Properties

Label 891.2.u.c.755.3
Level $891$
Weight $2$
Character 891.755
Analytic conductor $7.115$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(107,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([5, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.107");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.u (of order \(30\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{30})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 755.3
Character \(\chi\) \(=\) 891.755
Dual form 891.2.u.c.701.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.231744 - 0.103179i) q^{2} +(-1.29520 + 1.43847i) q^{4} +(-1.18837 + 2.66913i) q^{5} +(-0.565298 + 2.65952i) q^{7} +(-0.308515 + 0.949513i) q^{8} +0.741170i q^{10} +(-3.00358 + 1.40659i) q^{11} +(2.84032 + 0.298529i) q^{13} +(0.143402 + 0.674654i) q^{14} +(-0.378188 - 3.59821i) q^{16} +(3.60998 - 2.62280i) q^{17} +(-1.81761 - 0.590579i) q^{19} +(-2.30027 - 5.16650i) q^{20} +(-0.550930 + 0.635876i) q^{22} +(-0.706997 + 0.408185i) q^{23} +(-2.36637 - 2.62812i) q^{25} +(0.689029 - 0.223879i) q^{26} +(-3.09345 - 4.25777i) q^{28} +(-9.33798 - 1.98485i) q^{29} +(0.625712 - 5.95326i) q^{31} +(-1.45728 - 2.52408i) q^{32} +(0.565973 - 0.980294i) q^{34} +(-6.42681 - 4.66935i) q^{35} +(1.83750 + 5.65524i) q^{37} +(-0.482157 + 0.0506767i) q^{38} +(-2.16774 - 1.95184i) q^{40} +(-8.24905 + 1.75339i) q^{41} +(10.2852 + 5.93817i) q^{43} +(1.86690 - 6.14238i) q^{44} +(-0.121726 + 0.167542i) q^{46} +(5.73571 - 5.16446i) q^{47} +(-0.358652 - 0.159682i) q^{49} +(-0.819560 - 0.364891i) q^{50} +(-4.10821 + 3.69905i) q^{52} +(-6.14564 + 8.45874i) q^{53} +(-0.185009 - 9.68851i) q^{55} +(-2.35084 - 1.35726i) q^{56} +(-2.36882 + 0.503507i) q^{58} +(-0.0693351 - 0.0624296i) q^{59} +(-2.13230 + 0.224114i) q^{61} +(-0.469246 - 1.44419i) q^{62} +(5.25595 + 3.81867i) q^{64} +(-4.17217 + 7.22641i) q^{65} +(0.703892 + 1.21918i) q^{67} +(-0.902835 + 8.58990i) q^{68} +(-1.97115 - 0.418982i) q^{70} +(-2.12141 - 2.91987i) q^{71} +(-1.67338 + 0.543714i) q^{73} +(1.00933 + 1.12098i) q^{74} +(3.20371 - 1.84966i) q^{76} +(-2.04294 - 8.78322i) q^{77} +(-2.90121 - 6.51621i) q^{79} +(10.0535 + 3.26659i) q^{80} +(-1.73075 + 1.25747i) q^{82} +(-0.818907 - 7.79138i) q^{83} +(2.71060 + 12.7524i) q^{85} +(2.99623 + 0.314916i) q^{86} +(-0.408929 - 3.28589i) q^{88} +2.06830i q^{89} +(-2.39957 + 7.38512i) q^{91} +(0.328543 - 1.54567i) q^{92} +(0.796353 - 1.78864i) q^{94} +(3.73634 - 4.14962i) q^{95} +(1.52602 - 0.679428i) q^{97} -0.0995913 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{4} + 20 q^{16} + 48 q^{22} + 32 q^{25} + 80 q^{28} - 16 q^{31} - 40 q^{34} - 24 q^{37} - 60 q^{40} - 80 q^{46} + 24 q^{49} + 40 q^{52} + 32 q^{55} - 12 q^{58} + 72 q^{64} - 96 q^{67} - 76 q^{70}+ \cdots - 60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.231744 0.103179i 0.163868 0.0729586i −0.323164 0.946343i \(-0.604746\pi\)
0.487031 + 0.873384i \(0.338080\pi\)
\(3\) 0 0
\(4\) −1.29520 + 1.43847i −0.647601 + 0.719234i
\(5\) −1.18837 + 2.66913i −0.531457 + 1.19367i 0.425902 + 0.904769i \(0.359957\pi\)
−0.957359 + 0.288902i \(0.906710\pi\)
\(6\) 0 0
\(7\) −0.565298 + 2.65952i −0.213662 + 1.00520i 0.732314 + 0.680967i \(0.238440\pi\)
−0.945976 + 0.324236i \(0.894893\pi\)
\(8\) −0.308515 + 0.949513i −0.109077 + 0.335704i
\(9\) 0 0
\(10\) 0.741170i 0.234379i
\(11\) −3.00358 + 1.40659i −0.905613 + 0.424104i
\(12\) 0 0
\(13\) 2.84032 + 0.298529i 0.787762 + 0.0827972i 0.489862 0.871800i \(-0.337047\pi\)
0.297900 + 0.954597i \(0.403714\pi\)
\(14\) 0.143402 + 0.674654i 0.0383258 + 0.180309i
\(15\) 0 0
\(16\) −0.378188 3.59821i −0.0945469 0.899554i
\(17\) 3.60998 2.62280i 0.875549 0.636124i −0.0565211 0.998401i \(-0.518001\pi\)
0.932070 + 0.362278i \(0.118001\pi\)
\(18\) 0 0
\(19\) −1.81761 0.590579i −0.416989 0.135488i 0.0930053 0.995666i \(-0.470353\pi\)
−0.509995 + 0.860178i \(0.670353\pi\)
\(20\) −2.30027 5.16650i −0.514357 1.15526i
\(21\) 0 0
\(22\) −0.550930 + 0.635876i −0.117459 + 0.135569i
\(23\) −0.706997 + 0.408185i −0.147419 + 0.0851124i −0.571895 0.820327i \(-0.693792\pi\)
0.424476 + 0.905439i \(0.360458\pi\)
\(24\) 0 0
\(25\) −2.36637 2.62812i −0.473274 0.525624i
\(26\) 0.689029 0.223879i 0.135130 0.0439063i
\(27\) 0 0
\(28\) −3.09345 4.25777i −0.584608 0.804644i
\(29\) −9.33798 1.98485i −1.73402 0.368577i −0.770755 0.637131i \(-0.780121\pi\)
−0.963265 + 0.268554i \(0.913454\pi\)
\(30\) 0 0
\(31\) 0.625712 5.95326i 0.112381 1.06924i −0.782414 0.622759i \(-0.786012\pi\)
0.894795 0.446477i \(-0.147322\pi\)
\(32\) −1.45728 2.52408i −0.257613 0.446199i
\(33\) 0 0
\(34\) 0.565973 0.980294i 0.0970635 0.168119i
\(35\) −6.42681 4.66935i −1.08633 0.789265i
\(36\) 0 0
\(37\) 1.83750 + 5.65524i 0.302083 + 0.929717i 0.980750 + 0.195270i \(0.0625583\pi\)
−0.678666 + 0.734447i \(0.737442\pi\)
\(38\) −0.482157 + 0.0506767i −0.0782161 + 0.00822085i
\(39\) 0 0
\(40\) −2.16774 1.95184i −0.342750 0.308614i
\(41\) −8.24905 + 1.75339i −1.28829 + 0.273833i −0.800607 0.599190i \(-0.795489\pi\)
−0.487678 + 0.873023i \(0.662156\pi\)
\(42\) 0 0
\(43\) 10.2852 + 5.93817i 1.56848 + 0.905562i 0.996347 + 0.0854008i \(0.0272171\pi\)
0.572133 + 0.820161i \(0.306116\pi\)
\(44\) 1.86690 6.14238i 0.281446 0.925998i
\(45\) 0 0
\(46\) −0.121726 + 0.167542i −0.0179475 + 0.0247027i
\(47\) 5.73571 5.16446i 0.836640 0.753314i −0.134731 0.990882i \(-0.543017\pi\)
0.971371 + 0.237569i \(0.0763504\pi\)
\(48\) 0 0
\(49\) −0.358652 0.159682i −0.0512360 0.0228117i
\(50\) −0.819560 0.364891i −0.115903 0.0516034i
\(51\) 0 0
\(52\) −4.10821 + 3.69905i −0.569706 + 0.512966i
\(53\) −6.14564 + 8.45874i −0.844168 + 1.16190i 0.140950 + 0.990017i \(0.454984\pi\)
−0.985118 + 0.171881i \(0.945016\pi\)
\(54\) 0 0
\(55\) −0.185009 9.68851i −0.0249466 1.30640i
\(56\) −2.35084 1.35726i −0.314145 0.181371i
\(57\) 0 0
\(58\) −2.36882 + 0.503507i −0.311041 + 0.0661138i
\(59\) −0.0693351 0.0624296i −0.00902666 0.00812765i 0.664605 0.747195i \(-0.268600\pi\)
−0.673632 + 0.739067i \(0.735267\pi\)
\(60\) 0 0
\(61\) −2.13230 + 0.224114i −0.273013 + 0.0286949i −0.240046 0.970762i \(-0.577162\pi\)
−0.0329676 + 0.999456i \(0.510496\pi\)
\(62\) −0.469246 1.44419i −0.0595943 0.183412i
\(63\) 0 0
\(64\) 5.25595 + 3.81867i 0.656994 + 0.477334i
\(65\) −4.17217 + 7.22641i −0.517494 + 0.896326i
\(66\) 0 0
\(67\) 0.703892 + 1.21918i 0.0859941 + 0.148946i 0.905814 0.423675i \(-0.139260\pi\)
−0.819820 + 0.572621i \(0.805927\pi\)
\(68\) −0.902835 + 8.58990i −0.109485 + 1.04168i
\(69\) 0 0
\(70\) −1.97115 0.418982i −0.235598 0.0500779i
\(71\) −2.12141 2.91987i −0.251765 0.346525i 0.664363 0.747410i \(-0.268703\pi\)
−0.916128 + 0.400885i \(0.868703\pi\)
\(72\) 0 0
\(73\) −1.67338 + 0.543714i −0.195854 + 0.0636369i −0.405302 0.914183i \(-0.632833\pi\)
0.209447 + 0.977820i \(0.432833\pi\)
\(74\) 1.00933 + 1.12098i 0.117333 + 0.130311i
\(75\) 0 0
\(76\) 3.20371 1.84966i 0.367490 0.212171i
\(77\) −2.04294 8.78322i −0.232815 1.00094i
\(78\) 0 0
\(79\) −2.90121 6.51621i −0.326411 0.733131i 0.673571 0.739123i \(-0.264760\pi\)
−0.999982 + 0.00599118i \(0.998093\pi\)
\(80\) 10.0535 + 3.26659i 1.12402 + 0.365216i
\(81\) 0 0
\(82\) −1.73075 + 1.25747i −0.191130 + 0.138864i
\(83\) −0.818907 7.79138i −0.0898867 0.855215i −0.942844 0.333234i \(-0.891860\pi\)
0.852957 0.521981i \(-0.174807\pi\)
\(84\) 0 0
\(85\) 2.71060 + 12.7524i 0.294006 + 1.38319i
\(86\) 2.99623 + 0.314916i 0.323092 + 0.0339583i
\(87\) 0 0
\(88\) −0.408929 3.28589i −0.0435919 0.350278i
\(89\) 2.06830i 0.219240i 0.993974 + 0.109620i \(0.0349633\pi\)
−0.993974 + 0.109620i \(0.965037\pi\)
\(90\) 0 0
\(91\) −2.39957 + 7.38512i −0.251543 + 0.774171i
\(92\) 0.328543 1.54567i 0.0342530 0.161148i
\(93\) 0 0
\(94\) 0.796353 1.78864i 0.0821375 0.184484i
\(95\) 3.73634 4.14962i 0.383340 0.425742i
\(96\) 0 0
\(97\) 1.52602 0.679428i 0.154944 0.0689855i −0.327800 0.944747i \(-0.606307\pi\)
0.482743 + 0.875762i \(0.339640\pi\)
\(98\) −0.0995913 −0.0100602
\(99\) 0 0
\(100\) 6.84540 0.684540
\(101\) −8.26546 + 3.68002i −0.822444 + 0.366176i −0.774421 0.632671i \(-0.781959\pi\)
−0.0480230 + 0.998846i \(0.515292\pi\)
\(102\) 0 0
\(103\) −11.0895 + 12.3161i −1.09268 + 1.21354i −0.117276 + 0.993099i \(0.537416\pi\)
−0.975400 + 0.220441i \(0.929250\pi\)
\(104\) −1.15974 + 2.60482i −0.113722 + 0.255423i
\(105\) 0 0
\(106\) −0.551449 + 2.59436i −0.0535615 + 0.251987i
\(107\) −2.19803 + 6.76484i −0.212492 + 0.653982i 0.786830 + 0.617169i \(0.211721\pi\)
−0.999322 + 0.0368130i \(0.988279\pi\)
\(108\) 0 0
\(109\) 8.62045i 0.825690i 0.910801 + 0.412845i \(0.135465\pi\)
−0.910801 + 0.412845i \(0.864535\pi\)
\(110\) −1.04253 2.22616i −0.0994009 0.212256i
\(111\) 0 0
\(112\) 9.78330 + 1.02827i 0.924435 + 0.0971620i
\(113\) 2.37183 + 11.1586i 0.223123 + 1.04971i 0.936970 + 0.349410i \(0.113618\pi\)
−0.713847 + 0.700302i \(0.753049\pi\)
\(114\) 0 0
\(115\) −0.249322 2.37214i −0.0232494 0.221203i
\(116\) 14.9497 10.8616i 1.38805 1.00847i
\(117\) 0 0
\(118\) −0.0225094 0.00731376i −0.00207216 0.000673286i
\(119\) 4.93468 + 11.0835i 0.452361 + 1.01602i
\(120\) 0 0
\(121\) 7.04299 8.44964i 0.640271 0.768149i
\(122\) −0.471024 + 0.271946i −0.0426445 + 0.0246208i
\(123\) 0 0
\(124\) 7.75314 + 8.61073i 0.696253 + 0.773267i
\(125\) −4.06670 + 1.32135i −0.363737 + 0.118185i
\(126\) 0 0
\(127\) −1.69463 2.33246i −0.150374 0.206973i 0.727184 0.686443i \(-0.240829\pi\)
−0.877558 + 0.479470i \(0.840829\pi\)
\(128\) 7.31378 + 1.55459i 0.646453 + 0.137408i
\(129\) 0 0
\(130\) −0.221261 + 2.10516i −0.0194059 + 0.184635i
\(131\) 1.05078 + 1.82000i 0.0918067 + 0.159014i 0.908271 0.418382i \(-0.137402\pi\)
−0.816465 + 0.577395i \(0.804069\pi\)
\(132\) 0 0
\(133\) 2.59815 4.50013i 0.225288 0.390210i
\(134\) 0.288916 + 0.209910i 0.0249586 + 0.0181335i
\(135\) 0 0
\(136\) 1.37665 + 4.23690i 0.118047 + 0.363311i
\(137\) 5.04624 0.530382i 0.431130 0.0453136i 0.113521 0.993536i \(-0.463787\pi\)
0.317608 + 0.948222i \(0.397120\pi\)
\(138\) 0 0
\(139\) −12.9931 11.6990i −1.10206 0.992299i −0.102063 0.994778i \(-0.532544\pi\)
−0.999997 + 0.00247849i \(0.999211\pi\)
\(140\) 15.0407 3.19701i 1.27117 0.270196i
\(141\) 0 0
\(142\) −0.792894 0.457777i −0.0665382 0.0384158i
\(143\) −8.95103 + 3.09852i −0.748523 + 0.259111i
\(144\) 0 0
\(145\) 16.3948 22.5656i 1.36152 1.87397i
\(146\) −0.331696 + 0.298660i −0.0274513 + 0.0247173i
\(147\) 0 0
\(148\) −10.5148 4.68150i −0.864313 0.384817i
\(149\) 5.16750 + 2.30072i 0.423338 + 0.188482i 0.607337 0.794444i \(-0.292238\pi\)
−0.183999 + 0.982926i \(0.558904\pi\)
\(150\) 0 0
\(151\) −6.81871 + 6.13960i −0.554899 + 0.499633i −0.898197 0.439593i \(-0.855123\pi\)
0.343298 + 0.939227i \(0.388456\pi\)
\(152\) 1.12152 1.54365i 0.0909677 0.125206i
\(153\) 0 0
\(154\) −1.37968 1.82467i −0.111178 0.147036i
\(155\) 15.1464 + 8.74480i 1.21659 + 0.702399i
\(156\) 0 0
\(157\) 2.98699 0.634905i 0.238388 0.0506709i −0.0871683 0.996194i \(-0.527782\pi\)
0.325556 + 0.945523i \(0.394448\pi\)
\(158\) −1.34467 1.21075i −0.106977 0.0963221i
\(159\) 0 0
\(160\) 8.46890 0.890117i 0.669525 0.0703699i
\(161\) −0.685911 2.11102i −0.0540573 0.166371i
\(162\) 0 0
\(163\) −6.39488 4.64615i −0.500885 0.363914i 0.308470 0.951234i \(-0.400183\pi\)
−0.809355 + 0.587320i \(0.800183\pi\)
\(164\) 8.16199 14.1370i 0.637344 1.10391i
\(165\) 0 0
\(166\) −0.993684 1.72111i −0.0771248 0.133584i
\(167\) 1.71926 16.3577i 0.133041 1.26580i −0.700626 0.713529i \(-0.747096\pi\)
0.833667 0.552268i \(-0.186237\pi\)
\(168\) 0 0
\(169\) −4.73763 1.00701i −0.364433 0.0774627i
\(170\) 1.94394 + 2.67561i 0.149094 + 0.205210i
\(171\) 0 0
\(172\) −21.8633 + 7.10381i −1.66706 + 0.541660i
\(173\) 10.3865 + 11.5354i 0.789673 + 0.877020i 0.994814 0.101712i \(-0.0324321\pi\)
−0.205141 + 0.978732i \(0.565765\pi\)
\(174\) 0 0
\(175\) 8.32724 4.80773i 0.629480 0.363431i
\(176\) 6.19714 + 10.2756i 0.467127 + 0.774550i
\(177\) 0 0
\(178\) 0.213405 + 0.479317i 0.0159954 + 0.0359263i
\(179\) 4.93538 + 1.60360i 0.368888 + 0.119859i 0.487594 0.873071i \(-0.337875\pi\)
−0.118706 + 0.992929i \(0.537875\pi\)
\(180\) 0 0
\(181\) −4.29773 + 3.12248i −0.319448 + 0.232092i −0.735940 0.677047i \(-0.763259\pi\)
0.416492 + 0.909139i \(0.363259\pi\)
\(182\) 0.205904 + 1.95904i 0.0152626 + 0.145214i
\(183\) 0 0
\(184\) −0.169457 0.797234i −0.0124926 0.0587729i
\(185\) −17.2782 1.81601i −1.27032 0.133516i
\(186\) 0 0
\(187\) −7.15364 + 12.9556i −0.523126 + 0.947406i
\(188\) 14.9396i 1.08959i
\(189\) 0 0
\(190\) 0.437719 1.34716i 0.0317555 0.0977334i
\(191\) −2.26616 + 10.6614i −0.163974 + 0.771435i 0.816898 + 0.576782i \(0.195692\pi\)
−0.980872 + 0.194654i \(0.937642\pi\)
\(192\) 0 0
\(193\) 6.25009 14.0379i 0.449891 1.01047i −0.536173 0.844108i \(-0.680131\pi\)
0.986064 0.166364i \(-0.0532028\pi\)
\(194\) 0.283543 0.314907i 0.0203572 0.0226090i
\(195\) 0 0
\(196\) 0.694224 0.309089i 0.0495875 0.0220778i
\(197\) −7.24149 −0.515935 −0.257967 0.966154i \(-0.583053\pi\)
−0.257967 + 0.966154i \(0.583053\pi\)
\(198\) 0 0
\(199\) −11.3726 −0.806181 −0.403090 0.915160i \(-0.632064\pi\)
−0.403090 + 0.915160i \(0.632064\pi\)
\(200\) 3.22550 1.43608i 0.228077 0.101547i
\(201\) 0 0
\(202\) −1.53577 + 1.70564i −0.108056 + 0.120009i
\(203\) 10.5575 23.7125i 0.740990 1.66429i
\(204\) 0 0
\(205\) 5.12293 24.1015i 0.357801 1.68332i
\(206\) −1.29915 + 3.99838i −0.0905162 + 0.278580i
\(207\) 0 0
\(208\) 10.3330i 0.716463i
\(209\) 6.29006 0.782796i 0.435092 0.0541471i
\(210\) 0 0
\(211\) 3.67797 + 0.386570i 0.253202 + 0.0266126i 0.230279 0.973125i \(-0.426036\pi\)
0.0229227 + 0.999737i \(0.492703\pi\)
\(212\) −4.20779 19.7961i −0.288992 1.35960i
\(213\) 0 0
\(214\) 0.188610 + 1.79450i 0.0128931 + 0.122670i
\(215\) −28.0724 + 20.3958i −1.91452 + 1.39098i
\(216\) 0 0
\(217\) 15.4791 + 5.02946i 1.05079 + 0.341422i
\(218\) 0.889450 + 1.99774i 0.0602412 + 0.135304i
\(219\) 0 0
\(220\) 14.1762 + 12.2824i 0.955761 + 0.828082i
\(221\) 11.0365 6.37191i 0.742394 0.428621i
\(222\) 0 0
\(223\) −0.189514 0.210476i −0.0126908 0.0140945i 0.736766 0.676148i \(-0.236352\pi\)
−0.749457 + 0.662053i \(0.769685\pi\)
\(224\) 7.53664 2.44880i 0.503563 0.163618i
\(225\) 0 0
\(226\) 1.70099 + 2.34121i 0.113148 + 0.155735i
\(227\) 17.8570 + 3.79563i 1.18521 + 0.251925i 0.758017 0.652235i \(-0.226168\pi\)
0.427195 + 0.904159i \(0.359502\pi\)
\(228\) 0 0
\(229\) −2.75702 + 26.2313i −0.182189 + 1.73342i 0.396647 + 0.917971i \(0.370174\pi\)
−0.578836 + 0.815444i \(0.696493\pi\)
\(230\) −0.302534 0.524005i −0.0199485 0.0345519i
\(231\) 0 0
\(232\) 4.76555 8.25418i 0.312874 0.541914i
\(233\) 8.73916 + 6.34937i 0.572521 + 0.415961i 0.836020 0.548699i \(-0.184877\pi\)
−0.263499 + 0.964660i \(0.584877\pi\)
\(234\) 0 0
\(235\) 6.96844 + 21.4467i 0.454571 + 1.39903i
\(236\) 0.179606 0.0188773i 0.0116914 0.00122881i
\(237\) 0 0
\(238\) 2.28716 + 2.05937i 0.148255 + 0.133489i
\(239\) −7.26110 + 1.54340i −0.469682 + 0.0998339i −0.436671 0.899621i \(-0.643843\pi\)
−0.0330103 + 0.999455i \(0.510509\pi\)
\(240\) 0 0
\(241\) −2.31118 1.33436i −0.148876 0.0859539i 0.423711 0.905797i \(-0.360727\pi\)
−0.572588 + 0.819843i \(0.694060\pi\)
\(242\) 0.760344 2.68484i 0.0488767 0.172588i
\(243\) 0 0
\(244\) 2.43938 3.35752i 0.156165 0.214943i
\(245\) 0.852425 0.767527i 0.0544594 0.0490355i
\(246\) 0 0
\(247\) −4.98630 2.22004i −0.317271 0.141258i
\(248\) 5.45965 + 2.43079i 0.346688 + 0.154356i
\(249\) 0 0
\(250\) −0.806098 + 0.725814i −0.0509821 + 0.0459045i
\(251\) 14.2630 19.6313i 0.900271 1.23912i −0.0701107 0.997539i \(-0.522335\pi\)
0.970382 0.241577i \(-0.0776647\pi\)
\(252\) 0 0
\(253\) 1.54937 2.22047i 0.0974081 0.139600i
\(254\) −0.633383 0.365684i −0.0397420 0.0229450i
\(255\) 0 0
\(256\) −10.8542 + 2.30712i −0.678385 + 0.144195i
\(257\) 12.4522 + 11.2120i 0.776747 + 0.699386i 0.958856 0.283892i \(-0.0916259\pi\)
−0.182110 + 0.983278i \(0.558293\pi\)
\(258\) 0 0
\(259\) −16.0790 + 1.68997i −0.999098 + 0.105009i
\(260\) −4.99116 15.3612i −0.309538 0.952661i
\(261\) 0 0
\(262\) 0.431296 + 0.313355i 0.0266456 + 0.0193591i
\(263\) −5.45728 + 9.45229i −0.336511 + 0.582853i −0.983774 0.179413i \(-0.942580\pi\)
0.647263 + 0.762267i \(0.275913\pi\)
\(264\) 0 0
\(265\) −15.2742 26.4557i −0.938285 1.62516i
\(266\) 0.137787 1.31095i 0.00844823 0.0803796i
\(267\) 0 0
\(268\) −2.66543 0.566555i −0.162817 0.0346078i
\(269\) 9.22041 + 12.6908i 0.562178 + 0.773772i 0.991601 0.129331i \(-0.0412830\pi\)
−0.429423 + 0.903103i \(0.641283\pi\)
\(270\) 0 0
\(271\) −2.76289 + 0.897717i −0.167834 + 0.0545324i −0.391728 0.920081i \(-0.628123\pi\)
0.223895 + 0.974613i \(0.428123\pi\)
\(272\) −10.8027 11.9976i −0.655008 0.727460i
\(273\) 0 0
\(274\) 1.11471 0.643579i 0.0673422 0.0388801i
\(275\) 10.8043 + 4.56525i 0.651523 + 0.275295i
\(276\) 0 0
\(277\) 8.58823 + 19.2895i 0.516017 + 1.15899i 0.964230 + 0.265066i \(0.0853938\pi\)
−0.448213 + 0.893927i \(0.647939\pi\)
\(278\) −4.21817 1.37057i −0.252989 0.0822011i
\(279\) 0 0
\(280\) 6.41638 4.66177i 0.383452 0.278594i
\(281\) −0.323031 3.07343i −0.0192704 0.183346i 0.980653 0.195756i \(-0.0627161\pi\)
−0.999923 + 0.0124107i \(0.996049\pi\)
\(282\) 0 0
\(283\) 4.66236 + 21.9347i 0.277148 + 1.30388i 0.867784 + 0.496942i \(0.165544\pi\)
−0.590635 + 0.806939i \(0.701123\pi\)
\(284\) 6.94780 + 0.730243i 0.412276 + 0.0433319i
\(285\) 0 0
\(286\) −1.75465 + 1.64162i −0.103754 + 0.0970711i
\(287\) 22.9297i 1.35350i
\(288\) 0 0
\(289\) 0.899570 2.76859i 0.0529159 0.162858i
\(290\) 1.47111 6.92103i 0.0863866 0.406417i
\(291\) 0 0
\(292\) 1.38525 3.11132i 0.0810656 0.182076i
\(293\) −13.8784 + 15.4135i −0.810784 + 0.900467i −0.996623 0.0821129i \(-0.973833\pi\)
0.185839 + 0.982580i \(0.440500\pi\)
\(294\) 0 0
\(295\) 0.249029 0.110875i 0.0144990 0.00645538i
\(296\) −5.93663 −0.345059
\(297\) 0 0
\(298\) 1.43492 0.0831229
\(299\) −2.12995 + 0.948315i −0.123178 + 0.0548425i
\(300\) 0 0
\(301\) −21.6069 + 23.9969i −1.24540 + 1.38316i
\(302\) −0.946718 + 2.12636i −0.0544775 + 0.122358i
\(303\) 0 0
\(304\) −1.43763 + 6.76352i −0.0824537 + 0.387914i
\(305\) 1.93578 5.95772i 0.110843 0.341138i
\(306\) 0 0
\(307\) 15.0077i 0.856533i −0.903652 0.428267i \(-0.859124\pi\)
0.903652 0.428267i \(-0.140876\pi\)
\(308\) 15.2804 + 8.43733i 0.870681 + 0.480762i
\(309\) 0 0
\(310\) 4.41237 + 0.463759i 0.250606 + 0.0263398i
\(311\) −0.428093 2.01402i −0.0242749 0.114205i 0.964342 0.264659i \(-0.0852595\pi\)
−0.988617 + 0.150455i \(0.951926\pi\)
\(312\) 0 0
\(313\) 2.59989 + 24.7363i 0.146954 + 1.39818i 0.780831 + 0.624743i \(0.214796\pi\)
−0.633876 + 0.773435i \(0.718537\pi\)
\(314\) 0.626709 0.455330i 0.0353672 0.0256958i
\(315\) 0 0
\(316\) 13.1310 + 4.26652i 0.738677 + 0.240011i
\(317\) −0.176006 0.395317i −0.00988551 0.0222032i 0.908535 0.417808i \(-0.137202\pi\)
−0.918421 + 0.395605i \(0.870535\pi\)
\(318\) 0 0
\(319\) 30.8393 7.17310i 1.72667 0.401617i
\(320\) −16.4386 + 9.49081i −0.918944 + 0.530553i
\(321\) 0 0
\(322\) −0.376768 0.418444i −0.0209965 0.0233190i
\(323\) −8.11053 + 2.63527i −0.451282 + 0.146630i
\(324\) 0 0
\(325\) −5.93668 8.17113i −0.329308 0.453253i
\(326\) −1.96136 0.416900i −0.108630 0.0230899i
\(327\) 0 0
\(328\) 0.880093 8.37353i 0.0485950 0.462351i
\(329\) 10.4926 + 18.1737i 0.578475 + 1.00195i
\(330\) 0 0
\(331\) 8.65452 14.9901i 0.475696 0.823929i −0.523917 0.851769i \(-0.675530\pi\)
0.999612 + 0.0278406i \(0.00886309\pi\)
\(332\) 12.2683 + 8.91344i 0.673310 + 0.489189i
\(333\) 0 0
\(334\) −1.28934 3.96819i −0.0705497 0.217130i
\(335\) −4.09063 + 0.429943i −0.223495 + 0.0234903i
\(336\) 0 0
\(337\) −18.6269 16.7717i −1.01467 0.913613i −0.0183933 0.999831i \(-0.505855\pi\)
−0.996276 + 0.0862182i \(0.972522\pi\)
\(338\) −1.20182 + 0.255455i −0.0653704 + 0.0138949i
\(339\) 0 0
\(340\) −21.8547 12.6178i −1.18524 0.684296i
\(341\) 6.49444 + 18.7612i 0.351694 + 1.01598i
\(342\) 0 0
\(343\) −10.5596 + 14.5341i −0.570166 + 0.784766i
\(344\) −8.81151 + 7.93392i −0.475085 + 0.427768i
\(345\) 0 0
\(346\) 3.59723 + 1.60159i 0.193388 + 0.0861019i
\(347\) −19.0684 8.48980i −1.02365 0.455756i −0.174916 0.984583i \(-0.555965\pi\)
−0.848730 + 0.528827i \(0.822632\pi\)
\(348\) 0 0
\(349\) 13.3919 12.0581i 0.716850 0.645455i −0.227734 0.973723i \(-0.573132\pi\)
0.944584 + 0.328269i \(0.106465\pi\)
\(350\) 1.43373 1.97336i 0.0766361 0.105481i
\(351\) 0 0
\(352\) 7.92742 + 5.53148i 0.422533 + 0.294829i
\(353\) −14.1122 8.14766i −0.751115 0.433656i 0.0749818 0.997185i \(-0.476110\pi\)
−0.826097 + 0.563529i \(0.809443\pi\)
\(354\) 0 0
\(355\) 10.3145 2.19242i 0.547439 0.116362i
\(356\) −2.97519 2.67887i −0.157685 0.141980i
\(357\) 0 0
\(358\) 1.30920 0.137603i 0.0691935 0.00727253i
\(359\) 7.65875 + 23.5712i 0.404213 + 1.24404i 0.921550 + 0.388259i \(0.126923\pi\)
−0.517337 + 0.855782i \(0.673077\pi\)
\(360\) 0 0
\(361\) −12.4164 9.02103i −0.653494 0.474791i
\(362\) −0.673798 + 1.16705i −0.0354140 + 0.0613389i
\(363\) 0 0
\(364\) −7.51532 13.0169i −0.393910 0.682272i
\(365\) 0.537356 5.11260i 0.0281265 0.267606i
\(366\) 0 0
\(367\) −8.75800 1.86157i −0.457164 0.0971732i −0.0264271 0.999651i \(-0.508413\pi\)
−0.430737 + 0.902478i \(0.641746\pi\)
\(368\) 1.73611 + 2.38956i 0.0905012 + 0.124564i
\(369\) 0 0
\(370\) −4.19150 + 1.36190i −0.217906 + 0.0708018i
\(371\) −19.0221 21.1261i −0.987576 1.09681i
\(372\) 0 0
\(373\) 14.6365 8.45037i 0.757848 0.437544i −0.0706745 0.997499i \(-0.522515\pi\)
0.828523 + 0.559956i \(0.189182\pi\)
\(374\) −0.321069 + 3.74048i −0.0166021 + 0.193416i
\(375\) 0 0
\(376\) 3.13416 + 7.03945i 0.161632 + 0.363032i
\(377\) −25.9303 8.42527i −1.33548 0.433923i
\(378\) 0 0
\(379\) −15.9625 + 11.5975i −0.819940 + 0.595722i −0.916695 0.399587i \(-0.869154\pi\)
0.0967550 + 0.995308i \(0.469154\pi\)
\(380\) 1.12979 + 10.7492i 0.0579568 + 0.551422i
\(381\) 0 0
\(382\) 0.574869 + 2.70455i 0.0294129 + 0.138377i
\(383\) 4.97254 + 0.522635i 0.254085 + 0.0267054i 0.230715 0.973021i \(-0.425894\pi\)
0.0233704 + 0.999727i \(0.492560\pi\)
\(384\) 0 0
\(385\) 25.8713 + 4.98486i 1.31853 + 0.254052i
\(386\) 3.89808i 0.198407i
\(387\) 0 0
\(388\) −0.999169 + 3.07513i −0.0507251 + 0.156116i
\(389\) −2.04864 + 9.63809i −0.103870 + 0.488671i 0.895204 + 0.445656i \(0.147030\pi\)
−0.999074 + 0.0430147i \(0.986304\pi\)
\(390\) 0 0
\(391\) −1.48166 + 3.32785i −0.0749306 + 0.168297i
\(392\) 0.262270 0.291280i 0.0132466 0.0147119i
\(393\) 0 0
\(394\) −1.67817 + 0.747170i −0.0845451 + 0.0376419i
\(395\) 20.8403 1.04859
\(396\) 0 0
\(397\) −19.0245 −0.954812 −0.477406 0.878683i \(-0.658423\pi\)
−0.477406 + 0.878683i \(0.658423\pi\)
\(398\) −2.63553 + 1.17341i −0.132107 + 0.0588178i
\(399\) 0 0
\(400\) −8.56161 + 9.50864i −0.428081 + 0.475432i
\(401\) −12.4891 + 28.0509i −0.623673 + 1.40079i 0.274687 + 0.961534i \(0.411426\pi\)
−0.898360 + 0.439260i \(0.855241\pi\)
\(402\) 0 0
\(403\) 3.55444 16.7223i 0.177059 0.832999i
\(404\) 5.41185 16.6560i 0.269250 0.828665i
\(405\) 0 0
\(406\) 6.58454i 0.326785i
\(407\) −13.4737 14.4014i −0.667867 0.713849i
\(408\) 0 0
\(409\) 11.8084 + 1.24111i 0.583889 + 0.0613692i 0.391868 0.920022i \(-0.371829\pi\)
0.192021 + 0.981391i \(0.438496\pi\)
\(410\) −1.29956 6.11395i −0.0641807 0.301946i
\(411\) 0 0
\(412\) −3.35321 31.9036i −0.165201 1.57178i
\(413\) 0.205228 0.149107i 0.0100986 0.00733706i
\(414\) 0 0
\(415\) 21.7694 + 7.07330i 1.06862 + 0.347215i
\(416\) −3.38563 7.60424i −0.165994 0.372829i
\(417\) 0 0
\(418\) 1.37691 0.830410i 0.0673471 0.0406167i
\(419\) 8.71474 5.03146i 0.425743 0.245803i −0.271788 0.962357i \(-0.587615\pi\)
0.697531 + 0.716554i \(0.254282\pi\)
\(420\) 0 0
\(421\) −4.18642 4.64949i −0.204034 0.226602i 0.632440 0.774609i \(-0.282053\pi\)
−0.836474 + 0.548007i \(0.815387\pi\)
\(422\) 0.892232 0.289904i 0.0434332 0.0141123i
\(423\) 0 0
\(424\) −6.13566 8.44502i −0.297974 0.410126i
\(425\) −15.4356 3.28094i −0.748737 0.159149i
\(426\) 0 0
\(427\) 0.609351 5.79759i 0.0294886 0.280565i
\(428\) −6.88411 11.9236i −0.332756 0.576351i
\(429\) 0 0
\(430\) −4.40119 + 7.62309i −0.212244 + 0.367618i
\(431\) −15.8885 11.5436i −0.765321 0.556038i 0.135217 0.990816i \(-0.456827\pi\)
−0.900538 + 0.434778i \(0.856827\pi\)
\(432\) 0 0
\(433\) 9.66882 + 29.7576i 0.464654 + 1.43006i 0.859418 + 0.511274i \(0.170826\pi\)
−0.394764 + 0.918783i \(0.629174\pi\)
\(434\) 4.10612 0.431570i 0.197100 0.0207160i
\(435\) 0 0
\(436\) −12.4002 11.1652i −0.593864 0.534717i
\(437\) 1.52611 0.324385i 0.0730039 0.0155175i
\(438\) 0 0
\(439\) 17.4881 + 10.0967i 0.834659 + 0.481891i 0.855445 0.517893i \(-0.173283\pi\)
−0.0207859 + 0.999784i \(0.506617\pi\)
\(440\) 9.25644 + 2.81339i 0.441283 + 0.134123i
\(441\) 0 0
\(442\) 1.90019 2.61539i 0.0903828 0.124401i
\(443\) −18.1089 + 16.3053i −0.860378 + 0.774688i −0.975808 0.218628i \(-0.929842\pi\)
0.115430 + 0.993316i \(0.463175\pi\)
\(444\) 0 0
\(445\) −5.52057 2.45792i −0.261700 0.116516i
\(446\) −0.0656353 0.0292227i −0.00310792 0.00138374i
\(447\) 0 0
\(448\) −13.1270 + 11.8196i −0.620193 + 0.558424i
\(449\) 1.94082 2.67131i 0.0915930 0.126067i −0.760761 0.649032i \(-0.775174\pi\)
0.852354 + 0.522965i \(0.175174\pi\)
\(450\) 0 0
\(451\) 22.3104 16.8695i 1.05055 0.794354i
\(452\) −19.1233 11.0408i −0.899483 0.519317i
\(453\) 0 0
\(454\) 4.52989 0.962857i 0.212598 0.0451891i
\(455\) −16.8603 15.1810i −0.790421 0.711698i
\(456\) 0 0
\(457\) 15.5319 1.63246i 0.726549 0.0763634i 0.265969 0.963982i \(-0.414308\pi\)
0.460580 + 0.887618i \(0.347641\pi\)
\(458\) 2.06760 + 6.36342i 0.0966126 + 0.297343i
\(459\) 0 0
\(460\) 3.73517 + 2.71376i 0.174153 + 0.126530i
\(461\) 18.2842 31.6692i 0.851582 1.47498i −0.0281979 0.999602i \(-0.508977\pi\)
0.879780 0.475381i \(-0.157690\pi\)
\(462\) 0 0
\(463\) −2.22766 3.85841i −0.103528 0.179316i 0.809608 0.586971i \(-0.199680\pi\)
−0.913136 + 0.407655i \(0.866346\pi\)
\(464\) −3.61041 + 34.3507i −0.167609 + 1.59469i
\(465\) 0 0
\(466\) 2.68037 + 0.569730i 0.124166 + 0.0263922i
\(467\) −24.4676 33.6768i −1.13223 1.55838i −0.783769 0.621052i \(-0.786706\pi\)
−0.348458 0.937325i \(-0.613294\pi\)
\(468\) 0 0
\(469\) −3.64033 + 1.18282i −0.168095 + 0.0546173i
\(470\) 3.82774 + 4.25114i 0.176561 + 0.196090i
\(471\) 0 0
\(472\) 0.0806687 0.0465741i 0.00371308 0.00214375i
\(473\) −39.2450 3.36865i −1.80449 0.154891i
\(474\) 0 0
\(475\) 2.74904 + 6.17444i 0.126135 + 0.283303i
\(476\) −22.3346 7.25696i −1.02371 0.332622i
\(477\) 0 0
\(478\) −1.52347 + 1.10687i −0.0696819 + 0.0506269i
\(479\) 0.368097 + 3.50221i 0.0168188 + 0.160020i 0.999708 0.0241796i \(-0.00769735\pi\)
−0.982889 + 0.184200i \(0.941031\pi\)
\(480\) 0 0
\(481\) 3.53083 + 16.6112i 0.160992 + 0.757407i
\(482\) −0.673281 0.0707647i −0.0306671 0.00322324i
\(483\) 0 0
\(484\) 3.03244 + 21.0751i 0.137838 + 0.957959i
\(485\) 4.88056i 0.221615i
\(486\) 0 0
\(487\) 9.85775 30.3390i 0.446697 1.37479i −0.433914 0.900954i \(-0.642868\pi\)
0.880611 0.473839i \(-0.157132\pi\)
\(488\) 0.445049 2.09379i 0.0201464 0.0947815i
\(489\) 0 0
\(490\) 0.118352 0.265822i 0.00534658 0.0120086i
\(491\) 16.3396 18.1470i 0.737398 0.818963i −0.251453 0.967869i \(-0.580909\pi\)
0.988851 + 0.148906i \(0.0475752\pi\)
\(492\) 0 0
\(493\) −38.9158 + 17.3264i −1.75268 + 0.780344i
\(494\) −1.38461 −0.0622964
\(495\) 0 0
\(496\) −21.6577 −0.972460
\(497\) 8.96468 3.99133i 0.402121 0.179036i
\(498\) 0 0
\(499\) −15.5701 + 17.2924i −0.697015 + 0.774113i −0.982898 0.184151i \(-0.941046\pi\)
0.285883 + 0.958264i \(0.407713\pi\)
\(500\) 3.36648 7.56124i 0.150554 0.338149i
\(501\) 0 0
\(502\) 1.27982 6.02107i 0.0571211 0.268734i
\(503\) 11.2856 34.7334i 0.503199 1.54869i −0.300579 0.953757i \(-0.597180\pi\)
0.803778 0.594930i \(-0.202820\pi\)
\(504\) 0 0
\(505\) 26.4348i 1.17633i
\(506\) 0.129951 0.674444i 0.00577703 0.0299827i
\(507\) 0 0
\(508\) 5.55007 + 0.583336i 0.246244 + 0.0258813i
\(509\) 5.16681 + 24.3080i 0.229015 + 1.07743i 0.930938 + 0.365178i \(0.118992\pi\)
−0.701923 + 0.712253i \(0.747675\pi\)
\(510\) 0 0
\(511\) −0.500059 4.75774i −0.0221213 0.210470i
\(512\) −14.3757 + 10.4445i −0.635321 + 0.461588i
\(513\) 0 0
\(514\) 4.04257 + 1.31351i 0.178310 + 0.0579364i
\(515\) −19.6948 44.2353i −0.867858 1.94924i
\(516\) 0 0
\(517\) −9.96337 + 23.5797i −0.438189 + 1.03703i
\(518\) −3.55183 + 2.05065i −0.156059 + 0.0901004i
\(519\) 0 0
\(520\) −5.57439 6.19099i −0.244453 0.271493i
\(521\) 9.26334 3.00984i 0.405834 0.131864i −0.0989844 0.995089i \(-0.531559\pi\)
0.504819 + 0.863225i \(0.331559\pi\)
\(522\) 0 0
\(523\) 19.5526 + 26.9118i 0.854975 + 1.17677i 0.982744 + 0.184968i \(0.0592182\pi\)
−0.127769 + 0.991804i \(0.540782\pi\)
\(524\) −3.97897 0.845757i −0.173822 0.0369471i
\(525\) 0 0
\(526\) −0.289414 + 2.75359i −0.0126190 + 0.120062i
\(527\) −13.3554 23.1323i −0.581771 1.00766i
\(528\) 0 0
\(529\) −11.1668 + 19.3414i −0.485512 + 0.840931i
\(530\) −6.26937 4.55496i −0.272324 0.197855i
\(531\) 0 0
\(532\) 3.10816 + 9.56592i 0.134756 + 0.414735i
\(533\) −23.9534 + 2.51760i −1.03754 + 0.109049i
\(534\) 0 0
\(535\) −15.4442 13.9060i −0.667710 0.601208i
\(536\) −1.37479 + 0.292220i −0.0593817 + 0.0126220i
\(537\) 0 0
\(538\) 3.44620 + 1.98966i 0.148576 + 0.0857805i
\(539\) 1.30185 0.0248597i 0.0560746 0.00107078i
\(540\) 0 0
\(541\) −6.85075 + 9.42925i −0.294537 + 0.405395i −0.930481 0.366340i \(-0.880611\pi\)
0.635944 + 0.771735i \(0.280611\pi\)
\(542\) −0.547657 + 0.493113i −0.0235239 + 0.0211810i
\(543\) 0 0
\(544\) −11.8809 5.28973i −0.509391 0.226795i
\(545\) −23.0091 10.2443i −0.985602 0.438818i
\(546\) 0 0
\(547\) −0.604017 + 0.543859i −0.0258259 + 0.0232537i −0.681943 0.731406i \(-0.738865\pi\)
0.656117 + 0.754659i \(0.272198\pi\)
\(548\) −5.77297 + 7.94581i −0.246609 + 0.339428i
\(549\) 0 0
\(550\) 2.97487 0.0568072i 0.126849 0.00242227i
\(551\) 15.8006 + 9.12251i 0.673130 + 0.388632i
\(552\) 0 0
\(553\) 18.9700 4.03220i 0.806688 0.171467i
\(554\) 3.98054 + 3.58410i 0.169117 + 0.152274i
\(555\) 0 0
\(556\) 33.6574 3.53753i 1.42739 0.150025i
\(557\) 2.14843 + 6.61219i 0.0910320 + 0.280168i 0.986199 0.165563i \(-0.0529440\pi\)
−0.895167 + 0.445730i \(0.852944\pi\)
\(558\) 0 0
\(559\) 27.4405 + 19.9367i 1.16061 + 0.843233i
\(560\) −14.3708 + 24.8909i −0.607277 + 1.05183i
\(561\) 0 0
\(562\) −0.391974 0.678919i −0.0165344 0.0286385i
\(563\) −3.00599 + 28.6000i −0.126687 + 1.20535i 0.727768 + 0.685823i \(0.240558\pi\)
−0.854455 + 0.519525i \(0.826109\pi\)
\(564\) 0 0
\(565\) −32.6024 6.92985i −1.37159 0.291541i
\(566\) 3.34367 + 4.60217i 0.140545 + 0.193444i
\(567\) 0 0
\(568\) 3.42694 1.11348i 0.143791 0.0467207i
\(569\) −6.99170 7.76507i −0.293107 0.325528i 0.578548 0.815648i \(-0.303620\pi\)
−0.871655 + 0.490120i \(0.836953\pi\)
\(570\) 0 0
\(571\) 18.4056 10.6265i 0.770251 0.444704i −0.0627134 0.998032i \(-0.519975\pi\)
0.832964 + 0.553327i \(0.186642\pi\)
\(572\) 7.13628 16.8890i 0.298383 0.706163i
\(573\) 0 0
\(574\) −2.36586 5.31381i −0.0987492 0.221794i
\(575\) 2.74578 + 0.892157i 0.114507 + 0.0372055i
\(576\) 0 0
\(577\) −12.6856 + 9.21665i −0.528110 + 0.383694i −0.819650 0.572864i \(-0.805832\pi\)
0.291541 + 0.956558i \(0.405832\pi\)
\(578\) −0.0771908 0.734421i −0.00321071 0.0305479i
\(579\) 0 0
\(580\) 11.2252 + 52.8104i 0.466101 + 2.19283i
\(581\) 21.1842 + 2.22655i 0.878870 + 0.0923730i
\(582\) 0 0
\(583\) 6.56089 34.0509i 0.271724 1.41025i
\(584\) 1.75664i 0.0726903i
\(585\) 0 0
\(586\) −1.62588 + 5.00395i −0.0671646 + 0.206711i
\(587\) 4.19059 19.7152i 0.172964 0.813732i −0.803030 0.595938i \(-0.796780\pi\)
0.975995 0.217794i \(-0.0698863\pi\)
\(588\) 0 0
\(589\) −4.65317 + 10.4512i −0.191731 + 0.430634i
\(590\) 0.0462710 0.0513891i 0.00190495 0.00211566i
\(591\) 0 0
\(592\) 19.6539 8.75046i 0.807769 0.359642i
\(593\) 40.5694 1.66599 0.832993 0.553284i \(-0.186626\pi\)
0.832993 + 0.553284i \(0.186626\pi\)
\(594\) 0 0
\(595\) −35.4475 −1.45320
\(596\) −10.0025 + 4.45339i −0.409717 + 0.182418i
\(597\) 0 0
\(598\) −0.395757 + 0.439533i −0.0161837 + 0.0179738i
\(599\) −4.44868 + 9.99189i −0.181768 + 0.408258i −0.981331 0.192324i \(-0.938398\pi\)
0.799563 + 0.600582i \(0.205064\pi\)
\(600\) 0 0
\(601\) −3.40064 + 15.9987i −0.138715 + 0.652602i 0.852760 + 0.522303i \(0.174927\pi\)
−0.991475 + 0.130299i \(0.958406\pi\)
\(602\) −2.53129 + 7.79050i −0.103168 + 0.317517i
\(603\) 0 0
\(604\) 17.7605i 0.722665i
\(605\) 14.1835 + 28.8400i 0.576641 + 1.17251i
\(606\) 0 0
\(607\) 23.7338 + 2.49453i 0.963327 + 0.101250i 0.573115 0.819475i \(-0.305735\pi\)
0.390212 + 0.920725i \(0.372402\pi\)
\(608\) 1.15810 + 5.44845i 0.0469673 + 0.220964i
\(609\) 0 0
\(610\) −0.166107 1.58040i −0.00672546 0.0639885i
\(611\) 17.8330 12.9564i 0.721445 0.524161i
\(612\) 0 0
\(613\) 0.0461533 + 0.0149961i 0.00186411 + 0.000605687i 0.309949 0.950753i \(-0.399688\pi\)
−0.308085 + 0.951359i \(0.599688\pi\)
\(614\) −1.54848 3.47794i −0.0624915 0.140358i
\(615\) 0 0
\(616\) 8.97006 + 0.769956i 0.361414 + 0.0310224i
\(617\) 7.14090 4.12280i 0.287482 0.165978i −0.349324 0.937002i \(-0.613589\pi\)
0.636806 + 0.771024i \(0.280255\pi\)
\(618\) 0 0
\(619\) −1.16380 1.29253i −0.0467770 0.0519512i 0.719302 0.694697i \(-0.244462\pi\)
−0.766079 + 0.642746i \(0.777795\pi\)
\(620\) −32.1968 + 10.4614i −1.29305 + 0.420139i
\(621\) 0 0
\(622\) −0.307013 0.422567i −0.0123101 0.0169434i
\(623\) −5.50069 1.16921i −0.220380 0.0468433i
\(624\) 0 0
\(625\) 3.15422 30.0104i 0.126169 1.20042i
\(626\) 3.15477 + 5.46423i 0.126090 + 0.218395i
\(627\) 0 0
\(628\) −2.95547 + 5.11902i −0.117936 + 0.204271i
\(629\) 21.4659 + 15.5959i 0.855903 + 0.621850i
\(630\) 0 0
\(631\) −8.14182 25.0580i −0.324121 0.997541i −0.971836 0.235659i \(-0.924275\pi\)
0.647715 0.761883i \(-0.275725\pi\)
\(632\) 7.08230 0.744379i 0.281719 0.0296098i
\(633\) 0 0
\(634\) −0.0815769 0.0734521i −0.00323983 0.00291716i
\(635\) 8.23951 1.75136i 0.326975 0.0695007i
\(636\) 0 0
\(637\) −0.971016 0.560616i −0.0384731 0.0222124i
\(638\) 6.40670 4.84429i 0.253644 0.191787i
\(639\) 0 0
\(640\) −12.8409 + 17.6740i −0.507582 + 0.698626i
\(641\) 6.46222 5.81861i 0.255242 0.229821i −0.531569 0.847015i \(-0.678397\pi\)
0.786811 + 0.617194i \(0.211731\pi\)
\(642\) 0 0
\(643\) −19.7472 8.79200i −0.778752 0.346723i −0.0214348 0.999770i \(-0.506823\pi\)
−0.757317 + 0.653048i \(0.773490\pi\)
\(644\) 3.92502 + 1.74753i 0.154668 + 0.0688624i
\(645\) 0 0
\(646\) −1.60766 + 1.44754i −0.0632526 + 0.0569529i
\(647\) −17.2616 + 23.7586i −0.678625 + 0.934048i −0.999916 0.0129330i \(-0.995883\pi\)
0.321291 + 0.946980i \(0.395883\pi\)
\(648\) 0 0
\(649\) 0.296067 + 0.0899860i 0.0116216 + 0.00353226i
\(650\) −2.21888 1.28107i −0.0870316 0.0502477i
\(651\) 0 0
\(652\) 14.9660 3.18112i 0.586113 0.124582i
\(653\) 17.6077 + 15.8541i 0.689043 + 0.620417i 0.937401 0.348251i \(-0.113224\pi\)
−0.248358 + 0.968668i \(0.579891\pi\)
\(654\) 0 0
\(655\) −6.10652 + 0.641821i −0.238602 + 0.0250780i
\(656\) 9.42876 + 29.0187i 0.368131 + 1.13299i
\(657\) 0 0
\(658\) 4.30674 + 3.12903i 0.167894 + 0.121982i
\(659\) −17.2970 + 29.9594i −0.673797 + 1.16705i 0.303022 + 0.952984i \(0.402004\pi\)
−0.976819 + 0.214067i \(0.931329\pi\)
\(660\) 0 0
\(661\) −17.7456 30.7363i −0.690225 1.19550i −0.971764 0.235955i \(-0.924178\pi\)
0.281539 0.959550i \(-0.409155\pi\)
\(662\) 0.458972 4.36682i 0.0178384 0.169721i
\(663\) 0 0
\(664\) 7.65066 + 1.62620i 0.296903 + 0.0631087i
\(665\) 8.92385 + 12.2826i 0.346052 + 0.476300i
\(666\) 0 0
\(667\) 7.41211 2.40834i 0.286998 0.0932513i
\(668\) 21.3032 + 23.6596i 0.824246 + 0.915418i
\(669\) 0 0
\(670\) −0.903618 + 0.521704i −0.0349098 + 0.0201552i
\(671\) 6.08930 3.67243i 0.235075 0.141773i
\(672\) 0 0
\(673\) −8.50131 19.0942i −0.327701 0.736029i 0.672290 0.740288i \(-0.265311\pi\)
−0.999991 + 0.00425911i \(0.998644\pi\)
\(674\) −6.04715 1.96484i −0.232928 0.0756827i
\(675\) 0 0
\(676\) 7.58475 5.51064i 0.291721 0.211948i
\(677\) 2.53356 + 24.1052i 0.0973728 + 0.926440i 0.928744 + 0.370722i \(0.120890\pi\)
−0.831371 + 0.555718i \(0.812444\pi\)
\(678\) 0 0
\(679\) 0.944294 + 4.44256i 0.0362387 + 0.170490i
\(680\) −12.9448 1.36055i −0.496411 0.0521749i
\(681\) 0 0
\(682\) 3.44081 + 3.67771i 0.131755 + 0.140827i
\(683\) 17.6311i 0.674636i −0.941391 0.337318i \(-0.890480\pi\)
0.941391 0.337318i \(-0.109520\pi\)
\(684\) 0 0
\(685\) −4.58116 + 14.0994i −0.175037 + 0.538709i
\(686\) −0.947516 + 4.45771i −0.0361763 + 0.170196i
\(687\) 0 0
\(688\) 17.4771 39.2541i 0.666307 1.49655i
\(689\) −19.9807 + 22.1909i −0.761206 + 0.845405i
\(690\) 0 0
\(691\) 26.6174 11.8508i 1.01257 0.450826i 0.167725 0.985834i \(-0.446358\pi\)
0.844847 + 0.535007i \(0.179691\pi\)
\(692\) −30.0459 −1.14218
\(693\) 0 0
\(694\) −5.29496 −0.200994
\(695\) 46.6669 20.7774i 1.77018 0.788133i
\(696\) 0 0
\(697\) −25.1801 + 27.9653i −0.953765 + 1.05926i
\(698\) 1.85934 4.17615i 0.0703771 0.158070i
\(699\) 0 0
\(700\) −3.86969 + 18.2055i −0.146260 + 0.688101i
\(701\) −4.54301 + 13.9820i −0.171587 + 0.528091i −0.999461 0.0328229i \(-0.989550\pi\)
0.827874 + 0.560914i \(0.189550\pi\)
\(702\) 0 0
\(703\) 11.3642i 0.428611i
\(704\) −21.1580 4.07670i −0.797422 0.153646i
\(705\) 0 0
\(706\) −4.11108 0.432092i −0.154722 0.0162620i
\(707\) −5.11463 24.0624i −0.192355 0.904961i
\(708\) 0 0
\(709\) −1.12706 10.7233i −0.0423278 0.402722i −0.995088 0.0989975i \(-0.968436\pi\)
0.952760 0.303724i \(-0.0982302\pi\)
\(710\) 2.16412 1.57233i 0.0812180 0.0590083i
\(711\) 0 0
\(712\) −1.96388 0.638103i −0.0735995 0.0239139i
\(713\) 1.98765 + 4.46434i 0.0744382 + 0.167191i
\(714\) 0 0
\(715\) 2.36682 27.5737i 0.0885140 1.03120i
\(716\) −8.69904 + 5.02239i −0.325098 + 0.187696i
\(717\) 0 0
\(718\) 4.20692 + 4.67226i 0.157001 + 0.174367i
\(719\) 30.1960 9.81128i 1.12612 0.365899i 0.314020 0.949416i \(-0.398324\pi\)
0.812101 + 0.583517i \(0.198324\pi\)
\(720\) 0 0
\(721\) −26.4860 36.4549i −0.986390 1.35765i
\(722\) −3.80820 0.809459i −0.141727 0.0301249i
\(723\) 0 0
\(724\) 1.07484 10.2264i 0.0399460 0.380061i
\(725\) 16.8807 + 29.2383i 0.626934 + 1.08588i
\(726\) 0 0
\(727\) −11.8209 + 20.4744i −0.438414 + 0.759355i −0.997567 0.0697091i \(-0.977793\pi\)
0.559154 + 0.829064i \(0.311126\pi\)
\(728\) −6.27196 4.55685i −0.232454 0.168888i
\(729\) 0 0
\(730\) −0.402984 1.24026i −0.0149151 0.0459040i
\(731\) 52.7041 5.53942i 1.94933 0.204883i
\(732\) 0 0
\(733\) −12.2057 10.9901i −0.450829 0.405929i 0.412191 0.911097i \(-0.364764\pi\)
−0.863021 + 0.505169i \(0.831430\pi\)
\(734\) −2.22169 + 0.472235i −0.0820040 + 0.0174305i
\(735\) 0 0
\(736\) 2.06059 + 1.18968i 0.0759542 + 0.0438522i
\(737\) −3.82908 2.67181i −0.141046 0.0984172i
\(738\) 0 0
\(739\) 20.4813 28.1901i 0.753417 1.03699i −0.244316 0.969696i \(-0.578563\pi\)
0.997733 0.0672942i \(-0.0214366\pi\)
\(740\) 24.9911 22.5021i 0.918690 0.827192i
\(741\) 0 0
\(742\) −6.58802 2.93318i −0.241854 0.107680i
\(743\) 48.2284 + 21.4727i 1.76933 + 0.787756i 0.986128 + 0.165987i \(0.0530808\pi\)
0.783201 + 0.621769i \(0.213586\pi\)
\(744\) 0 0
\(745\) −12.2818 + 11.0586i −0.449972 + 0.405157i
\(746\) 2.52001 3.46850i 0.0922643 0.126991i
\(747\) 0 0
\(748\) −9.37077 27.0704i −0.342629 0.989791i
\(749\) −16.7487 9.66985i −0.611983 0.353329i
\(750\) 0 0
\(751\) −50.2550 + 10.6820i −1.83383 + 0.389793i −0.989322 0.145749i \(-0.953441\pi\)
−0.844509 + 0.535542i \(0.820108\pi\)
\(752\) −20.7520 18.6852i −0.756748 0.681379i
\(753\) 0 0
\(754\) −6.87850 + 0.722960i −0.250500 + 0.0263286i
\(755\) −8.28421 25.4962i −0.301493 0.927900i
\(756\) 0 0
\(757\) 5.71877 + 4.15493i 0.207852 + 0.151013i 0.686841 0.726807i \(-0.258997\pi\)
−0.478989 + 0.877821i \(0.658997\pi\)
\(758\) −2.50261 + 4.33464i −0.0908987 + 0.157441i
\(759\) 0 0
\(760\) 2.78740 + 4.82792i 0.101110 + 0.175127i
\(761\) 3.04520 28.9731i 0.110388 1.05027i −0.789380 0.613905i \(-0.789598\pi\)
0.899768 0.436369i \(-0.143736\pi\)
\(762\) 0 0
\(763\) −22.9262 4.87312i −0.829986 0.176419i
\(764\) −12.4010 17.0685i −0.448653 0.617517i
\(765\) 0 0
\(766\) 1.20628 0.391945i 0.0435847 0.0141615i
\(767\) −0.178297 0.198019i −0.00643792 0.00715004i
\(768\) 0 0
\(769\) 38.3136 22.1204i 1.38162 0.797682i 0.389273 0.921122i \(-0.372726\pi\)
0.992352 + 0.123441i \(0.0393929\pi\)
\(770\) 6.50986 1.51417i 0.234599 0.0545669i
\(771\) 0 0
\(772\) 12.0980 + 27.1725i 0.435416 + 0.977960i
\(773\) 38.0786 + 12.3725i 1.36959 + 0.445007i 0.899234 0.437468i \(-0.144125\pi\)
0.470358 + 0.882476i \(0.344125\pi\)
\(774\) 0 0
\(775\) −17.1266 + 12.4432i −0.615204 + 0.446972i
\(776\) 0.174325 + 1.65859i 0.00625790 + 0.0595399i
\(777\) 0 0
\(778\) 0.519689 + 2.44495i 0.0186318 + 0.0876556i
\(779\) 16.0291 + 1.68473i 0.574302 + 0.0603616i
\(780\) 0 0
\(781\) 10.4789 + 5.78610i 0.374965 + 0.207043i
\(782\) 0.924086i 0.0330453i
\(783\) 0 0
\(784\) −0.438933 + 1.35090i −0.0156762 + 0.0482463i
\(785\) −1.85502 + 8.72718i −0.0662084 + 0.311486i
\(786\) 0 0
\(787\) −11.5367 + 25.9119i −0.411239 + 0.923659i 0.582593 + 0.812764i \(0.302038\pi\)
−0.993832 + 0.110895i \(0.964628\pi\)
\(788\) 9.37919 10.4167i 0.334120 0.371078i
\(789\) 0 0
\(790\) 4.82962 2.15029i 0.171830 0.0765038i
\(791\) −31.0173 −1.10285
\(792\) 0 0
\(793\) −6.12332 −0.217446
\(794\) −4.40881 + 1.96293i −0.156463 + 0.0696618i
\(795\) 0 0
\(796\) 14.7298 16.3591i 0.522083 0.579832i
\(797\) 6.07817 13.6518i 0.215300 0.483571i −0.773318 0.634018i \(-0.781405\pi\)
0.988618 + 0.150447i \(0.0480712\pi\)
\(798\) 0 0
\(799\) 7.16045 33.6872i 0.253318 1.19177i
\(800\) −3.18513 + 9.80283i −0.112611 + 0.346582i
\(801\) 0 0
\(802\) 7.78923i 0.275047i
\(803\) 4.26134 3.98685i 0.150380 0.140693i
\(804\) 0 0
\(805\) 6.44970 + 0.677890i 0.227322 + 0.0238925i
\(806\) −0.901675 4.24205i −0.0317601 0.149420i
\(807\) 0 0
\(808\) −0.944204 8.98351i −0.0332170 0.316039i
\(809\) 24.0892 17.5019i 0.846933 0.615333i −0.0773660 0.997003i \(-0.524651\pi\)
0.924299 + 0.381670i \(0.124651\pi\)
\(810\) 0 0
\(811\) 41.9856 + 13.6420i 1.47432 + 0.479034i 0.932409 0.361405i \(-0.117703\pi\)
0.541906 + 0.840439i \(0.317703\pi\)
\(812\) 20.4356 + 45.8991i 0.717148 + 1.61074i
\(813\) 0 0
\(814\) −4.60837 1.94722i −0.161523 0.0682502i
\(815\) 20.0007 11.5474i 0.700593 0.404488i
\(816\) 0 0
\(817\) −15.1876 16.8675i −0.531346 0.590120i
\(818\) 2.86459 0.930761i 0.100158 0.0325433i
\(819\) 0 0
\(820\) 28.0340 + 38.5854i 0.978988 + 1.34746i
\(821\) 3.91743 + 0.832676i 0.136719 + 0.0290606i 0.275763 0.961226i \(-0.411070\pi\)
−0.139044 + 0.990286i \(0.544403\pi\)
\(822\) 0 0
\(823\) −4.40925 + 41.9512i −0.153697 + 1.46233i 0.597299 + 0.802019i \(0.296241\pi\)
−0.750995 + 0.660307i \(0.770426\pi\)
\(824\) −8.27302 14.3293i −0.288204 0.499184i
\(825\) 0 0
\(826\) 0.0321756 0.0557298i 0.00111953 0.00193909i
\(827\) −21.5183 15.6340i −0.748266 0.543647i 0.147023 0.989133i \(-0.453031\pi\)
−0.895289 + 0.445486i \(0.853031\pi\)
\(828\) 0 0
\(829\) 3.77976 + 11.6329i 0.131276 + 0.404027i 0.994992 0.0999518i \(-0.0318689\pi\)
−0.863716 + 0.503979i \(0.831869\pi\)
\(830\) 5.77474 0.606949i 0.200444 0.0210675i
\(831\) 0 0
\(832\) 13.7886 + 12.4153i 0.478033 + 0.430423i
\(833\) −1.71354 + 0.364225i −0.0593707 + 0.0126196i
\(834\) 0 0
\(835\) 41.6177 + 24.0280i 1.44024 + 0.831523i
\(836\) −7.02087 + 10.0619i −0.242822 + 0.347999i
\(837\) 0 0
\(838\) 1.50045 2.06519i 0.0518321 0.0713408i
\(839\) 7.16872 6.45475i 0.247492 0.222843i −0.536043 0.844191i \(-0.680081\pi\)
0.783535 + 0.621348i \(0.213415\pi\)
\(840\) 0 0
\(841\) 56.7655 + 25.2736i 1.95743 + 0.871505i
\(842\) −1.44991 0.645540i −0.0499671 0.0222468i
\(843\) 0 0
\(844\) −5.31978 + 4.78995i −0.183114 + 0.164877i
\(845\) 8.31793 11.4486i 0.286146 0.393846i
\(846\) 0 0
\(847\) 18.4906 + 23.5075i 0.635344 + 0.807727i
\(848\) 32.7606 + 18.9143i 1.12500 + 0.649521i
\(849\) 0 0
\(850\) −3.91563 + 0.832294i −0.134305 + 0.0285474i
\(851\) −3.60749 3.24820i −0.123663 0.111347i
\(852\) 0 0
\(853\) 11.6743 1.22701i 0.399719 0.0420122i 0.0974635 0.995239i \(-0.468927\pi\)
0.302256 + 0.953227i \(0.402260\pi\)
\(854\) −0.456976 1.40643i −0.0156374 0.0481270i
\(855\) 0 0
\(856\) −5.74518 4.17412i −0.196366 0.142668i
\(857\) 24.3869 42.2393i 0.833041 1.44287i −0.0625753 0.998040i \(-0.519931\pi\)
0.895616 0.444828i \(-0.146735\pi\)
\(858\) 0 0
\(859\) 15.5440 + 26.9230i 0.530355 + 0.918602i 0.999373 + 0.0354131i \(0.0112747\pi\)
−0.469018 + 0.883189i \(0.655392\pi\)
\(860\) 7.02074 66.7979i 0.239405 2.27779i
\(861\) 0 0
\(862\) −4.87312 1.03581i −0.165979 0.0352800i
\(863\) 30.6459 + 42.1805i 1.04320 + 1.43584i 0.894559 + 0.446950i \(0.147490\pi\)
0.148641 + 0.988891i \(0.452510\pi\)
\(864\) 0 0
\(865\) −43.1325 + 14.0146i −1.46655 + 0.476511i
\(866\) 5.31105 + 5.89851i 0.180477 + 0.200440i
\(867\) 0 0
\(868\) −27.2832 + 15.7520i −0.926053 + 0.534657i
\(869\) 17.8797 + 15.4912i 0.606526 + 0.525501i
\(870\) 0 0
\(871\) 1.63532 + 3.67298i 0.0554106 + 0.124454i
\(872\) −8.18523 2.65954i −0.277187 0.0900635i
\(873\) 0 0
\(874\) 0.320198 0.232637i 0.0108309 0.00786907i
\(875\) −1.21526 11.5624i −0.0410833 0.390881i
\(876\) 0 0
\(877\) −3.53196 16.6166i −0.119266 0.561102i −0.996684 0.0813746i \(-0.974069\pi\)
0.877418 0.479727i \(-0.159264\pi\)
\(878\) 5.09452 + 0.535456i 0.171932 + 0.0180708i
\(879\) 0 0
\(880\) −34.7913 + 4.32977i −1.17282 + 0.145957i
\(881\) 50.3115i 1.69504i 0.530765 + 0.847519i \(0.321905\pi\)
−0.530765 + 0.847519i \(0.678095\pi\)
\(882\) 0 0
\(883\) 4.44037 13.6660i 0.149430 0.459899i −0.848124 0.529798i \(-0.822268\pi\)
0.997554 + 0.0698990i \(0.0222677\pi\)
\(884\) −5.12868 + 24.1285i −0.172496 + 0.811530i
\(885\) 0 0
\(886\) −2.51425 + 5.64711i −0.0844680 + 0.189718i
\(887\) 27.6353 30.6921i 0.927903 1.03054i −0.0715485 0.997437i \(-0.522794\pi\)
0.999452 0.0331040i \(-0.0105393\pi\)
\(888\) 0 0
\(889\) 7.16120 3.18837i 0.240179 0.106935i
\(890\) −1.53296 −0.0513851
\(891\) 0 0
\(892\) 0.548221 0.0183558
\(893\) −13.4753 + 5.99961i −0.450935 + 0.200769i
\(894\) 0 0
\(895\) −10.1453 + 11.2675i −0.339120 + 0.376631i
\(896\) −8.26893 + 18.5723i −0.276246 + 0.620458i
\(897\) 0 0
\(898\) 0.174150 0.819312i 0.00581147 0.0273408i
\(899\) −17.6592 + 54.3495i −0.588968 + 1.81266i
\(900\) 0 0
\(901\) 46.6547i 1.55429i
\(902\) 3.42971 6.21137i 0.114197 0.206816i
\(903\) 0 0
\(904\) −11.3270 1.19051i −0.376730 0.0395959i
\(905\) −3.22701 15.1819i −0.107269 0.504663i
\(906\) 0 0
\(907\) 2.72994 + 25.9736i 0.0906460 + 0.862439i 0.941495 + 0.337028i \(0.109422\pi\)
−0.850849 + 0.525411i \(0.823912\pi\)
\(908\) −28.5883 + 20.7706i −0.948738 + 0.689298i
\(909\) 0 0
\(910\) −5.47363 1.77849i −0.181449 0.0589563i
\(911\) 18.4710 + 41.4866i 0.611972 + 1.37451i 0.907853 + 0.419288i \(0.137720\pi\)
−0.295881 + 0.955225i \(0.595613\pi\)
\(912\) 0 0
\(913\) 13.4190 + 22.2502i 0.444103 + 0.736373i
\(914\) 3.43098 1.98088i 0.113487 0.0655215i
\(915\) 0 0
\(916\) −34.1620 37.9408i −1.12874 1.25360i
\(917\) −5.43431 + 1.76572i −0.179457 + 0.0583091i
\(918\) 0 0
\(919\) −16.3737 22.5365i −0.540119 0.743410i 0.448511 0.893777i \(-0.351954\pi\)
−0.988630 + 0.150367i \(0.951954\pi\)
\(920\) 2.32930 + 0.495108i 0.0767948 + 0.0163232i
\(921\) 0 0
\(922\) 0.969661 9.22571i 0.0319341 0.303832i
\(923\) −5.15381 8.92667i −0.169640 0.293825i
\(924\) 0 0
\(925\) 10.5145 18.2116i 0.345713 0.598793i
\(926\) −0.914353 0.664317i −0.0300475 0.0218308i
\(927\) 0 0
\(928\) 8.59813 + 26.4623i 0.282248 + 0.868669i
\(929\) −49.4820 + 5.20076i −1.62345 + 0.170632i −0.872119 0.489293i \(-0.837255\pi\)
−0.751331 + 0.659925i \(0.770588\pi\)
\(930\) 0 0
\(931\) 0.557586 + 0.502053i 0.0182742 + 0.0164541i
\(932\) −20.4523 + 4.34728i −0.669938 + 0.142400i
\(933\) 0 0
\(934\) −9.14497 5.27985i −0.299232 0.172762i
\(935\) −26.0789 34.4901i −0.852872 1.12795i
\(936\) 0 0
\(937\) 11.9943 16.5087i 0.391837 0.539317i −0.566835 0.823831i \(-0.691832\pi\)
0.958672 + 0.284514i \(0.0918323\pi\)
\(938\) −0.721583 + 0.649716i −0.0235605 + 0.0212140i
\(939\) 0 0
\(940\) −39.8759 17.7539i −1.30061 0.579068i
\(941\) −16.0267 7.13554i −0.522455 0.232612i 0.128526 0.991706i \(-0.458976\pi\)
−0.650981 + 0.759094i \(0.725642\pi\)
\(942\) 0 0
\(943\) 5.11635 4.60678i 0.166611 0.150017i
\(944\) −0.198413 + 0.273093i −0.00645781 + 0.00888841i
\(945\) 0 0
\(946\) −9.44237 + 3.26860i −0.306998 + 0.106271i
\(947\) 40.7614 + 23.5336i 1.32457 + 0.764739i 0.984453 0.175646i \(-0.0562013\pi\)
0.340113 + 0.940385i \(0.389535\pi\)
\(948\) 0 0
\(949\) −4.91524 + 1.04477i −0.159556 + 0.0339146i
\(950\) 1.27415 + 1.14725i 0.0413388 + 0.0372216i
\(951\) 0 0
\(952\) −12.0463 + 1.26612i −0.390424 + 0.0410352i
\(953\) −15.9545 49.1029i −0.516817 1.59060i −0.779952 0.625839i \(-0.784757\pi\)
0.263136 0.964759i \(-0.415243\pi\)
\(954\) 0 0
\(955\) −25.7637 18.7185i −0.833695 0.605715i
\(956\) 7.18447 12.4439i 0.232362 0.402463i
\(957\) 0 0
\(958\) 0.446659 + 0.773636i 0.0144309 + 0.0249951i
\(959\) −1.44207 + 13.7204i −0.0465669 + 0.443055i
\(960\) 0 0
\(961\) −4.72716 1.00479i −0.152489 0.0324125i
\(962\) 2.53218 + 3.48525i 0.0816408 + 0.112369i
\(963\) 0 0
\(964\) 4.91289 1.59629i 0.158233 0.0514132i
\(965\) 30.0416 + 33.3646i 0.967074 + 1.07404i
\(966\) 0 0
\(967\) 29.1820 16.8482i 0.938429 0.541802i 0.0489615 0.998801i \(-0.484409\pi\)
0.889467 + 0.456998i \(0.151076\pi\)
\(968\) 5.85017 + 9.29425i 0.188032 + 0.298729i
\(969\) 0 0
\(970\) 0.503572 + 1.13104i 0.0161687 + 0.0363155i
\(971\) 53.1467 + 17.2684i 1.70556 + 0.554170i 0.989584 0.143955i \(-0.0459822\pi\)
0.715976 + 0.698125i \(0.245982\pi\)
\(972\) 0 0
\(973\) 38.4588 27.9419i 1.23293 0.895777i
\(974\) −0.845879 8.04800i −0.0271037 0.257875i
\(975\) 0 0
\(976\) 1.61282 + 7.58772i 0.0516251 + 0.242877i
\(977\) −20.5461 2.15948i −0.657329 0.0690880i −0.230009 0.973189i \(-0.573875\pi\)
−0.427320 + 0.904101i \(0.640542\pi\)
\(978\) 0 0
\(979\) −2.90926 6.21231i −0.0929804 0.198546i
\(980\) 2.22029i 0.0709245i
\(981\) 0 0
\(982\) 1.91422 5.89137i 0.0610853 0.188001i
\(983\) 10.4221 49.0320i 0.332412 1.56388i −0.421454 0.906850i \(-0.638480\pi\)
0.753866 0.657028i \(-0.228187\pi\)
\(984\) 0 0
\(985\) 8.60560 19.3285i 0.274197 0.615857i
\(986\) −7.23078 + 8.03060i −0.230275 + 0.255746i
\(987\) 0 0
\(988\) 9.65172 4.29722i 0.307062 0.136713i
\(989\) −9.69548 −0.308298
\(990\) 0 0
\(991\) 45.3068 1.43922 0.719609 0.694379i \(-0.244321\pi\)
0.719609 + 0.694379i \(0.244321\pi\)
\(992\) −15.9383 + 7.09621i −0.506043 + 0.225305i
\(993\) 0 0
\(994\) 1.66569 1.84993i 0.0528324 0.0586763i
\(995\) 13.5149 30.3549i 0.428450 0.962315i
\(996\) 0 0
\(997\) −2.13731 + 10.0553i −0.0676893 + 0.318453i −0.998945 0.0459120i \(-0.985381\pi\)
0.931256 + 0.364365i \(0.118714\pi\)
\(998\) −1.82407 + 5.61392i −0.0577400 + 0.177705i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.u.c.755.3 32
3.2 odd 2 inner 891.2.u.c.755.2 32
9.2 odd 6 99.2.j.a.62.3 yes 16
9.4 even 3 inner 891.2.u.c.458.2 32
9.5 odd 6 inner 891.2.u.c.458.3 32
9.7 even 3 99.2.j.a.62.2 yes 16
11.8 odd 10 inner 891.2.u.c.107.3 32
33.8 even 10 inner 891.2.u.c.107.2 32
36.7 odd 6 1584.2.cd.c.161.2 16
36.11 even 6 1584.2.cd.c.161.3 16
99.16 even 15 1089.2.d.g.1088.10 16
99.38 odd 30 1089.2.d.g.1088.7 16
99.41 even 30 inner 891.2.u.c.701.3 32
99.52 odd 30 99.2.j.a.8.3 yes 16
99.61 odd 30 1089.2.d.g.1088.8 16
99.74 even 30 99.2.j.a.8.2 16
99.83 even 30 1089.2.d.g.1088.9 16
99.85 odd 30 inner 891.2.u.c.701.2 32
396.151 even 30 1584.2.cd.c.305.3 16
396.371 odd 30 1584.2.cd.c.305.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.j.a.8.2 16 99.74 even 30
99.2.j.a.8.3 yes 16 99.52 odd 30
99.2.j.a.62.2 yes 16 9.7 even 3
99.2.j.a.62.3 yes 16 9.2 odd 6
891.2.u.c.107.2 32 33.8 even 10 inner
891.2.u.c.107.3 32 11.8 odd 10 inner
891.2.u.c.458.2 32 9.4 even 3 inner
891.2.u.c.458.3 32 9.5 odd 6 inner
891.2.u.c.701.2 32 99.85 odd 30 inner
891.2.u.c.701.3 32 99.41 even 30 inner
891.2.u.c.755.2 32 3.2 odd 2 inner
891.2.u.c.755.3 32 1.1 even 1 trivial
1089.2.d.g.1088.7 16 99.38 odd 30
1089.2.d.g.1088.8 16 99.61 odd 30
1089.2.d.g.1088.9 16 99.83 even 30
1089.2.d.g.1088.10 16 99.16 even 15
1584.2.cd.c.161.2 16 36.7 odd 6
1584.2.cd.c.161.3 16 36.11 even 6
1584.2.cd.c.305.2 16 396.371 odd 30
1584.2.cd.c.305.3 16 396.151 even 30