Properties

Label 891.2.u.c.458.2
Level $891$
Weight $2$
Character 891.458
Analytic conductor $7.115$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(107,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([5, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.107");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.u (of order \(30\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{30})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 458.2
Character \(\chi\) \(=\) 891.458
Dual form 891.2.u.c.107.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0265163 + 0.252286i) q^{2} +(1.89335 + 0.402444i) q^{4} +(2.90572 - 0.305404i) q^{5} +(-2.02056 - 1.81932i) q^{7} +(-0.308515 + 0.949513i) q^{8} +0.741170i q^{10} +(0.283644 - 3.30447i) q^{11} +(-1.16162 - 2.60905i) q^{13} +(0.512566 - 0.461517i) q^{14} +(3.30524 + 1.47159i) q^{16} +(3.60998 - 2.62280i) q^{17} +(-1.81761 - 0.590579i) q^{19} +(5.62446 + 0.591154i) q^{20} +(0.826150 + 0.159182i) q^{22} +(0.706997 + 0.408185i) q^{23} +(3.45921 - 0.735277i) q^{25} +(0.689029 - 0.223879i) q^{26} +(-3.09345 - 4.25777i) q^{28} +(6.38792 - 7.09451i) q^{29} +(-5.46853 + 2.43474i) q^{31} +(-1.45728 + 2.52408i) q^{32} +(0.565973 + 0.980294i) q^{34} +(-6.42681 - 4.66935i) q^{35} +(1.83750 + 5.65524i) q^{37} +(0.197191 - 0.442898i) q^{38} +(-0.606475 + 2.85324i) q^{40} +(5.64300 + 6.26719i) q^{41} +(-10.2852 + 5.93817i) q^{43} +(1.86690 - 6.14238i) q^{44} +(-0.121726 + 0.167542i) q^{46} +(1.60470 + 7.54950i) q^{47} +(0.0410372 + 0.390443i) q^{49} +(0.0937745 + 0.892205i) q^{50} +(-1.14937 - 5.40734i) q^{52} +(-6.14564 + 8.45874i) q^{53} +(-0.185009 - 9.68851i) q^{55} +(2.35084 - 1.35726i) q^{56} +(1.62046 + 1.79970i) q^{58} +(-0.0193981 + 0.0912608i) q^{59} +(0.872063 - 1.95869i) q^{61} +(-0.469246 - 1.44419i) q^{62} +(5.25595 + 3.81867i) q^{64} +(-4.17217 - 7.22641i) q^{65} +(0.703892 - 1.21918i) q^{67} +(7.89049 - 3.51307i) q^{68} +(1.34843 - 1.49758i) q^{70} +(-2.12141 - 2.91987i) q^{71} +(-1.67338 + 0.543714i) q^{73} +(-1.47546 + 0.313619i) q^{74} +(-3.20371 - 1.84966i) q^{76} +(-6.58502 + 6.16085i) q^{77} +(7.09381 + 0.745590i) q^{79} +(10.0535 + 3.26659i) q^{80} +(-1.73075 + 1.25747i) q^{82} +(7.15699 + 3.18650i) q^{83} +(9.68858 - 8.72364i) q^{85} +(-1.22539 - 2.75227i) q^{86} +(3.05013 + 1.28880i) q^{88} +2.06830i q^{89} +(-2.39957 + 7.38512i) q^{91} +(1.17432 + 1.05736i) q^{92} +(-1.94718 + 0.204657i) q^{94} +(-5.46185 - 1.16095i) q^{95} +(-0.174608 + 1.66129i) q^{97} -0.0995913 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{4} + 20 q^{16} + 48 q^{22} + 32 q^{25} + 80 q^{28} - 16 q^{31} - 40 q^{34} - 24 q^{37} - 60 q^{40} - 80 q^{46} + 24 q^{49} + 40 q^{52} + 32 q^{55} - 12 q^{58} + 72 q^{64} - 96 q^{67} - 76 q^{70}+ \cdots - 60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0265163 + 0.252286i −0.0187499 + 0.178393i −0.999889 0.0149107i \(-0.995254\pi\)
0.981139 + 0.193304i \(0.0619203\pi\)
\(3\) 0 0
\(4\) 1.89335 + 0.402444i 0.946675 + 0.201222i
\(5\) 2.90572 0.305404i 1.29948 0.136581i 0.570602 0.821227i \(-0.306710\pi\)
0.728876 + 0.684646i \(0.240043\pi\)
\(6\) 0 0
\(7\) −2.02056 1.81932i −0.763700 0.687639i 0.192192 0.981357i \(-0.438440\pi\)
−0.955892 + 0.293719i \(0.905107\pi\)
\(8\) −0.308515 + 0.949513i −0.109077 + 0.335704i
\(9\) 0 0
\(10\) 0.741170i 0.234379i
\(11\) 0.283644 3.30447i 0.0855218 0.996336i
\(12\) 0 0
\(13\) −1.16162 2.60905i −0.322177 0.723621i 0.677755 0.735288i \(-0.262953\pi\)
−0.999932 + 0.0116668i \(0.996286\pi\)
\(14\) 0.512566 0.461517i 0.136989 0.123346i
\(15\) 0 0
\(16\) 3.30524 + 1.47159i 0.826310 + 0.367897i
\(17\) 3.60998 2.62280i 0.875549 0.636124i −0.0565211 0.998401i \(-0.518001\pi\)
0.932070 + 0.362278i \(0.118001\pi\)
\(18\) 0 0
\(19\) −1.81761 0.590579i −0.416989 0.135488i 0.0930053 0.995666i \(-0.470353\pi\)
−0.509995 + 0.860178i \(0.670353\pi\)
\(20\) 5.62446 + 0.591154i 1.25767 + 0.132186i
\(21\) 0 0
\(22\) 0.826150 + 0.159182i 0.176136 + 0.0339376i
\(23\) 0.706997 + 0.408185i 0.147419 + 0.0851124i 0.571895 0.820327i \(-0.306208\pi\)
−0.424476 + 0.905439i \(0.639542\pi\)
\(24\) 0 0
\(25\) 3.45921 0.735277i 0.691841 0.147055i
\(26\) 0.689029 0.223879i 0.135130 0.0439063i
\(27\) 0 0
\(28\) −3.09345 4.25777i −0.584608 0.804644i
\(29\) 6.38792 7.09451i 1.18621 1.31742i 0.249058 0.968489i \(-0.419879\pi\)
0.937149 0.348928i \(-0.113454\pi\)
\(30\) 0 0
\(31\) −5.46853 + 2.43474i −0.982176 + 0.437293i −0.834058 0.551677i \(-0.813988\pi\)
−0.148118 + 0.988970i \(0.547322\pi\)
\(32\) −1.45728 + 2.52408i −0.257613 + 0.446199i
\(33\) 0 0
\(34\) 0.565973 + 0.980294i 0.0970635 + 0.168119i
\(35\) −6.42681 4.66935i −1.08633 0.789265i
\(36\) 0 0
\(37\) 1.83750 + 5.65524i 0.302083 + 0.929717i 0.980750 + 0.195270i \(0.0625583\pi\)
−0.678666 + 0.734447i \(0.737442\pi\)
\(38\) 0.197191 0.442898i 0.0319886 0.0718476i
\(39\) 0 0
\(40\) −0.606475 + 2.85324i −0.0958922 + 0.451137i
\(41\) 5.64300 + 6.26719i 0.881289 + 0.978771i 0.999900 0.0141700i \(-0.00451061\pi\)
−0.118610 + 0.992941i \(0.537844\pi\)
\(42\) 0 0
\(43\) −10.2852 + 5.93817i −1.56848 + 0.905562i −0.572133 + 0.820161i \(0.693884\pi\)
−0.996347 + 0.0854008i \(0.972783\pi\)
\(44\) 1.86690 6.14238i 0.281446 0.925998i
\(45\) 0 0
\(46\) −0.121726 + 0.167542i −0.0179475 + 0.0247027i
\(47\) 1.60470 + 7.54950i 0.234069 + 1.10121i 0.925495 + 0.378760i \(0.123650\pi\)
−0.691426 + 0.722447i \(0.743017\pi\)
\(48\) 0 0
\(49\) 0.0410372 + 0.390443i 0.00586246 + 0.0557776i
\(50\) 0.0937745 + 0.892205i 0.0132617 + 0.126177i
\(51\) 0 0
\(52\) −1.14937 5.40734i −0.159388 0.749863i
\(53\) −6.14564 + 8.45874i −0.844168 + 1.16190i 0.140950 + 0.990017i \(0.454984\pi\)
−0.985118 + 0.171881i \(0.945016\pi\)
\(54\) 0 0
\(55\) −0.185009 9.68851i −0.0249466 1.30640i
\(56\) 2.35084 1.35726i 0.314145 0.181371i
\(57\) 0 0
\(58\) 1.62046 + 1.79970i 0.212777 + 0.236312i
\(59\) −0.0193981 + 0.0912608i −0.00252541 + 0.0118811i −0.979392 0.201967i \(-0.935267\pi\)
0.976867 + 0.213848i \(0.0685999\pi\)
\(60\) 0 0
\(61\) 0.872063 1.95869i 0.111656 0.250784i −0.849071 0.528279i \(-0.822838\pi\)
0.960727 + 0.277495i \(0.0895042\pi\)
\(62\) −0.469246 1.44419i −0.0595943 0.183412i
\(63\) 0 0
\(64\) 5.25595 + 3.81867i 0.656994 + 0.477334i
\(65\) −4.17217 7.22641i −0.517494 0.896326i
\(66\) 0 0
\(67\) 0.703892 1.21918i 0.0859941 0.148946i −0.819820 0.572621i \(-0.805927\pi\)
0.905814 + 0.423675i \(0.139260\pi\)
\(68\) 7.89049 3.51307i 0.956863 0.426023i
\(69\) 0 0
\(70\) 1.34843 1.49758i 0.161168 0.178995i
\(71\) −2.12141 2.91987i −0.251765 0.346525i 0.664363 0.747410i \(-0.268703\pi\)
−0.916128 + 0.400885i \(0.868703\pi\)
\(72\) 0 0
\(73\) −1.67338 + 0.543714i −0.195854 + 0.0636369i −0.405302 0.914183i \(-0.632833\pi\)
0.209447 + 0.977820i \(0.432833\pi\)
\(74\) −1.47546 + 0.313619i −0.171519 + 0.0364575i
\(75\) 0 0
\(76\) −3.20371 1.84966i −0.367490 0.212171i
\(77\) −6.58502 + 6.16085i −0.750432 + 0.702094i
\(78\) 0 0
\(79\) 7.09381 + 0.745590i 0.798116 + 0.0838854i 0.494803 0.869005i \(-0.335240\pi\)
0.303314 + 0.952891i \(0.401907\pi\)
\(80\) 10.0535 + 3.26659i 1.12402 + 0.365216i
\(81\) 0 0
\(82\) −1.73075 + 1.25747i −0.191130 + 0.138864i
\(83\) 7.15699 + 3.18650i 0.785581 + 0.349763i 0.760011 0.649910i \(-0.225193\pi\)
0.0255699 + 0.999673i \(0.491860\pi\)
\(84\) 0 0
\(85\) 9.68858 8.72364i 1.05087 0.946212i
\(86\) −1.22539 2.75227i −0.132137 0.296785i
\(87\) 0 0
\(88\) 3.05013 + 1.28880i 0.325145 + 0.137387i
\(89\) 2.06830i 0.219240i 0.993974 + 0.109620i \(0.0349633\pi\)
−0.993974 + 0.109620i \(0.965037\pi\)
\(90\) 0 0
\(91\) −2.39957 + 7.38512i −0.251543 + 0.774171i
\(92\) 1.17432 + 1.05736i 0.122431 + 0.110238i
\(93\) 0 0
\(94\) −1.94718 + 0.204657i −0.200836 + 0.0211088i
\(95\) −5.46185 1.16095i −0.560374 0.119111i
\(96\) 0 0
\(97\) −0.174608 + 1.66129i −0.0177288 + 0.168678i −0.999804 0.0198129i \(-0.993693\pi\)
0.982075 + 0.188491i \(0.0603596\pi\)
\(98\) −0.0995913 −0.0100602
\(99\) 0 0
\(100\) 6.84540 0.684540
\(101\) 0.945739 8.99811i 0.0941046 0.895345i −0.841015 0.541012i \(-0.818041\pi\)
0.935119 0.354333i \(-0.115292\pi\)
\(102\) 0 0
\(103\) 16.2108 + 3.44571i 1.59730 + 0.339516i 0.918687 0.394985i \(-0.129250\pi\)
0.678608 + 0.734501i \(0.262584\pi\)
\(104\) 2.83571 0.298045i 0.278064 0.0292257i
\(105\) 0 0
\(106\) −1.97106 1.77475i −0.191446 0.172379i
\(107\) −2.19803 + 6.76484i −0.212492 + 0.653982i 0.786830 + 0.617169i \(0.211721\pi\)
−0.999322 + 0.0368130i \(0.988279\pi\)
\(108\) 0 0
\(109\) 8.62045i 0.825690i 0.910801 + 0.412845i \(0.135465\pi\)
−0.910801 + 0.412845i \(0.864535\pi\)
\(110\) 2.44918 + 0.210228i 0.233520 + 0.0200445i
\(111\) 0 0
\(112\) −4.00115 8.98672i −0.378073 0.849165i
\(113\) 8.47771 7.63336i 0.797516 0.718087i −0.165887 0.986145i \(-0.553049\pi\)
0.963403 + 0.268058i \(0.0863820\pi\)
\(114\) 0 0
\(115\) 2.17900 + 0.970152i 0.203193 + 0.0904671i
\(116\) 14.9497 10.8616i 1.38805 1.00847i
\(117\) 0 0
\(118\) −0.0225094 0.00731376i −0.00207216 0.000673286i
\(119\) −12.0659 1.26818i −1.10608 0.116254i
\(120\) 0 0
\(121\) −10.8391 1.87459i −0.985372 0.170417i
\(122\) 0.471024 + 0.271946i 0.0426445 + 0.0246208i
\(123\) 0 0
\(124\) −11.3337 + 2.40905i −1.01779 + 0.216339i
\(125\) −4.06670 + 1.32135i −0.363737 + 0.118185i
\(126\) 0 0
\(127\) −1.69463 2.33246i −0.150374 0.206973i 0.727184 0.686443i \(-0.240829\pi\)
−0.877558 + 0.479470i \(0.840829\pi\)
\(128\) −5.00321 + 5.55663i −0.442225 + 0.491141i
\(129\) 0 0
\(130\) 1.93375 0.860962i 0.169601 0.0755113i
\(131\) 1.05078 1.82000i 0.0918067 0.159014i −0.816465 0.577395i \(-0.804069\pi\)
0.908271 + 0.418382i \(0.137402\pi\)
\(132\) 0 0
\(133\) 2.59815 + 4.50013i 0.225288 + 0.390210i
\(134\) 0.288916 + 0.209910i 0.0249586 + 0.0181335i
\(135\) 0 0
\(136\) 1.37665 + 4.23690i 0.118047 + 0.363311i
\(137\) −2.06380 + 4.63537i −0.176322 + 0.396026i −0.979988 0.199054i \(-0.936213\pi\)
0.803666 + 0.595080i \(0.202880\pi\)
\(138\) 0 0
\(139\) −3.63511 + 17.1019i −0.308326 + 1.45056i 0.502145 + 0.864783i \(0.332544\pi\)
−0.810471 + 0.585778i \(0.800789\pi\)
\(140\) −10.2891 11.4272i −0.869584 0.965771i
\(141\) 0 0
\(142\) 0.792894 0.457777i 0.0665382 0.0384158i
\(143\) −8.95103 + 3.09852i −0.748523 + 0.259111i
\(144\) 0 0
\(145\) 16.3948 22.5656i 1.36152 1.87397i
\(146\) −0.0927994 0.436587i −0.00768013 0.0361322i
\(147\) 0 0
\(148\) 1.20311 + 11.4469i 0.0988952 + 0.940925i
\(149\) −0.591269 5.62555i −0.0484387 0.460863i −0.991677 0.128748i \(-0.958904\pi\)
0.943239 0.332115i \(-0.107762\pi\)
\(150\) 0 0
\(151\) −1.90769 8.97498i −0.155246 0.730373i −0.985043 0.172308i \(-0.944877\pi\)
0.829797 0.558065i \(-0.188456\pi\)
\(152\) 1.12152 1.54365i 0.0909677 0.125206i
\(153\) 0 0
\(154\) −1.37968 1.82467i −0.111178 0.147036i
\(155\) −15.1464 + 8.74480i −1.21659 + 0.702399i
\(156\) 0 0
\(157\) −2.04334 2.26936i −0.163076 0.181115i 0.656069 0.754701i \(-0.272218\pi\)
−0.819145 + 0.573587i \(0.805552\pi\)
\(158\) −0.376203 + 1.76990i −0.0299291 + 0.140805i
\(159\) 0 0
\(160\) −3.46359 + 7.77934i −0.273820 + 0.615011i
\(161\) −0.685911 2.11102i −0.0540573 0.166371i
\(162\) 0 0
\(163\) −6.39488 4.64615i −0.500885 0.363914i 0.308470 0.951234i \(-0.400183\pi\)
−0.809355 + 0.587320i \(0.800183\pi\)
\(164\) 8.16199 + 14.1370i 0.637344 + 1.10391i
\(165\) 0 0
\(166\) −0.993684 + 1.72111i −0.0771248 + 0.133584i
\(167\) −15.0258 + 6.68992i −1.16273 + 0.517682i −0.895111 0.445843i \(-0.852904\pi\)
−0.267621 + 0.963524i \(0.586237\pi\)
\(168\) 0 0
\(169\) 3.24092 3.59940i 0.249301 0.276877i
\(170\) 1.94394 + 2.67561i 0.149094 + 0.205210i
\(171\) 0 0
\(172\) −21.8633 + 7.10381i −1.66706 + 0.541660i
\(173\) −15.1832 + 3.22729i −1.15436 + 0.245366i −0.745036 0.667024i \(-0.767568\pi\)
−0.409322 + 0.912390i \(0.634235\pi\)
\(174\) 0 0
\(175\) −8.32724 4.80773i −0.629480 0.363431i
\(176\) 5.80033 10.5047i 0.437216 0.791819i
\(177\) 0 0
\(178\) −0.521803 0.0548437i −0.0391108 0.00411071i
\(179\) 4.93538 + 1.60360i 0.368888 + 0.119859i 0.487594 0.873071i \(-0.337875\pi\)
−0.118706 + 0.992929i \(0.537875\pi\)
\(180\) 0 0
\(181\) −4.29773 + 3.12248i −0.319448 + 0.232092i −0.735940 0.677047i \(-0.763259\pi\)
0.416492 + 0.909139i \(0.363259\pi\)
\(182\) −1.79953 0.801203i −0.133390 0.0593891i
\(183\) 0 0
\(184\) −0.605696 + 0.545371i −0.0446525 + 0.0402053i
\(185\) 7.06640 + 15.8714i 0.519532 + 1.16689i
\(186\) 0 0
\(187\) −7.64304 12.6730i −0.558915 0.926744i
\(188\) 14.9396i 1.08959i
\(189\) 0 0
\(190\) 0.437719 1.34716i 0.0317555 0.0977334i
\(191\) −8.10000 7.29328i −0.586096 0.527723i 0.321861 0.946787i \(-0.395692\pi\)
−0.907957 + 0.419064i \(0.862358\pi\)
\(192\) 0 0
\(193\) −15.2822 + 1.60623i −1.10004 + 0.115619i −0.637108 0.770775i \(-0.719869\pi\)
−0.462932 + 0.886394i \(0.653203\pi\)
\(194\) −0.414489 0.0881023i −0.0297586 0.00632538i
\(195\) 0 0
\(196\) −0.0794336 + 0.755760i −0.00567383 + 0.0539829i
\(197\) −7.24149 −0.515935 −0.257967 0.966154i \(-0.583053\pi\)
−0.257967 + 0.966154i \(0.583053\pi\)
\(198\) 0 0
\(199\) −11.3726 −0.806181 −0.403090 0.915160i \(-0.632064\pi\)
−0.403090 + 0.915160i \(0.632064\pi\)
\(200\) −0.369064 + 3.51141i −0.0260967 + 0.248294i
\(201\) 0 0
\(202\) 2.24502 + 0.477193i 0.157959 + 0.0335752i
\(203\) −25.8144 + 2.71320i −1.81181 + 0.190429i
\(204\) 0 0
\(205\) 18.3110 + 16.4873i 1.27890 + 1.15152i
\(206\) −1.29915 + 3.99838i −0.0905162 + 0.278580i
\(207\) 0 0
\(208\) 10.3330i 0.716463i
\(209\) −2.46711 + 5.83875i −0.170653 + 0.403875i
\(210\) 0 0
\(211\) −1.50420 3.37850i −0.103554 0.232585i 0.854336 0.519720i \(-0.173964\pi\)
−0.957890 + 0.287135i \(0.907297\pi\)
\(212\) −15.0400 + 13.5421i −1.03295 + 0.930075i
\(213\) 0 0
\(214\) −1.64839 0.733910i −0.112682 0.0501691i
\(215\) −28.0724 + 20.3958i −1.91452 + 1.39098i
\(216\) 0 0
\(217\) 15.4791 + 5.02946i 1.05079 + 0.341422i
\(218\) −2.17482 0.228582i −0.147297 0.0154816i
\(219\) 0 0
\(220\) 3.54879 18.4182i 0.239260 1.24175i
\(221\) −11.0365 6.37191i −0.742394 0.428621i
\(222\) 0 0
\(223\) 0.277034 0.0588855i 0.0185516 0.00394326i −0.198627 0.980075i \(-0.563648\pi\)
0.217178 + 0.976132i \(0.430315\pi\)
\(224\) 7.53664 2.44880i 0.503563 0.163618i
\(225\) 0 0
\(226\) 1.70099 + 2.34121i 0.113148 + 0.155735i
\(227\) −12.2156 + 13.5668i −0.810780 + 0.900462i −0.996623 0.0821175i \(-0.973832\pi\)
0.185843 + 0.982579i \(0.440498\pi\)
\(228\) 0 0
\(229\) 24.0955 10.7280i 1.59228 0.708927i 0.596663 0.802492i \(-0.296493\pi\)
0.995613 + 0.0935649i \(0.0298263\pi\)
\(230\) −0.302534 + 0.524005i −0.0199485 + 0.0345519i
\(231\) 0 0
\(232\) 4.76555 + 8.25418i 0.312874 + 0.541914i
\(233\) 8.73916 + 6.34937i 0.572521 + 0.415961i 0.836020 0.548699i \(-0.184877\pi\)
−0.263499 + 0.964660i \(0.584877\pi\)
\(234\) 0 0
\(235\) 6.96844 + 21.4467i 0.454571 + 1.39903i
\(236\) −0.0734547 + 0.164982i −0.00478150 + 0.0107394i
\(237\) 0 0
\(238\) 0.639886 3.01043i 0.0414777 0.195137i
\(239\) 4.96717 + 5.51660i 0.321300 + 0.356839i 0.882059 0.471140i \(-0.156157\pi\)
−0.560759 + 0.827979i \(0.689491\pi\)
\(240\) 0 0
\(241\) 2.31118 1.33436i 0.148876 0.0859539i −0.423711 0.905797i \(-0.639273\pi\)
0.572588 + 0.819843i \(0.305940\pi\)
\(242\) 0.760344 2.68484i 0.0488767 0.172588i
\(243\) 0 0
\(244\) 2.43938 3.35752i 0.156165 0.214943i
\(245\) 0.238485 + 1.12199i 0.0152363 + 0.0716810i
\(246\) 0 0
\(247\) 0.570536 + 5.42828i 0.0363023 + 0.345393i
\(248\) −0.624697 5.94359i −0.0396683 0.377419i
\(249\) 0 0
\(250\) −0.225524 1.06101i −0.0142634 0.0671041i
\(251\) 14.2630 19.6313i 0.900271 1.23912i −0.0701107 0.997539i \(-0.522335\pi\)
0.970382 0.241577i \(-0.0776647\pi\)
\(252\) 0 0
\(253\) 1.54937 2.22047i 0.0974081 0.139600i
\(254\) 0.633383 0.365684i 0.0397420 0.0229450i
\(255\) 0 0
\(256\) 7.42511 + 8.24642i 0.464070 + 0.515401i
\(257\) 3.48379 16.3899i 0.217313 1.02238i −0.725286 0.688448i \(-0.758293\pi\)
0.942599 0.333928i \(-0.108374\pi\)
\(258\) 0 0
\(259\) 6.57592 14.7698i 0.408608 0.917749i
\(260\) −4.99116 15.3612i −0.309538 0.952661i
\(261\) 0 0
\(262\) 0.431296 + 0.313355i 0.0266456 + 0.0193591i
\(263\) −5.45728 9.45229i −0.336511 0.582853i 0.647263 0.762267i \(-0.275913\pi\)
−0.983774 + 0.179413i \(0.942580\pi\)
\(264\) 0 0
\(265\) −15.2742 + 26.4557i −0.938285 + 1.62516i
\(266\) −1.20421 + 0.536149i −0.0738349 + 0.0328734i
\(267\) 0 0
\(268\) 1.82337 2.02505i 0.111380 0.123700i
\(269\) 9.22041 + 12.6908i 0.562178 + 0.773772i 0.991601 0.129331i \(-0.0412830\pi\)
−0.429423 + 0.903103i \(0.641283\pi\)
\(270\) 0 0
\(271\) −2.76289 + 0.897717i −0.167834 + 0.0545324i −0.391728 0.920081i \(-0.628123\pi\)
0.223895 + 0.974613i \(0.428123\pi\)
\(272\) 15.7915 3.35659i 0.957502 0.203523i
\(273\) 0 0
\(274\) −1.11471 0.643579i −0.0673422 0.0388801i
\(275\) −1.44852 11.6394i −0.0873492 0.701883i
\(276\) 0 0
\(277\) −20.9993 2.20712i −1.26173 0.132613i −0.550057 0.835127i \(-0.685394\pi\)
−0.711669 + 0.702515i \(0.752061\pi\)
\(278\) −4.21817 1.37057i −0.252989 0.0822011i
\(279\) 0 0
\(280\) 6.41638 4.66177i 0.383452 0.278594i
\(281\) 2.82318 + 1.25696i 0.168417 + 0.0749841i 0.489214 0.872164i \(-0.337284\pi\)
−0.320796 + 0.947148i \(0.603951\pi\)
\(282\) 0 0
\(283\) 16.6648 15.0051i 0.990620 0.891958i −0.00352741 0.999994i \(-0.501123\pi\)
0.994147 + 0.108036i \(0.0344561\pi\)
\(284\) −2.84149 6.38209i −0.168611 0.378707i
\(285\) 0 0
\(286\) −0.544364 2.34038i −0.0321889 0.138389i
\(287\) 22.9297i 1.35350i
\(288\) 0 0
\(289\) 0.899570 2.76859i 0.0529159 0.162858i
\(290\) 5.25824 + 4.73454i 0.308774 + 0.278022i
\(291\) 0 0
\(292\) −3.38711 + 0.355999i −0.198215 + 0.0208333i
\(293\) 20.2877 + 4.31228i 1.18522 + 0.251926i 0.758020 0.652231i \(-0.226167\pi\)
0.427200 + 0.904157i \(0.359500\pi\)
\(294\) 0 0
\(295\) −0.0284940 + 0.271103i −0.00165899 + 0.0157842i
\(296\) −5.93663 −0.345059
\(297\) 0 0
\(298\) 1.43492 0.0831229
\(299\) 0.243710 2.31875i 0.0140941 0.134097i
\(300\) 0 0
\(301\) 31.5853 + 6.71367i 1.82055 + 0.386969i
\(302\) 2.31484 0.243300i 0.133204 0.0140003i
\(303\) 0 0
\(304\) −5.13856 4.62678i −0.294717 0.265364i
\(305\) 1.93578 5.95772i 0.110843 0.341138i
\(306\) 0 0
\(307\) 15.0077i 0.856533i −0.903652 0.428267i \(-0.859124\pi\)
0.903652 0.428267i \(-0.140876\pi\)
\(308\) −14.9471 + 9.01455i −0.851692 + 0.513651i
\(309\) 0 0
\(310\) −1.80456 4.05311i −0.102492 0.230201i
\(311\) −1.53015 + 1.37775i −0.0867666 + 0.0781250i −0.711373 0.702815i \(-0.751926\pi\)
0.624606 + 0.780940i \(0.285260\pi\)
\(312\) 0 0
\(313\) −22.7222 10.1166i −1.28433 0.571822i −0.352876 0.935670i \(-0.614796\pi\)
−0.931458 + 0.363848i \(0.881463\pi\)
\(314\) 0.626709 0.455330i 0.0353672 0.0256958i
\(315\) 0 0
\(316\) 13.1310 + 4.26652i 0.738677 + 0.240011i
\(317\) 0.430358 + 0.0452324i 0.0241713 + 0.00254051i 0.116606 0.993178i \(-0.462798\pi\)
−0.0924351 + 0.995719i \(0.529465\pi\)
\(318\) 0 0
\(319\) −21.6317 23.1210i −1.21114 1.29453i
\(320\) 16.4386 + 9.49081i 0.918944 + 0.530553i
\(321\) 0 0
\(322\) 0.550767 0.117069i 0.0306930 0.00652401i
\(323\) −8.11053 + 2.63527i −0.451282 + 0.146630i
\(324\) 0 0
\(325\) −5.93668 8.17113i −0.329308 0.453253i
\(326\) 1.34173 1.49014i 0.0743113 0.0825310i
\(327\) 0 0
\(328\) −7.69173 + 3.42458i −0.424705 + 0.189091i
\(329\) 10.4926 18.1737i 0.578475 1.00195i
\(330\) 0 0
\(331\) 8.65452 + 14.9901i 0.475696 + 0.823929i 0.999612 0.0278406i \(-0.00886309\pi\)
−0.523917 + 0.851769i \(0.675530\pi\)
\(332\) 12.2683 + 8.91344i 0.673310 + 0.489189i
\(333\) 0 0
\(334\) −1.28934 3.96819i −0.0705497 0.217130i
\(335\) 1.67297 3.75756i 0.0914043 0.205297i
\(336\) 0 0
\(337\) −5.21129 + 24.5172i −0.283877 + 1.33554i 0.572805 + 0.819691i \(0.305855\pi\)
−0.856682 + 0.515844i \(0.827478\pi\)
\(338\) 0.822141 + 0.913080i 0.0447186 + 0.0496650i
\(339\) 0 0
\(340\) 21.8547 12.6178i 1.18524 0.684296i
\(341\) 6.49444 + 18.7612i 0.351694 + 1.01598i
\(342\) 0 0
\(343\) −10.5596 + 14.5341i −0.570166 + 0.784766i
\(344\) −2.46522 11.5980i −0.132916 0.625320i
\(345\) 0 0
\(346\) −0.411597 3.91608i −0.0221276 0.210530i
\(347\) 2.18182 + 20.7586i 0.117126 + 1.11438i 0.882342 + 0.470608i \(0.155965\pi\)
−0.765216 + 0.643773i \(0.777368\pi\)
\(348\) 0 0
\(349\) 3.74668 + 17.6267i 0.200555 + 0.943537i 0.957136 + 0.289638i \(0.0935348\pi\)
−0.756581 + 0.653900i \(0.773132\pi\)
\(350\) 1.43373 1.97336i 0.0766361 0.105481i
\(351\) 0 0
\(352\) 7.92742 + 5.53148i 0.422533 + 0.294829i
\(353\) 14.1122 8.14766i 0.751115 0.433656i −0.0749818 0.997185i \(-0.523890\pi\)
0.826097 + 0.563529i \(0.190557\pi\)
\(354\) 0 0
\(355\) −7.05597 7.83645i −0.374492 0.415915i
\(356\) −0.832376 + 3.91602i −0.0441158 + 0.207549i
\(357\) 0 0
\(358\) −0.535434 + 1.20260i −0.0282986 + 0.0635596i
\(359\) 7.65875 + 23.5712i 0.404213 + 1.24404i 0.921550 + 0.388259i \(0.126923\pi\)
−0.517337 + 0.855782i \(0.673077\pi\)
\(360\) 0 0
\(361\) −12.4164 9.02103i −0.653494 0.474791i
\(362\) −0.673798 1.16705i −0.0354140 0.0613389i
\(363\) 0 0
\(364\) −7.51532 + 13.0169i −0.393910 + 0.682272i
\(365\) −4.69632 + 2.09094i −0.245817 + 0.109445i
\(366\) 0 0
\(367\) 5.99117 6.65387i 0.312736 0.347329i −0.566200 0.824268i \(-0.691587\pi\)
0.878936 + 0.476939i \(0.158254\pi\)
\(368\) 1.73611 + 2.38956i 0.0905012 + 0.124564i
\(369\) 0 0
\(370\) −4.19150 + 1.36190i −0.217906 + 0.0708018i
\(371\) 27.8068 5.91052i 1.44366 0.306859i
\(372\) 0 0
\(373\) −14.6365 8.45037i −0.757848 0.437544i 0.0706745 0.997499i \(-0.477485\pi\)
−0.828523 + 0.559956i \(0.810818\pi\)
\(374\) 3.39989 1.59219i 0.175804 0.0823301i
\(375\) 0 0
\(376\) −7.66342 0.805458i −0.395211 0.0415383i
\(377\) −25.9303 8.42527i −1.33548 0.433923i
\(378\) 0 0
\(379\) −15.9625 + 11.5975i −0.819940 + 0.595722i −0.916695 0.399587i \(-0.869154\pi\)
0.0967550 + 0.995308i \(0.469154\pi\)
\(380\) −9.87397 4.39618i −0.506524 0.225519i
\(381\) 0 0
\(382\) 2.05477 1.85012i 0.105131 0.0946606i
\(383\) −2.03366 4.56766i −0.103915 0.233397i 0.854104 0.520103i \(-0.174106\pi\)
−0.958019 + 0.286706i \(0.907440\pi\)
\(384\) 0 0
\(385\) −17.2527 + 19.9128i −0.879278 + 1.01485i
\(386\) 3.89808i 0.198407i
\(387\) 0 0
\(388\) −0.999169 + 3.07513i −0.0507251 + 0.156116i
\(389\) −7.32251 6.59322i −0.371266 0.334290i 0.462285 0.886731i \(-0.347030\pi\)
−0.833552 + 0.552442i \(0.813696\pi\)
\(390\) 0 0
\(391\) 3.62283 0.380775i 0.183215 0.0192566i
\(392\) −0.383391 0.0814923i −0.0193642 0.00411598i
\(393\) 0 0
\(394\) 0.192018 1.82692i 0.00967370 0.0920391i
\(395\) 20.8403 1.04859
\(396\) 0 0
\(397\) −19.0245 −0.954812 −0.477406 0.878683i \(-0.658423\pi\)
−0.477406 + 0.878683i \(0.658423\pi\)
\(398\) 0.301559 2.86914i 0.0151158 0.143817i
\(399\) 0 0
\(400\) 12.5155 + 2.66026i 0.625776 + 0.133013i
\(401\) 30.5373 3.20960i 1.52496 0.160280i 0.695369 0.718652i \(-0.255241\pi\)
0.829590 + 0.558373i \(0.188574\pi\)
\(402\) 0 0
\(403\) 12.7048 + 11.4394i 0.632869 + 0.569838i
\(404\) 5.41185 16.6560i 0.269250 0.828665i
\(405\) 0 0
\(406\) 6.58454i 0.326785i
\(407\) 19.2088 4.46790i 0.952145 0.221465i
\(408\) 0 0
\(409\) −4.82937 10.8469i −0.238797 0.536347i 0.753899 0.656991i \(-0.228171\pi\)
−0.992696 + 0.120644i \(0.961504\pi\)
\(410\) −4.64505 + 4.18243i −0.229403 + 0.206555i
\(411\) 0 0
\(412\) 29.3060 + 13.0479i 1.44380 + 0.642822i
\(413\) 0.205228 0.149107i 0.0100986 0.00733706i
\(414\) 0 0
\(415\) 21.7694 + 7.07330i 1.06862 + 0.347215i
\(416\) 8.27828 + 0.870082i 0.405876 + 0.0426593i
\(417\) 0 0
\(418\) −1.40761 0.777238i −0.0688486 0.0380159i
\(419\) −8.71474 5.03146i −0.425743 0.245803i 0.271788 0.962357i \(-0.412385\pi\)
−0.697531 + 0.716554i \(0.745718\pi\)
\(420\) 0 0
\(421\) 6.11979 1.30080i 0.298260 0.0633972i −0.0563510 0.998411i \(-0.517947\pi\)
0.354611 + 0.935014i \(0.384613\pi\)
\(422\) 0.892232 0.289904i 0.0434332 0.0141123i
\(423\) 0 0
\(424\) −6.13566 8.44502i −0.297974 0.410126i
\(425\) 10.5592 11.7272i 0.512196 0.568851i
\(426\) 0 0
\(427\) −5.32553 + 2.37108i −0.257721 + 0.114745i
\(428\) −6.88411 + 11.9236i −0.332756 + 0.576351i
\(429\) 0 0
\(430\) −4.40119 7.62309i −0.212244 0.367618i
\(431\) −15.8885 11.5436i −0.765321 0.556038i 0.135217 0.990816i \(-0.456827\pi\)
−0.900538 + 0.434778i \(0.856827\pi\)
\(432\) 0 0
\(433\) 9.66882 + 29.7576i 0.464654 + 1.43006i 0.859418 + 0.511274i \(0.170826\pi\)
−0.394764 + 0.918783i \(0.629174\pi\)
\(434\) −1.67931 + 3.77179i −0.0806093 + 0.181052i
\(435\) 0 0
\(436\) −3.46925 + 16.3215i −0.166147 + 0.781660i
\(437\) −1.04398 1.15946i −0.0499405 0.0554645i
\(438\) 0 0
\(439\) −17.4881 + 10.0967i −0.834659 + 0.481891i −0.855445 0.517893i \(-0.826717\pi\)
0.0207859 + 0.999784i \(0.493383\pi\)
\(440\) 9.25644 + 2.81339i 0.441283 + 0.134123i
\(441\) 0 0
\(442\) 1.90019 2.61539i 0.0903828 0.124401i
\(443\) −5.06637 23.8354i −0.240710 1.13245i −0.917952 0.396692i \(-0.870158\pi\)
0.677241 0.735761i \(-0.263175\pi\)
\(444\) 0 0
\(445\) 0.631667 + 6.00991i 0.0299439 + 0.284897i
\(446\) 0.00751004 + 0.0714532i 0.000355611 + 0.00338341i
\(447\) 0 0
\(448\) −3.67258 17.2781i −0.173513 0.816315i
\(449\) 1.94082 2.67131i 0.0915930 0.126067i −0.760761 0.649032i \(-0.775174\pi\)
0.852354 + 0.522965i \(0.175174\pi\)
\(450\) 0 0
\(451\) 22.3104 16.8695i 1.05055 0.794354i
\(452\) 19.1233 11.0408i 0.899483 0.519317i
\(453\) 0 0
\(454\) −3.09880 3.44157i −0.145434 0.161521i
\(455\) −4.71704 + 22.1919i −0.221138 + 1.04037i
\(456\) 0 0
\(457\) −6.35217 + 14.2672i −0.297142 + 0.667392i −0.998990 0.0449350i \(-0.985692\pi\)
0.701848 + 0.712327i \(0.252359\pi\)
\(458\) 2.06760 + 6.36342i 0.0966126 + 0.297343i
\(459\) 0 0
\(460\) 3.73517 + 2.71376i 0.174153 + 0.126530i
\(461\) 18.2842 + 31.6692i 0.851582 + 1.47498i 0.879780 + 0.475381i \(0.157690\pi\)
−0.0281979 + 0.999602i \(0.508977\pi\)
\(462\) 0 0
\(463\) −2.22766 + 3.85841i −0.103528 + 0.179316i −0.913136 0.407655i \(-0.866346\pi\)
0.809608 + 0.586971i \(0.199680\pi\)
\(464\) 31.5538 14.0487i 1.46485 0.652192i
\(465\) 0 0
\(466\) −1.83359 + 2.03640i −0.0849392 + 0.0943345i
\(467\) −24.4676 33.6768i −1.13223 1.55838i −0.783769 0.621052i \(-0.786706\pi\)
−0.348458 0.937325i \(-0.613294\pi\)
\(468\) 0 0
\(469\) −3.64033 + 1.18282i −0.168095 + 0.0546173i
\(470\) −5.59546 + 1.18935i −0.258100 + 0.0548607i
\(471\) 0 0
\(472\) −0.0806687 0.0465741i −0.00371308 0.00214375i
\(473\) 16.7052 + 35.6715i 0.768105 + 1.64018i
\(474\) 0 0
\(475\) −6.72174 0.706484i −0.308415 0.0324157i
\(476\) −22.3346 7.25696i −1.02371 0.332622i
\(477\) 0 0
\(478\) −1.52347 + 1.10687i −0.0696819 + 0.0506269i
\(479\) −3.21705 1.43232i −0.146991 0.0654446i 0.331923 0.943307i \(-0.392303\pi\)
−0.478914 + 0.877862i \(0.658969\pi\)
\(480\) 0 0
\(481\) 12.6203 11.3634i 0.575438 0.518127i
\(482\) 0.275357 + 0.618461i 0.0125421 + 0.0281701i
\(483\) 0 0
\(484\) −19.7678 7.91138i −0.898536 0.359608i
\(485\) 4.88056i 0.221615i
\(486\) 0 0
\(487\) 9.85775 30.3390i 0.446697 1.37479i −0.433914 0.900954i \(-0.642868\pi\)
0.880611 0.473839i \(-0.157132\pi\)
\(488\) 1.59075 + 1.43232i 0.0720100 + 0.0648381i
\(489\) 0 0
\(490\) −0.289385 + 0.0304155i −0.0130731 + 0.00137403i
\(491\) −23.8856 5.07704i −1.07794 0.229124i −0.365469 0.930823i \(-0.619091\pi\)
−0.712473 + 0.701700i \(0.752425\pi\)
\(492\) 0 0
\(493\) 4.45277 42.3653i 0.200543 1.90804i
\(494\) −1.38461 −0.0622964
\(495\) 0 0
\(496\) −21.6577 −0.972460
\(497\) −1.02574 + 9.75930i −0.0460109 + 0.437765i
\(498\) 0 0
\(499\) 22.7607 + 4.83794i 1.01891 + 0.216576i 0.686940 0.726714i \(-0.258954\pi\)
0.331969 + 0.943290i \(0.392287\pi\)
\(500\) −8.23146 + 0.865162i −0.368122 + 0.0386912i
\(501\) 0 0
\(502\) 4.57449 + 4.11889i 0.204170 + 0.183835i
\(503\) 11.2856 34.7334i 0.503199 1.54869i −0.300579 0.953757i \(-0.597180\pi\)
0.803778 0.594930i \(-0.202820\pi\)
\(504\) 0 0
\(505\) 26.4348i 1.17633i
\(506\) 0.519110 + 0.449763i 0.0230773 + 0.0199944i
\(507\) 0 0
\(508\) −2.26985 5.09817i −0.100708 0.226195i
\(509\) 18.4679 16.6286i 0.818575 0.737048i −0.149216 0.988805i \(-0.547675\pi\)
0.967791 + 0.251756i \(0.0810082\pi\)
\(510\) 0 0
\(511\) 4.37035 + 1.94581i 0.193333 + 0.0860774i
\(512\) −14.3757 + 10.4445i −0.635321 + 0.461588i
\(513\) 0 0
\(514\) 4.04257 + 1.31351i 0.178310 + 0.0579364i
\(515\) 48.1563 + 5.06143i 2.12202 + 0.223033i
\(516\) 0 0
\(517\) 25.4023 3.16131i 1.11719 0.139034i
\(518\) 3.55183 + 2.05065i 0.156059 + 0.0901004i
\(519\) 0 0
\(520\) 8.14875 1.73207i 0.357346 0.0759563i
\(521\) 9.26334 3.00984i 0.405834 0.131864i −0.0989844 0.995089i \(-0.531559\pi\)
0.504819 + 0.863225i \(0.331559\pi\)
\(522\) 0 0
\(523\) 19.5526 + 26.9118i 0.854975 + 1.17677i 0.982744 + 0.184968i \(0.0592182\pi\)
−0.127769 + 0.991804i \(0.540782\pi\)
\(524\) 2.72193 3.02301i 0.118908 0.132061i
\(525\) 0 0
\(526\) 2.52939 1.12615i 0.110286 0.0491027i
\(527\) −13.3554 + 23.1323i −0.581771 + 1.00766i
\(528\) 0 0
\(529\) −11.1668 19.3414i −0.485512 0.840931i
\(530\) −6.26937 4.55496i −0.272324 0.197855i
\(531\) 0 0
\(532\) 3.10816 + 9.56592i 0.134756 + 0.414735i
\(533\) 9.79637 22.0030i 0.424328 0.953057i
\(534\) 0 0
\(535\) −4.32086 + 20.3280i −0.186807 + 0.878858i
\(536\) 0.940463 + 1.04449i 0.0406218 + 0.0451151i
\(537\) 0 0
\(538\) −3.44620 + 1.98966i −0.148576 + 0.0857805i
\(539\) 1.30185 0.0248597i 0.0560746 0.00107078i
\(540\) 0 0
\(541\) −6.85075 + 9.42925i −0.294537 + 0.405395i −0.930481 0.366340i \(-0.880611\pi\)
0.635944 + 0.771735i \(0.280611\pi\)
\(542\) −0.153220 0.720841i −0.00658134 0.0309628i
\(543\) 0 0
\(544\) 1.35942 + 12.9341i 0.0582848 + 0.554543i
\(545\) 2.63272 + 25.0486i 0.112773 + 1.07297i
\(546\) 0 0
\(547\) −0.168987 0.795023i −0.00722538 0.0339927i 0.974387 0.224877i \(-0.0721979\pi\)
−0.981613 + 0.190884i \(0.938865\pi\)
\(548\) −5.77297 + 7.94581i −0.246609 + 0.339428i
\(549\) 0 0
\(550\) 2.97487 0.0568072i 0.126849 0.00242227i
\(551\) −15.8006 + 9.12251i −0.673130 + 0.388632i
\(552\) 0 0
\(553\) −12.9770 14.4124i −0.551838 0.612879i
\(554\) 1.11365 5.23930i 0.0473143 0.222596i
\(555\) 0 0
\(556\) −13.7651 + 30.9169i −0.583770 + 1.31117i
\(557\) 2.14843 + 6.61219i 0.0910320 + 0.280168i 0.986199 0.165563i \(-0.0529440\pi\)
−0.895167 + 0.445730i \(0.852944\pi\)
\(558\) 0 0
\(559\) 27.4405 + 19.9367i 1.16061 + 0.843233i
\(560\) −14.3708 24.8909i −0.607277 1.05183i
\(561\) 0 0
\(562\) −0.391974 + 0.678919i −0.0165344 + 0.0286385i
\(563\) 26.2714 11.6968i 1.10721 0.492960i 0.230056 0.973177i \(-0.426109\pi\)
0.877149 + 0.480218i \(0.159442\pi\)
\(564\) 0 0
\(565\) 22.3026 24.7696i 0.938278 1.04206i
\(566\) 3.34367 + 4.60217i 0.140545 + 0.193444i
\(567\) 0 0
\(568\) 3.42694 1.11348i 0.143791 0.0467207i
\(569\) 10.2206 2.17245i 0.428469 0.0910740i 0.0113711 0.999935i \(-0.496380\pi\)
0.417098 + 0.908861i \(0.363047\pi\)
\(570\) 0 0
\(571\) −18.4056 10.6265i −0.770251 0.444704i 0.0627134 0.998032i \(-0.480025\pi\)
−0.832964 + 0.553327i \(0.813358\pi\)
\(572\) −18.1944 + 2.26429i −0.760747 + 0.0946747i
\(573\) 0 0
\(574\) 5.78483 + 0.608010i 0.241454 + 0.0253778i
\(575\) 2.74578 + 0.892157i 0.114507 + 0.0372055i
\(576\) 0 0
\(577\) −12.6856 + 9.21665i −0.528110 + 0.383694i −0.819650 0.572864i \(-0.805832\pi\)
0.291541 + 0.956558i \(0.405832\pi\)
\(578\) 0.674623 + 0.300361i 0.0280606 + 0.0124934i
\(579\) 0 0
\(580\) 40.1225 36.1265i 1.66600 1.50007i
\(581\) −8.66387 19.4594i −0.359438 0.807310i
\(582\) 0 0
\(583\) 26.2085 + 22.7074i 1.08545 + 0.940443i
\(584\) 1.75664i 0.0726903i
\(585\) 0 0
\(586\) −1.62588 + 5.00395i −0.0671646 + 0.206711i
\(587\) 14.9785 + 13.4867i 0.618231 + 0.556658i 0.917613 0.397476i \(-0.130114\pi\)
−0.299382 + 0.954133i \(0.596780\pi\)
\(588\) 0 0
\(589\) 11.3776 1.19583i 0.468805 0.0492734i
\(590\) −0.0676398 0.0143773i −0.00278469 0.000591903i
\(591\) 0 0
\(592\) −2.24881 + 21.3960i −0.0924254 + 0.879369i
\(593\) 40.5694 1.66599 0.832993 0.553284i \(-0.186626\pi\)
0.832993 + 0.553284i \(0.186626\pi\)
\(594\) 0 0
\(595\) −35.4475 −1.45320
\(596\) 1.14449 10.8891i 0.0468801 0.446034i
\(597\) 0 0
\(598\) 0.578525 + 0.122969i 0.0236576 + 0.00502859i
\(599\) 10.8776 1.14328i 0.444446 0.0467131i 0.120337 0.992733i \(-0.461602\pi\)
0.324108 + 0.946020i \(0.394936\pi\)
\(600\) 0 0
\(601\) −12.1550 10.9444i −0.495813 0.446432i 0.382895 0.923792i \(-0.374927\pi\)
−0.878708 + 0.477360i \(0.841594\pi\)
\(602\) −2.53129 + 7.79050i −0.103168 + 0.317517i
\(603\) 0 0
\(604\) 17.7605i 0.722665i
\(605\) −32.0679 2.13673i −1.30374 0.0868702i
\(606\) 0 0
\(607\) −9.70660 21.8014i −0.393979 0.884890i −0.996244 0.0865943i \(-0.972402\pi\)
0.602265 0.798296i \(-0.294265\pi\)
\(608\) 4.13944 3.72717i 0.167877 0.151157i
\(609\) 0 0
\(610\) 1.45172 + 0.646347i 0.0587784 + 0.0261698i
\(611\) 17.8330 12.9564i 0.721445 0.524161i
\(612\) 0 0
\(613\) 0.0461533 + 0.0149961i 0.00186411 + 0.000605687i 0.309949 0.950753i \(-0.399688\pi\)
−0.308085 + 0.951359i \(0.599688\pi\)
\(614\) 3.78622 + 0.397948i 0.152799 + 0.0160599i
\(615\) 0 0
\(616\) −3.81823 8.15328i −0.153841 0.328505i
\(617\) −7.14090 4.12280i −0.287482 0.165978i 0.349324 0.937002i \(-0.386411\pi\)
−0.636806 + 0.771024i \(0.719745\pi\)
\(618\) 0 0
\(619\) 1.70126 0.361615i 0.0683795 0.0145345i −0.173595 0.984817i \(-0.555538\pi\)
0.241974 + 0.970283i \(0.422205\pi\)
\(620\) −32.1968 + 10.4614i −1.29305 + 0.420139i
\(621\) 0 0
\(622\) −0.307013 0.422567i −0.0123101 0.0169434i
\(623\) 3.76291 4.17913i 0.150758 0.167433i
\(624\) 0 0
\(625\) −27.5669 + 12.2736i −1.10267 + 0.490942i
\(626\) 3.15477 5.46423i 0.126090 0.218395i
\(627\) 0 0
\(628\) −2.95547 5.11902i −0.117936 0.204271i
\(629\) 21.4659 + 15.5959i 0.855903 + 0.621850i
\(630\) 0 0
\(631\) −8.14182 25.0580i −0.324121 0.997541i −0.971836 0.235659i \(-0.924275\pi\)
0.647715 0.761883i \(-0.275725\pi\)
\(632\) −2.89650 + 6.50564i −0.115216 + 0.258780i
\(633\) 0 0
\(634\) −0.0228230 + 0.107374i −0.000906417 + 0.00426435i
\(635\) −5.63648 6.25994i −0.223677 0.248418i
\(636\) 0 0
\(637\) 0.971016 0.560616i 0.0384731 0.0222124i
\(638\) 6.40670 4.84429i 0.253644 0.191787i
\(639\) 0 0
\(640\) −12.8409 + 17.6740i −0.507582 + 0.698626i
\(641\) 1.80795 + 8.50575i 0.0714098 + 0.335957i 0.999321 0.0368445i \(-0.0117306\pi\)
−0.927911 + 0.372801i \(0.878397\pi\)
\(642\) 0 0
\(643\) 2.25948 + 21.4975i 0.0891053 + 0.847780i 0.944214 + 0.329332i \(0.106823\pi\)
−0.855109 + 0.518448i \(0.826510\pi\)
\(644\) −0.449103 4.27293i −0.0176972 0.168377i
\(645\) 0 0
\(646\) −0.449780 2.11605i −0.0176964 0.0832548i
\(647\) −17.2616 + 23.7586i −0.678625 + 0.934048i −0.999916 0.0129330i \(-0.995883\pi\)
0.321291 + 0.946980i \(0.395883\pi\)
\(648\) 0 0
\(649\) 0.296067 + 0.0899860i 0.0116216 + 0.00353226i
\(650\) 2.21888 1.28107i 0.0870316 0.0502477i
\(651\) 0 0
\(652\) −10.2379 11.3704i −0.400948 0.445298i
\(653\) 4.92616 23.1758i 0.192775 0.906937i −0.770295 0.637688i \(-0.779891\pi\)
0.963070 0.269250i \(-0.0867756\pi\)
\(654\) 0 0
\(655\) 2.49743 5.60931i 0.0975826 0.219174i
\(656\) 9.42876 + 29.0187i 0.368131 + 1.13299i
\(657\) 0 0
\(658\) 4.30674 + 3.12903i 0.167894 + 0.121982i
\(659\) −17.2970 29.9594i −0.673797 1.16705i −0.976819 0.214067i \(-0.931329\pi\)
0.303022 0.952984i \(-0.402004\pi\)
\(660\) 0 0
\(661\) −17.7456 + 30.7363i −0.690225 + 1.19550i 0.281539 + 0.959550i \(0.409155\pi\)
−0.971764 + 0.235955i \(0.924178\pi\)
\(662\) −4.01127 + 1.78593i −0.155902 + 0.0694122i
\(663\) 0 0
\(664\) −5.23366 + 5.81257i −0.203105 + 0.225571i
\(665\) 8.92385 + 12.2826i 0.346052 + 0.476300i
\(666\) 0 0
\(667\) 7.41211 2.40834i 0.286998 0.0932513i
\(668\) −31.1414 + 6.61932i −1.20490 + 0.256109i
\(669\) 0 0
\(670\) 0.903618 + 0.521704i 0.0349098 + 0.0201552i
\(671\) −6.22507 3.43728i −0.240316 0.132695i
\(672\) 0 0
\(673\) 20.7868 + 2.18478i 0.801271 + 0.0842169i 0.496307 0.868147i \(-0.334689\pi\)
0.304964 + 0.952364i \(0.401356\pi\)
\(674\) −6.04715 1.96484i −0.232928 0.0756827i
\(675\) 0 0
\(676\) 7.58475 5.51064i 0.291721 0.211948i
\(677\) −22.1425 9.85849i −0.851007 0.378893i −0.0655801 0.997847i \(-0.520890\pi\)
−0.785427 + 0.618955i \(0.787556\pi\)
\(678\) 0 0
\(679\) 3.37522 3.03906i 0.129529 0.116628i
\(680\) 5.29413 + 11.8908i 0.203021 + 0.455992i
\(681\) 0 0
\(682\) −4.90539 + 1.14098i −0.187837 + 0.0436902i
\(683\) 17.6311i 0.674636i −0.941391 0.337318i \(-0.890480\pi\)
0.941391 0.337318i \(-0.109520\pi\)
\(684\) 0 0
\(685\) −4.58116 + 14.0994i −0.175037 + 0.538709i
\(686\) −3.38673 3.04943i −0.129306 0.116428i
\(687\) 0 0
\(688\) −42.7336 + 4.49148i −1.62920 + 0.171236i
\(689\) 29.2082 + 6.20840i 1.11274 + 0.236521i
\(690\) 0 0
\(691\) −3.04558 + 28.9767i −0.115859 + 1.10233i 0.769894 + 0.638171i \(0.220309\pi\)
−0.885754 + 0.464156i \(0.846358\pi\)
\(692\) −30.0459 −1.14218
\(693\) 0 0
\(694\) −5.29496 −0.200994
\(695\) −5.33966 + 50.8034i −0.202545 + 1.92708i
\(696\) 0 0
\(697\) 36.8088 + 7.82394i 1.39423 + 0.296353i
\(698\) −4.54632 + 0.477838i −0.172081 + 0.0180864i
\(699\) 0 0
\(700\) −13.8315 12.4540i −0.522783 0.470716i
\(701\) −4.54301 + 13.9820i −0.171587 + 0.528091i −0.999461 0.0328229i \(-0.989550\pi\)
0.827874 + 0.560914i \(0.189550\pi\)
\(702\) 0 0
\(703\) 11.3642i 0.428611i
\(704\) 14.1095 16.2850i 0.531773 0.613765i
\(705\) 0 0
\(706\) 1.68134 + 3.77634i 0.0632779 + 0.142125i
\(707\) −18.2814 + 16.4606i −0.687542 + 0.619065i
\(708\) 0 0
\(709\) 9.85018 + 4.38558i 0.369931 + 0.164704i 0.583278 0.812272i \(-0.301770\pi\)
−0.213347 + 0.976977i \(0.568436\pi\)
\(710\) 2.16412 1.57233i 0.0812180 0.0590083i
\(711\) 0 0
\(712\) −1.96388 0.638103i −0.0735995 0.0239139i
\(713\) −4.86006 0.510813i −0.182011 0.0191301i
\(714\) 0 0
\(715\) −25.0629 + 11.7371i −0.937299 + 0.438943i
\(716\) 8.69904 + 5.02239i 0.325098 + 0.187696i
\(717\) 0 0
\(718\) −6.14976 + 1.30717i −0.229507 + 0.0487832i
\(719\) 30.1960 9.81128i 1.12612 0.365899i 0.314020 0.949416i \(-0.398324\pi\)
0.812101 + 0.583517i \(0.198324\pi\)
\(720\) 0 0
\(721\) −26.4860 36.4549i −0.986390 1.35765i
\(722\) 2.60511 2.89327i 0.0969523 0.107676i
\(723\) 0 0
\(724\) −9.39373 + 4.18236i −0.349115 + 0.155436i
\(725\) 16.8807 29.2383i 0.626934 1.08588i
\(726\) 0 0
\(727\) −11.8209 20.4744i −0.438414 0.759355i 0.559154 0.829064i \(-0.311126\pi\)
−0.997567 + 0.0697091i \(0.977793\pi\)
\(728\) −6.27196 4.55685i −0.232454 0.168888i
\(729\) 0 0
\(730\) −0.402984 1.24026i −0.0149151 0.0459040i
\(731\) −21.5547 + 48.4128i −0.797231 + 1.79061i
\(732\) 0 0
\(733\) −3.41483 + 16.0655i −0.126130 + 0.593394i 0.868999 + 0.494813i \(0.164764\pi\)
−0.995129 + 0.0985806i \(0.968570\pi\)
\(734\) 1.51981 + 1.68792i 0.0560973 + 0.0623023i
\(735\) 0 0
\(736\) −2.06059 + 1.18968i −0.0759542 + 0.0438522i
\(737\) −3.82908 2.67181i −0.141046 0.0984172i
\(738\) 0 0
\(739\) 20.4813 28.1901i 0.753417 1.03699i −0.244316 0.969696i \(-0.578563\pi\)
0.997733 0.0672942i \(-0.0214366\pi\)
\(740\) 6.99182 + 32.8939i 0.257024 + 1.20920i
\(741\) 0 0
\(742\) 0.753806 + 7.17198i 0.0276731 + 0.263292i
\(743\) −5.51833 52.5034i −0.202448 1.92616i −0.349315 0.937005i \(-0.613586\pi\)
0.146868 0.989156i \(-0.453081\pi\)
\(744\) 0 0
\(745\) −3.43613 16.1657i −0.125890 0.592266i
\(746\) 2.52001 3.46850i 0.0922643 0.126991i
\(747\) 0 0
\(748\) −9.37077 27.0704i −0.342629 0.989791i
\(749\) 16.7487 9.66985i 0.611983 0.353329i
\(750\) 0 0
\(751\) 34.3784 + 38.1811i 1.25449 + 1.39325i 0.886047 + 0.463595i \(0.153441\pi\)
0.368439 + 0.929652i \(0.379892\pi\)
\(752\) −5.80584 + 27.3144i −0.211717 + 0.996052i
\(753\) 0 0
\(754\) 2.81315 6.31844i 0.102449 0.230104i
\(755\) −8.28421 25.4962i −0.301493 0.927900i
\(756\) 0 0
\(757\) 5.71877 + 4.15493i 0.207852 + 0.151013i 0.686841 0.726807i \(-0.258997\pi\)
−0.478989 + 0.877821i \(0.658997\pi\)
\(758\) −2.50261 4.33464i −0.0908987 0.157441i
\(759\) 0 0
\(760\) 2.78740 4.82792i 0.101110 0.175127i
\(761\) −26.6140 + 11.8493i −0.964758 + 0.429538i −0.827790 0.561037i \(-0.810402\pi\)
−0.136968 + 0.990576i \(0.543736\pi\)
\(762\) 0 0
\(763\) 15.6834 17.4181i 0.567776 0.630579i
\(764\) −12.4010 17.0685i −0.448653 0.617517i
\(765\) 0 0
\(766\) 1.20628 0.391945i 0.0435847 0.0141615i
\(767\) 0.260637 0.0554002i 0.00941107 0.00200039i
\(768\) 0 0
\(769\) −38.3136 22.1204i −1.38162 0.797682i −0.389273 0.921122i \(-0.627274\pi\)
−0.992352 + 0.123441i \(0.960607\pi\)
\(770\) −4.56624 4.88062i −0.164556 0.175885i
\(771\) 0 0
\(772\) −29.5811 3.10910i −1.06465 0.111899i
\(773\) 38.0786 + 12.3725i 1.36959 + 0.445007i 0.899234 0.437468i \(-0.144125\pi\)
0.470358 + 0.882476i \(0.344125\pi\)
\(774\) 0 0
\(775\) −17.1266 + 12.4432i −0.615204 + 0.446972i
\(776\) −1.52354 0.678325i −0.0546920 0.0243505i
\(777\) 0 0
\(778\) 1.85754 1.67254i 0.0665961 0.0599634i
\(779\) −6.55554 14.7240i −0.234877 0.527541i
\(780\) 0 0
\(781\) −10.2504 + 6.18194i −0.366787 + 0.221207i
\(782\) 0.924086i 0.0330453i
\(783\) 0 0
\(784\) −0.438933 + 1.35090i −0.0156762 + 0.0482463i
\(785\) −6.63045 5.97008i −0.236651 0.213081i
\(786\) 0 0
\(787\) 28.2087 2.96485i 1.00553 0.105686i 0.412578 0.910922i \(-0.364628\pi\)
0.592954 + 0.805237i \(0.297962\pi\)
\(788\) −13.7107 2.91430i −0.488423 0.103817i
\(789\) 0 0
\(790\) −0.552609 + 5.25772i −0.0196609 + 0.187061i
\(791\) −31.0173 −1.10285
\(792\) 0 0
\(793\) −6.12332 −0.217446
\(794\) 0.504459 4.79961i 0.0179026 0.170332i
\(795\) 0 0
\(796\) −21.5323 4.57683i −0.763191 0.162221i
\(797\) −14.8619 + 1.56205i −0.526435 + 0.0553305i −0.364018 0.931392i \(-0.618595\pi\)
−0.162416 + 0.986722i \(0.551929\pi\)
\(798\) 0 0
\(799\) 25.5938 + 23.0448i 0.905443 + 0.815265i
\(800\) −3.18513 + 9.80283i −0.112611 + 0.346582i
\(801\) 0 0
\(802\) 7.78923i 0.275047i
\(803\) 1.32204 + 5.68386i 0.0466540 + 0.200579i
\(804\) 0 0
\(805\) −2.63778 5.92455i −0.0929694 0.208813i
\(806\) −3.22288 + 2.90190i −0.113521 + 0.102215i
\(807\) 0 0
\(808\) 8.25205 + 3.67405i 0.290306 + 0.129253i
\(809\) 24.0892 17.5019i 0.846933 0.615333i −0.0773660 0.997003i \(-0.524651\pi\)
0.924299 + 0.381670i \(0.124651\pi\)
\(810\) 0 0
\(811\) 41.9856 + 13.6420i 1.47432 + 0.479034i 0.932409 0.361405i \(-0.117703\pi\)
0.541906 + 0.840439i \(0.317703\pi\)
\(812\) −49.9676 5.25180i −1.75352 0.184302i
\(813\) 0 0
\(814\) 0.617840 + 4.96458i 0.0216553 + 0.174008i
\(815\) −20.0007 11.5474i −0.700593 0.404488i
\(816\) 0 0
\(817\) 22.2015 4.71907i 0.776732 0.165100i
\(818\) 2.86459 0.930761i 0.100158 0.0325433i
\(819\) 0 0
\(820\) 28.0340 + 38.5854i 0.978988 + 1.34746i
\(821\) −2.67983 + 2.97626i −0.0935269 + 0.103872i −0.788091 0.615558i \(-0.788930\pi\)
0.694564 + 0.719431i \(0.255597\pi\)
\(822\) 0 0
\(823\) 38.5354 17.1571i 1.34326 0.598058i 0.395919 0.918285i \(-0.370426\pi\)
0.947341 + 0.320227i \(0.103759\pi\)
\(824\) −8.27302 + 14.3293i −0.288204 + 0.499184i
\(825\) 0 0
\(826\) 0.0321756 + 0.0557298i 0.00111953 + 0.00193909i
\(827\) −21.5183 15.6340i −0.748266 0.543647i 0.147023 0.989133i \(-0.453031\pi\)
−0.895289 + 0.445486i \(0.853031\pi\)
\(828\) 0 0
\(829\) 3.77976 + 11.6329i 0.131276 + 0.404027i 0.994992 0.0999518i \(-0.0318689\pi\)
−0.863716 + 0.503979i \(0.831869\pi\)
\(830\) −2.36174 + 5.30454i −0.0819770 + 0.184123i
\(831\) 0 0
\(832\) 3.85767 18.1489i 0.133741 0.629201i
\(833\) 1.17220 + 1.30186i 0.0406143 + 0.0451067i
\(834\) 0 0
\(835\) −41.6177 + 24.0280i −1.44024 + 0.831523i
\(836\) −7.02087 + 10.0619i −0.242822 + 0.347999i
\(837\) 0 0
\(838\) 1.50045 2.06519i 0.0518321 0.0713408i
\(839\) 2.00561 + 9.43567i 0.0692415 + 0.325756i 0.999112 0.0421312i \(-0.0134147\pi\)
−0.929871 + 0.367887i \(0.880081\pi\)
\(840\) 0 0
\(841\) −6.49515 61.7972i −0.223971 2.13094i
\(842\) 0.165899 + 1.57843i 0.00571727 + 0.0543962i
\(843\) 0 0
\(844\) −1.48833 7.00204i −0.0512304 0.241020i
\(845\) 8.31793 11.4486i 0.286146 0.393846i
\(846\) 0 0
\(847\) 18.4906 + 23.5075i 0.635344 + 0.807727i
\(848\) −32.7606 + 18.9143i −1.12500 + 0.649521i
\(849\) 0 0
\(850\) 2.67860 + 2.97489i 0.0918754 + 0.102038i
\(851\) −1.00928 + 4.74828i −0.0345976 + 0.162769i
\(852\) 0 0
\(853\) −4.77450 + 10.7237i −0.163476 + 0.367173i −0.976647 0.214852i \(-0.931073\pi\)
0.813171 + 0.582025i \(0.197740\pi\)
\(854\) −0.456976 1.40643i −0.0156374 0.0481270i
\(855\) 0 0
\(856\) −5.74518 4.17412i −0.196366 0.142668i
\(857\) 24.3869 + 42.2393i 0.833041 + 1.44287i 0.895616 + 0.444828i \(0.146735\pi\)
−0.0625753 + 0.998040i \(0.519931\pi\)
\(858\) 0 0
\(859\) 15.5440 26.9230i 0.530355 0.918602i −0.469018 0.883189i \(-0.655392\pi\)
0.999373 0.0354131i \(-0.0112747\pi\)
\(860\) −61.3591 + 27.3188i −2.09233 + 0.931564i
\(861\) 0 0
\(862\) 3.33360 3.70234i 0.113543 0.126102i
\(863\) 30.6459 + 42.1805i 1.04320 + 1.43584i 0.894559 + 0.446950i \(0.147490\pi\)
0.148641 + 0.988891i \(0.452510\pi\)
\(864\) 0 0
\(865\) −43.1325 + 14.0146i −1.46655 + 0.476511i
\(866\) −7.76379 + 1.65024i −0.263824 + 0.0560776i
\(867\) 0 0
\(868\) 27.2832 + 15.7520i 0.926053 + 0.534657i
\(869\) 4.47589 23.2298i 0.151834 0.788018i
\(870\) 0 0
\(871\) −3.99856 0.420265i −0.135486 0.0142401i
\(872\) −8.18523 2.65954i −0.277187 0.0900635i
\(873\) 0 0
\(874\) 0.320198 0.232637i 0.0108309 0.00786907i
\(875\) 10.6210 + 4.72877i 0.359055 + 0.159861i
\(876\) 0 0
\(877\) −12.6244 + 11.3671i −0.426295 + 0.383838i −0.854165 0.520002i \(-0.825931\pi\)
0.427869 + 0.903841i \(0.359264\pi\)
\(878\) −2.08354 4.67971i −0.0703162 0.157933i
\(879\) 0 0
\(880\) 13.6460 32.2951i 0.460006 1.08867i
\(881\) 50.3115i 1.69504i 0.530765 + 0.847519i \(0.321905\pi\)
−0.530765 + 0.847519i \(0.678095\pi\)
\(882\) 0 0
\(883\) 4.44037 13.6660i 0.149430 0.459899i −0.848124 0.529798i \(-0.822268\pi\)
0.997554 + 0.0698990i \(0.0222677\pi\)
\(884\) −18.3316 16.5058i −0.616558 0.555151i
\(885\) 0 0
\(886\) 6.14767 0.646146i 0.206535 0.0217077i
\(887\) −40.3978 8.58682i −1.35643 0.288317i −0.528395 0.848999i \(-0.677206\pi\)
−0.828032 + 0.560681i \(0.810539\pi\)
\(888\) 0 0
\(889\) −0.819389 + 7.79597i −0.0274814 + 0.261468i
\(890\) −1.53296 −0.0513851
\(891\) 0 0
\(892\) 0.548221 0.0183558
\(893\) 1.54186 14.6698i 0.0515963 0.490906i
\(894\) 0 0
\(895\) 14.8306 + 3.15234i 0.495732 + 0.105371i
\(896\) 20.2186 2.12506i 0.675455 0.0709932i
\(897\) 0 0
\(898\) 0.622470 + 0.560474i 0.0207721 + 0.0187033i
\(899\) −17.6592 + 54.3495i −0.588968 + 1.81266i
\(900\) 0 0
\(901\) 46.6547i 1.55429i
\(902\) 3.66435 + 6.07590i 0.122009 + 0.202305i
\(903\) 0 0
\(904\) 4.63247 + 10.4047i 0.154074 + 0.346055i
\(905\) −11.5344 + 10.3856i −0.383416 + 0.345229i
\(906\) 0 0
\(907\) −23.8588 10.6226i −0.792217 0.352718i −0.0295951 0.999562i \(-0.509422\pi\)
−0.762622 + 0.646844i \(0.776088\pi\)
\(908\) −28.5883 + 20.7706i −0.948738 + 0.689298i
\(909\) 0 0
\(910\) −5.47363 1.77849i −0.181449 0.0589563i
\(911\) −45.1640 4.74692i −1.49635 0.157273i −0.679309 0.733853i \(-0.737720\pi\)
−0.817041 + 0.576580i \(0.804387\pi\)
\(912\) 0 0
\(913\) 12.5597 22.7462i 0.415666 0.752791i
\(914\) −3.43098 1.98088i −0.113487 0.0655215i
\(915\) 0 0
\(916\) 49.9387 10.6148i 1.65002 0.350723i
\(917\) −5.43431 + 1.76572i −0.179457 + 0.0583091i
\(918\) 0 0
\(919\) −16.3737 22.5365i −0.540119 0.743410i 0.448511 0.893777i \(-0.351954\pi\)
−0.988630 + 0.150367i \(0.951954\pi\)
\(920\) −1.59343 + 1.76968i −0.0525337 + 0.0583446i
\(921\) 0 0
\(922\) −8.47453 + 3.77310i −0.279094 + 0.124260i
\(923\) −5.15381 + 8.92667i −0.169640 + 0.293825i
\(924\) 0 0
\(925\) 10.5145 + 18.2116i 0.345713 + 0.598793i
\(926\) −0.914353 0.664317i −0.0300475 0.0218308i
\(927\) 0 0
\(928\) 8.59813 + 26.4623i 0.282248 + 0.868669i
\(929\) 20.2370 45.4530i 0.663954 1.49127i −0.195846 0.980635i \(-0.562745\pi\)
0.859800 0.510631i \(-0.170588\pi\)
\(930\) 0 0
\(931\) 0.155997 0.733910i 0.00511261 0.0240529i
\(932\) 13.9910 + 15.5386i 0.458291 + 0.508984i
\(933\) 0 0
\(934\) 9.14497 5.27985i 0.299232 0.172762i
\(935\) −26.0789 34.4901i −0.852872 1.12795i
\(936\) 0 0
\(937\) 11.9943 16.5087i 0.391837 0.539317i −0.566835 0.823831i \(-0.691832\pi\)
0.958672 + 0.284514i \(0.0918323\pi\)
\(938\) −0.201879 0.949768i −0.00659159 0.0310110i
\(939\) 0 0
\(940\) 4.56262 + 43.4105i 0.148816 + 1.41589i
\(941\) 1.83378 + 17.4473i 0.0597796 + 0.568765i 0.982885 + 0.184219i \(0.0589755\pi\)
−0.923106 + 0.384547i \(0.874358\pi\)
\(942\) 0 0
\(943\) 1.43141 + 6.73427i 0.0466133 + 0.219298i
\(944\) −0.198413 + 0.273093i −0.00645781 + 0.00888841i
\(945\) 0 0
\(946\) −9.44237 + 3.26860i −0.306998 + 0.106271i
\(947\) −40.7614 + 23.5336i −1.32457 + 0.764739i −0.984453 0.175646i \(-0.943799\pi\)
−0.340113 + 0.940385i \(0.610465\pi\)
\(948\) 0 0
\(949\) 3.36242 + 3.73434i 0.109149 + 0.121222i
\(950\) 0.356471 1.67707i 0.0115655 0.0544112i
\(951\) 0 0
\(952\) 4.92667 11.0655i 0.159674 0.358634i
\(953\) −15.9545 49.1029i −0.516817 1.59060i −0.779952 0.625839i \(-0.784757\pi\)
0.263136 0.964759i \(-0.415243\pi\)
\(954\) 0 0
\(955\) −25.7637 18.7185i −0.833695 0.605715i
\(956\) 7.18447 + 12.4439i 0.232362 + 0.402463i
\(957\) 0 0
\(958\) 0.446659 0.773636i 0.0144309 0.0249951i
\(959\) 12.6032 5.61133i 0.406980 0.181199i
\(960\) 0 0
\(961\) 3.23375 3.59144i 0.104315 0.115853i
\(962\) 2.53218 + 3.48525i 0.0816408 + 0.112369i
\(963\) 0 0
\(964\) 4.91289 1.59629i 0.158233 0.0514132i
\(965\) −43.9154 + 9.33451i −1.41369 + 0.300488i
\(966\) 0 0
\(967\) −29.1820 16.8482i −0.938429 0.541802i −0.0489615 0.998801i \(-0.515591\pi\)
−0.889467 + 0.456998i \(0.848924\pi\)
\(968\) 5.12397 9.71352i 0.164691 0.312204i
\(969\) 0 0
\(970\) −1.23130 0.129414i −0.0395345 0.00415525i
\(971\) 53.1467 + 17.2684i 1.70556 + 0.554170i 0.989584 0.143955i \(-0.0459822\pi\)
0.715976 + 0.698125i \(0.245982\pi\)
\(972\) 0 0
\(973\) 38.4588 27.9419i 1.23293 0.895777i
\(974\) 7.39272 + 3.29145i 0.236878 + 0.105465i
\(975\) 0 0
\(976\) 5.76475 5.19061i 0.184525 0.166147i
\(977\) 8.40289 + 18.8732i 0.268832 + 0.603807i 0.996634 0.0819804i \(-0.0261245\pi\)
−0.727802 + 0.685788i \(0.759458\pi\)
\(978\) 0 0
\(979\) 6.83465 + 0.586661i 0.218436 + 0.0187498i
\(980\) 2.22029i 0.0709245i
\(981\) 0 0
\(982\) 1.91422 5.89137i 0.0610853 0.188001i
\(983\) 37.2519 + 33.5418i 1.18815 + 1.06982i 0.996082 + 0.0884351i \(0.0281866\pi\)
0.192070 + 0.981381i \(0.438480\pi\)
\(984\) 0 0
\(985\) −21.0418 + 2.21158i −0.670446 + 0.0704667i
\(986\) 10.5701 + 2.24674i 0.336620 + 0.0715508i
\(987\) 0 0
\(988\) −1.10436 + 10.5072i −0.0351343 + 0.334280i
\(989\) −9.69548 −0.308298
\(990\) 0 0
\(991\) 45.3068 1.43922 0.719609 0.694379i \(-0.244321\pi\)
0.719609 + 0.694379i \(0.244321\pi\)
\(992\) 1.82368 17.3511i 0.0579018 0.550899i
\(993\) 0 0
\(994\) −2.43493 0.517561i −0.0772314 0.0164160i
\(995\) −33.0455 + 3.47323i −1.04761 + 0.110109i
\(996\) 0 0
\(997\) −7.63945 6.87859i −0.241944 0.217847i 0.539234 0.842156i \(-0.318714\pi\)
−0.781177 + 0.624309i \(0.785381\pi\)
\(998\) −1.82407 + 5.61392i −0.0577400 + 0.177705i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.u.c.458.2 32
3.2 odd 2 inner 891.2.u.c.458.3 32
9.2 odd 6 inner 891.2.u.c.755.2 32
9.4 even 3 99.2.j.a.62.2 yes 16
9.5 odd 6 99.2.j.a.62.3 yes 16
9.7 even 3 inner 891.2.u.c.755.3 32
11.8 odd 10 inner 891.2.u.c.701.2 32
33.8 even 10 inner 891.2.u.c.701.3 32
36.23 even 6 1584.2.cd.c.161.3 16
36.31 odd 6 1584.2.cd.c.161.2 16
99.5 odd 30 1089.2.d.g.1088.7 16
99.41 even 30 99.2.j.a.8.2 16
99.49 even 15 1089.2.d.g.1088.10 16
99.50 even 30 1089.2.d.g.1088.9 16
99.52 odd 30 inner 891.2.u.c.107.3 32
99.74 even 30 inner 891.2.u.c.107.2 32
99.85 odd 30 99.2.j.a.8.3 yes 16
99.94 odd 30 1089.2.d.g.1088.8 16
396.239 odd 30 1584.2.cd.c.305.2 16
396.283 even 30 1584.2.cd.c.305.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.j.a.8.2 16 99.41 even 30
99.2.j.a.8.3 yes 16 99.85 odd 30
99.2.j.a.62.2 yes 16 9.4 even 3
99.2.j.a.62.3 yes 16 9.5 odd 6
891.2.u.c.107.2 32 99.74 even 30 inner
891.2.u.c.107.3 32 99.52 odd 30 inner
891.2.u.c.458.2 32 1.1 even 1 trivial
891.2.u.c.458.3 32 3.2 odd 2 inner
891.2.u.c.701.2 32 11.8 odd 10 inner
891.2.u.c.701.3 32 33.8 even 10 inner
891.2.u.c.755.2 32 9.2 odd 6 inner
891.2.u.c.755.3 32 9.7 even 3 inner
1089.2.d.g.1088.7 16 99.5 odd 30
1089.2.d.g.1088.8 16 99.94 odd 30
1089.2.d.g.1088.9 16 99.50 even 30
1089.2.d.g.1088.10 16 99.49 even 15
1584.2.cd.c.161.2 16 36.31 odd 6
1584.2.cd.c.161.3 16 36.23 even 6
1584.2.cd.c.305.2 16 396.239 odd 30
1584.2.cd.c.305.3 16 396.283 even 30