Properties

Label 1587.2.a.s.1.4
Level $1587$
Weight $2$
Character 1587.1
Self dual yes
Analytic conductor $12.672$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1587,2,Mod(1,1587)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1587, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1587.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1587 = 3 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1587.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.6722588008\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.2803712.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 6x^{4} + 8x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.569973\) of defining polynomial
Character \(\chi\) \(=\) 1587.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.193937 q^{2} +1.00000 q^{3} -1.96239 q^{4} +2.36899 q^{5} +0.193937 q^{6} -0.954779 q^{7} -0.768452 q^{8} +1.00000 q^{9} +0.459434 q^{10} +4.18945 q^{11} -1.96239 q^{12} +1.61213 q^{13} -0.185167 q^{14} +2.36899 q^{15} +3.77575 q^{16} +5.19742 q^{17} +0.193937 q^{18} -7.97266 q^{19} -4.64888 q^{20} -0.954779 q^{21} +0.812488 q^{22} -0.768452 q^{24} +0.612127 q^{25} +0.312650 q^{26} +1.00000 q^{27} +1.87365 q^{28} -1.35026 q^{29} +0.459434 q^{30} +5.35026 q^{31} +2.26916 q^{32} +4.18945 q^{33} +1.00797 q^{34} -2.26187 q^{35} -1.96239 q^{36} -8.43209 q^{37} -1.54619 q^{38} +1.61213 q^{39} -1.82046 q^{40} +7.92478 q^{41} -0.185167 q^{42} -1.87365 q^{43} -8.22133 q^{44} +2.36899 q^{45} +11.6629 q^{47} +3.77575 q^{48} -6.08840 q^{49} +0.118714 q^{50} +5.19742 q^{51} -3.16362 q^{52} +8.83833 q^{53} +0.193937 q^{54} +9.92478 q^{55} +0.733702 q^{56} -7.97266 q^{57} -0.261865 q^{58} +12.9624 q^{59} -4.64888 q^{60} +6.15220 q^{61} +1.03761 q^{62} -0.954779 q^{63} -7.11142 q^{64} +3.81912 q^{65} +0.812488 q^{66} +1.50331 q^{67} -10.1994 q^{68} -0.438658 q^{70} -4.00000 q^{71} -0.768452 q^{72} +13.9248 q^{73} -1.63529 q^{74} +0.612127 q^{75} +15.6455 q^{76} -4.00000 q^{77} +0.312650 q^{78} -2.42218 q^{79} +8.94472 q^{80} +1.00000 q^{81} +1.53690 q^{82} +1.73136 q^{83} +1.87365 q^{84} +12.3127 q^{85} -0.363369 q^{86} -1.35026 q^{87} -3.21939 q^{88} -1.45012 q^{89} +0.459434 q^{90} -1.53923 q^{91} +5.35026 q^{93} +2.26187 q^{94} -18.8872 q^{95} +2.26916 q^{96} +2.33308 q^{97} -1.18076 q^{98} +4.18945 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + 6 q^{3} + 10 q^{4} + 2 q^{6} + 18 q^{8} + 6 q^{9} + 10 q^{12} + 8 q^{13} + 26 q^{16} + 2 q^{18} + 18 q^{24} + 2 q^{25} - 40 q^{26} + 6 q^{27} + 12 q^{29} + 12 q^{31} + 58 q^{32} - 32 q^{35}+ \cdots - 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.193937 0.137134 0.0685669 0.997647i \(-0.478157\pi\)
0.0685669 + 0.997647i \(0.478157\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.96239 −0.981194
\(5\) 2.36899 1.05945 0.529723 0.848171i \(-0.322296\pi\)
0.529723 + 0.848171i \(0.322296\pi\)
\(6\) 0.193937 0.0791743
\(7\) −0.954779 −0.360873 −0.180436 0.983587i \(-0.557751\pi\)
−0.180436 + 0.983587i \(0.557751\pi\)
\(8\) −0.768452 −0.271689
\(9\) 1.00000 0.333333
\(10\) 0.459434 0.145286
\(11\) 4.18945 1.26317 0.631583 0.775308i \(-0.282405\pi\)
0.631583 + 0.775308i \(0.282405\pi\)
\(12\) −1.96239 −0.566493
\(13\) 1.61213 0.447124 0.223562 0.974690i \(-0.428232\pi\)
0.223562 + 0.974690i \(0.428232\pi\)
\(14\) −0.185167 −0.0494879
\(15\) 2.36899 0.611671
\(16\) 3.77575 0.943937
\(17\) 5.19742 1.26056 0.630280 0.776368i \(-0.282940\pi\)
0.630280 + 0.776368i \(0.282940\pi\)
\(18\) 0.193937 0.0457113
\(19\) −7.97266 −1.82905 −0.914526 0.404526i \(-0.867436\pi\)
−0.914526 + 0.404526i \(0.867436\pi\)
\(20\) −4.64888 −1.03952
\(21\) −0.954779 −0.208350
\(22\) 0.812488 0.173223
\(23\) 0 0
\(24\) −0.768452 −0.156860
\(25\) 0.612127 0.122425
\(26\) 0.312650 0.0613158
\(27\) 1.00000 0.192450
\(28\) 1.87365 0.354086
\(29\) −1.35026 −0.250737 −0.125369 0.992110i \(-0.540011\pi\)
−0.125369 + 0.992110i \(0.540011\pi\)
\(30\) 0.459434 0.0838808
\(31\) 5.35026 0.960935 0.480468 0.877012i \(-0.340467\pi\)
0.480468 + 0.877012i \(0.340467\pi\)
\(32\) 2.26916 0.401134
\(33\) 4.18945 0.729290
\(34\) 1.00797 0.172865
\(35\) −2.26187 −0.382325
\(36\) −1.96239 −0.327065
\(37\) −8.43209 −1.38623 −0.693114 0.720828i \(-0.743762\pi\)
−0.693114 + 0.720828i \(0.743762\pi\)
\(38\) −1.54619 −0.250825
\(39\) 1.61213 0.258147
\(40\) −1.82046 −0.287840
\(41\) 7.92478 1.23764 0.618821 0.785532i \(-0.287611\pi\)
0.618821 + 0.785532i \(0.287611\pi\)
\(42\) −0.185167 −0.0285718
\(43\) −1.87365 −0.285729 −0.142864 0.989742i \(-0.545631\pi\)
−0.142864 + 0.989742i \(0.545631\pi\)
\(44\) −8.22133 −1.23941
\(45\) 2.36899 0.353149
\(46\) 0 0
\(47\) 11.6629 1.70121 0.850605 0.525805i \(-0.176236\pi\)
0.850605 + 0.525805i \(0.176236\pi\)
\(48\) 3.77575 0.544982
\(49\) −6.08840 −0.869771
\(50\) 0.118714 0.0167887
\(51\) 5.19742 0.727784
\(52\) −3.16362 −0.438715
\(53\) 8.83833 1.21404 0.607019 0.794687i \(-0.292365\pi\)
0.607019 + 0.794687i \(0.292365\pi\)
\(54\) 0.193937 0.0263914
\(55\) 9.92478 1.33826
\(56\) 0.733702 0.0980451
\(57\) −7.97266 −1.05600
\(58\) −0.261865 −0.0343846
\(59\) 12.9624 1.68756 0.843780 0.536690i \(-0.180325\pi\)
0.843780 + 0.536690i \(0.180325\pi\)
\(60\) −4.64888 −0.600168
\(61\) 6.15220 0.787708 0.393854 0.919173i \(-0.371141\pi\)
0.393854 + 0.919173i \(0.371141\pi\)
\(62\) 1.03761 0.131777
\(63\) −0.954779 −0.120291
\(64\) −7.11142 −0.888927
\(65\) 3.81912 0.473703
\(66\) 0.812488 0.100010
\(67\) 1.50331 0.183659 0.0918296 0.995775i \(-0.470729\pi\)
0.0918296 + 0.995775i \(0.470729\pi\)
\(68\) −10.1994 −1.23685
\(69\) 0 0
\(70\) −0.438658 −0.0524297
\(71\) −4.00000 −0.474713 −0.237356 0.971423i \(-0.576281\pi\)
−0.237356 + 0.971423i \(0.576281\pi\)
\(72\) −0.768452 −0.0905629
\(73\) 13.9248 1.62977 0.814886 0.579621i \(-0.196800\pi\)
0.814886 + 0.579621i \(0.196800\pi\)
\(74\) −1.63529 −0.190099
\(75\) 0.612127 0.0706823
\(76\) 15.6455 1.79466
\(77\) −4.00000 −0.455842
\(78\) 0.312650 0.0354007
\(79\) −2.42218 −0.272517 −0.136258 0.990673i \(-0.543508\pi\)
−0.136258 + 0.990673i \(0.543508\pi\)
\(80\) 8.94472 1.00005
\(81\) 1.00000 0.111111
\(82\) 1.53690 0.169723
\(83\) 1.73136 0.190041 0.0950205 0.995475i \(-0.469708\pi\)
0.0950205 + 0.995475i \(0.469708\pi\)
\(84\) 1.87365 0.204432
\(85\) 12.3127 1.33549
\(86\) −0.363369 −0.0391831
\(87\) −1.35026 −0.144763
\(88\) −3.21939 −0.343188
\(89\) −1.45012 −0.153713 −0.0768564 0.997042i \(-0.524488\pi\)
−0.0768564 + 0.997042i \(0.524488\pi\)
\(90\) 0.459434 0.0484286
\(91\) −1.53923 −0.161355
\(92\) 0 0
\(93\) 5.35026 0.554796
\(94\) 2.26187 0.233294
\(95\) −18.8872 −1.93778
\(96\) 2.26916 0.231595
\(97\) 2.33308 0.236889 0.118444 0.992961i \(-0.462209\pi\)
0.118444 + 0.992961i \(0.462209\pi\)
\(98\) −1.18076 −0.119275
\(99\) 4.18945 0.421056
\(100\) −1.20123 −0.120123
\(101\) 15.1490 1.50738 0.753692 0.657227i \(-0.228271\pi\)
0.753692 + 0.657227i \(0.228271\pi\)
\(102\) 1.00797 0.0998039
\(103\) −9.98860 −0.984206 −0.492103 0.870537i \(-0.663772\pi\)
−0.492103 + 0.870537i \(0.663772\pi\)
\(104\) −1.23884 −0.121478
\(105\) −2.26187 −0.220735
\(106\) 1.71408 0.166486
\(107\) −18.2252 −1.76190 −0.880949 0.473212i \(-0.843094\pi\)
−0.880949 + 0.473212i \(0.843094\pi\)
\(108\) −1.96239 −0.188831
\(109\) 2.51128 0.240537 0.120269 0.992741i \(-0.461624\pi\)
0.120269 + 0.992741i \(0.461624\pi\)
\(110\) 1.92478 0.183520
\(111\) −8.43209 −0.800339
\(112\) −3.60500 −0.340641
\(113\) −11.6668 −1.09752 −0.548758 0.835981i \(-0.684899\pi\)
−0.548758 + 0.835981i \(0.684899\pi\)
\(114\) −1.54619 −0.144814
\(115\) 0 0
\(116\) 2.64974 0.246022
\(117\) 1.61213 0.149041
\(118\) 2.51388 0.231422
\(119\) −4.96239 −0.454901
\(120\) −1.82046 −0.166184
\(121\) 6.55149 0.595590
\(122\) 1.19314 0.108021
\(123\) 7.92478 0.714553
\(124\) −10.4993 −0.942864
\(125\) −10.3948 −0.929743
\(126\) −0.185167 −0.0164960
\(127\) −13.9756 −1.24013 −0.620065 0.784550i \(-0.712894\pi\)
−0.620065 + 0.784550i \(0.712894\pi\)
\(128\) −5.91748 −0.523037
\(129\) −1.87365 −0.164965
\(130\) 0.740666 0.0649607
\(131\) −8.77575 −0.766741 −0.383370 0.923595i \(-0.625237\pi\)
−0.383370 + 0.923595i \(0.625237\pi\)
\(132\) −8.22133 −0.715575
\(133\) 7.61213 0.660055
\(134\) 0.291548 0.0251859
\(135\) 2.36899 0.203890
\(136\) −3.99397 −0.342480
\(137\) 11.8450 1.01198 0.505992 0.862538i \(-0.331127\pi\)
0.505992 + 0.862538i \(0.331127\pi\)
\(138\) 0 0
\(139\) 10.7005 0.907607 0.453803 0.891102i \(-0.350067\pi\)
0.453803 + 0.891102i \(0.350067\pi\)
\(140\) 4.43866 0.375135
\(141\) 11.6629 0.982194
\(142\) −0.775746 −0.0650992
\(143\) 6.75393 0.564792
\(144\) 3.77575 0.314646
\(145\) −3.19876 −0.265643
\(146\) 2.70052 0.223497
\(147\) −6.08840 −0.502162
\(148\) 16.5470 1.36016
\(149\) 12.7638 1.04565 0.522827 0.852439i \(-0.324877\pi\)
0.522827 + 0.852439i \(0.324877\pi\)
\(150\) 0.118714 0.00969294
\(151\) −8.62530 −0.701917 −0.350959 0.936391i \(-0.614144\pi\)
−0.350959 + 0.936391i \(0.614144\pi\)
\(152\) 6.12660 0.496933
\(153\) 5.19742 0.420186
\(154\) −0.775746 −0.0625114
\(155\) 12.6747 1.01806
\(156\) −3.16362 −0.253292
\(157\) −4.50659 −0.359665 −0.179833 0.983697i \(-0.557556\pi\)
−0.179833 + 0.983697i \(0.557556\pi\)
\(158\) −0.469750 −0.0373713
\(159\) 8.83833 0.700926
\(160\) 5.37562 0.424980
\(161\) 0 0
\(162\) 0.193937 0.0152371
\(163\) 7.79877 0.610847 0.305423 0.952217i \(-0.401202\pi\)
0.305423 + 0.952217i \(0.401202\pi\)
\(164\) −15.5515 −1.21437
\(165\) 9.92478 0.772643
\(166\) 0.335773 0.0260611
\(167\) 4.77575 0.369558 0.184779 0.982780i \(-0.440843\pi\)
0.184779 + 0.982780i \(0.440843\pi\)
\(168\) 0.733702 0.0566063
\(169\) −10.4010 −0.800081
\(170\) 2.38787 0.183142
\(171\) −7.97266 −0.609684
\(172\) 3.67683 0.280355
\(173\) −16.0508 −1.22032 −0.610159 0.792279i \(-0.708895\pi\)
−0.610159 + 0.792279i \(0.708895\pi\)
\(174\) −0.261865 −0.0198519
\(175\) −0.584446 −0.0441800
\(176\) 15.8183 1.19235
\(177\) 12.9624 0.974313
\(178\) −0.281232 −0.0210792
\(179\) −14.3634 −1.07357 −0.536787 0.843718i \(-0.680362\pi\)
−0.536787 + 0.843718i \(0.680362\pi\)
\(180\) −4.64888 −0.346507
\(181\) 9.45734 0.702959 0.351479 0.936196i \(-0.385679\pi\)
0.351479 + 0.936196i \(0.385679\pi\)
\(182\) −0.298512 −0.0221272
\(183\) 6.15220 0.454784
\(184\) 0 0
\(185\) −19.9756 −1.46863
\(186\) 1.03761 0.0760814
\(187\) 21.7743 1.59230
\(188\) −22.8872 −1.66922
\(189\) −0.954779 −0.0694500
\(190\) −3.66291 −0.265736
\(191\) −22.9632 −1.66156 −0.830779 0.556602i \(-0.812105\pi\)
−0.830779 + 0.556602i \(0.812105\pi\)
\(192\) −7.11142 −0.513222
\(193\) −5.53690 −0.398555 −0.199278 0.979943i \(-0.563860\pi\)
−0.199278 + 0.979943i \(0.563860\pi\)
\(194\) 0.452470 0.0324854
\(195\) 3.81912 0.273493
\(196\) 11.9478 0.853414
\(197\) 19.2750 1.37329 0.686645 0.726993i \(-0.259083\pi\)
0.686645 + 0.726993i \(0.259083\pi\)
\(198\) 0.812488 0.0577410
\(199\) 1.76727 0.125278 0.0626391 0.998036i \(-0.480048\pi\)
0.0626391 + 0.998036i \(0.480048\pi\)
\(200\) −0.470390 −0.0332616
\(201\) 1.50331 0.106036
\(202\) 2.93795 0.206714
\(203\) 1.28920 0.0904842
\(204\) −10.1994 −0.714098
\(205\) 18.7737 1.31121
\(206\) −1.93715 −0.134968
\(207\) 0 0
\(208\) 6.08698 0.422056
\(209\) −33.4010 −2.31040
\(210\) −0.438658 −0.0302703
\(211\) −3.27504 −0.225463 −0.112731 0.993625i \(-0.535960\pi\)
−0.112731 + 0.993625i \(0.535960\pi\)
\(212\) −17.3442 −1.19121
\(213\) −4.00000 −0.274075
\(214\) −3.53453 −0.241616
\(215\) −4.43866 −0.302714
\(216\) −0.768452 −0.0522865
\(217\) −5.10832 −0.346775
\(218\) 0.487030 0.0329858
\(219\) 13.9248 0.940949
\(220\) −19.4763 −1.31309
\(221\) 8.37890 0.563626
\(222\) −1.63529 −0.109754
\(223\) −18.5501 −1.24221 −0.621103 0.783729i \(-0.713315\pi\)
−0.621103 + 0.783729i \(0.713315\pi\)
\(224\) −2.16655 −0.144758
\(225\) 0.612127 0.0408085
\(226\) −2.26261 −0.150507
\(227\) 6.09901 0.404805 0.202403 0.979302i \(-0.435125\pi\)
0.202403 + 0.979302i \(0.435125\pi\)
\(228\) 15.6455 1.03615
\(229\) −8.16814 −0.539766 −0.269883 0.962893i \(-0.586985\pi\)
−0.269883 + 0.962893i \(0.586985\pi\)
\(230\) 0 0
\(231\) −4.00000 −0.263181
\(232\) 1.03761 0.0681225
\(233\) 6.77575 0.443894 0.221947 0.975059i \(-0.428759\pi\)
0.221947 + 0.975059i \(0.428759\pi\)
\(234\) 0.312650 0.0204386
\(235\) 27.6294 1.80234
\(236\) −25.4372 −1.65582
\(237\) −2.42218 −0.157338
\(238\) −0.962389 −0.0623824
\(239\) −5.29948 −0.342795 −0.171397 0.985202i \(-0.554828\pi\)
−0.171397 + 0.985202i \(0.554828\pi\)
\(240\) 8.94472 0.577379
\(241\) −9.52916 −0.613827 −0.306914 0.951737i \(-0.599296\pi\)
−0.306914 + 0.951737i \(0.599296\pi\)
\(242\) 1.27057 0.0816756
\(243\) 1.00000 0.0641500
\(244\) −12.0730 −0.772895
\(245\) −14.4234 −0.921475
\(246\) 1.53690 0.0979894
\(247\) −12.8529 −0.817813
\(248\) −4.11142 −0.261075
\(249\) 1.73136 0.109720
\(250\) −2.01594 −0.127499
\(251\) −16.9360 −1.06899 −0.534496 0.845171i \(-0.679498\pi\)
−0.534496 + 0.845171i \(0.679498\pi\)
\(252\) 1.87365 0.118029
\(253\) 0 0
\(254\) −2.71037 −0.170064
\(255\) 12.3127 0.771048
\(256\) 13.0752 0.817201
\(257\) −14.6253 −0.912301 −0.456151 0.889903i \(-0.650772\pi\)
−0.456151 + 0.889903i \(0.650772\pi\)
\(258\) −0.363369 −0.0226224
\(259\) 8.05079 0.500251
\(260\) −7.49459 −0.464795
\(261\) −1.35026 −0.0835791
\(262\) −1.70194 −0.105146
\(263\) 2.17351 0.134024 0.0670122 0.997752i \(-0.478653\pi\)
0.0670122 + 0.997752i \(0.478653\pi\)
\(264\) −3.21939 −0.198140
\(265\) 20.9380 1.28621
\(266\) 1.47627 0.0905159
\(267\) −1.45012 −0.0887462
\(268\) −2.95009 −0.180205
\(269\) −7.02302 −0.428201 −0.214101 0.976812i \(-0.568682\pi\)
−0.214101 + 0.976812i \(0.568682\pi\)
\(270\) 0.459434 0.0279603
\(271\) 29.0494 1.76462 0.882312 0.470665i \(-0.155986\pi\)
0.882312 + 0.470665i \(0.155986\pi\)
\(272\) 19.6241 1.18989
\(273\) −1.53923 −0.0931582
\(274\) 2.29717 0.138777
\(275\) 2.56447 0.154644
\(276\) 0 0
\(277\) −25.2506 −1.51716 −0.758581 0.651579i \(-0.774107\pi\)
−0.758581 + 0.651579i \(0.774107\pi\)
\(278\) 2.07522 0.124464
\(279\) 5.35026 0.320312
\(280\) 1.73813 0.103873
\(281\) −22.9805 −1.37090 −0.685450 0.728120i \(-0.740394\pi\)
−0.685450 + 0.728120i \(0.740394\pi\)
\(282\) 2.26187 0.134692
\(283\) −8.99791 −0.534870 −0.267435 0.963576i \(-0.586176\pi\)
−0.267435 + 0.963576i \(0.586176\pi\)
\(284\) 7.84955 0.465785
\(285\) −18.8872 −1.11878
\(286\) 1.30983 0.0774521
\(287\) −7.56641 −0.446631
\(288\) 2.26916 0.133711
\(289\) 10.0132 0.589010
\(290\) −0.620357 −0.0364286
\(291\) 2.33308 0.136768
\(292\) −27.3258 −1.59912
\(293\) 3.18148 0.185864 0.0929320 0.995672i \(-0.470376\pi\)
0.0929320 + 0.995672i \(0.470376\pi\)
\(294\) −1.18076 −0.0688635
\(295\) 30.7078 1.78788
\(296\) 6.47966 0.376622
\(297\) 4.18945 0.243097
\(298\) 2.47537 0.143395
\(299\) 0 0
\(300\) −1.20123 −0.0693531
\(301\) 1.78892 0.103112
\(302\) −1.67276 −0.0962566
\(303\) 15.1490 0.870289
\(304\) −30.1027 −1.72651
\(305\) 14.5745 0.834534
\(306\) 1.00797 0.0576218
\(307\) 14.9018 0.850488 0.425244 0.905079i \(-0.360188\pi\)
0.425244 + 0.905079i \(0.360188\pi\)
\(308\) 7.84955 0.447270
\(309\) −9.98860 −0.568231
\(310\) 2.45809 0.139610
\(311\) 2.36344 0.134018 0.0670091 0.997752i \(-0.478654\pi\)
0.0670091 + 0.997752i \(0.478654\pi\)
\(312\) −1.23884 −0.0701356
\(313\) 18.7205 1.05815 0.529074 0.848576i \(-0.322539\pi\)
0.529074 + 0.848576i \(0.322539\pi\)
\(314\) −0.873993 −0.0493223
\(315\) −2.26187 −0.127442
\(316\) 4.75326 0.267392
\(317\) −1.97556 −0.110959 −0.0554793 0.998460i \(-0.517669\pi\)
−0.0554793 + 0.998460i \(0.517669\pi\)
\(318\) 1.71408 0.0961206
\(319\) −5.65685 −0.316723
\(320\) −16.8469 −0.941770
\(321\) −18.2252 −1.01723
\(322\) 0 0
\(323\) −41.4372 −2.30563
\(324\) −1.96239 −0.109022
\(325\) 0.986826 0.0547393
\(326\) 1.51247 0.0837678
\(327\) 2.51128 0.138874
\(328\) −6.08981 −0.336254
\(329\) −11.1355 −0.613920
\(330\) 1.92478 0.105955
\(331\) −24.4241 −1.34247 −0.671234 0.741245i \(-0.734235\pi\)
−0.671234 + 0.741245i \(0.734235\pi\)
\(332\) −3.39759 −0.186467
\(333\) −8.43209 −0.462076
\(334\) 0.926192 0.0506790
\(335\) 3.56134 0.194577
\(336\) −3.60500 −0.196669
\(337\) 7.98994 0.435240 0.217620 0.976034i \(-0.430171\pi\)
0.217620 + 0.976034i \(0.430171\pi\)
\(338\) −2.01714 −0.109718
\(339\) −11.6668 −0.633652
\(340\) −24.1622 −1.31038
\(341\) 22.4147 1.21382
\(342\) −1.54619 −0.0836084
\(343\) 12.4965 0.674749
\(344\) 1.43981 0.0776293
\(345\) 0 0
\(346\) −3.11283 −0.167347
\(347\) −8.18664 −0.439482 −0.219741 0.975558i \(-0.570521\pi\)
−0.219741 + 0.975558i \(0.570521\pi\)
\(348\) 2.64974 0.142041
\(349\) 8.63989 0.462483 0.231241 0.972896i \(-0.425721\pi\)
0.231241 + 0.972896i \(0.425721\pi\)
\(350\) −0.113345 −0.00605857
\(351\) 1.61213 0.0860490
\(352\) 9.50653 0.506700
\(353\) 1.19982 0.0638598 0.0319299 0.999490i \(-0.489835\pi\)
0.0319299 + 0.999490i \(0.489835\pi\)
\(354\) 2.51388 0.133611
\(355\) −9.47597 −0.502932
\(356\) 2.84571 0.150822
\(357\) −4.96239 −0.262637
\(358\) −2.78560 −0.147223
\(359\) 0.548535 0.0289506 0.0144753 0.999895i \(-0.495392\pi\)
0.0144753 + 0.999895i \(0.495392\pi\)
\(360\) −1.82046 −0.0959465
\(361\) 44.5633 2.34543
\(362\) 1.83412 0.0963994
\(363\) 6.55149 0.343864
\(364\) 3.02056 0.158320
\(365\) 32.9877 1.72665
\(366\) 1.19314 0.0623662
\(367\) −5.42881 −0.283382 −0.141691 0.989911i \(-0.545254\pi\)
−0.141691 + 0.989911i \(0.545254\pi\)
\(368\) 0 0
\(369\) 7.92478 0.412547
\(370\) −3.87399 −0.201399
\(371\) −8.43866 −0.438113
\(372\) −10.4993 −0.544363
\(373\) −21.4772 −1.11204 −0.556022 0.831167i \(-0.687673\pi\)
−0.556022 + 0.831167i \(0.687673\pi\)
\(374\) 4.22284 0.218358
\(375\) −10.3948 −0.536787
\(376\) −8.96239 −0.462200
\(377\) −2.17679 −0.112111
\(378\) −0.185167 −0.00952394
\(379\) −31.8547 −1.63627 −0.818133 0.575028i \(-0.804991\pi\)
−0.818133 + 0.575028i \(0.804991\pi\)
\(380\) 37.0640 1.90134
\(381\) −13.9756 −0.715990
\(382\) −4.45340 −0.227856
\(383\) −34.0129 −1.73798 −0.868990 0.494829i \(-0.835231\pi\)
−0.868990 + 0.494829i \(0.835231\pi\)
\(384\) −5.91748 −0.301975
\(385\) −9.47597 −0.482940
\(386\) −1.07381 −0.0546554
\(387\) −1.87365 −0.0952429
\(388\) −4.57841 −0.232434
\(389\) 20.1520 1.02175 0.510875 0.859655i \(-0.329322\pi\)
0.510875 + 0.859655i \(0.329322\pi\)
\(390\) 0.740666 0.0375051
\(391\) 0 0
\(392\) 4.67864 0.236307
\(393\) −8.77575 −0.442678
\(394\) 3.73813 0.188325
\(395\) −5.73813 −0.288717
\(396\) −8.22133 −0.413137
\(397\) 22.6253 1.13553 0.567766 0.823190i \(-0.307808\pi\)
0.567766 + 0.823190i \(0.307808\pi\)
\(398\) 0.342738 0.0171799
\(399\) 7.61213 0.381083
\(400\) 2.31124 0.115562
\(401\) 2.47537 0.123614 0.0618071 0.998088i \(-0.480314\pi\)
0.0618071 + 0.998088i \(0.480314\pi\)
\(402\) 0.291548 0.0145411
\(403\) 8.62530 0.429657
\(404\) −29.7283 −1.47904
\(405\) 2.36899 0.117716
\(406\) 0.250023 0.0124085
\(407\) −35.3258 −1.75104
\(408\) −3.99397 −0.197731
\(409\) −28.0870 −1.38881 −0.694406 0.719583i \(-0.744333\pi\)
−0.694406 + 0.719583i \(0.744333\pi\)
\(410\) 3.64091 0.179812
\(411\) 11.8450 0.584269
\(412\) 19.6015 0.965697
\(413\) −12.3762 −0.608994
\(414\) 0 0
\(415\) 4.10157 0.201338
\(416\) 3.65817 0.179357
\(417\) 10.7005 0.524007
\(418\) −6.47768 −0.316834
\(419\) 25.4558 1.24360 0.621800 0.783176i \(-0.286402\pi\)
0.621800 + 0.783176i \(0.286402\pi\)
\(420\) 4.43866 0.216584
\(421\) −33.7470 −1.64473 −0.822364 0.568962i \(-0.807345\pi\)
−0.822364 + 0.568962i \(0.807345\pi\)
\(422\) −0.635150 −0.0309186
\(423\) 11.6629 0.567070
\(424\) −6.79184 −0.329841
\(425\) 3.18148 0.154324
\(426\) −0.775746 −0.0375850
\(427\) −5.87399 −0.284262
\(428\) 35.7649 1.72876
\(429\) 6.75393 0.326083
\(430\) −0.860818 −0.0415123
\(431\) −10.4806 −0.504832 −0.252416 0.967619i \(-0.581225\pi\)
−0.252416 + 0.967619i \(0.581225\pi\)
\(432\) 3.77575 0.181661
\(433\) −5.86762 −0.281980 −0.140990 0.990011i \(-0.545028\pi\)
−0.140990 + 0.990011i \(0.545028\pi\)
\(434\) −0.990690 −0.0475546
\(435\) −3.19876 −0.153369
\(436\) −4.92812 −0.236014
\(437\) 0 0
\(438\) 2.70052 0.129036
\(439\) −0.373285 −0.0178159 −0.00890795 0.999960i \(-0.502836\pi\)
−0.00890795 + 0.999960i \(0.502836\pi\)
\(440\) −7.62672 −0.363589
\(441\) −6.08840 −0.289924
\(442\) 1.62498 0.0772922
\(443\) −12.7757 −0.606994 −0.303497 0.952832i \(-0.598154\pi\)
−0.303497 + 0.952832i \(0.598154\pi\)
\(444\) 16.5470 0.785288
\(445\) −3.43533 −0.162850
\(446\) −3.59754 −0.170348
\(447\) 12.7638 0.603709
\(448\) 6.78984 0.320790
\(449\) −30.1016 −1.42058 −0.710290 0.703909i \(-0.751436\pi\)
−0.710290 + 0.703909i \(0.751436\pi\)
\(450\) 0.118714 0.00559622
\(451\) 33.2005 1.56335
\(452\) 22.8947 1.07688
\(453\) −8.62530 −0.405252
\(454\) 1.18282 0.0555125
\(455\) −3.64641 −0.170947
\(456\) 6.12660 0.286905
\(457\) 25.4027 1.18829 0.594143 0.804359i \(-0.297491\pi\)
0.594143 + 0.804359i \(0.297491\pi\)
\(458\) −1.58410 −0.0740202
\(459\) 5.19742 0.242595
\(460\) 0 0
\(461\) 29.3014 1.36470 0.682351 0.731025i \(-0.260958\pi\)
0.682351 + 0.731025i \(0.260958\pi\)
\(462\) −0.775746 −0.0360910
\(463\) −8.00000 −0.371792 −0.185896 0.982569i \(-0.559519\pi\)
−0.185896 + 0.982569i \(0.559519\pi\)
\(464\) −5.09825 −0.236680
\(465\) 12.6747 0.587777
\(466\) 1.31406 0.0608729
\(467\) 2.54384 0.117715 0.0588575 0.998266i \(-0.481254\pi\)
0.0588575 + 0.998266i \(0.481254\pi\)
\(468\) −3.16362 −0.146238
\(469\) −1.43533 −0.0662775
\(470\) 5.35834 0.247162
\(471\) −4.50659 −0.207653
\(472\) −9.96097 −0.458491
\(473\) −7.84955 −0.360923
\(474\) −0.469750 −0.0215763
\(475\) −4.88028 −0.223922
\(476\) 9.73813 0.446347
\(477\) 8.83833 0.404680
\(478\) −1.02776 −0.0470088
\(479\) 7.75854 0.354497 0.177248 0.984166i \(-0.443280\pi\)
0.177248 + 0.984166i \(0.443280\pi\)
\(480\) 5.37562 0.245362
\(481\) −13.5936 −0.619815
\(482\) −1.84805 −0.0841765
\(483\) 0 0
\(484\) −12.8566 −0.584390
\(485\) 5.52705 0.250971
\(486\) 0.193937 0.00879714
\(487\) 27.2243 1.23365 0.616824 0.787101i \(-0.288419\pi\)
0.616824 + 0.787101i \(0.288419\pi\)
\(488\) −4.72767 −0.214012
\(489\) 7.79877 0.352673
\(490\) −2.79722 −0.126365
\(491\) −6.26187 −0.282594 −0.141297 0.989967i \(-0.545127\pi\)
−0.141297 + 0.989967i \(0.545127\pi\)
\(492\) −15.5515 −0.701115
\(493\) −7.01788 −0.316069
\(494\) −2.49265 −0.112150
\(495\) 9.92478 0.446086
\(496\) 20.2012 0.907062
\(497\) 3.81912 0.171311
\(498\) 0.335773 0.0150464
\(499\) −6.64974 −0.297683 −0.148842 0.988861i \(-0.547554\pi\)
−0.148842 + 0.988861i \(0.547554\pi\)
\(500\) 20.3987 0.912258
\(501\) 4.77575 0.213365
\(502\) −3.28451 −0.146595
\(503\) −27.8076 −1.23988 −0.619939 0.784650i \(-0.712843\pi\)
−0.619939 + 0.784650i \(0.712843\pi\)
\(504\) 0.733702 0.0326817
\(505\) 35.8879 1.59699
\(506\) 0 0
\(507\) −10.4010 −0.461927
\(508\) 27.4255 1.21681
\(509\) 32.6761 1.44834 0.724171 0.689620i \(-0.242223\pi\)
0.724171 + 0.689620i \(0.242223\pi\)
\(510\) 2.38787 0.105737
\(511\) −13.2951 −0.588140
\(512\) 14.3707 0.635103
\(513\) −7.97266 −0.352001
\(514\) −2.83638 −0.125107
\(515\) −23.6629 −1.04271
\(516\) 3.67683 0.161863
\(517\) 48.8612 2.14891
\(518\) 1.56134 0.0686014
\(519\) −16.0508 −0.704551
\(520\) −2.93481 −0.128700
\(521\) −1.48468 −0.0650452 −0.0325226 0.999471i \(-0.510354\pi\)
−0.0325226 + 0.999471i \(0.510354\pi\)
\(522\) −0.261865 −0.0114615
\(523\) 3.34105 0.146094 0.0730470 0.997328i \(-0.476728\pi\)
0.0730470 + 0.997328i \(0.476728\pi\)
\(524\) 17.2214 0.752321
\(525\) −0.584446 −0.0255073
\(526\) 0.421523 0.0183793
\(527\) 27.8076 1.21132
\(528\) 15.8183 0.688403
\(529\) 0 0
\(530\) 4.06063 0.176383
\(531\) 12.9624 0.562520
\(532\) −14.9380 −0.647642
\(533\) 12.7757 0.553379
\(534\) −0.281232 −0.0121701
\(535\) −43.1754 −1.86663
\(536\) −1.15523 −0.0498981
\(537\) −14.3634 −0.619828
\(538\) −1.36202 −0.0587209
\(539\) −25.5070 −1.09867
\(540\) −4.64888 −0.200056
\(541\) −1.28489 −0.0552417 −0.0276208 0.999618i \(-0.508793\pi\)
−0.0276208 + 0.999618i \(0.508793\pi\)
\(542\) 5.63374 0.241990
\(543\) 9.45734 0.405853
\(544\) 11.7938 0.505654
\(545\) 5.94921 0.254836
\(546\) −0.298512 −0.0127751
\(547\) −13.4518 −0.575159 −0.287579 0.957757i \(-0.592851\pi\)
−0.287579 + 0.957757i \(0.592851\pi\)
\(548\) −23.2444 −0.992953
\(549\) 6.15220 0.262569
\(550\) 0.497345 0.0212069
\(551\) 10.7652 0.458612
\(552\) 0 0
\(553\) 2.31265 0.0983439
\(554\) −4.89701 −0.208054
\(555\) −19.9756 −0.847915
\(556\) −20.9986 −0.890538
\(557\) −21.4273 −0.907905 −0.453952 0.891026i \(-0.649986\pi\)
−0.453952 + 0.891026i \(0.649986\pi\)
\(558\) 1.03761 0.0439256
\(559\) −3.02056 −0.127756
\(560\) −8.54023 −0.360891
\(561\) 21.7743 0.919313
\(562\) −4.45675 −0.187997
\(563\) 1.53923 0.0648706 0.0324353 0.999474i \(-0.489674\pi\)
0.0324353 + 0.999474i \(0.489674\pi\)
\(564\) −22.8872 −0.963724
\(565\) −27.6385 −1.16276
\(566\) −1.74502 −0.0733488
\(567\) −0.954779 −0.0400970
\(568\) 3.07381 0.128974
\(569\) −4.49131 −0.188286 −0.0941428 0.995559i \(-0.530011\pi\)
−0.0941428 + 0.995559i \(0.530011\pi\)
\(570\) −3.66291 −0.153423
\(571\) −34.0489 −1.42490 −0.712450 0.701723i \(-0.752415\pi\)
−0.712450 + 0.701723i \(0.752415\pi\)
\(572\) −13.2538 −0.554170
\(573\) −22.9632 −0.959301
\(574\) −1.46740 −0.0612483
\(575\) 0 0
\(576\) −7.11142 −0.296309
\(577\) −41.3865 −1.72294 −0.861470 0.507808i \(-0.830456\pi\)
−0.861470 + 0.507808i \(0.830456\pi\)
\(578\) 1.94192 0.0807732
\(579\) −5.53690 −0.230106
\(580\) 6.27721 0.260647
\(581\) −1.65306 −0.0685806
\(582\) 0.452470 0.0187555
\(583\) 37.0278 1.53353
\(584\) −10.7005 −0.442791
\(585\) 3.81912 0.157901
\(586\) 0.617005 0.0254883
\(587\) −13.2995 −0.548928 −0.274464 0.961597i \(-0.588500\pi\)
−0.274464 + 0.961597i \(0.588500\pi\)
\(588\) 11.9478 0.492719
\(589\) −42.6558 −1.75760
\(590\) 5.95537 0.245179
\(591\) 19.2750 0.792869
\(592\) −31.8374 −1.30851
\(593\) 40.6516 1.66936 0.834682 0.550733i \(-0.185652\pi\)
0.834682 + 0.550733i \(0.185652\pi\)
\(594\) 0.812488 0.0333368
\(595\) −11.7559 −0.481943
\(596\) −25.0476 −1.02599
\(597\) 1.76727 0.0723294
\(598\) 0 0
\(599\) 25.5223 1.04281 0.521407 0.853308i \(-0.325407\pi\)
0.521407 + 0.853308i \(0.325407\pi\)
\(600\) −0.470390 −0.0192036
\(601\) −9.68735 −0.395155 −0.197578 0.980287i \(-0.563307\pi\)
−0.197578 + 0.980287i \(0.563307\pi\)
\(602\) 0.346937 0.0141401
\(603\) 1.50331 0.0612197
\(604\) 16.9262 0.688717
\(605\) 15.5204 0.630996
\(606\) 2.93795 0.119346
\(607\) 2.59895 0.105488 0.0527441 0.998608i \(-0.483203\pi\)
0.0527441 + 0.998608i \(0.483203\pi\)
\(608\) −18.0912 −0.733696
\(609\) 1.28920 0.0522411
\(610\) 2.82653 0.114443
\(611\) 18.8021 0.760651
\(612\) −10.1994 −0.412285
\(613\) −22.9306 −0.926159 −0.463080 0.886317i \(-0.653256\pi\)
−0.463080 + 0.886317i \(0.653256\pi\)
\(614\) 2.89000 0.116631
\(615\) 18.7737 0.757030
\(616\) 3.07381 0.123847
\(617\) −13.8609 −0.558019 −0.279009 0.960288i \(-0.590006\pi\)
−0.279009 + 0.960288i \(0.590006\pi\)
\(618\) −1.93715 −0.0779238
\(619\) −26.1979 −1.05298 −0.526490 0.850181i \(-0.676492\pi\)
−0.526490 + 0.850181i \(0.676492\pi\)
\(620\) −24.8727 −0.998914
\(621\) 0 0
\(622\) 0.458357 0.0183784
\(623\) 1.38455 0.0554708
\(624\) 6.08698 0.243674
\(625\) −27.6859 −1.10744
\(626\) 3.63060 0.145108
\(627\) −33.4010 −1.33391
\(628\) 8.84369 0.352902
\(629\) −43.8251 −1.74742
\(630\) −0.438658 −0.0174766
\(631\) 2.12367 0.0845420 0.0422710 0.999106i \(-0.486541\pi\)
0.0422710 + 0.999106i \(0.486541\pi\)
\(632\) 1.86133 0.0740398
\(633\) −3.27504 −0.130171
\(634\) −0.383134 −0.0152162
\(635\) −33.1080 −1.31385
\(636\) −17.3442 −0.687744
\(637\) −9.81527 −0.388895
\(638\) −1.09707 −0.0434335
\(639\) −4.00000 −0.158238
\(640\) −14.0185 −0.554129
\(641\) −0.424874 −0.0167815 −0.00839076 0.999965i \(-0.502671\pi\)
−0.00839076 + 0.999965i \(0.502671\pi\)
\(642\) −3.53453 −0.139497
\(643\) −4.52387 −0.178404 −0.0892021 0.996014i \(-0.528432\pi\)
−0.0892021 + 0.996014i \(0.528432\pi\)
\(644\) 0 0
\(645\) −4.43866 −0.174772
\(646\) −8.03620 −0.316180
\(647\) −6.78560 −0.266769 −0.133385 0.991064i \(-0.542585\pi\)
−0.133385 + 0.991064i \(0.542585\pi\)
\(648\) −0.768452 −0.0301876
\(649\) 54.3053 2.13167
\(650\) 0.191382 0.00750661
\(651\) −5.10832 −0.200211
\(652\) −15.3042 −0.599359
\(653\) 15.0278 0.588082 0.294041 0.955793i \(-0.405000\pi\)
0.294041 + 0.955793i \(0.405000\pi\)
\(654\) 0.487030 0.0190444
\(655\) −20.7897 −0.812320
\(656\) 29.9219 1.16826
\(657\) 13.9248 0.543257
\(658\) −2.15958 −0.0841893
\(659\) 33.9066 1.32081 0.660406 0.750909i \(-0.270384\pi\)
0.660406 + 0.750909i \(0.270384\pi\)
\(660\) −19.4763 −0.758113
\(661\) −2.88162 −0.112082 −0.0560410 0.998428i \(-0.517848\pi\)
−0.0560410 + 0.998428i \(0.517848\pi\)
\(662\) −4.73672 −0.184098
\(663\) 8.37890 0.325410
\(664\) −1.33046 −0.0516320
\(665\) 18.0331 0.699293
\(666\) −1.63529 −0.0633662
\(667\) 0 0
\(668\) −9.37187 −0.362609
\(669\) −18.5501 −0.717187
\(670\) 0.690674 0.0266831
\(671\) 25.7743 0.995007
\(672\) −2.16655 −0.0835763
\(673\) −14.7612 −0.569001 −0.284500 0.958676i \(-0.591828\pi\)
−0.284500 + 0.958676i \(0.591828\pi\)
\(674\) 1.54954 0.0596861
\(675\) 0.612127 0.0235608
\(676\) 20.4109 0.785034
\(677\) 43.5919 1.67537 0.837687 0.546150i \(-0.183907\pi\)
0.837687 + 0.546150i \(0.183907\pi\)
\(678\) −2.26261 −0.0868951
\(679\) −2.22758 −0.0854866
\(680\) −9.46168 −0.362839
\(681\) 6.09901 0.233715
\(682\) 4.34702 0.166456
\(683\) 11.1754 0.427614 0.213807 0.976876i \(-0.431414\pi\)
0.213807 + 0.976876i \(0.431414\pi\)
\(684\) 15.6455 0.598219
\(685\) 28.0606 1.07214
\(686\) 2.42353 0.0925310
\(687\) −8.16814 −0.311634
\(688\) −7.07442 −0.269710
\(689\) 14.2485 0.542825
\(690\) 0 0
\(691\) −0.574515 −0.0218556 −0.0109278 0.999940i \(-0.503478\pi\)
−0.0109278 + 0.999940i \(0.503478\pi\)
\(692\) 31.4979 1.19737
\(693\) −4.00000 −0.151947
\(694\) −1.58769 −0.0602679
\(695\) 25.3495 0.961560
\(696\) 1.03761 0.0393306
\(697\) 41.1884 1.56012
\(698\) 1.67559 0.0634220
\(699\) 6.77575 0.256282
\(700\) 1.14691 0.0433491
\(701\) 9.15748 0.345873 0.172937 0.984933i \(-0.444674\pi\)
0.172937 + 0.984933i \(0.444674\pi\)
\(702\) 0.312650 0.0118002
\(703\) 67.2262 2.53548
\(704\) −29.7929 −1.12286
\(705\) 27.6294 1.04058
\(706\) 0.232688 0.00875734
\(707\) −14.4640 −0.543974
\(708\) −25.4372 −0.955990
\(709\) 26.7637 1.00513 0.502565 0.864539i \(-0.332390\pi\)
0.502565 + 0.864539i \(0.332390\pi\)
\(710\) −1.83774 −0.0689691
\(711\) −2.42218 −0.0908390
\(712\) 1.11435 0.0417621
\(713\) 0 0
\(714\) −0.962389 −0.0360165
\(715\) 16.0000 0.598366
\(716\) 28.1866 1.05338
\(717\) −5.29948 −0.197913
\(718\) 0.106381 0.00397011
\(719\) 15.6629 0.584128 0.292064 0.956399i \(-0.405658\pi\)
0.292064 + 0.956399i \(0.405658\pi\)
\(720\) 8.94472 0.333350
\(721\) 9.53690 0.355173
\(722\) 8.64244 0.321638
\(723\) −9.52916 −0.354393
\(724\) −18.5590 −0.689739
\(725\) −0.826531 −0.0306966
\(726\) 1.27057 0.0471554
\(727\) 14.0923 0.522654 0.261327 0.965250i \(-0.415840\pi\)
0.261327 + 0.965250i \(0.415840\pi\)
\(728\) 1.18282 0.0438383
\(729\) 1.00000 0.0370370
\(730\) 6.39752 0.236783
\(731\) −9.73813 −0.360178
\(732\) −12.0730 −0.446231
\(733\) −7.15682 −0.264343 −0.132172 0.991227i \(-0.542195\pi\)
−0.132172 + 0.991227i \(0.542195\pi\)
\(734\) −1.05285 −0.0388612
\(735\) −14.4234 −0.532014
\(736\) 0 0
\(737\) 6.29806 0.231992
\(738\) 1.53690 0.0565742
\(739\) −12.6253 −0.464429 −0.232215 0.972665i \(-0.574597\pi\)
−0.232215 + 0.972665i \(0.574597\pi\)
\(740\) 39.1998 1.44101
\(741\) −12.8529 −0.472164
\(742\) −1.63656 −0.0600802
\(743\) 41.2948 1.51496 0.757479 0.652859i \(-0.226431\pi\)
0.757479 + 0.652859i \(0.226431\pi\)
\(744\) −4.11142 −0.150732
\(745\) 30.2374 1.10781
\(746\) −4.16521 −0.152499
\(747\) 1.73136 0.0633470
\(748\) −42.7297 −1.56235
\(749\) 17.4010 0.635820
\(750\) −2.01594 −0.0736117
\(751\) 18.8097 0.686374 0.343187 0.939267i \(-0.388494\pi\)
0.343187 + 0.939267i \(0.388494\pi\)
\(752\) 44.0362 1.60583
\(753\) −16.9360 −0.617182
\(754\) −0.422160 −0.0153742
\(755\) −20.4333 −0.743643
\(756\) 1.87365 0.0681439
\(757\) −31.1313 −1.13149 −0.565744 0.824581i \(-0.691411\pi\)
−0.565744 + 0.824581i \(0.691411\pi\)
\(758\) −6.17779 −0.224388
\(759\) 0 0
\(760\) 14.5139 0.526474
\(761\) 31.9003 1.15639 0.578193 0.815900i \(-0.303758\pi\)
0.578193 + 0.815900i \(0.303758\pi\)
\(762\) −2.71037 −0.0981864
\(763\) −2.39772 −0.0868034
\(764\) 45.0627 1.63031
\(765\) 12.3127 0.445165
\(766\) −6.59635 −0.238336
\(767\) 20.8970 0.754547
\(768\) 13.0752 0.471811
\(769\) 36.0475 1.29991 0.649953 0.759974i \(-0.274788\pi\)
0.649953 + 0.759974i \(0.274788\pi\)
\(770\) −1.83774 −0.0662275
\(771\) −14.6253 −0.526717
\(772\) 10.8656 0.391060
\(773\) −26.0589 −0.937274 −0.468637 0.883391i \(-0.655255\pi\)
−0.468637 + 0.883391i \(0.655255\pi\)
\(774\) −0.363369 −0.0130610
\(775\) 3.27504 0.117643
\(776\) −1.79286 −0.0643600
\(777\) 8.05079 0.288820
\(778\) 3.90822 0.140116
\(779\) −63.1815 −2.26371
\(780\) −7.49459 −0.268349
\(781\) −16.7578 −0.599641
\(782\) 0 0
\(783\) −1.35026 −0.0482544
\(784\) −22.9882 −0.821009
\(785\) −10.6761 −0.381046
\(786\) −1.70194 −0.0607061
\(787\) −26.5543 −0.946557 −0.473279 0.880913i \(-0.656930\pi\)
−0.473279 + 0.880913i \(0.656930\pi\)
\(788\) −37.8251 −1.34746
\(789\) 2.17351 0.0773790
\(790\) −1.11283 −0.0395929
\(791\) 11.1392 0.396064
\(792\) −3.21939 −0.114396
\(793\) 9.91813 0.352203
\(794\) 4.38787 0.155720
\(795\) 20.9380 0.742593
\(796\) −3.46806 −0.122922
\(797\) −38.3633 −1.35890 −0.679449 0.733723i \(-0.737781\pi\)
−0.679449 + 0.733723i \(0.737781\pi\)
\(798\) 1.47627 0.0522594
\(799\) 60.6171 2.14448
\(800\) 1.38901 0.0491090
\(801\) −1.45012 −0.0512376
\(802\) 0.480066 0.0169517
\(803\) 58.3372 2.05867
\(804\) −2.95009 −0.104042
\(805\) 0 0
\(806\) 1.67276 0.0589205
\(807\) −7.02302 −0.247222
\(808\) −11.6413 −0.409540
\(809\) 17.5731 0.617837 0.308919 0.951088i \(-0.400033\pi\)
0.308919 + 0.951088i \(0.400033\pi\)
\(810\) 0.459434 0.0161429
\(811\) −4.09966 −0.143959 −0.0719793 0.997406i \(-0.522932\pi\)
−0.0719793 + 0.997406i \(0.522932\pi\)
\(812\) −2.52992 −0.0887826
\(813\) 29.0494 1.01881
\(814\) −6.85097 −0.240126
\(815\) 18.4752 0.647159
\(816\) 19.6241 0.686982
\(817\) 14.9380 0.522613
\(818\) −5.44709 −0.190453
\(819\) −1.53923 −0.0537849
\(820\) −36.8414 −1.28656
\(821\) 22.7466 0.793861 0.396930 0.917849i \(-0.370075\pi\)
0.396930 + 0.917849i \(0.370075\pi\)
\(822\) 2.29717 0.0801231
\(823\) −13.7235 −0.478373 −0.239186 0.970974i \(-0.576881\pi\)
−0.239186 + 0.970974i \(0.576881\pi\)
\(824\) 7.67576 0.267398
\(825\) 2.56447 0.0892836
\(826\) −2.40020 −0.0835137
\(827\) 3.99732 0.139000 0.0695002 0.997582i \(-0.477860\pi\)
0.0695002 + 0.997582i \(0.477860\pi\)
\(828\) 0 0
\(829\) 55.4617 1.92626 0.963132 0.269030i \(-0.0867030\pi\)
0.963132 + 0.269030i \(0.0867030\pi\)
\(830\) 0.795444 0.0276103
\(831\) −25.2506 −0.875934
\(832\) −11.4645 −0.397460
\(833\) −31.6440 −1.09640
\(834\) 2.07522 0.0718591
\(835\) 11.3137 0.391527
\(836\) 65.5458 2.26695
\(837\) 5.35026 0.184932
\(838\) 4.93682 0.170540
\(839\) −11.8622 −0.409530 −0.204765 0.978811i \(-0.565643\pi\)
−0.204765 + 0.978811i \(0.565643\pi\)
\(840\) 1.73813 0.0599714
\(841\) −27.1768 −0.937131
\(842\) −6.54478 −0.225548
\(843\) −22.9805 −0.791489
\(844\) 6.42690 0.221223
\(845\) −24.6400 −0.847642
\(846\) 2.26187 0.0777645
\(847\) −6.25523 −0.214932
\(848\) 33.3713 1.14598
\(849\) −8.99791 −0.308807
\(850\) 0.617005 0.0211631
\(851\) 0 0
\(852\) 7.84955 0.268921
\(853\) 30.4749 1.04344 0.521720 0.853117i \(-0.325291\pi\)
0.521720 + 0.853117i \(0.325291\pi\)
\(854\) −1.13918 −0.0389820
\(855\) −18.8872 −0.645927
\(856\) 14.0052 0.478688
\(857\) 49.1754 1.67980 0.839899 0.542742i \(-0.182614\pi\)
0.839899 + 0.542742i \(0.182614\pi\)
\(858\) 1.30983 0.0447170
\(859\) −15.4763 −0.528044 −0.264022 0.964517i \(-0.585049\pi\)
−0.264022 + 0.964517i \(0.585049\pi\)
\(860\) 8.71037 0.297021
\(861\) −7.56641 −0.257863
\(862\) −2.03257 −0.0692296
\(863\) −3.81336 −0.129808 −0.0649041 0.997892i \(-0.520674\pi\)
−0.0649041 + 0.997892i \(0.520674\pi\)
\(864\) 2.26916 0.0771984
\(865\) −38.0242 −1.29286
\(866\) −1.13795 −0.0386690
\(867\) 10.0132 0.340065
\(868\) 10.0245 0.340254
\(869\) −10.1476 −0.344234
\(870\) −0.620357 −0.0210321
\(871\) 2.42353 0.0821183
\(872\) −1.92980 −0.0653513
\(873\) 2.33308 0.0789629
\(874\) 0 0
\(875\) 9.92478 0.335519
\(876\) −27.3258 −0.923254
\(877\) 3.62672 0.122465 0.0612327 0.998124i \(-0.480497\pi\)
0.0612327 + 0.998124i \(0.480497\pi\)
\(878\) −0.0723936 −0.00244316
\(879\) 3.18148 0.107309
\(880\) 37.4734 1.26323
\(881\) 30.6533 1.03273 0.516367 0.856367i \(-0.327284\pi\)
0.516367 + 0.856367i \(0.327284\pi\)
\(882\) −1.18076 −0.0397583
\(883\) 41.0494 1.38142 0.690711 0.723131i \(-0.257298\pi\)
0.690711 + 0.723131i \(0.257298\pi\)
\(884\) −16.4427 −0.553026
\(885\) 30.7078 1.03223
\(886\) −2.47768 −0.0832394
\(887\) −33.8397 −1.13623 −0.568113 0.822951i \(-0.692326\pi\)
−0.568113 + 0.822951i \(0.692326\pi\)
\(888\) 6.47966 0.217443
\(889\) 13.3436 0.447529
\(890\) −0.666237 −0.0223323
\(891\) 4.18945 0.140352
\(892\) 36.4025 1.21884
\(893\) −92.9844 −3.11160
\(894\) 2.47537 0.0827889
\(895\) −34.0269 −1.13739
\(896\) 5.64989 0.188750
\(897\) 0 0
\(898\) −5.83780 −0.194810
\(899\) −7.22425 −0.240942
\(900\) −1.20123 −0.0400410
\(901\) 45.9365 1.53037
\(902\) 6.43878 0.214388
\(903\) 1.78892 0.0595315
\(904\) 8.96535 0.298183
\(905\) 22.4044 0.744747
\(906\) −1.67276 −0.0555738
\(907\) 18.4739 0.613415 0.306708 0.951804i \(-0.400773\pi\)
0.306708 + 0.951804i \(0.400773\pi\)
\(908\) −11.9686 −0.397193
\(909\) 15.1490 0.502462
\(910\) −0.707173 −0.0234426
\(911\) 1.36102 0.0450927 0.0225464 0.999746i \(-0.492823\pi\)
0.0225464 + 0.999746i \(0.492823\pi\)
\(912\) −30.1027 −0.996801
\(913\) 7.25343 0.240054
\(914\) 4.92650 0.162954
\(915\) 14.5745 0.481819
\(916\) 16.0291 0.529615
\(917\) 8.37890 0.276696
\(918\) 1.00797 0.0332680
\(919\) −35.7084 −1.17791 −0.588956 0.808165i \(-0.700461\pi\)
−0.588956 + 0.808165i \(0.700461\pi\)
\(920\) 0 0
\(921\) 14.9018 0.491029
\(922\) 5.68261 0.187147
\(923\) −6.44851 −0.212255
\(924\) 7.84955 0.258231
\(925\) −5.16151 −0.169709
\(926\) −1.55149 −0.0509852
\(927\) −9.98860 −0.328069
\(928\) −3.06396 −0.100579
\(929\) −30.4749 −0.999848 −0.499924 0.866069i \(-0.666639\pi\)
−0.499924 + 0.866069i \(0.666639\pi\)
\(930\) 2.45809 0.0806041
\(931\) 48.5407 1.59086
\(932\) −13.2966 −0.435546
\(933\) 2.36344 0.0773754
\(934\) 0.493344 0.0161427
\(935\) 51.5832 1.68695
\(936\) −1.23884 −0.0404928
\(937\) 44.4058 1.45067 0.725337 0.688394i \(-0.241684\pi\)
0.725337 + 0.688394i \(0.241684\pi\)
\(938\) −0.278364 −0.00908890
\(939\) 18.7205 0.610922
\(940\) −54.2195 −1.76845
\(941\) −9.08836 −0.296272 −0.148136 0.988967i \(-0.547327\pi\)
−0.148136 + 0.988967i \(0.547327\pi\)
\(942\) −0.873993 −0.0284762
\(943\) 0 0
\(944\) 48.9427 1.59295
\(945\) −2.26187 −0.0735785
\(946\) −1.52232 −0.0494948
\(947\) 4.43866 0.144237 0.0721185 0.997396i \(-0.477024\pi\)
0.0721185 + 0.997396i \(0.477024\pi\)
\(948\) 4.75326 0.154379
\(949\) 22.4485 0.728709
\(950\) −0.946464 −0.0307074
\(951\) −1.97556 −0.0640620
\(952\) 3.81336 0.123592
\(953\) 48.4363 1.56901 0.784503 0.620125i \(-0.212918\pi\)
0.784503 + 0.620125i \(0.212918\pi\)
\(954\) 1.71408 0.0554953
\(955\) −54.3996 −1.76033
\(956\) 10.3996 0.336348
\(957\) −5.65685 −0.182860
\(958\) 1.50467 0.0486135
\(959\) −11.3093 −0.365197
\(960\) −16.8469 −0.543731
\(961\) −2.37470 −0.0766032
\(962\) −2.63630 −0.0849976
\(963\) −18.2252 −0.587299
\(964\) 18.6999 0.602284
\(965\) −13.1169 −0.422247
\(966\) 0 0
\(967\) −10.1260 −0.325630 −0.162815 0.986657i \(-0.552057\pi\)
−0.162815 + 0.986657i \(0.552057\pi\)
\(968\) −5.03451 −0.161815
\(969\) −41.4372 −1.33116
\(970\) 1.07190 0.0344166
\(971\) 20.8754 0.669924 0.334962 0.942232i \(-0.391276\pi\)
0.334962 + 0.942232i \(0.391276\pi\)
\(972\) −1.96239 −0.0629436
\(973\) −10.2166 −0.327530
\(974\) 5.27978 0.169175
\(975\) 0.986826 0.0316037
\(976\) 23.2291 0.743547
\(977\) −52.6770 −1.68529 −0.842643 0.538473i \(-0.819001\pi\)
−0.842643 + 0.538473i \(0.819001\pi\)
\(978\) 1.51247 0.0483633
\(979\) −6.07522 −0.194165
\(980\) 28.3043 0.904146
\(981\) 2.51128 0.0801791
\(982\) −1.21440 −0.0387532
\(983\) 19.2159 0.612892 0.306446 0.951888i \(-0.400860\pi\)
0.306446 + 0.951888i \(0.400860\pi\)
\(984\) −6.08981 −0.194136
\(985\) 45.6624 1.45493
\(986\) −1.36102 −0.0433438
\(987\) −11.1355 −0.354447
\(988\) 25.2225 0.802433
\(989\) 0 0
\(990\) 1.92478 0.0611734
\(991\) 22.1260 0.702856 0.351428 0.936215i \(-0.385696\pi\)
0.351428 + 0.936215i \(0.385696\pi\)
\(992\) 12.1406 0.385464
\(993\) −24.4241 −0.775074
\(994\) 0.740666 0.0234925
\(995\) 4.18664 0.132725
\(996\) −3.39759 −0.107657
\(997\) −40.3390 −1.27755 −0.638774 0.769394i \(-0.720558\pi\)
−0.638774 + 0.769394i \(0.720558\pi\)
\(998\) −1.28963 −0.0408224
\(999\) −8.43209 −0.266780
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1587.2.a.s.1.4 yes 6
3.2 odd 2 4761.2.a.bs.1.3 6
23.22 odd 2 inner 1587.2.a.s.1.3 6
69.68 even 2 4761.2.a.bs.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1587.2.a.s.1.3 6 23.22 odd 2 inner
1587.2.a.s.1.4 yes 6 1.1 even 1 trivial
4761.2.a.bs.1.3 6 3.2 odd 2
4761.2.a.bs.1.4 6 69.68 even 2