Properties

Label 1587.2.a.s.1.3
Level $1587$
Weight $2$
Character 1587.1
Self dual yes
Analytic conductor $12.672$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1587,2,Mod(1,1587)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1587, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1587.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1587 = 3 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1587.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.6722588008\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.2803712.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 6x^{4} + 8x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.569973\) of defining polynomial
Character \(\chi\) \(=\) 1587.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.193937 q^{2} +1.00000 q^{3} -1.96239 q^{4} -2.36899 q^{5} +0.193937 q^{6} +0.954779 q^{7} -0.768452 q^{8} +1.00000 q^{9} -0.459434 q^{10} -4.18945 q^{11} -1.96239 q^{12} +1.61213 q^{13} +0.185167 q^{14} -2.36899 q^{15} +3.77575 q^{16} -5.19742 q^{17} +0.193937 q^{18} +7.97266 q^{19} +4.64888 q^{20} +0.954779 q^{21} -0.812488 q^{22} -0.768452 q^{24} +0.612127 q^{25} +0.312650 q^{26} +1.00000 q^{27} -1.87365 q^{28} -1.35026 q^{29} -0.459434 q^{30} +5.35026 q^{31} +2.26916 q^{32} -4.18945 q^{33} -1.00797 q^{34} -2.26187 q^{35} -1.96239 q^{36} +8.43209 q^{37} +1.54619 q^{38} +1.61213 q^{39} +1.82046 q^{40} +7.92478 q^{41} +0.185167 q^{42} +1.87365 q^{43} +8.22133 q^{44} -2.36899 q^{45} +11.6629 q^{47} +3.77575 q^{48} -6.08840 q^{49} +0.118714 q^{50} -5.19742 q^{51} -3.16362 q^{52} -8.83833 q^{53} +0.193937 q^{54} +9.92478 q^{55} -0.733702 q^{56} +7.97266 q^{57} -0.261865 q^{58} +12.9624 q^{59} +4.64888 q^{60} -6.15220 q^{61} +1.03761 q^{62} +0.954779 q^{63} -7.11142 q^{64} -3.81912 q^{65} -0.812488 q^{66} -1.50331 q^{67} +10.1994 q^{68} -0.438658 q^{70} -4.00000 q^{71} -0.768452 q^{72} +13.9248 q^{73} +1.63529 q^{74} +0.612127 q^{75} -15.6455 q^{76} -4.00000 q^{77} +0.312650 q^{78} +2.42218 q^{79} -8.94472 q^{80} +1.00000 q^{81} +1.53690 q^{82} -1.73136 q^{83} -1.87365 q^{84} +12.3127 q^{85} +0.363369 q^{86} -1.35026 q^{87} +3.21939 q^{88} +1.45012 q^{89} -0.459434 q^{90} +1.53923 q^{91} +5.35026 q^{93} +2.26187 q^{94} -18.8872 q^{95} +2.26916 q^{96} -2.33308 q^{97} -1.18076 q^{98} -4.18945 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + 6 q^{3} + 10 q^{4} + 2 q^{6} + 18 q^{8} + 6 q^{9} + 10 q^{12} + 8 q^{13} + 26 q^{16} + 2 q^{18} + 18 q^{24} + 2 q^{25} - 40 q^{26} + 6 q^{27} + 12 q^{29} + 12 q^{31} + 58 q^{32} - 32 q^{35}+ \cdots - 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.193937 0.137134 0.0685669 0.997647i \(-0.478157\pi\)
0.0685669 + 0.997647i \(0.478157\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.96239 −0.981194
\(5\) −2.36899 −1.05945 −0.529723 0.848171i \(-0.677704\pi\)
−0.529723 + 0.848171i \(0.677704\pi\)
\(6\) 0.193937 0.0791743
\(7\) 0.954779 0.360873 0.180436 0.983587i \(-0.442249\pi\)
0.180436 + 0.983587i \(0.442249\pi\)
\(8\) −0.768452 −0.271689
\(9\) 1.00000 0.333333
\(10\) −0.459434 −0.145286
\(11\) −4.18945 −1.26317 −0.631583 0.775308i \(-0.717595\pi\)
−0.631583 + 0.775308i \(0.717595\pi\)
\(12\) −1.96239 −0.566493
\(13\) 1.61213 0.447124 0.223562 0.974690i \(-0.428232\pi\)
0.223562 + 0.974690i \(0.428232\pi\)
\(14\) 0.185167 0.0494879
\(15\) −2.36899 −0.611671
\(16\) 3.77575 0.943937
\(17\) −5.19742 −1.26056 −0.630280 0.776368i \(-0.717060\pi\)
−0.630280 + 0.776368i \(0.717060\pi\)
\(18\) 0.193937 0.0457113
\(19\) 7.97266 1.82905 0.914526 0.404526i \(-0.132564\pi\)
0.914526 + 0.404526i \(0.132564\pi\)
\(20\) 4.64888 1.03952
\(21\) 0.954779 0.208350
\(22\) −0.812488 −0.173223
\(23\) 0 0
\(24\) −0.768452 −0.156860
\(25\) 0.612127 0.122425
\(26\) 0.312650 0.0613158
\(27\) 1.00000 0.192450
\(28\) −1.87365 −0.354086
\(29\) −1.35026 −0.250737 −0.125369 0.992110i \(-0.540011\pi\)
−0.125369 + 0.992110i \(0.540011\pi\)
\(30\) −0.459434 −0.0838808
\(31\) 5.35026 0.960935 0.480468 0.877012i \(-0.340467\pi\)
0.480468 + 0.877012i \(0.340467\pi\)
\(32\) 2.26916 0.401134
\(33\) −4.18945 −0.729290
\(34\) −1.00797 −0.172865
\(35\) −2.26187 −0.382325
\(36\) −1.96239 −0.327065
\(37\) 8.43209 1.38623 0.693114 0.720828i \(-0.256238\pi\)
0.693114 + 0.720828i \(0.256238\pi\)
\(38\) 1.54619 0.250825
\(39\) 1.61213 0.258147
\(40\) 1.82046 0.287840
\(41\) 7.92478 1.23764 0.618821 0.785532i \(-0.287611\pi\)
0.618821 + 0.785532i \(0.287611\pi\)
\(42\) 0.185167 0.0285718
\(43\) 1.87365 0.285729 0.142864 0.989742i \(-0.454369\pi\)
0.142864 + 0.989742i \(0.454369\pi\)
\(44\) 8.22133 1.23941
\(45\) −2.36899 −0.353149
\(46\) 0 0
\(47\) 11.6629 1.70121 0.850605 0.525805i \(-0.176236\pi\)
0.850605 + 0.525805i \(0.176236\pi\)
\(48\) 3.77575 0.544982
\(49\) −6.08840 −0.869771
\(50\) 0.118714 0.0167887
\(51\) −5.19742 −0.727784
\(52\) −3.16362 −0.438715
\(53\) −8.83833 −1.21404 −0.607019 0.794687i \(-0.707635\pi\)
−0.607019 + 0.794687i \(0.707635\pi\)
\(54\) 0.193937 0.0263914
\(55\) 9.92478 1.33826
\(56\) −0.733702 −0.0980451
\(57\) 7.97266 1.05600
\(58\) −0.261865 −0.0343846
\(59\) 12.9624 1.68756 0.843780 0.536690i \(-0.180325\pi\)
0.843780 + 0.536690i \(0.180325\pi\)
\(60\) 4.64888 0.600168
\(61\) −6.15220 −0.787708 −0.393854 0.919173i \(-0.628859\pi\)
−0.393854 + 0.919173i \(0.628859\pi\)
\(62\) 1.03761 0.131777
\(63\) 0.954779 0.120291
\(64\) −7.11142 −0.888927
\(65\) −3.81912 −0.473703
\(66\) −0.812488 −0.100010
\(67\) −1.50331 −0.183659 −0.0918296 0.995775i \(-0.529271\pi\)
−0.0918296 + 0.995775i \(0.529271\pi\)
\(68\) 10.1994 1.23685
\(69\) 0 0
\(70\) −0.438658 −0.0524297
\(71\) −4.00000 −0.474713 −0.237356 0.971423i \(-0.576281\pi\)
−0.237356 + 0.971423i \(0.576281\pi\)
\(72\) −0.768452 −0.0905629
\(73\) 13.9248 1.62977 0.814886 0.579621i \(-0.196800\pi\)
0.814886 + 0.579621i \(0.196800\pi\)
\(74\) 1.63529 0.190099
\(75\) 0.612127 0.0706823
\(76\) −15.6455 −1.79466
\(77\) −4.00000 −0.455842
\(78\) 0.312650 0.0354007
\(79\) 2.42218 0.272517 0.136258 0.990673i \(-0.456492\pi\)
0.136258 + 0.990673i \(0.456492\pi\)
\(80\) −8.94472 −1.00005
\(81\) 1.00000 0.111111
\(82\) 1.53690 0.169723
\(83\) −1.73136 −0.190041 −0.0950205 0.995475i \(-0.530292\pi\)
−0.0950205 + 0.995475i \(0.530292\pi\)
\(84\) −1.87365 −0.204432
\(85\) 12.3127 1.33549
\(86\) 0.363369 0.0391831
\(87\) −1.35026 −0.144763
\(88\) 3.21939 0.343188
\(89\) 1.45012 0.153713 0.0768564 0.997042i \(-0.475512\pi\)
0.0768564 + 0.997042i \(0.475512\pi\)
\(90\) −0.459434 −0.0484286
\(91\) 1.53923 0.161355
\(92\) 0 0
\(93\) 5.35026 0.554796
\(94\) 2.26187 0.233294
\(95\) −18.8872 −1.93778
\(96\) 2.26916 0.231595
\(97\) −2.33308 −0.236889 −0.118444 0.992961i \(-0.537791\pi\)
−0.118444 + 0.992961i \(0.537791\pi\)
\(98\) −1.18076 −0.119275
\(99\) −4.18945 −0.421056
\(100\) −1.20123 −0.120123
\(101\) 15.1490 1.50738 0.753692 0.657227i \(-0.228271\pi\)
0.753692 + 0.657227i \(0.228271\pi\)
\(102\) −1.00797 −0.0998039
\(103\) 9.98860 0.984206 0.492103 0.870537i \(-0.336228\pi\)
0.492103 + 0.870537i \(0.336228\pi\)
\(104\) −1.23884 −0.121478
\(105\) −2.26187 −0.220735
\(106\) −1.71408 −0.166486
\(107\) 18.2252 1.76190 0.880949 0.473212i \(-0.156906\pi\)
0.880949 + 0.473212i \(0.156906\pi\)
\(108\) −1.96239 −0.188831
\(109\) −2.51128 −0.240537 −0.120269 0.992741i \(-0.538376\pi\)
−0.120269 + 0.992741i \(0.538376\pi\)
\(110\) 1.92478 0.183520
\(111\) 8.43209 0.800339
\(112\) 3.60500 0.340641
\(113\) 11.6668 1.09752 0.548758 0.835981i \(-0.315101\pi\)
0.548758 + 0.835981i \(0.315101\pi\)
\(114\) 1.54619 0.144814
\(115\) 0 0
\(116\) 2.64974 0.246022
\(117\) 1.61213 0.149041
\(118\) 2.51388 0.231422
\(119\) −4.96239 −0.454901
\(120\) 1.82046 0.166184
\(121\) 6.55149 0.595590
\(122\) −1.19314 −0.108021
\(123\) 7.92478 0.714553
\(124\) −10.4993 −0.942864
\(125\) 10.3948 0.929743
\(126\) 0.185167 0.0164960
\(127\) −13.9756 −1.24013 −0.620065 0.784550i \(-0.712894\pi\)
−0.620065 + 0.784550i \(0.712894\pi\)
\(128\) −5.91748 −0.523037
\(129\) 1.87365 0.164965
\(130\) −0.740666 −0.0649607
\(131\) −8.77575 −0.766741 −0.383370 0.923595i \(-0.625237\pi\)
−0.383370 + 0.923595i \(0.625237\pi\)
\(132\) 8.22133 0.715575
\(133\) 7.61213 0.660055
\(134\) −0.291548 −0.0251859
\(135\) −2.36899 −0.203890
\(136\) 3.99397 0.342480
\(137\) −11.8450 −1.01198 −0.505992 0.862538i \(-0.668873\pi\)
−0.505992 + 0.862538i \(0.668873\pi\)
\(138\) 0 0
\(139\) 10.7005 0.907607 0.453803 0.891102i \(-0.350067\pi\)
0.453803 + 0.891102i \(0.350067\pi\)
\(140\) 4.43866 0.375135
\(141\) 11.6629 0.982194
\(142\) −0.775746 −0.0650992
\(143\) −6.75393 −0.564792
\(144\) 3.77575 0.314646
\(145\) 3.19876 0.265643
\(146\) 2.70052 0.223497
\(147\) −6.08840 −0.502162
\(148\) −16.5470 −1.36016
\(149\) −12.7638 −1.04565 −0.522827 0.852439i \(-0.675123\pi\)
−0.522827 + 0.852439i \(0.675123\pi\)
\(150\) 0.118714 0.00969294
\(151\) −8.62530 −0.701917 −0.350959 0.936391i \(-0.614144\pi\)
−0.350959 + 0.936391i \(0.614144\pi\)
\(152\) −6.12660 −0.496933
\(153\) −5.19742 −0.420186
\(154\) −0.775746 −0.0625114
\(155\) −12.6747 −1.01806
\(156\) −3.16362 −0.253292
\(157\) 4.50659 0.359665 0.179833 0.983697i \(-0.442444\pi\)
0.179833 + 0.983697i \(0.442444\pi\)
\(158\) 0.469750 0.0373713
\(159\) −8.83833 −0.700926
\(160\) −5.37562 −0.424980
\(161\) 0 0
\(162\) 0.193937 0.0152371
\(163\) 7.79877 0.610847 0.305423 0.952217i \(-0.401202\pi\)
0.305423 + 0.952217i \(0.401202\pi\)
\(164\) −15.5515 −1.21437
\(165\) 9.92478 0.772643
\(166\) −0.335773 −0.0260611
\(167\) 4.77575 0.369558 0.184779 0.982780i \(-0.440843\pi\)
0.184779 + 0.982780i \(0.440843\pi\)
\(168\) −0.733702 −0.0566063
\(169\) −10.4010 −0.800081
\(170\) 2.38787 0.183142
\(171\) 7.97266 0.609684
\(172\) −3.67683 −0.280355
\(173\) −16.0508 −1.22032 −0.610159 0.792279i \(-0.708895\pi\)
−0.610159 + 0.792279i \(0.708895\pi\)
\(174\) −0.261865 −0.0198519
\(175\) 0.584446 0.0441800
\(176\) −15.8183 −1.19235
\(177\) 12.9624 0.974313
\(178\) 0.281232 0.0210792
\(179\) −14.3634 −1.07357 −0.536787 0.843718i \(-0.680362\pi\)
−0.536787 + 0.843718i \(0.680362\pi\)
\(180\) 4.64888 0.346507
\(181\) −9.45734 −0.702959 −0.351479 0.936196i \(-0.614321\pi\)
−0.351479 + 0.936196i \(0.614321\pi\)
\(182\) 0.298512 0.0221272
\(183\) −6.15220 −0.454784
\(184\) 0 0
\(185\) −19.9756 −1.46863
\(186\) 1.03761 0.0760814
\(187\) 21.7743 1.59230
\(188\) −22.8872 −1.66922
\(189\) 0.954779 0.0694500
\(190\) −3.66291 −0.265736
\(191\) 22.9632 1.66156 0.830779 0.556602i \(-0.187895\pi\)
0.830779 + 0.556602i \(0.187895\pi\)
\(192\) −7.11142 −0.513222
\(193\) −5.53690 −0.398555 −0.199278 0.979943i \(-0.563860\pi\)
−0.199278 + 0.979943i \(0.563860\pi\)
\(194\) −0.452470 −0.0324854
\(195\) −3.81912 −0.273493
\(196\) 11.9478 0.853414
\(197\) 19.2750 1.37329 0.686645 0.726993i \(-0.259083\pi\)
0.686645 + 0.726993i \(0.259083\pi\)
\(198\) −0.812488 −0.0577410
\(199\) −1.76727 −0.125278 −0.0626391 0.998036i \(-0.519952\pi\)
−0.0626391 + 0.998036i \(0.519952\pi\)
\(200\) −0.470390 −0.0332616
\(201\) −1.50331 −0.106036
\(202\) 2.93795 0.206714
\(203\) −1.28920 −0.0904842
\(204\) 10.1994 0.714098
\(205\) −18.7737 −1.31121
\(206\) 1.93715 0.134968
\(207\) 0 0
\(208\) 6.08698 0.422056
\(209\) −33.4010 −2.31040
\(210\) −0.438658 −0.0302703
\(211\) −3.27504 −0.225463 −0.112731 0.993625i \(-0.535960\pi\)
−0.112731 + 0.993625i \(0.535960\pi\)
\(212\) 17.3442 1.19121
\(213\) −4.00000 −0.274075
\(214\) 3.53453 0.241616
\(215\) −4.43866 −0.302714
\(216\) −0.768452 −0.0522865
\(217\) 5.10832 0.346775
\(218\) −0.487030 −0.0329858
\(219\) 13.9248 0.940949
\(220\) −19.4763 −1.31309
\(221\) −8.37890 −0.563626
\(222\) 1.63529 0.109754
\(223\) −18.5501 −1.24221 −0.621103 0.783729i \(-0.713315\pi\)
−0.621103 + 0.783729i \(0.713315\pi\)
\(224\) 2.16655 0.144758
\(225\) 0.612127 0.0408085
\(226\) 2.26261 0.150507
\(227\) −6.09901 −0.404805 −0.202403 0.979302i \(-0.564875\pi\)
−0.202403 + 0.979302i \(0.564875\pi\)
\(228\) −15.6455 −1.03615
\(229\) 8.16814 0.539766 0.269883 0.962893i \(-0.413015\pi\)
0.269883 + 0.962893i \(0.413015\pi\)
\(230\) 0 0
\(231\) −4.00000 −0.263181
\(232\) 1.03761 0.0681225
\(233\) 6.77575 0.443894 0.221947 0.975059i \(-0.428759\pi\)
0.221947 + 0.975059i \(0.428759\pi\)
\(234\) 0.312650 0.0204386
\(235\) −27.6294 −1.80234
\(236\) −25.4372 −1.65582
\(237\) 2.42218 0.157338
\(238\) −0.962389 −0.0623824
\(239\) −5.29948 −0.342795 −0.171397 0.985202i \(-0.554828\pi\)
−0.171397 + 0.985202i \(0.554828\pi\)
\(240\) −8.94472 −0.577379
\(241\) 9.52916 0.613827 0.306914 0.951737i \(-0.400704\pi\)
0.306914 + 0.951737i \(0.400704\pi\)
\(242\) 1.27057 0.0816756
\(243\) 1.00000 0.0641500
\(244\) 12.0730 0.772895
\(245\) 14.4234 0.921475
\(246\) 1.53690 0.0979894
\(247\) 12.8529 0.817813
\(248\) −4.11142 −0.261075
\(249\) −1.73136 −0.109720
\(250\) 2.01594 0.127499
\(251\) 16.9360 1.06899 0.534496 0.845171i \(-0.320502\pi\)
0.534496 + 0.845171i \(0.320502\pi\)
\(252\) −1.87365 −0.118029
\(253\) 0 0
\(254\) −2.71037 −0.170064
\(255\) 12.3127 0.771048
\(256\) 13.0752 0.817201
\(257\) −14.6253 −0.912301 −0.456151 0.889903i \(-0.650772\pi\)
−0.456151 + 0.889903i \(0.650772\pi\)
\(258\) 0.363369 0.0226224
\(259\) 8.05079 0.500251
\(260\) 7.49459 0.464795
\(261\) −1.35026 −0.0835791
\(262\) −1.70194 −0.105146
\(263\) −2.17351 −0.134024 −0.0670122 0.997752i \(-0.521347\pi\)
−0.0670122 + 0.997752i \(0.521347\pi\)
\(264\) 3.21939 0.198140
\(265\) 20.9380 1.28621
\(266\) 1.47627 0.0905159
\(267\) 1.45012 0.0887462
\(268\) 2.95009 0.180205
\(269\) −7.02302 −0.428201 −0.214101 0.976812i \(-0.568682\pi\)
−0.214101 + 0.976812i \(0.568682\pi\)
\(270\) −0.459434 −0.0279603
\(271\) 29.0494 1.76462 0.882312 0.470665i \(-0.155986\pi\)
0.882312 + 0.470665i \(0.155986\pi\)
\(272\) −19.6241 −1.18989
\(273\) 1.53923 0.0931582
\(274\) −2.29717 −0.138777
\(275\) −2.56447 −0.154644
\(276\) 0 0
\(277\) −25.2506 −1.51716 −0.758581 0.651579i \(-0.774107\pi\)
−0.758581 + 0.651579i \(0.774107\pi\)
\(278\) 2.07522 0.124464
\(279\) 5.35026 0.320312
\(280\) 1.73813 0.103873
\(281\) 22.9805 1.37090 0.685450 0.728120i \(-0.259606\pi\)
0.685450 + 0.728120i \(0.259606\pi\)
\(282\) 2.26187 0.134692
\(283\) 8.99791 0.534870 0.267435 0.963576i \(-0.413824\pi\)
0.267435 + 0.963576i \(0.413824\pi\)
\(284\) 7.84955 0.465785
\(285\) −18.8872 −1.11878
\(286\) −1.30983 −0.0774521
\(287\) 7.56641 0.446631
\(288\) 2.26916 0.133711
\(289\) 10.0132 0.589010
\(290\) 0.620357 0.0364286
\(291\) −2.33308 −0.136768
\(292\) −27.3258 −1.59912
\(293\) −3.18148 −0.185864 −0.0929320 0.995672i \(-0.529624\pi\)
−0.0929320 + 0.995672i \(0.529624\pi\)
\(294\) −1.18076 −0.0688635
\(295\) −30.7078 −1.78788
\(296\) −6.47966 −0.376622
\(297\) −4.18945 −0.243097
\(298\) −2.47537 −0.143395
\(299\) 0 0
\(300\) −1.20123 −0.0693531
\(301\) 1.78892 0.103112
\(302\) −1.67276 −0.0962566
\(303\) 15.1490 0.870289
\(304\) 30.1027 1.72651
\(305\) 14.5745 0.834534
\(306\) −1.00797 −0.0576218
\(307\) 14.9018 0.850488 0.425244 0.905079i \(-0.360188\pi\)
0.425244 + 0.905079i \(0.360188\pi\)
\(308\) 7.84955 0.447270
\(309\) 9.98860 0.568231
\(310\) −2.45809 −0.139610
\(311\) 2.36344 0.134018 0.0670091 0.997752i \(-0.478654\pi\)
0.0670091 + 0.997752i \(0.478654\pi\)
\(312\) −1.23884 −0.0701356
\(313\) −18.7205 −1.05815 −0.529074 0.848576i \(-0.677461\pi\)
−0.529074 + 0.848576i \(0.677461\pi\)
\(314\) 0.873993 0.0493223
\(315\) −2.26187 −0.127442
\(316\) −4.75326 −0.267392
\(317\) −1.97556 −0.110959 −0.0554793 0.998460i \(-0.517669\pi\)
−0.0554793 + 0.998460i \(0.517669\pi\)
\(318\) −1.71408 −0.0961206
\(319\) 5.65685 0.316723
\(320\) 16.8469 0.941770
\(321\) 18.2252 1.01723
\(322\) 0 0
\(323\) −41.4372 −2.30563
\(324\) −1.96239 −0.109022
\(325\) 0.986826 0.0547393
\(326\) 1.51247 0.0837678
\(327\) −2.51128 −0.138874
\(328\) −6.08981 −0.336254
\(329\) 11.1355 0.613920
\(330\) 1.92478 0.105955
\(331\) −24.4241 −1.34247 −0.671234 0.741245i \(-0.734235\pi\)
−0.671234 + 0.741245i \(0.734235\pi\)
\(332\) 3.39759 0.186467
\(333\) 8.43209 0.462076
\(334\) 0.926192 0.0506790
\(335\) 3.56134 0.194577
\(336\) 3.60500 0.196669
\(337\) −7.98994 −0.435240 −0.217620 0.976034i \(-0.569829\pi\)
−0.217620 + 0.976034i \(0.569829\pi\)
\(338\) −2.01714 −0.109718
\(339\) 11.6668 0.633652
\(340\) −24.1622 −1.31038
\(341\) −22.4147 −1.21382
\(342\) 1.54619 0.0836084
\(343\) −12.4965 −0.674749
\(344\) −1.43981 −0.0776293
\(345\) 0 0
\(346\) −3.11283 −0.167347
\(347\) −8.18664 −0.439482 −0.219741 0.975558i \(-0.570521\pi\)
−0.219741 + 0.975558i \(0.570521\pi\)
\(348\) 2.64974 0.142041
\(349\) 8.63989 0.462483 0.231241 0.972896i \(-0.425721\pi\)
0.231241 + 0.972896i \(0.425721\pi\)
\(350\) 0.113345 0.00605857
\(351\) 1.61213 0.0860490
\(352\) −9.50653 −0.506700
\(353\) 1.19982 0.0638598 0.0319299 0.999490i \(-0.489835\pi\)
0.0319299 + 0.999490i \(0.489835\pi\)
\(354\) 2.51388 0.133611
\(355\) 9.47597 0.502932
\(356\) −2.84571 −0.150822
\(357\) −4.96239 −0.262637
\(358\) −2.78560 −0.147223
\(359\) −0.548535 −0.0289506 −0.0144753 0.999895i \(-0.504608\pi\)
−0.0144753 + 0.999895i \(0.504608\pi\)
\(360\) 1.82046 0.0959465
\(361\) 44.5633 2.34543
\(362\) −1.83412 −0.0963994
\(363\) 6.55149 0.343864
\(364\) −3.02056 −0.158320
\(365\) −32.9877 −1.72665
\(366\) −1.19314 −0.0623662
\(367\) 5.42881 0.283382 0.141691 0.989911i \(-0.454746\pi\)
0.141691 + 0.989911i \(0.454746\pi\)
\(368\) 0 0
\(369\) 7.92478 0.412547
\(370\) −3.87399 −0.201399
\(371\) −8.43866 −0.438113
\(372\) −10.4993 −0.544363
\(373\) 21.4772 1.11204 0.556022 0.831167i \(-0.312327\pi\)
0.556022 + 0.831167i \(0.312327\pi\)
\(374\) 4.22284 0.218358
\(375\) 10.3948 0.536787
\(376\) −8.96239 −0.462200
\(377\) −2.17679 −0.112111
\(378\) 0.185167 0.00952394
\(379\) 31.8547 1.63627 0.818133 0.575028i \(-0.195009\pi\)
0.818133 + 0.575028i \(0.195009\pi\)
\(380\) 37.0640 1.90134
\(381\) −13.9756 −0.715990
\(382\) 4.45340 0.227856
\(383\) 34.0129 1.73798 0.868990 0.494829i \(-0.164769\pi\)
0.868990 + 0.494829i \(0.164769\pi\)
\(384\) −5.91748 −0.301975
\(385\) 9.47597 0.482940
\(386\) −1.07381 −0.0546554
\(387\) 1.87365 0.0952429
\(388\) 4.57841 0.232434
\(389\) −20.1520 −1.02175 −0.510875 0.859655i \(-0.670678\pi\)
−0.510875 + 0.859655i \(0.670678\pi\)
\(390\) −0.740666 −0.0375051
\(391\) 0 0
\(392\) 4.67864 0.236307
\(393\) −8.77575 −0.442678
\(394\) 3.73813 0.188325
\(395\) −5.73813 −0.288717
\(396\) 8.22133 0.413137
\(397\) 22.6253 1.13553 0.567766 0.823190i \(-0.307808\pi\)
0.567766 + 0.823190i \(0.307808\pi\)
\(398\) −0.342738 −0.0171799
\(399\) 7.61213 0.381083
\(400\) 2.31124 0.115562
\(401\) −2.47537 −0.123614 −0.0618071 0.998088i \(-0.519686\pi\)
−0.0618071 + 0.998088i \(0.519686\pi\)
\(402\) −0.291548 −0.0145411
\(403\) 8.62530 0.429657
\(404\) −29.7283 −1.47904
\(405\) −2.36899 −0.117716
\(406\) −0.250023 −0.0124085
\(407\) −35.3258 −1.75104
\(408\) 3.99397 0.197731
\(409\) −28.0870 −1.38881 −0.694406 0.719583i \(-0.744333\pi\)
−0.694406 + 0.719583i \(0.744333\pi\)
\(410\) −3.64091 −0.179812
\(411\) −11.8450 −0.584269
\(412\) −19.6015 −0.965697
\(413\) 12.3762 0.608994
\(414\) 0 0
\(415\) 4.10157 0.201338
\(416\) 3.65817 0.179357
\(417\) 10.7005 0.524007
\(418\) −6.47768 −0.316834
\(419\) −25.4558 −1.24360 −0.621800 0.783176i \(-0.713598\pi\)
−0.621800 + 0.783176i \(0.713598\pi\)
\(420\) 4.43866 0.216584
\(421\) 33.7470 1.64473 0.822364 0.568962i \(-0.192655\pi\)
0.822364 + 0.568962i \(0.192655\pi\)
\(422\) −0.635150 −0.0309186
\(423\) 11.6629 0.567070
\(424\) 6.79184 0.329841
\(425\) −3.18148 −0.154324
\(426\) −0.775746 −0.0375850
\(427\) −5.87399 −0.284262
\(428\) −35.7649 −1.72876
\(429\) −6.75393 −0.326083
\(430\) −0.860818 −0.0415123
\(431\) 10.4806 0.504832 0.252416 0.967619i \(-0.418775\pi\)
0.252416 + 0.967619i \(0.418775\pi\)
\(432\) 3.77575 0.181661
\(433\) 5.86762 0.281980 0.140990 0.990011i \(-0.454972\pi\)
0.140990 + 0.990011i \(0.454972\pi\)
\(434\) 0.990690 0.0475546
\(435\) 3.19876 0.153369
\(436\) 4.92812 0.236014
\(437\) 0 0
\(438\) 2.70052 0.129036
\(439\) −0.373285 −0.0178159 −0.00890795 0.999960i \(-0.502836\pi\)
−0.00890795 + 0.999960i \(0.502836\pi\)
\(440\) −7.62672 −0.363589
\(441\) −6.08840 −0.289924
\(442\) −1.62498 −0.0772922
\(443\) −12.7757 −0.606994 −0.303497 0.952832i \(-0.598154\pi\)
−0.303497 + 0.952832i \(0.598154\pi\)
\(444\) −16.5470 −0.785288
\(445\) −3.43533 −0.162850
\(446\) −3.59754 −0.170348
\(447\) −12.7638 −0.603709
\(448\) −6.78984 −0.320790
\(449\) −30.1016 −1.42058 −0.710290 0.703909i \(-0.751436\pi\)
−0.710290 + 0.703909i \(0.751436\pi\)
\(450\) 0.118714 0.00559622
\(451\) −33.2005 −1.56335
\(452\) −22.8947 −1.07688
\(453\) −8.62530 −0.405252
\(454\) −1.18282 −0.0555125
\(455\) −3.64641 −0.170947
\(456\) −6.12660 −0.286905
\(457\) −25.4027 −1.18829 −0.594143 0.804359i \(-0.702509\pi\)
−0.594143 + 0.804359i \(0.702509\pi\)
\(458\) 1.58410 0.0740202
\(459\) −5.19742 −0.242595
\(460\) 0 0
\(461\) 29.3014 1.36470 0.682351 0.731025i \(-0.260958\pi\)
0.682351 + 0.731025i \(0.260958\pi\)
\(462\) −0.775746 −0.0360910
\(463\) −8.00000 −0.371792 −0.185896 0.982569i \(-0.559519\pi\)
−0.185896 + 0.982569i \(0.559519\pi\)
\(464\) −5.09825 −0.236680
\(465\) −12.6747 −0.587777
\(466\) 1.31406 0.0608729
\(467\) −2.54384 −0.117715 −0.0588575 0.998266i \(-0.518746\pi\)
−0.0588575 + 0.998266i \(0.518746\pi\)
\(468\) −3.16362 −0.146238
\(469\) −1.43533 −0.0662775
\(470\) −5.35834 −0.247162
\(471\) 4.50659 0.207653
\(472\) −9.96097 −0.458491
\(473\) −7.84955 −0.360923
\(474\) 0.469750 0.0215763
\(475\) 4.88028 0.223922
\(476\) 9.73813 0.446347
\(477\) −8.83833 −0.404680
\(478\) −1.02776 −0.0470088
\(479\) −7.75854 −0.354497 −0.177248 0.984166i \(-0.556720\pi\)
−0.177248 + 0.984166i \(0.556720\pi\)
\(480\) −5.37562 −0.245362
\(481\) 13.5936 0.619815
\(482\) 1.84805 0.0841765
\(483\) 0 0
\(484\) −12.8566 −0.584390
\(485\) 5.52705 0.250971
\(486\) 0.193937 0.00879714
\(487\) 27.2243 1.23365 0.616824 0.787101i \(-0.288419\pi\)
0.616824 + 0.787101i \(0.288419\pi\)
\(488\) 4.72767 0.214012
\(489\) 7.79877 0.352673
\(490\) 2.79722 0.126365
\(491\) −6.26187 −0.282594 −0.141297 0.989967i \(-0.545127\pi\)
−0.141297 + 0.989967i \(0.545127\pi\)
\(492\) −15.5515 −0.701115
\(493\) 7.01788 0.316069
\(494\) 2.49265 0.112150
\(495\) 9.92478 0.446086
\(496\) 20.2012 0.907062
\(497\) −3.81912 −0.171311
\(498\) −0.335773 −0.0150464
\(499\) −6.64974 −0.297683 −0.148842 0.988861i \(-0.547554\pi\)
−0.148842 + 0.988861i \(0.547554\pi\)
\(500\) −20.3987 −0.912258
\(501\) 4.77575 0.213365
\(502\) 3.28451 0.146595
\(503\) 27.8076 1.23988 0.619939 0.784650i \(-0.287157\pi\)
0.619939 + 0.784650i \(0.287157\pi\)
\(504\) −0.733702 −0.0326817
\(505\) −35.8879 −1.59699
\(506\) 0 0
\(507\) −10.4010 −0.461927
\(508\) 27.4255 1.21681
\(509\) 32.6761 1.44834 0.724171 0.689620i \(-0.242223\pi\)
0.724171 + 0.689620i \(0.242223\pi\)
\(510\) 2.38787 0.105737
\(511\) 13.2951 0.588140
\(512\) 14.3707 0.635103
\(513\) 7.97266 0.352001
\(514\) −2.83638 −0.125107
\(515\) −23.6629 −1.04271
\(516\) −3.67683 −0.161863
\(517\) −48.8612 −2.14891
\(518\) 1.56134 0.0686014
\(519\) −16.0508 −0.704551
\(520\) 2.93481 0.128700
\(521\) 1.48468 0.0650452 0.0325226 0.999471i \(-0.489646\pi\)
0.0325226 + 0.999471i \(0.489646\pi\)
\(522\) −0.261865 −0.0114615
\(523\) −3.34105 −0.146094 −0.0730470 0.997328i \(-0.523272\pi\)
−0.0730470 + 0.997328i \(0.523272\pi\)
\(524\) 17.2214 0.752321
\(525\) 0.584446 0.0255073
\(526\) −0.421523 −0.0183793
\(527\) −27.8076 −1.21132
\(528\) −15.8183 −0.688403
\(529\) 0 0
\(530\) 4.06063 0.176383
\(531\) 12.9624 0.562520
\(532\) −14.9380 −0.647642
\(533\) 12.7757 0.553379
\(534\) 0.281232 0.0121701
\(535\) −43.1754 −1.86663
\(536\) 1.15523 0.0498981
\(537\) −14.3634 −0.619828
\(538\) −1.36202 −0.0587209
\(539\) 25.5070 1.09867
\(540\) 4.64888 0.200056
\(541\) −1.28489 −0.0552417 −0.0276208 0.999618i \(-0.508793\pi\)
−0.0276208 + 0.999618i \(0.508793\pi\)
\(542\) 5.63374 0.241990
\(543\) −9.45734 −0.405853
\(544\) −11.7938 −0.505654
\(545\) 5.94921 0.254836
\(546\) 0.298512 0.0127751
\(547\) −13.4518 −0.575159 −0.287579 0.957757i \(-0.592851\pi\)
−0.287579 + 0.957757i \(0.592851\pi\)
\(548\) 23.2444 0.992953
\(549\) −6.15220 −0.262569
\(550\) −0.497345 −0.0212069
\(551\) −10.7652 −0.458612
\(552\) 0 0
\(553\) 2.31265 0.0983439
\(554\) −4.89701 −0.208054
\(555\) −19.9756 −0.847915
\(556\) −20.9986 −0.890538
\(557\) 21.4273 0.907905 0.453952 0.891026i \(-0.350014\pi\)
0.453952 + 0.891026i \(0.350014\pi\)
\(558\) 1.03761 0.0439256
\(559\) 3.02056 0.127756
\(560\) −8.54023 −0.360891
\(561\) 21.7743 0.919313
\(562\) 4.45675 0.187997
\(563\) −1.53923 −0.0648706 −0.0324353 0.999474i \(-0.510326\pi\)
−0.0324353 + 0.999474i \(0.510326\pi\)
\(564\) −22.8872 −0.963724
\(565\) −27.6385 −1.16276
\(566\) 1.74502 0.0733488
\(567\) 0.954779 0.0400970
\(568\) 3.07381 0.128974
\(569\) 4.49131 0.188286 0.0941428 0.995559i \(-0.469989\pi\)
0.0941428 + 0.995559i \(0.469989\pi\)
\(570\) −3.66291 −0.153423
\(571\) 34.0489 1.42490 0.712450 0.701723i \(-0.247585\pi\)
0.712450 + 0.701723i \(0.247585\pi\)
\(572\) 13.2538 0.554170
\(573\) 22.9632 0.959301
\(574\) 1.46740 0.0612483
\(575\) 0 0
\(576\) −7.11142 −0.296309
\(577\) −41.3865 −1.72294 −0.861470 0.507808i \(-0.830456\pi\)
−0.861470 + 0.507808i \(0.830456\pi\)
\(578\) 1.94192 0.0807732
\(579\) −5.53690 −0.230106
\(580\) −6.27721 −0.260647
\(581\) −1.65306 −0.0685806
\(582\) −0.452470 −0.0187555
\(583\) 37.0278 1.53353
\(584\) −10.7005 −0.442791
\(585\) −3.81912 −0.157901
\(586\) −0.617005 −0.0254883
\(587\) −13.2995 −0.548928 −0.274464 0.961597i \(-0.588500\pi\)
−0.274464 + 0.961597i \(0.588500\pi\)
\(588\) 11.9478 0.492719
\(589\) 42.6558 1.75760
\(590\) −5.95537 −0.245179
\(591\) 19.2750 0.792869
\(592\) 31.8374 1.30851
\(593\) 40.6516 1.66936 0.834682 0.550733i \(-0.185652\pi\)
0.834682 + 0.550733i \(0.185652\pi\)
\(594\) −0.812488 −0.0333368
\(595\) 11.7559 0.481943
\(596\) 25.0476 1.02599
\(597\) −1.76727 −0.0723294
\(598\) 0 0
\(599\) 25.5223 1.04281 0.521407 0.853308i \(-0.325407\pi\)
0.521407 + 0.853308i \(0.325407\pi\)
\(600\) −0.470390 −0.0192036
\(601\) −9.68735 −0.395155 −0.197578 0.980287i \(-0.563307\pi\)
−0.197578 + 0.980287i \(0.563307\pi\)
\(602\) 0.346937 0.0141401
\(603\) −1.50331 −0.0612197
\(604\) 16.9262 0.688717
\(605\) −15.5204 −0.630996
\(606\) 2.93795 0.119346
\(607\) 2.59895 0.105488 0.0527441 0.998608i \(-0.483203\pi\)
0.0527441 + 0.998608i \(0.483203\pi\)
\(608\) 18.0912 0.733696
\(609\) −1.28920 −0.0522411
\(610\) 2.82653 0.114443
\(611\) 18.8021 0.760651
\(612\) 10.1994 0.412285
\(613\) 22.9306 0.926159 0.463080 0.886317i \(-0.346744\pi\)
0.463080 + 0.886317i \(0.346744\pi\)
\(614\) 2.89000 0.116631
\(615\) −18.7737 −0.757030
\(616\) 3.07381 0.123847
\(617\) 13.8609 0.558019 0.279009 0.960288i \(-0.409994\pi\)
0.279009 + 0.960288i \(0.409994\pi\)
\(618\) 1.93715 0.0779238
\(619\) 26.1979 1.05298 0.526490 0.850181i \(-0.323508\pi\)
0.526490 + 0.850181i \(0.323508\pi\)
\(620\) 24.8727 0.998914
\(621\) 0 0
\(622\) 0.458357 0.0183784
\(623\) 1.38455 0.0554708
\(624\) 6.08698 0.243674
\(625\) −27.6859 −1.10744
\(626\) −3.63060 −0.145108
\(627\) −33.4010 −1.33391
\(628\) −8.84369 −0.352902
\(629\) −43.8251 −1.74742
\(630\) −0.438658 −0.0174766
\(631\) −2.12367 −0.0845420 −0.0422710 0.999106i \(-0.513459\pi\)
−0.0422710 + 0.999106i \(0.513459\pi\)
\(632\) −1.86133 −0.0740398
\(633\) −3.27504 −0.130171
\(634\) −0.383134 −0.0152162
\(635\) 33.1080 1.31385
\(636\) 17.3442 0.687744
\(637\) −9.81527 −0.388895
\(638\) 1.09707 0.0434335
\(639\) −4.00000 −0.158238
\(640\) 14.0185 0.554129
\(641\) 0.424874 0.0167815 0.00839076 0.999965i \(-0.497329\pi\)
0.00839076 + 0.999965i \(0.497329\pi\)
\(642\) 3.53453 0.139497
\(643\) 4.52387 0.178404 0.0892021 0.996014i \(-0.471568\pi\)
0.0892021 + 0.996014i \(0.471568\pi\)
\(644\) 0 0
\(645\) −4.43866 −0.174772
\(646\) −8.03620 −0.316180
\(647\) −6.78560 −0.266769 −0.133385 0.991064i \(-0.542585\pi\)
−0.133385 + 0.991064i \(0.542585\pi\)
\(648\) −0.768452 −0.0301876
\(649\) −54.3053 −2.13167
\(650\) 0.191382 0.00750661
\(651\) 5.10832 0.200211
\(652\) −15.3042 −0.599359
\(653\) 15.0278 0.588082 0.294041 0.955793i \(-0.405000\pi\)
0.294041 + 0.955793i \(0.405000\pi\)
\(654\) −0.487030 −0.0190444
\(655\) 20.7897 0.812320
\(656\) 29.9219 1.16826
\(657\) 13.9248 0.543257
\(658\) 2.15958 0.0841893
\(659\) −33.9066 −1.32081 −0.660406 0.750909i \(-0.729616\pi\)
−0.660406 + 0.750909i \(0.729616\pi\)
\(660\) −19.4763 −0.758113
\(661\) 2.88162 0.112082 0.0560410 0.998428i \(-0.482152\pi\)
0.0560410 + 0.998428i \(0.482152\pi\)
\(662\) −4.73672 −0.184098
\(663\) −8.37890 −0.325410
\(664\) 1.33046 0.0516320
\(665\) −18.0331 −0.699293
\(666\) 1.63529 0.0633662
\(667\) 0 0
\(668\) −9.37187 −0.362609
\(669\) −18.5501 −0.717187
\(670\) 0.690674 0.0266831
\(671\) 25.7743 0.995007
\(672\) 2.16655 0.0835763
\(673\) −14.7612 −0.569001 −0.284500 0.958676i \(-0.591828\pi\)
−0.284500 + 0.958676i \(0.591828\pi\)
\(674\) −1.54954 −0.0596861
\(675\) 0.612127 0.0235608
\(676\) 20.4109 0.785034
\(677\) −43.5919 −1.67537 −0.837687 0.546150i \(-0.816093\pi\)
−0.837687 + 0.546150i \(0.816093\pi\)
\(678\) 2.26261 0.0868951
\(679\) −2.22758 −0.0854866
\(680\) −9.46168 −0.362839
\(681\) −6.09901 −0.233715
\(682\) −4.34702 −0.166456
\(683\) 11.1754 0.427614 0.213807 0.976876i \(-0.431414\pi\)
0.213807 + 0.976876i \(0.431414\pi\)
\(684\) −15.6455 −0.598219
\(685\) 28.0606 1.07214
\(686\) −2.42353 −0.0925310
\(687\) 8.16814 0.311634
\(688\) 7.07442 0.269710
\(689\) −14.2485 −0.542825
\(690\) 0 0
\(691\) −0.574515 −0.0218556 −0.0109278 0.999940i \(-0.503478\pi\)
−0.0109278 + 0.999940i \(0.503478\pi\)
\(692\) 31.4979 1.19737
\(693\) −4.00000 −0.151947
\(694\) −1.58769 −0.0602679
\(695\) −25.3495 −0.961560
\(696\) 1.03761 0.0393306
\(697\) −41.1884 −1.56012
\(698\) 1.67559 0.0634220
\(699\) 6.77575 0.256282
\(700\) −1.14691 −0.0433491
\(701\) −9.15748 −0.345873 −0.172937 0.984933i \(-0.555326\pi\)
−0.172937 + 0.984933i \(0.555326\pi\)
\(702\) 0.312650 0.0118002
\(703\) 67.2262 2.53548
\(704\) 29.7929 1.12286
\(705\) −27.6294 −1.04058
\(706\) 0.232688 0.00875734
\(707\) 14.4640 0.543974
\(708\) −25.4372 −0.955990
\(709\) −26.7637 −1.00513 −0.502565 0.864539i \(-0.667610\pi\)
−0.502565 + 0.864539i \(0.667610\pi\)
\(710\) 1.83774 0.0689691
\(711\) 2.42218 0.0908390
\(712\) −1.11435 −0.0417621
\(713\) 0 0
\(714\) −0.962389 −0.0360165
\(715\) 16.0000 0.598366
\(716\) 28.1866 1.05338
\(717\) −5.29948 −0.197913
\(718\) −0.106381 −0.00397011
\(719\) 15.6629 0.584128 0.292064 0.956399i \(-0.405658\pi\)
0.292064 + 0.956399i \(0.405658\pi\)
\(720\) −8.94472 −0.333350
\(721\) 9.53690 0.355173
\(722\) 8.64244 0.321638
\(723\) 9.52916 0.354393
\(724\) 18.5590 0.689739
\(725\) −0.826531 −0.0306966
\(726\) 1.27057 0.0471554
\(727\) −14.0923 −0.522654 −0.261327 0.965250i \(-0.584160\pi\)
−0.261327 + 0.965250i \(0.584160\pi\)
\(728\) −1.18282 −0.0438383
\(729\) 1.00000 0.0370370
\(730\) −6.39752 −0.236783
\(731\) −9.73813 −0.360178
\(732\) 12.0730 0.446231
\(733\) 7.15682 0.264343 0.132172 0.991227i \(-0.457805\pi\)
0.132172 + 0.991227i \(0.457805\pi\)
\(734\) 1.05285 0.0388612
\(735\) 14.4234 0.532014
\(736\) 0 0
\(737\) 6.29806 0.231992
\(738\) 1.53690 0.0565742
\(739\) −12.6253 −0.464429 −0.232215 0.972665i \(-0.574597\pi\)
−0.232215 + 0.972665i \(0.574597\pi\)
\(740\) 39.1998 1.44101
\(741\) 12.8529 0.472164
\(742\) −1.63656 −0.0600802
\(743\) −41.2948 −1.51496 −0.757479 0.652859i \(-0.773569\pi\)
−0.757479 + 0.652859i \(0.773569\pi\)
\(744\) −4.11142 −0.150732
\(745\) 30.2374 1.10781
\(746\) 4.16521 0.152499
\(747\) −1.73136 −0.0633470
\(748\) −42.7297 −1.56235
\(749\) 17.4010 0.635820
\(750\) 2.01594 0.0736117
\(751\) −18.8097 −0.686374 −0.343187 0.939267i \(-0.611506\pi\)
−0.343187 + 0.939267i \(0.611506\pi\)
\(752\) 44.0362 1.60583
\(753\) 16.9360 0.617182
\(754\) −0.422160 −0.0153742
\(755\) 20.4333 0.743643
\(756\) −1.87365 −0.0681439
\(757\) 31.1313 1.13149 0.565744 0.824581i \(-0.308589\pi\)
0.565744 + 0.824581i \(0.308589\pi\)
\(758\) 6.17779 0.224388
\(759\) 0 0
\(760\) 14.5139 0.526474
\(761\) 31.9003 1.15639 0.578193 0.815900i \(-0.303758\pi\)
0.578193 + 0.815900i \(0.303758\pi\)
\(762\) −2.71037 −0.0981864
\(763\) −2.39772 −0.0868034
\(764\) −45.0627 −1.63031
\(765\) 12.3127 0.445165
\(766\) 6.59635 0.238336
\(767\) 20.8970 0.754547
\(768\) 13.0752 0.471811
\(769\) −36.0475 −1.29991 −0.649953 0.759974i \(-0.725212\pi\)
−0.649953 + 0.759974i \(0.725212\pi\)
\(770\) 1.83774 0.0662275
\(771\) −14.6253 −0.526717
\(772\) 10.8656 0.391060
\(773\) 26.0589 0.937274 0.468637 0.883391i \(-0.344745\pi\)
0.468637 + 0.883391i \(0.344745\pi\)
\(774\) 0.363369 0.0130610
\(775\) 3.27504 0.117643
\(776\) 1.79286 0.0643600
\(777\) 8.05079 0.288820
\(778\) −3.90822 −0.140116
\(779\) 63.1815 2.26371
\(780\) 7.49459 0.268349
\(781\) 16.7578 0.599641
\(782\) 0 0
\(783\) −1.35026 −0.0482544
\(784\) −22.9882 −0.821009
\(785\) −10.6761 −0.381046
\(786\) −1.70194 −0.0607061
\(787\) 26.5543 0.946557 0.473279 0.880913i \(-0.343070\pi\)
0.473279 + 0.880913i \(0.343070\pi\)
\(788\) −37.8251 −1.34746
\(789\) −2.17351 −0.0773790
\(790\) −1.11283 −0.0395929
\(791\) 11.1392 0.396064
\(792\) 3.21939 0.114396
\(793\) −9.91813 −0.352203
\(794\) 4.38787 0.155720
\(795\) 20.9380 0.742593
\(796\) 3.46806 0.122922
\(797\) 38.3633 1.35890 0.679449 0.733723i \(-0.262219\pi\)
0.679449 + 0.733723i \(0.262219\pi\)
\(798\) 1.47627 0.0522594
\(799\) −60.6171 −2.14448
\(800\) 1.38901 0.0491090
\(801\) 1.45012 0.0512376
\(802\) −0.480066 −0.0169517
\(803\) −58.3372 −2.05867
\(804\) 2.95009 0.104042
\(805\) 0 0
\(806\) 1.67276 0.0589205
\(807\) −7.02302 −0.247222
\(808\) −11.6413 −0.409540
\(809\) 17.5731 0.617837 0.308919 0.951088i \(-0.400033\pi\)
0.308919 + 0.951088i \(0.400033\pi\)
\(810\) −0.459434 −0.0161429
\(811\) −4.09966 −0.143959 −0.0719793 0.997406i \(-0.522932\pi\)
−0.0719793 + 0.997406i \(0.522932\pi\)
\(812\) 2.52992 0.0887826
\(813\) 29.0494 1.01881
\(814\) −6.85097 −0.240126
\(815\) −18.4752 −0.647159
\(816\) −19.6241 −0.686982
\(817\) 14.9380 0.522613
\(818\) −5.44709 −0.190453
\(819\) 1.53923 0.0537849
\(820\) 36.8414 1.28656
\(821\) 22.7466 0.793861 0.396930 0.917849i \(-0.370075\pi\)
0.396930 + 0.917849i \(0.370075\pi\)
\(822\) −2.29717 −0.0801231
\(823\) −13.7235 −0.478373 −0.239186 0.970974i \(-0.576881\pi\)
−0.239186 + 0.970974i \(0.576881\pi\)
\(824\) −7.67576 −0.267398
\(825\) −2.56447 −0.0892836
\(826\) 2.40020 0.0835137
\(827\) −3.99732 −0.139000 −0.0695002 0.997582i \(-0.522140\pi\)
−0.0695002 + 0.997582i \(0.522140\pi\)
\(828\) 0 0
\(829\) 55.4617 1.92626 0.963132 0.269030i \(-0.0867030\pi\)
0.963132 + 0.269030i \(0.0867030\pi\)
\(830\) 0.795444 0.0276103
\(831\) −25.2506 −0.875934
\(832\) −11.4645 −0.397460
\(833\) 31.6440 1.09640
\(834\) 2.07522 0.0718591
\(835\) −11.3137 −0.391527
\(836\) 65.5458 2.26695
\(837\) 5.35026 0.184932
\(838\) −4.93682 −0.170540
\(839\) 11.8622 0.409530 0.204765 0.978811i \(-0.434357\pi\)
0.204765 + 0.978811i \(0.434357\pi\)
\(840\) 1.73813 0.0599714
\(841\) −27.1768 −0.937131
\(842\) 6.54478 0.225548
\(843\) 22.9805 0.791489
\(844\) 6.42690 0.221223
\(845\) 24.6400 0.847642
\(846\) 2.26187 0.0777645
\(847\) 6.25523 0.214932
\(848\) −33.3713 −1.14598
\(849\) 8.99791 0.308807
\(850\) −0.617005 −0.0211631
\(851\) 0 0
\(852\) 7.84955 0.268921
\(853\) 30.4749 1.04344 0.521720 0.853117i \(-0.325291\pi\)
0.521720 + 0.853117i \(0.325291\pi\)
\(854\) −1.13918 −0.0389820
\(855\) −18.8872 −0.645927
\(856\) −14.0052 −0.478688
\(857\) 49.1754 1.67980 0.839899 0.542742i \(-0.182614\pi\)
0.839899 + 0.542742i \(0.182614\pi\)
\(858\) −1.30983 −0.0447170
\(859\) −15.4763 −0.528044 −0.264022 0.964517i \(-0.585049\pi\)
−0.264022 + 0.964517i \(0.585049\pi\)
\(860\) 8.71037 0.297021
\(861\) 7.56641 0.257863
\(862\) 2.03257 0.0692296
\(863\) −3.81336 −0.129808 −0.0649041 0.997892i \(-0.520674\pi\)
−0.0649041 + 0.997892i \(0.520674\pi\)
\(864\) 2.26916 0.0771984
\(865\) 38.0242 1.29286
\(866\) 1.13795 0.0386690
\(867\) 10.0132 0.340065
\(868\) −10.0245 −0.340254
\(869\) −10.1476 −0.344234
\(870\) 0.620357 0.0210321
\(871\) −2.42353 −0.0821183
\(872\) 1.92980 0.0653513
\(873\) −2.33308 −0.0789629
\(874\) 0 0
\(875\) 9.92478 0.335519
\(876\) −27.3258 −0.923254
\(877\) 3.62672 0.122465 0.0612327 0.998124i \(-0.480497\pi\)
0.0612327 + 0.998124i \(0.480497\pi\)
\(878\) −0.0723936 −0.00244316
\(879\) −3.18148 −0.107309
\(880\) 37.4734 1.26323
\(881\) −30.6533 −1.03273 −0.516367 0.856367i \(-0.672716\pi\)
−0.516367 + 0.856367i \(0.672716\pi\)
\(882\) −1.18076 −0.0397583
\(883\) 41.0494 1.38142 0.690711 0.723131i \(-0.257298\pi\)
0.690711 + 0.723131i \(0.257298\pi\)
\(884\) 16.4427 0.553026
\(885\) −30.7078 −1.03223
\(886\) −2.47768 −0.0832394
\(887\) −33.8397 −1.13623 −0.568113 0.822951i \(-0.692326\pi\)
−0.568113 + 0.822951i \(0.692326\pi\)
\(888\) −6.47966 −0.217443
\(889\) −13.3436 −0.447529
\(890\) −0.666237 −0.0223323
\(891\) −4.18945 −0.140352
\(892\) 36.4025 1.21884
\(893\) 92.9844 3.11160
\(894\) −2.47537 −0.0827889
\(895\) 34.0269 1.13739
\(896\) −5.64989 −0.188750
\(897\) 0 0
\(898\) −5.83780 −0.194810
\(899\) −7.22425 −0.240942
\(900\) −1.20123 −0.0400410
\(901\) 45.9365 1.53037
\(902\) −6.43878 −0.214388
\(903\) 1.78892 0.0595315
\(904\) −8.96535 −0.298183
\(905\) 22.4044 0.744747
\(906\) −1.67276 −0.0555738
\(907\) −18.4739 −0.613415 −0.306708 0.951804i \(-0.599227\pi\)
−0.306708 + 0.951804i \(0.599227\pi\)
\(908\) 11.9686 0.397193
\(909\) 15.1490 0.502462
\(910\) −0.707173 −0.0234426
\(911\) −1.36102 −0.0450927 −0.0225464 0.999746i \(-0.507177\pi\)
−0.0225464 + 0.999746i \(0.507177\pi\)
\(912\) 30.1027 0.996801
\(913\) 7.25343 0.240054
\(914\) −4.92650 −0.162954
\(915\) 14.5745 0.481819
\(916\) −16.0291 −0.529615
\(917\) −8.37890 −0.276696
\(918\) −1.00797 −0.0332680
\(919\) 35.7084 1.17791 0.588956 0.808165i \(-0.299539\pi\)
0.588956 + 0.808165i \(0.299539\pi\)
\(920\) 0 0
\(921\) 14.9018 0.491029
\(922\) 5.68261 0.187147
\(923\) −6.44851 −0.212255
\(924\) 7.84955 0.258231
\(925\) 5.16151 0.169709
\(926\) −1.55149 −0.0509852
\(927\) 9.98860 0.328069
\(928\) −3.06396 −0.100579
\(929\) −30.4749 −0.999848 −0.499924 0.866069i \(-0.666639\pi\)
−0.499924 + 0.866069i \(0.666639\pi\)
\(930\) −2.45809 −0.0806041
\(931\) −48.5407 −1.59086
\(932\) −13.2966 −0.435546
\(933\) 2.36344 0.0773754
\(934\) −0.493344 −0.0161427
\(935\) −51.5832 −1.68695
\(936\) −1.23884 −0.0404928
\(937\) −44.4058 −1.45067 −0.725337 0.688394i \(-0.758316\pi\)
−0.725337 + 0.688394i \(0.758316\pi\)
\(938\) −0.278364 −0.00908890
\(939\) −18.7205 −0.610922
\(940\) 54.2195 1.76845
\(941\) 9.08836 0.296272 0.148136 0.988967i \(-0.452673\pi\)
0.148136 + 0.988967i \(0.452673\pi\)
\(942\) 0.873993 0.0284762
\(943\) 0 0
\(944\) 48.9427 1.59295
\(945\) −2.26187 −0.0735785
\(946\) −1.52232 −0.0494948
\(947\) 4.43866 0.144237 0.0721185 0.997396i \(-0.477024\pi\)
0.0721185 + 0.997396i \(0.477024\pi\)
\(948\) −4.75326 −0.154379
\(949\) 22.4485 0.728709
\(950\) 0.946464 0.0307074
\(951\) −1.97556 −0.0640620
\(952\) 3.81336 0.123592
\(953\) −48.4363 −1.56901 −0.784503 0.620125i \(-0.787082\pi\)
−0.784503 + 0.620125i \(0.787082\pi\)
\(954\) −1.71408 −0.0554953
\(955\) −54.3996 −1.76033
\(956\) 10.3996 0.336348
\(957\) 5.65685 0.182860
\(958\) −1.50467 −0.0486135
\(959\) −11.3093 −0.365197
\(960\) 16.8469 0.543731
\(961\) −2.37470 −0.0766032
\(962\) 2.63630 0.0849976
\(963\) 18.2252 0.587299
\(964\) −18.6999 −0.602284
\(965\) 13.1169 0.422247
\(966\) 0 0
\(967\) −10.1260 −0.325630 −0.162815 0.986657i \(-0.552057\pi\)
−0.162815 + 0.986657i \(0.552057\pi\)
\(968\) −5.03451 −0.161815
\(969\) −41.4372 −1.33116
\(970\) 1.07190 0.0344166
\(971\) −20.8754 −0.669924 −0.334962 0.942232i \(-0.608724\pi\)
−0.334962 + 0.942232i \(0.608724\pi\)
\(972\) −1.96239 −0.0629436
\(973\) 10.2166 0.327530
\(974\) 5.27978 0.169175
\(975\) 0.986826 0.0316037
\(976\) −23.2291 −0.743547
\(977\) 52.6770 1.68529 0.842643 0.538473i \(-0.180999\pi\)
0.842643 + 0.538473i \(0.180999\pi\)
\(978\) 1.51247 0.0483633
\(979\) −6.07522 −0.194165
\(980\) −28.3043 −0.904146
\(981\) −2.51128 −0.0801791
\(982\) −1.21440 −0.0387532
\(983\) −19.2159 −0.612892 −0.306446 0.951888i \(-0.599140\pi\)
−0.306446 + 0.951888i \(0.599140\pi\)
\(984\) −6.08981 −0.194136
\(985\) −45.6624 −1.45493
\(986\) 1.36102 0.0433438
\(987\) 11.1355 0.354447
\(988\) −25.2225 −0.802433
\(989\) 0 0
\(990\) 1.92478 0.0611734
\(991\) 22.1260 0.702856 0.351428 0.936215i \(-0.385696\pi\)
0.351428 + 0.936215i \(0.385696\pi\)
\(992\) 12.1406 0.385464
\(993\) −24.4241 −0.775074
\(994\) −0.740666 −0.0234925
\(995\) 4.18664 0.132725
\(996\) 3.39759 0.107657
\(997\) −40.3390 −1.27755 −0.638774 0.769394i \(-0.720558\pi\)
−0.638774 + 0.769394i \(0.720558\pi\)
\(998\) −1.28963 −0.0408224
\(999\) 8.43209 0.266780
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1587.2.a.s.1.3 6
3.2 odd 2 4761.2.a.bs.1.4 6
23.22 odd 2 inner 1587.2.a.s.1.4 yes 6
69.68 even 2 4761.2.a.bs.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1587.2.a.s.1.3 6 1.1 even 1 trivial
1587.2.a.s.1.4 yes 6 23.22 odd 2 inner
4761.2.a.bs.1.3 6 69.68 even 2
4761.2.a.bs.1.4 6 3.2 odd 2