0.818415i \(0.694853\pi\)
\(984\) 0 0
\(985\) 12.4362 + 17.1169i 0.396249 + 0.545390i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 9.69548 0.308298
\(990\) 0 0
\(991\) −45.3068 −1.43922 −0.719609 0.694379i \(-0.755679\pi\)
−0.719609 + 0.694379i \(0.755679\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 19.5307 + 26.8817i 0.619164 + 0.852206i
\(996\) 0 0
\(997\) 9.77676 3.17666i 0.309633 0.100606i −0.150079 0.988674i \(-0.547953\pi\)
0.459712 + 0.888068i \(0.347953\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1584.2.cd.c.161.3 16
3.2 odd 2 inner 1584.2.cd.c.161.2 16
4.3 odd 2 99.2.j.a.62.3 yes 16
11.8 odd 10 inner 1584.2.cd.c.305.2 16
12.11 even 2 99.2.j.a.62.2 yes 16
33.8 even 10 inner 1584.2.cd.c.305.3 16
36.7 odd 6 891.2.u.c.458.3 32
36.11 even 6 891.2.u.c.458.2 32
36.23 even 6 891.2.u.c.755.3 32
36.31 odd 6 891.2.u.c.755.2 32
44.19 even 10 99.2.j.a.8.2 16
44.27 odd 10 1089.2.d.g.1088.7 16
44.39 even 10 1089.2.d.g.1088.9 16
132.71 even 10 1089.2.d.g.1088.10 16
132.83 odd 10 1089.2.d.g.1088.8 16
132.107 odd 10 99.2.j.a.8.3 yes 16
396.151 even 30 891.2.u.c.701.3 32
396.239 odd 30 891.2.u.c.107.3 32
396.283 even 30 891.2.u.c.107.2 32
396.371 odd 30 891.2.u.c.701.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.j.a.8.2 16 44.19 even 10
99.2.j.a.8.3 yes 16 132.107 odd 10
99.2.j.a.62.2 yes 16 12.11 even 2
99.2.j.a.62.3 yes 16 4.3 odd 2
891.2.u.c.107.2 32 396.283 even 30
891.2.u.c.107.3 32 396.239 odd 30
891.2.u.c.458.2 32 36.11 even 6
891.2.u.c.458.3 32 36.7 odd 6
891.2.u.c.701.2 32 396.371 odd 30
891.2.u.c.701.3 32 396.151 even 30
891.2.u.c.755.2 32 36.31 odd 6
891.2.u.c.755.3 32 36.23 even 6
1089.2.d.g.1088.7 16 44.27 odd 10
1089.2.d.g.1088.8 16 132.83 odd 10
1089.2.d.g.1088.9 16 44.39 even 10
1089.2.d.g.1088.10 16 132.71 even 10
1584.2.cd.c.161.2 16 3.2 odd 2 inner
1584.2.cd.c.161.3 16 1.1 even 1 trivial
1584.2.cd.c.305.2 16 11.8 odd 10 inner
1584.2.cd.c.305.3 16 33.8 even 10 inner