Properties

Label 1587.4.a.b.1.1
Level $1587$
Weight $4$
Character 1587.1
Self dual yes
Analytic conductor $93.636$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1587,4,Mod(1,1587)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1587, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1587.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1587 = 3 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1587.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(93.6360311791\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 69)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 1587.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.23607 q^{2} +3.00000 q^{3} +9.94427 q^{4} +10.7639 q^{5} -12.7082 q^{6} -10.6525 q^{7} -8.23607 q^{8} +9.00000 q^{9} -45.5967 q^{10} +52.3607 q^{11} +29.8328 q^{12} -79.0820 q^{13} +45.1246 q^{14} +32.2918 q^{15} -44.6656 q^{16} +77.2361 q^{17} -38.1246 q^{18} -50.7902 q^{19} +107.039 q^{20} -31.9574 q^{21} -221.803 q^{22} -24.7082 q^{24} -9.13777 q^{25} +334.997 q^{26} +27.0000 q^{27} -105.931 q^{28} +12.7477 q^{29} -136.790 q^{30} -12.4133 q^{31} +255.095 q^{32} +157.082 q^{33} -327.177 q^{34} -114.663 q^{35} +89.4984 q^{36} +73.1084 q^{37} +215.151 q^{38} -237.246 q^{39} -88.6525 q^{40} -38.8916 q^{41} +135.374 q^{42} -171.787 q^{43} +520.689 q^{44} +96.8754 q^{45} +614.545 q^{47} -133.997 q^{48} -229.525 q^{49} +38.7082 q^{50} +231.708 q^{51} -786.413 q^{52} -269.597 q^{53} -114.374 q^{54} +563.607 q^{55} +87.7345 q^{56} -152.371 q^{57} -54.0000 q^{58} -534.768 q^{59} +321.118 q^{60} +838.604 q^{61} +52.5836 q^{62} -95.8723 q^{63} -723.276 q^{64} -851.234 q^{65} -665.410 q^{66} +448.180 q^{67} +768.056 q^{68} +485.718 q^{70} +628.604 q^{71} -74.1246 q^{72} +925.266 q^{73} -309.692 q^{74} -27.4133 q^{75} -505.072 q^{76} -557.771 q^{77} +1004.99 q^{78} +963.479 q^{79} -480.778 q^{80} +81.0000 q^{81} +164.748 q^{82} -133.358 q^{83} -317.793 q^{84} +831.364 q^{85} +727.702 q^{86} +38.2430 q^{87} -431.246 q^{88} +778.581 q^{89} -410.371 q^{90} +842.420 q^{91} -37.2399 q^{93} -2603.25 q^{94} -546.703 q^{95} +765.286 q^{96} -1603.57 q^{97} +972.282 q^{98} +471.246 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 6 q^{3} + 2 q^{4} + 26 q^{5} - 12 q^{6} + 10 q^{7} - 12 q^{8} + 18 q^{9} - 42 q^{10} + 60 q^{11} + 6 q^{12} - 24 q^{13} + 50 q^{14} + 78 q^{15} + 18 q^{16} + 150 q^{17} - 36 q^{18} + 46 q^{19}+ \cdots + 540 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.23607 −1.49768 −0.748838 0.662753i \(-0.769388\pi\)
−0.748838 + 0.662753i \(0.769388\pi\)
\(3\) 3.00000 0.577350
\(4\) 9.94427 1.24303
\(5\) 10.7639 0.962755 0.481378 0.876513i \(-0.340137\pi\)
0.481378 + 0.876513i \(0.340137\pi\)
\(6\) −12.7082 −0.864684
\(7\) −10.6525 −0.575180 −0.287590 0.957754i \(-0.592854\pi\)
−0.287590 + 0.957754i \(0.592854\pi\)
\(8\) −8.23607 −0.363986
\(9\) 9.00000 0.333333
\(10\) −45.5967 −1.44190
\(11\) 52.3607 1.43521 0.717606 0.696449i \(-0.245238\pi\)
0.717606 + 0.696449i \(0.245238\pi\)
\(12\) 29.8328 0.717666
\(13\) −79.0820 −1.68719 −0.843593 0.536984i \(-0.819564\pi\)
−0.843593 + 0.536984i \(0.819564\pi\)
\(14\) 45.1246 0.861433
\(15\) 32.2918 0.555847
\(16\) −44.6656 −0.697900
\(17\) 77.2361 1.10191 0.550956 0.834534i \(-0.314263\pi\)
0.550956 + 0.834534i \(0.314263\pi\)
\(18\) −38.1246 −0.499225
\(19\) −50.7902 −0.613267 −0.306634 0.951828i \(-0.599203\pi\)
−0.306634 + 0.951828i \(0.599203\pi\)
\(20\) 107.039 1.19674
\(21\) −31.9574 −0.332080
\(22\) −221.803 −2.14948
\(23\) 0 0
\(24\) −24.7082 −0.210148
\(25\) −9.13777 −0.0731021
\(26\) 334.997 2.52686
\(27\) 27.0000 0.192450
\(28\) −105.931 −0.714968
\(29\) 12.7477 0.0816270 0.0408135 0.999167i \(-0.487005\pi\)
0.0408135 + 0.999167i \(0.487005\pi\)
\(30\) −136.790 −0.832479
\(31\) −12.4133 −0.0719192 −0.0359596 0.999353i \(-0.511449\pi\)
−0.0359596 + 0.999353i \(0.511449\pi\)
\(32\) 255.095 1.40922
\(33\) 157.082 0.828620
\(34\) −327.177 −1.65031
\(35\) −114.663 −0.553757
\(36\) 89.4984 0.414345
\(37\) 73.1084 0.324836 0.162418 0.986722i \(-0.448071\pi\)
0.162418 + 0.986722i \(0.448071\pi\)
\(38\) 215.151 0.918476
\(39\) −237.246 −0.974097
\(40\) −88.6525 −0.350430
\(41\) −38.8916 −0.148143 −0.0740714 0.997253i \(-0.523599\pi\)
−0.0740714 + 0.997253i \(0.523599\pi\)
\(42\) 135.374 0.497348
\(43\) −171.787 −0.609239 −0.304620 0.952474i \(-0.598529\pi\)
−0.304620 + 0.952474i \(0.598529\pi\)
\(44\) 520.689 1.78402
\(45\) 96.8754 0.320918
\(46\) 0 0
\(47\) 614.545 1.90725 0.953623 0.301003i \(-0.0973214\pi\)
0.953623 + 0.301003i \(0.0973214\pi\)
\(48\) −133.997 −0.402933
\(49\) −229.525 −0.669168
\(50\) 38.7082 0.109483
\(51\) 231.708 0.636189
\(52\) −786.413 −2.09723
\(53\) −269.597 −0.698716 −0.349358 0.936989i \(-0.613600\pi\)
−0.349358 + 0.936989i \(0.613600\pi\)
\(54\) −114.374 −0.288228
\(55\) 563.607 1.38176
\(56\) 87.7345 0.209357
\(57\) −152.371 −0.354070
\(58\) −54.0000 −0.122251
\(59\) −534.768 −1.18001 −0.590007 0.807398i \(-0.700875\pi\)
−0.590007 + 0.807398i \(0.700875\pi\)
\(60\) 321.118 0.690937
\(61\) 838.604 1.76020 0.880100 0.474788i \(-0.157475\pi\)
0.880100 + 0.474788i \(0.157475\pi\)
\(62\) 52.5836 0.107712
\(63\) −95.8723 −0.191727
\(64\) −723.276 −1.41265
\(65\) −851.234 −1.62435
\(66\) −665.410 −1.24101
\(67\) 448.180 0.817223 0.408612 0.912708i \(-0.366013\pi\)
0.408612 + 0.912708i \(0.366013\pi\)
\(68\) 768.056 1.36971
\(69\) 0 0
\(70\) 485.718 0.829349
\(71\) 628.604 1.05073 0.525363 0.850878i \(-0.323930\pi\)
0.525363 + 0.850878i \(0.323930\pi\)
\(72\) −74.1246 −0.121329
\(73\) 925.266 1.48348 0.741741 0.670686i \(-0.234000\pi\)
0.741741 + 0.670686i \(0.234000\pi\)
\(74\) −309.692 −0.486499
\(75\) −27.4133 −0.0422055
\(76\) −505.072 −0.762312
\(77\) −557.771 −0.825505
\(78\) 1004.99 1.45888
\(79\) 963.479 1.37215 0.686075 0.727531i \(-0.259332\pi\)
0.686075 + 0.727531i \(0.259332\pi\)
\(80\) −480.778 −0.671907
\(81\) 81.0000 0.111111
\(82\) 164.748 0.221870
\(83\) −133.358 −0.176360 −0.0881801 0.996105i \(-0.528105\pi\)
−0.0881801 + 0.996105i \(0.528105\pi\)
\(84\) −317.793 −0.412787
\(85\) 831.364 1.06087
\(86\) 727.702 0.912443
\(87\) 38.2430 0.0471274
\(88\) −431.246 −0.522398
\(89\) 778.581 0.927297 0.463649 0.886019i \(-0.346540\pi\)
0.463649 + 0.886019i \(0.346540\pi\)
\(90\) −410.371 −0.480632
\(91\) 842.420 0.970435
\(92\) 0 0
\(93\) −37.2399 −0.0415226
\(94\) −2603.25 −2.85644
\(95\) −546.703 −0.590426
\(96\) 765.286 0.813611
\(97\) −1603.57 −1.67853 −0.839266 0.543721i \(-0.817015\pi\)
−0.839266 + 0.543721i \(0.817015\pi\)
\(98\) 972.282 1.00220
\(99\) 471.246 0.478404
\(100\) −90.8684 −0.0908684
\(101\) 1229.04 1.21084 0.605418 0.795908i \(-0.293006\pi\)
0.605418 + 0.795908i \(0.293006\pi\)
\(102\) −981.532 −0.952805
\(103\) −215.066 −0.205738 −0.102869 0.994695i \(-0.532802\pi\)
−0.102869 + 0.994695i \(0.532802\pi\)
\(104\) 651.325 0.614112
\(105\) −343.988 −0.319712
\(106\) 1142.03 1.04645
\(107\) 1586.58 1.43346 0.716730 0.697351i \(-0.245638\pi\)
0.716730 + 0.697351i \(0.245638\pi\)
\(108\) 268.495 0.239222
\(109\) −822.255 −0.722549 −0.361274 0.932460i \(-0.617658\pi\)
−0.361274 + 0.932460i \(0.617658\pi\)
\(110\) −2387.48 −2.06943
\(111\) 219.325 0.187544
\(112\) 475.800 0.401418
\(113\) −19.7005 −0.0164006 −0.00820031 0.999966i \(-0.502610\pi\)
−0.00820031 + 0.999966i \(0.502610\pi\)
\(114\) 645.453 0.530282
\(115\) 0 0
\(116\) 126.766 0.101465
\(117\) −711.738 −0.562395
\(118\) 2265.31 1.76728
\(119\) −822.755 −0.633797
\(120\) −265.957 −0.202321
\(121\) 1410.64 1.05984
\(122\) −3552.38 −2.63621
\(123\) −116.675 −0.0855303
\(124\) −123.441 −0.0893980
\(125\) −1443.85 −1.03313
\(126\) 406.122 0.287144
\(127\) 1143.23 0.798784 0.399392 0.916780i \(-0.369221\pi\)
0.399392 + 0.916780i \(0.369221\pi\)
\(128\) 1023.08 0.706473
\(129\) −515.361 −0.351745
\(130\) 3605.88 2.43275
\(131\) 1154.64 0.770085 0.385043 0.922899i \(-0.374187\pi\)
0.385043 + 0.922899i \(0.374187\pi\)
\(132\) 1562.07 1.03000
\(133\) 541.042 0.352739
\(134\) −1898.52 −1.22394
\(135\) 290.626 0.185282
\(136\) −636.122 −0.401081
\(137\) 2153.10 1.34271 0.671356 0.741135i \(-0.265712\pi\)
0.671356 + 0.741135i \(0.265712\pi\)
\(138\) 0 0
\(139\) −2392.16 −1.45971 −0.729857 0.683600i \(-0.760413\pi\)
−0.729857 + 0.683600i \(0.760413\pi\)
\(140\) −1140.24 −0.688339
\(141\) 1843.63 1.10115
\(142\) −2662.81 −1.57365
\(143\) −4140.79 −2.42147
\(144\) −401.991 −0.232633
\(145\) 137.215 0.0785868
\(146\) −3919.49 −2.22178
\(147\) −688.574 −0.386345
\(148\) 727.009 0.403782
\(149\) 2259.80 1.24248 0.621242 0.783619i \(-0.286628\pi\)
0.621242 + 0.783619i \(0.286628\pi\)
\(150\) 116.125 0.0632102
\(151\) −2410.84 −1.29928 −0.649639 0.760243i \(-0.725080\pi\)
−0.649639 + 0.760243i \(0.725080\pi\)
\(152\) 418.312 0.223221
\(153\) 695.125 0.367304
\(154\) 2362.76 1.23634
\(155\) −133.616 −0.0692406
\(156\) −2359.24 −1.21084
\(157\) 614.960 0.312606 0.156303 0.987709i \(-0.450042\pi\)
0.156303 + 0.987709i \(0.450042\pi\)
\(158\) −4081.36 −2.05504
\(159\) −808.790 −0.403404
\(160\) 2745.83 1.35673
\(161\) 0 0
\(162\) −343.122 −0.166408
\(163\) −50.8127 −0.0244169 −0.0122085 0.999925i \(-0.503886\pi\)
−0.0122085 + 0.999925i \(0.503886\pi\)
\(164\) −386.749 −0.184147
\(165\) 1690.82 0.797759
\(166\) 564.912 0.264130
\(167\) −2000.84 −0.927125 −0.463562 0.886064i \(-0.653429\pi\)
−0.463562 + 0.886064i \(0.653429\pi\)
\(168\) 263.204 0.120873
\(169\) 4056.97 1.84659
\(170\) −3521.71 −1.58884
\(171\) −457.112 −0.204422
\(172\) −1708.30 −0.757305
\(173\) −3796.78 −1.66858 −0.834288 0.551330i \(-0.814121\pi\)
−0.834288 + 0.551330i \(0.814121\pi\)
\(174\) −162.000 −0.0705815
\(175\) 97.3398 0.0420469
\(176\) −2338.72 −1.00164
\(177\) −1604.30 −0.681281
\(178\) −3298.12 −1.38879
\(179\) −3084.16 −1.28783 −0.643913 0.765099i \(-0.722690\pi\)
−0.643913 + 0.765099i \(0.722690\pi\)
\(180\) 963.355 0.398913
\(181\) −4733.12 −1.94370 −0.971851 0.235597i \(-0.924295\pi\)
−0.971851 + 0.235597i \(0.924295\pi\)
\(182\) −3568.55 −1.45340
\(183\) 2515.81 1.01625
\(184\) 0 0
\(185\) 786.933 0.312738
\(186\) 157.751 0.0621874
\(187\) 4044.13 1.58148
\(188\) 6111.20 2.37077
\(189\) −287.617 −0.110693
\(190\) 2315.87 0.884268
\(191\) 1293.13 0.489885 0.244942 0.969538i \(-0.421231\pi\)
0.244942 + 0.969538i \(0.421231\pi\)
\(192\) −2169.83 −0.815592
\(193\) −1171.75 −0.437019 −0.218510 0.975835i \(-0.570119\pi\)
−0.218510 + 0.975835i \(0.570119\pi\)
\(194\) 6792.82 2.51390
\(195\) −2553.70 −0.937817
\(196\) −2282.46 −0.831799
\(197\) 4559.19 1.64888 0.824438 0.565952i \(-0.191491\pi\)
0.824438 + 0.565952i \(0.191491\pi\)
\(198\) −1996.23 −0.716495
\(199\) 473.721 0.168750 0.0843748 0.996434i \(-0.473111\pi\)
0.0843748 + 0.996434i \(0.473111\pi\)
\(200\) 75.2593 0.0266082
\(201\) 1344.54 0.471824
\(202\) −5206.31 −1.81344
\(203\) −135.794 −0.0469502
\(204\) 2304.17 0.790805
\(205\) −418.627 −0.142625
\(206\) 911.033 0.308130
\(207\) 0 0
\(208\) 3532.25 1.17749
\(209\) −2659.41 −0.880169
\(210\) 1457.15 0.478825
\(211\) −1423.56 −0.464465 −0.232232 0.972660i \(-0.574603\pi\)
−0.232232 + 0.972660i \(0.574603\pi\)
\(212\) −2680.94 −0.868528
\(213\) 1885.81 0.606637
\(214\) −6720.85 −2.14686
\(215\) −1849.11 −0.586548
\(216\) −222.374 −0.0700492
\(217\) 132.232 0.0413665
\(218\) 3483.13 1.08214
\(219\) 2775.80 0.856489
\(220\) 5604.66 1.71757
\(221\) −6107.99 −1.85913
\(222\) −929.076 −0.280881
\(223\) 6088.63 1.82836 0.914181 0.405305i \(-0.132835\pi\)
0.914181 + 0.405305i \(0.132835\pi\)
\(224\) −2717.40 −0.810552
\(225\) −82.2399 −0.0243674
\(226\) 83.4528 0.0245628
\(227\) 4463.66 1.30513 0.652563 0.757734i \(-0.273694\pi\)
0.652563 + 0.757734i \(0.273694\pi\)
\(228\) −1515.22 −0.440121
\(229\) −1298.87 −0.374812 −0.187406 0.982283i \(-0.560008\pi\)
−0.187406 + 0.982283i \(0.560008\pi\)
\(230\) 0 0
\(231\) −1673.31 −0.476606
\(232\) −104.991 −0.0297111
\(233\) −1257.41 −0.353544 −0.176772 0.984252i \(-0.556566\pi\)
−0.176772 + 0.984252i \(0.556566\pi\)
\(234\) 3014.97 0.842286
\(235\) 6614.92 1.83621
\(236\) −5317.88 −1.46680
\(237\) 2890.44 0.792211
\(238\) 3485.25 0.949223
\(239\) 3473.96 0.940217 0.470108 0.882609i \(-0.344215\pi\)
0.470108 + 0.882609i \(0.344215\pi\)
\(240\) −1442.33 −0.387926
\(241\) 2140.92 0.572235 0.286118 0.958195i \(-0.407635\pi\)
0.286118 + 0.958195i \(0.407635\pi\)
\(242\) −5975.57 −1.58729
\(243\) 243.000 0.0641500
\(244\) 8339.30 2.18799
\(245\) −2470.59 −0.644245
\(246\) 494.243 0.128097
\(247\) 4016.60 1.03470
\(248\) 102.237 0.0261776
\(249\) −400.073 −0.101822
\(250\) 6116.25 1.54730
\(251\) 5613.17 1.41155 0.705777 0.708434i \(-0.250598\pi\)
0.705777 + 0.708434i \(0.250598\pi\)
\(252\) −953.380 −0.238323
\(253\) 0 0
\(254\) −4842.82 −1.19632
\(255\) 2494.09 0.612494
\(256\) 1452.36 0.354579
\(257\) 1017.98 0.247082 0.123541 0.992339i \(-0.460575\pi\)
0.123541 + 0.992339i \(0.460575\pi\)
\(258\) 2183.11 0.526799
\(259\) −778.785 −0.186839
\(260\) −8464.90 −2.01912
\(261\) 114.729 0.0272090
\(262\) −4891.12 −1.15334
\(263\) 995.531 0.233411 0.116705 0.993167i \(-0.462767\pi\)
0.116705 + 0.993167i \(0.462767\pi\)
\(264\) −1293.74 −0.301606
\(265\) −2901.92 −0.672693
\(266\) −2291.89 −0.528289
\(267\) 2335.74 0.535375
\(268\) 4456.83 1.01584
\(269\) −3568.95 −0.808932 −0.404466 0.914553i \(-0.632543\pi\)
−0.404466 + 0.914553i \(0.632543\pi\)
\(270\) −1231.11 −0.277493
\(271\) −6294.26 −1.41088 −0.705441 0.708768i \(-0.749251\pi\)
−0.705441 + 0.708768i \(0.749251\pi\)
\(272\) −3449.80 −0.769025
\(273\) 2527.26 0.560281
\(274\) −9120.67 −2.01095
\(275\) −478.460 −0.104917
\(276\) 0 0
\(277\) −2263.65 −0.491009 −0.245505 0.969395i \(-0.578954\pi\)
−0.245505 + 0.969395i \(0.578954\pi\)
\(278\) 10133.3 2.18618
\(279\) −111.720 −0.0239731
\(280\) 944.368 0.201560
\(281\) 505.900 0.107400 0.0537001 0.998557i \(-0.482898\pi\)
0.0537001 + 0.998557i \(0.482898\pi\)
\(282\) −7809.76 −1.64916
\(283\) 7018.20 1.47417 0.737083 0.675802i \(-0.236203\pi\)
0.737083 + 0.675802i \(0.236203\pi\)
\(284\) 6251.01 1.30609
\(285\) −1640.11 −0.340883
\(286\) 17540.7 3.62658
\(287\) 414.292 0.0852087
\(288\) 2295.86 0.469738
\(289\) 1052.41 0.214209
\(290\) −581.252 −0.117698
\(291\) −4810.70 −0.969101
\(292\) 9201.10 1.84402
\(293\) 9488.82 1.89196 0.945978 0.324232i \(-0.105106\pi\)
0.945978 + 0.324232i \(0.105106\pi\)
\(294\) 2916.85 0.578619
\(295\) −5756.20 −1.13606
\(296\) −602.125 −0.118236
\(297\) 1413.74 0.276207
\(298\) −9572.67 −1.86084
\(299\) 0 0
\(300\) −272.605 −0.0524629
\(301\) 1829.96 0.350422
\(302\) 10212.5 1.94590
\(303\) 3687.13 0.699076
\(304\) 2268.58 0.428000
\(305\) 9026.67 1.69464
\(306\) −2944.60 −0.550102
\(307\) 4660.58 0.866427 0.433214 0.901291i \(-0.357380\pi\)
0.433214 + 0.901291i \(0.357380\pi\)
\(308\) −5546.63 −1.02613
\(309\) −645.197 −0.118783
\(310\) 566.006 0.103700
\(311\) 4378.51 0.798336 0.399168 0.916878i \(-0.369299\pi\)
0.399168 + 0.916878i \(0.369299\pi\)
\(312\) 1953.98 0.354558
\(313\) 4444.17 0.802553 0.401277 0.915957i \(-0.368567\pi\)
0.401277 + 0.915957i \(0.368567\pi\)
\(314\) −2605.01 −0.468182
\(315\) −1031.96 −0.184586
\(316\) 9581.10 1.70563
\(317\) 7881.61 1.39645 0.698226 0.715878i \(-0.253973\pi\)
0.698226 + 0.715878i \(0.253973\pi\)
\(318\) 3426.09 0.604169
\(319\) 667.477 0.117152
\(320\) −7785.29 −1.36003
\(321\) 4759.73 0.827609
\(322\) 0 0
\(323\) −3922.84 −0.675767
\(324\) 805.486 0.138115
\(325\) 722.633 0.123337
\(326\) 215.246 0.0365686
\(327\) −2466.77 −0.417164
\(328\) 320.314 0.0539219
\(329\) −6546.42 −1.09701
\(330\) −7162.43 −1.19478
\(331\) −127.060 −0.0210993 −0.0105497 0.999944i \(-0.503358\pi\)
−0.0105497 + 0.999944i \(0.503358\pi\)
\(332\) −1326.14 −0.219222
\(333\) 657.975 0.108279
\(334\) 8475.70 1.38853
\(335\) 4824.18 0.786786
\(336\) 1427.40 0.231759
\(337\) 1739.07 0.281107 0.140554 0.990073i \(-0.455112\pi\)
0.140554 + 0.990073i \(0.455112\pi\)
\(338\) −17185.6 −2.76560
\(339\) −59.1016 −0.00946890
\(340\) 8267.31 1.31870
\(341\) −649.969 −0.103219
\(342\) 1936.36 0.306159
\(343\) 6098.81 0.960072
\(344\) 1414.85 0.221755
\(345\) 0 0
\(346\) 16083.4 2.49899
\(347\) 7551.30 1.16823 0.584114 0.811672i \(-0.301442\pi\)
0.584114 + 0.811672i \(0.301442\pi\)
\(348\) 380.299 0.0585809
\(349\) −6237.28 −0.956659 −0.478329 0.878180i \(-0.658758\pi\)
−0.478329 + 0.878180i \(0.658758\pi\)
\(350\) −412.338 −0.0629726
\(351\) −2135.22 −0.324699
\(352\) 13357.0 2.02252
\(353\) 1788.57 0.269678 0.134839 0.990868i \(-0.456948\pi\)
0.134839 + 0.990868i \(0.456948\pi\)
\(354\) 6795.94 1.02034
\(355\) 6766.25 1.01159
\(356\) 7742.42 1.15266
\(357\) −2468.27 −0.365923
\(358\) 13064.7 1.92875
\(359\) −2234.70 −0.328531 −0.164266 0.986416i \(-0.552525\pi\)
−0.164266 + 0.986416i \(0.552525\pi\)
\(360\) −797.872 −0.116810
\(361\) −4279.35 −0.623903
\(362\) 20049.8 2.91104
\(363\) 4231.92 0.611896
\(364\) 8377.25 1.20628
\(365\) 9959.50 1.42823
\(366\) −10657.1 −1.52202
\(367\) −10551.7 −1.50080 −0.750399 0.660985i \(-0.770139\pi\)
−0.750399 + 0.660985i \(0.770139\pi\)
\(368\) 0 0
\(369\) −350.025 −0.0493809
\(370\) −3333.50 −0.468380
\(371\) 2871.87 0.401887
\(372\) −370.324 −0.0516140
\(373\) 996.068 0.138269 0.0691347 0.997607i \(-0.477976\pi\)
0.0691347 + 0.997607i \(0.477976\pi\)
\(374\) −17131.2 −2.36854
\(375\) −4331.55 −0.596481
\(376\) −5061.43 −0.694211
\(377\) −1008.11 −0.137720
\(378\) 1218.36 0.165783
\(379\) 11117.0 1.50670 0.753351 0.657619i \(-0.228436\pi\)
0.753351 + 0.657619i \(0.228436\pi\)
\(380\) −5436.56 −0.733920
\(381\) 3429.70 0.461178
\(382\) −5477.81 −0.733688
\(383\) −5315.09 −0.709108 −0.354554 0.935035i \(-0.615367\pi\)
−0.354554 + 0.935035i \(0.615367\pi\)
\(384\) 3069.25 0.407883
\(385\) −6003.81 −0.794759
\(386\) 4963.63 0.654513
\(387\) −1546.08 −0.203080
\(388\) −15946.3 −2.08647
\(389\) 8438.06 1.09981 0.549906 0.835227i \(-0.314664\pi\)
0.549906 + 0.835227i \(0.314664\pi\)
\(390\) 10817.7 1.40455
\(391\) 0 0
\(392\) 1890.38 0.243568
\(393\) 3463.91 0.444609
\(394\) −19313.0 −2.46948
\(395\) 10370.8 1.32104
\(396\) 4686.20 0.594673
\(397\) 11582.0 1.46419 0.732094 0.681204i \(-0.238543\pi\)
0.732094 + 0.681204i \(0.238543\pi\)
\(398\) −2006.71 −0.252732
\(399\) 1623.13 0.203654
\(400\) 408.144 0.0510180
\(401\) −4267.85 −0.531487 −0.265744 0.964044i \(-0.585617\pi\)
−0.265744 + 0.964044i \(0.585617\pi\)
\(402\) −5695.57 −0.706639
\(403\) 981.669 0.121341
\(404\) 12221.9 1.50511
\(405\) 871.878 0.106973
\(406\) 575.234 0.0703162
\(407\) 3828.00 0.466209
\(408\) −1908.36 −0.231564
\(409\) 6902.51 0.834491 0.417246 0.908794i \(-0.362995\pi\)
0.417246 + 0.908794i \(0.362995\pi\)
\(410\) 1773.33 0.213606
\(411\) 6459.29 0.775215
\(412\) −2138.67 −0.255740
\(413\) 5696.60 0.678720
\(414\) 0 0
\(415\) −1435.45 −0.169792
\(416\) −20173.4 −2.37761
\(417\) −7176.47 −0.842766
\(418\) 11265.4 1.31821
\(419\) 2241.24 0.261316 0.130658 0.991427i \(-0.458291\pi\)
0.130658 + 0.991427i \(0.458291\pi\)
\(420\) −3420.71 −0.397413
\(421\) −9117.52 −1.05549 −0.527744 0.849403i \(-0.676962\pi\)
−0.527744 + 0.849403i \(0.676962\pi\)
\(422\) 6030.30 0.695618
\(423\) 5530.90 0.635749
\(424\) 2220.42 0.254323
\(425\) −705.765 −0.0805521
\(426\) −7988.42 −0.908546
\(427\) −8933.21 −1.01243
\(428\) 15777.4 1.78184
\(429\) −12422.4 −1.39804
\(430\) 7832.93 0.878460
\(431\) 1366.55 0.152725 0.0763623 0.997080i \(-0.475669\pi\)
0.0763623 + 0.997080i \(0.475669\pi\)
\(432\) −1205.97 −0.134311
\(433\) −3511.21 −0.389695 −0.194848 0.980834i \(-0.562421\pi\)
−0.194848 + 0.980834i \(0.562421\pi\)
\(434\) −560.145 −0.0619536
\(435\) 411.645 0.0453721
\(436\) −8176.73 −0.898152
\(437\) 0 0
\(438\) −11758.5 −1.28274
\(439\) 7032.17 0.764526 0.382263 0.924054i \(-0.375145\pi\)
0.382263 + 0.924054i \(0.375145\pi\)
\(440\) −4641.90 −0.502941
\(441\) −2065.72 −0.223056
\(442\) 25873.8 2.78437
\(443\) 8748.68 0.938289 0.469145 0.883121i \(-0.344562\pi\)
0.469145 + 0.883121i \(0.344562\pi\)
\(444\) 2181.03 0.233124
\(445\) 8380.60 0.892760
\(446\) −25791.9 −2.73830
\(447\) 6779.40 0.717348
\(448\) 7704.68 0.812526
\(449\) −805.208 −0.0846327 −0.0423164 0.999104i \(-0.513474\pi\)
−0.0423164 + 0.999104i \(0.513474\pi\)
\(450\) 348.374 0.0364944
\(451\) −2036.39 −0.212616
\(452\) −195.907 −0.0203865
\(453\) −7232.51 −0.750139
\(454\) −18908.4 −1.95466
\(455\) 9067.75 0.934291
\(456\) 1254.94 0.128877
\(457\) 10496.9 1.07445 0.537226 0.843438i \(-0.319472\pi\)
0.537226 + 0.843438i \(0.319472\pi\)
\(458\) 5502.12 0.561348
\(459\) 2085.37 0.212063
\(460\) 0 0
\(461\) −3325.68 −0.335992 −0.167996 0.985788i \(-0.553730\pi\)
−0.167996 + 0.985788i \(0.553730\pi\)
\(462\) 7088.27 0.713801
\(463\) −840.876 −0.0844035 −0.0422018 0.999109i \(-0.513437\pi\)
−0.0422018 + 0.999109i \(0.513437\pi\)
\(464\) −569.383 −0.0569675
\(465\) −400.848 −0.0399761
\(466\) 5326.48 0.529495
\(467\) −8450.82 −0.837382 −0.418691 0.908129i \(-0.637511\pi\)
−0.418691 + 0.908129i \(0.637511\pi\)
\(468\) −7077.72 −0.699076
\(469\) −4774.23 −0.470050
\(470\) −28021.2 −2.75005
\(471\) 1844.88 0.180483
\(472\) 4404.38 0.429509
\(473\) −8994.89 −0.874388
\(474\) −12244.1 −1.18648
\(475\) 464.109 0.0448312
\(476\) −8181.70 −0.787831
\(477\) −2426.37 −0.232905
\(478\) −14715.9 −1.40814
\(479\) 5686.86 0.542462 0.271231 0.962514i \(-0.412569\pi\)
0.271231 + 0.962514i \(0.412569\pi\)
\(480\) 8237.48 0.783308
\(481\) −5781.56 −0.548059
\(482\) −9069.07 −0.857023
\(483\) 0 0
\(484\) 14027.8 1.31741
\(485\) −17260.7 −1.61602
\(486\) −1029.36 −0.0960760
\(487\) −13768.2 −1.28110 −0.640551 0.767916i \(-0.721294\pi\)
−0.640551 + 0.767916i \(0.721294\pi\)
\(488\) −6906.80 −0.640689
\(489\) −152.438 −0.0140971
\(490\) 10465.6 0.964871
\(491\) 8480.14 0.779436 0.389718 0.920934i \(-0.372572\pi\)
0.389718 + 0.920934i \(0.372572\pi\)
\(492\) −1160.25 −0.106317
\(493\) 984.580 0.0899457
\(494\) −17014.6 −1.54964
\(495\) 5072.46 0.460586
\(496\) 554.448 0.0501924
\(497\) −6696.19 −0.604356
\(498\) 1694.74 0.152496
\(499\) 12472.5 1.11893 0.559466 0.828853i \(-0.311006\pi\)
0.559466 + 0.828853i \(0.311006\pi\)
\(500\) −14358.0 −1.28422
\(501\) −6002.53 −0.535276
\(502\) −23777.8 −2.11405
\(503\) 4676.36 0.414530 0.207265 0.978285i \(-0.433544\pi\)
0.207265 + 0.978285i \(0.433544\pi\)
\(504\) 789.611 0.0697858
\(505\) 13229.3 1.16574
\(506\) 0 0
\(507\) 12170.9 1.06613
\(508\) 11368.6 0.992916
\(509\) 5925.58 0.516005 0.258003 0.966144i \(-0.416936\pi\)
0.258003 + 0.966144i \(0.416936\pi\)
\(510\) −10565.1 −0.917318
\(511\) −9856.38 −0.853269
\(512\) −14336.9 −1.23752
\(513\) −1371.34 −0.118023
\(514\) −4312.25 −0.370049
\(515\) −2314.95 −0.198076
\(516\) −5124.89 −0.437230
\(517\) 32178.0 2.73730
\(518\) 3298.99 0.279825
\(519\) −11390.3 −0.963352
\(520\) 7010.82 0.591240
\(521\) −2626.25 −0.220841 −0.110421 0.993885i \(-0.535220\pi\)
−0.110421 + 0.993885i \(0.535220\pi\)
\(522\) −486.000 −0.0407503
\(523\) −372.504 −0.0311443 −0.0155721 0.999879i \(-0.504957\pi\)
−0.0155721 + 0.999879i \(0.504957\pi\)
\(524\) 11482.0 0.957242
\(525\) 292.020 0.0242758
\(526\) −4217.14 −0.349574
\(527\) −958.755 −0.0792486
\(528\) −7016.17 −0.578295
\(529\) 0 0
\(530\) 12292.7 1.00748
\(531\) −4812.91 −0.393338
\(532\) 5380.27 0.438466
\(533\) 3075.63 0.249944
\(534\) −9894.37 −0.801819
\(535\) 17077.8 1.38007
\(536\) −3691.24 −0.297458
\(537\) −9252.47 −0.743526
\(538\) 15118.3 1.21152
\(539\) −12018.1 −0.960399
\(540\) 2890.07 0.230312
\(541\) 12899.2 1.02510 0.512550 0.858657i \(-0.328701\pi\)
0.512550 + 0.858657i \(0.328701\pi\)
\(542\) 26662.9 2.11305
\(543\) −14199.4 −1.12220
\(544\) 19702.5 1.55283
\(545\) −8850.70 −0.695637
\(546\) −10705.6 −0.839119
\(547\) −22144.7 −1.73097 −0.865485 0.500936i \(-0.832989\pi\)
−0.865485 + 0.500936i \(0.832989\pi\)
\(548\) 21411.0 1.66904
\(549\) 7547.43 0.586733
\(550\) 2026.79 0.157132
\(551\) −647.457 −0.0500592
\(552\) 0 0
\(553\) −10263.4 −0.789233
\(554\) 9588.98 0.735373
\(555\) 2360.80 0.180559
\(556\) −23788.3 −1.81447
\(557\) 10236.7 0.778716 0.389358 0.921086i \(-0.372697\pi\)
0.389358 + 0.921086i \(0.372697\pi\)
\(558\) 473.252 0.0359039
\(559\) 13585.3 1.02790
\(560\) 5121.47 0.386467
\(561\) 12132.4 0.913066
\(562\) −2143.03 −0.160851
\(563\) −5750.83 −0.430495 −0.215247 0.976560i \(-0.569056\pi\)
−0.215247 + 0.976560i \(0.569056\pi\)
\(564\) 18333.6 1.36877
\(565\) −212.055 −0.0157898
\(566\) −29729.6 −2.20782
\(567\) −862.851 −0.0639088
\(568\) −5177.22 −0.382450
\(569\) 8285.10 0.610421 0.305210 0.952285i \(-0.401273\pi\)
0.305210 + 0.952285i \(0.401273\pi\)
\(570\) 6947.61 0.510532
\(571\) 19799.8 1.45113 0.725565 0.688154i \(-0.241579\pi\)
0.725565 + 0.688154i \(0.241579\pi\)
\(572\) −41177.1 −3.00997
\(573\) 3879.40 0.282835
\(574\) −1754.97 −0.127615
\(575\) 0 0
\(576\) −6509.48 −0.470883
\(577\) −250.868 −0.0181001 −0.00905006 0.999959i \(-0.502881\pi\)
−0.00905006 + 0.999959i \(0.502881\pi\)
\(578\) −4458.08 −0.320816
\(579\) −3515.26 −0.252313
\(580\) 1364.50 0.0976861
\(581\) 1420.59 0.101439
\(582\) 20378.5 1.45140
\(583\) −14116.3 −1.00281
\(584\) −7620.56 −0.539967
\(585\) −7661.10 −0.541449
\(586\) −40195.3 −2.83354
\(587\) −9767.11 −0.686766 −0.343383 0.939195i \(-0.611573\pi\)
−0.343383 + 0.939195i \(0.611573\pi\)
\(588\) −6847.37 −0.480239
\(589\) 630.475 0.0441057
\(590\) 24383.7 1.70146
\(591\) 13677.6 0.951979
\(592\) −3265.43 −0.226703
\(593\) −18853.8 −1.30562 −0.652810 0.757521i \(-0.726410\pi\)
−0.652810 + 0.757521i \(0.726410\pi\)
\(594\) −5988.69 −0.413668
\(595\) −8856.08 −0.610192
\(596\) 22472.1 1.54445
\(597\) 1421.16 0.0974276
\(598\) 0 0
\(599\) −11356.0 −0.774615 −0.387307 0.921951i \(-0.626595\pi\)
−0.387307 + 0.921951i \(0.626595\pi\)
\(600\) 225.778 0.0153622
\(601\) 20359.1 1.38180 0.690902 0.722948i \(-0.257213\pi\)
0.690902 + 0.722948i \(0.257213\pi\)
\(602\) −7751.83 −0.524819
\(603\) 4033.62 0.272408
\(604\) −23974.0 −1.61505
\(605\) 15184.0 1.02036
\(606\) −15618.9 −1.04699
\(607\) 5975.14 0.399545 0.199772 0.979842i \(-0.435980\pi\)
0.199772 + 0.979842i \(0.435980\pi\)
\(608\) −12956.3 −0.864226
\(609\) −407.383 −0.0271067
\(610\) −38237.6 −2.53802
\(611\) −48599.5 −3.21788
\(612\) 6912.51 0.456571
\(613\) −16997.4 −1.11993 −0.559967 0.828515i \(-0.689186\pi\)
−0.559967 + 0.828515i \(0.689186\pi\)
\(614\) −19742.5 −1.29763
\(615\) −1255.88 −0.0823447
\(616\) 4593.84 0.300472
\(617\) 13096.0 0.854497 0.427249 0.904134i \(-0.359483\pi\)
0.427249 + 0.904134i \(0.359483\pi\)
\(618\) 2733.10 0.177899
\(619\) −702.058 −0.0455866 −0.0227933 0.999740i \(-0.507256\pi\)
−0.0227933 + 0.999740i \(0.507256\pi\)
\(620\) −1328.71 −0.0860684
\(621\) 0 0
\(622\) −18547.7 −1.19565
\(623\) −8293.82 −0.533362
\(624\) 10596.7 0.679823
\(625\) −14399.3 −0.921554
\(626\) −18825.8 −1.20196
\(627\) −7978.23 −0.508166
\(628\) 6115.33 0.388580
\(629\) 5646.60 0.357941
\(630\) 4371.46 0.276450
\(631\) −23871.5 −1.50604 −0.753019 0.657999i \(-0.771403\pi\)
−0.753019 + 0.657999i \(0.771403\pi\)
\(632\) −7935.28 −0.499444
\(633\) −4270.69 −0.268159
\(634\) −33387.0 −2.09143
\(635\) 12305.7 0.769034
\(636\) −8042.83 −0.501445
\(637\) 18151.3 1.12901
\(638\) −2827.48 −0.175456
\(639\) 5657.43 0.350242
\(640\) 11012.4 0.680161
\(641\) −24172.6 −1.48949 −0.744743 0.667351i \(-0.767428\pi\)
−0.744743 + 0.667351i \(0.767428\pi\)
\(642\) −20162.5 −1.23949
\(643\) −13648.6 −0.837090 −0.418545 0.908196i \(-0.637460\pi\)
−0.418545 + 0.908196i \(0.637460\pi\)
\(644\) 0 0
\(645\) −5547.32 −0.338644
\(646\) 16617.4 1.01208
\(647\) −7009.18 −0.425903 −0.212952 0.977063i \(-0.568308\pi\)
−0.212952 + 0.977063i \(0.568308\pi\)
\(648\) −667.122 −0.0404429
\(649\) −28000.8 −1.69357
\(650\) −3061.12 −0.184719
\(651\) 396.697 0.0238829
\(652\) −505.295 −0.0303511
\(653\) 4533.57 0.271688 0.135844 0.990730i \(-0.456625\pi\)
0.135844 + 0.990730i \(0.456625\pi\)
\(654\) 10449.4 0.624776
\(655\) 12428.4 0.741404
\(656\) 1737.12 0.103389
\(657\) 8327.40 0.494494
\(658\) 27731.1 1.64296
\(659\) 7112.62 0.420438 0.210219 0.977654i \(-0.432582\pi\)
0.210219 + 0.977654i \(0.432582\pi\)
\(660\) 16814.0 0.991641
\(661\) −16088.6 −0.946709 −0.473354 0.880872i \(-0.656957\pi\)
−0.473354 + 0.880872i \(0.656957\pi\)
\(662\) 538.237 0.0316000
\(663\) −18324.0 −1.07337
\(664\) 1098.34 0.0641927
\(665\) 5823.74 0.339601
\(666\) −2787.23 −0.162166
\(667\) 0 0
\(668\) −19896.9 −1.15245
\(669\) 18265.9 1.05561
\(670\) −20435.6 −1.17835
\(671\) 43909.9 2.52626
\(672\) −8152.19 −0.467972
\(673\) 22629.7 1.29615 0.648076 0.761576i \(-0.275574\pi\)
0.648076 + 0.761576i \(0.275574\pi\)
\(674\) −7366.82 −0.421008
\(675\) −246.720 −0.0140685
\(676\) 40343.6 2.29538
\(677\) 15444.0 0.876749 0.438375 0.898792i \(-0.355554\pi\)
0.438375 + 0.898792i \(0.355554\pi\)
\(678\) 250.358 0.0141813
\(679\) 17082.0 0.965458
\(680\) −6847.17 −0.386143
\(681\) 13391.0 0.753515
\(682\) 2753.31 0.154589
\(683\) 834.894 0.0467736 0.0233868 0.999726i \(-0.492555\pi\)
0.0233868 + 0.999726i \(0.492555\pi\)
\(684\) −4545.65 −0.254104
\(685\) 23175.8 1.29270
\(686\) −25835.0 −1.43788
\(687\) −3896.62 −0.216398
\(688\) 7672.98 0.425188
\(689\) 21320.3 1.17886
\(690\) 0 0
\(691\) 4982.99 0.274330 0.137165 0.990548i \(-0.456201\pi\)
0.137165 + 0.990548i \(0.456201\pi\)
\(692\) −37756.2 −2.07410
\(693\) −5019.94 −0.275168
\(694\) −31987.8 −1.74963
\(695\) −25749.0 −1.40535
\(696\) −314.972 −0.0171537
\(697\) −3003.84 −0.163240
\(698\) 26421.5 1.43277
\(699\) −3772.23 −0.204119
\(700\) 967.974 0.0522657
\(701\) −21916.9 −1.18087 −0.590436 0.807084i \(-0.701044\pi\)
−0.590436 + 0.807084i \(0.701044\pi\)
\(702\) 9044.92 0.486294
\(703\) −3713.19 −0.199211
\(704\) −37871.2 −2.02745
\(705\) 19844.8 1.06014
\(706\) −7576.52 −0.403890
\(707\) −13092.4 −0.696448
\(708\) −15953.6 −0.846856
\(709\) 30858.3 1.63456 0.817282 0.576237i \(-0.195480\pi\)
0.817282 + 0.576237i \(0.195480\pi\)
\(710\) −28662.3 −1.51504
\(711\) 8671.31 0.457383
\(712\) −6412.45 −0.337523
\(713\) 0 0
\(714\) 10455.7 0.548034
\(715\) −44571.2 −2.33128
\(716\) −30669.7 −1.60081
\(717\) 10421.9 0.542834
\(718\) 9466.32 0.492033
\(719\) 19500.3 1.01146 0.505728 0.862693i \(-0.331224\pi\)
0.505728 + 0.862693i \(0.331224\pi\)
\(720\) −4327.00 −0.223969
\(721\) 2290.98 0.118337
\(722\) 18127.6 0.934405
\(723\) 6422.75 0.330380
\(724\) −47067.4 −2.41609
\(725\) −116.485 −0.00596711
\(726\) −17926.7 −0.916422
\(727\) −26922.8 −1.37347 −0.686735 0.726908i \(-0.740957\pi\)
−0.686735 + 0.726908i \(0.740957\pi\)
\(728\) −6938.22 −0.353225
\(729\) 729.000 0.0370370
\(730\) −42189.1 −2.13903
\(731\) −13268.2 −0.671328
\(732\) 25017.9 1.26324
\(733\) 22120.5 1.11465 0.557326 0.830294i \(-0.311827\pi\)
0.557326 + 0.830294i \(0.311827\pi\)
\(734\) 44697.6 2.24771
\(735\) −7411.77 −0.371955
\(736\) 0 0
\(737\) 23467.0 1.17289
\(738\) 1482.73 0.0739567
\(739\) −27225.8 −1.35523 −0.677617 0.735415i \(-0.736987\pi\)
−0.677617 + 0.735415i \(0.736987\pi\)
\(740\) 7825.48 0.388744
\(741\) 12049.8 0.597382
\(742\) −12165.4 −0.601897
\(743\) 191.429 0.00945201 0.00472600 0.999989i \(-0.498496\pi\)
0.00472600 + 0.999989i \(0.498496\pi\)
\(744\) 306.710 0.0151136
\(745\) 24324.3 1.19621
\(746\) −4219.41 −0.207083
\(747\) −1200.22 −0.0587867
\(748\) 40216.0 1.96583
\(749\) −16901.0 −0.824497
\(750\) 18348.7 0.893335
\(751\) 876.709 0.0425986 0.0212993 0.999773i \(-0.493220\pi\)
0.0212993 + 0.999773i \(0.493220\pi\)
\(752\) −27449.0 −1.33107
\(753\) 16839.5 0.814961
\(754\) 4270.43 0.206260
\(755\) −25950.1 −1.25089
\(756\) −2860.14 −0.137596
\(757\) 26681.0 1.28103 0.640513 0.767948i \(-0.278722\pi\)
0.640513 + 0.767948i \(0.278722\pi\)
\(758\) −47092.2 −2.25655
\(759\) 0 0
\(760\) 4502.68 0.214907
\(761\) −6947.99 −0.330965 −0.165483 0.986213i \(-0.552918\pi\)
−0.165483 + 0.986213i \(0.552918\pi\)
\(762\) −14528.4 −0.690696
\(763\) 8759.06 0.415595
\(764\) 12859.3 0.608943
\(765\) 7482.27 0.353624
\(766\) 22515.1 1.06201
\(767\) 42290.5 1.99090
\(768\) 4357.07 0.204716
\(769\) −7189.91 −0.337159 −0.168579 0.985688i \(-0.553918\pi\)
−0.168579 + 0.985688i \(0.553918\pi\)
\(770\) 25432.5 1.19029
\(771\) 3053.95 0.142653
\(772\) −11652.2 −0.543230
\(773\) 27591.1 1.28381 0.641904 0.766785i \(-0.278145\pi\)
0.641904 + 0.766785i \(0.278145\pi\)
\(774\) 6549.32 0.304148
\(775\) 113.430 0.00525745
\(776\) 13207.1 0.610963
\(777\) −2336.35 −0.107872
\(778\) −35744.2 −1.64716
\(779\) 1975.32 0.0908512
\(780\) −25394.7 −1.16574
\(781\) 32914.1 1.50801
\(782\) 0 0
\(783\) 344.187 0.0157091
\(784\) 10251.9 0.467013
\(785\) 6619.38 0.300963
\(786\) −14673.4 −0.665880
\(787\) −10322.4 −0.467541 −0.233770 0.972292i \(-0.575106\pi\)
−0.233770 + 0.972292i \(0.575106\pi\)
\(788\) 45337.8 2.04961
\(789\) 2986.59 0.134760
\(790\) −43931.5 −1.97850
\(791\) 209.859 0.00943330
\(792\) −3881.22 −0.174133
\(793\) −66318.5 −2.96978
\(794\) −49062.0 −2.19288
\(795\) −8705.76 −0.388379
\(796\) 4710.81 0.209761
\(797\) −40205.9 −1.78691 −0.893455 0.449153i \(-0.851726\pi\)
−0.893455 + 0.449153i \(0.851726\pi\)
\(798\) −6875.67 −0.305008
\(799\) 47465.0 2.10162
\(800\) −2331.00 −0.103017
\(801\) 7007.23 0.309099
\(802\) 18078.9 0.795995
\(803\) 48447.6 2.12911
\(804\) 13370.5 0.586493
\(805\) 0 0
\(806\) −4158.42 −0.181730
\(807\) −10706.8 −0.467037
\(808\) −10122.5 −0.440727
\(809\) −42375.9 −1.84160 −0.920802 0.390031i \(-0.872464\pi\)
−0.920802 + 0.390031i \(0.872464\pi\)
\(810\) −3693.34 −0.160211
\(811\) 7082.68 0.306667 0.153333 0.988175i \(-0.450999\pi\)
0.153333 + 0.988175i \(0.450999\pi\)
\(812\) −1350.37 −0.0583607
\(813\) −18882.8 −0.814573
\(814\) −16215.7 −0.698230
\(815\) −546.945 −0.0235075
\(816\) −10349.4 −0.443997
\(817\) 8725.11 0.373627
\(818\) −29239.5 −1.24980
\(819\) 7581.78 0.323478
\(820\) −4162.94 −0.177288
\(821\) 18154.3 0.771728 0.385864 0.922556i \(-0.373903\pi\)
0.385864 + 0.922556i \(0.373903\pi\)
\(822\) −27362.0 −1.16102
\(823\) 10437.1 0.442058 0.221029 0.975267i \(-0.429059\pi\)
0.221029 + 0.975267i \(0.429059\pi\)
\(824\) 1771.30 0.0748860
\(825\) −1435.38 −0.0605739
\(826\) −24131.2 −1.01650
\(827\) 1486.57 0.0625068 0.0312534 0.999511i \(-0.490050\pi\)
0.0312534 + 0.999511i \(0.490050\pi\)
\(828\) 0 0
\(829\) −9987.68 −0.418440 −0.209220 0.977869i \(-0.567092\pi\)
−0.209220 + 0.977869i \(0.567092\pi\)
\(830\) 6080.67 0.254293
\(831\) −6790.95 −0.283484
\(832\) 57198.1 2.38340
\(833\) −17727.6 −0.737364
\(834\) 30400.0 1.26219
\(835\) −21536.9 −0.892594
\(836\) −26445.9 −1.09408
\(837\) −335.159 −0.0138409
\(838\) −9494.03 −0.391367
\(839\) 2835.68 0.116685 0.0583424 0.998297i \(-0.481418\pi\)
0.0583424 + 0.998297i \(0.481418\pi\)
\(840\) 2833.11 0.116371
\(841\) −24226.5 −0.993337
\(842\) 38622.4 1.58078
\(843\) 1517.70 0.0620076
\(844\) −14156.3 −0.577345
\(845\) 43668.9 1.77782
\(846\) −23429.3 −0.952146
\(847\) −15026.8 −0.609596
\(848\) 12041.7 0.487634
\(849\) 21054.6 0.851110
\(850\) 2989.67 0.120641
\(851\) 0 0
\(852\) 18753.0 0.754070
\(853\) 17544.2 0.704223 0.352111 0.935958i \(-0.385464\pi\)
0.352111 + 0.935958i \(0.385464\pi\)
\(854\) 37841.7 1.51629
\(855\) −4920.32 −0.196809
\(856\) −13067.2 −0.521760
\(857\) 12827.7 0.511301 0.255651 0.966769i \(-0.417710\pi\)
0.255651 + 0.966769i \(0.417710\pi\)
\(858\) 52622.0 2.09381
\(859\) −35061.5 −1.39265 −0.696324 0.717728i \(-0.745182\pi\)
−0.696324 + 0.717728i \(0.745182\pi\)
\(860\) −18388.0 −0.729100
\(861\) 1242.88 0.0491953
\(862\) −5788.79 −0.228732
\(863\) −4222.11 −0.166538 −0.0832691 0.996527i \(-0.526536\pi\)
−0.0832691 + 0.996527i \(0.526536\pi\)
\(864\) 6887.57 0.271204
\(865\) −40868.2 −1.60643
\(866\) 14873.7 0.583637
\(867\) 3157.23 0.123674
\(868\) 1314.95 0.0514199
\(869\) 50448.4 1.96933
\(870\) −1743.76 −0.0679528
\(871\) −35443.0 −1.37881
\(872\) 6772.15 0.262998
\(873\) −14432.1 −0.559511
\(874\) 0 0
\(875\) 15380.6 0.594238
\(876\) 27603.3 1.06464
\(877\) 17535.0 0.675159 0.337579 0.941297i \(-0.390392\pi\)
0.337579 + 0.941297i \(0.390392\pi\)
\(878\) −29788.7 −1.14501
\(879\) 28466.5 1.09232
\(880\) −25173.9 −0.964330
\(881\) −9116.63 −0.348634 −0.174317 0.984690i \(-0.555772\pi\)
−0.174317 + 0.984690i \(0.555772\pi\)
\(882\) 8750.54 0.334066
\(883\) −41050.4 −1.56450 −0.782251 0.622963i \(-0.785929\pi\)
−0.782251 + 0.622963i \(0.785929\pi\)
\(884\) −60739.5 −2.31096
\(885\) −17268.6 −0.655907
\(886\) −37060.0 −1.40525
\(887\) 22519.5 0.852461 0.426230 0.904615i \(-0.359841\pi\)
0.426230 + 0.904615i \(0.359841\pi\)
\(888\) −1806.38 −0.0682635
\(889\) −12178.3 −0.459444
\(890\) −35500.8 −1.33707
\(891\) 4241.22 0.159468
\(892\) 60547.0 2.27272
\(893\) −31212.9 −1.16965
\(894\) −28718.0 −1.07436
\(895\) −33197.7 −1.23986
\(896\) −10898.4 −0.406349
\(897\) 0 0
\(898\) 3410.91 0.126752
\(899\) −158.241 −0.00587055
\(900\) −817.816 −0.0302895
\(901\) −20822.6 −0.769924
\(902\) 8626.30 0.318431
\(903\) 5489.88 0.202316
\(904\) 162.255 0.00596960
\(905\) −50947.0 −1.87131
\(906\) 30637.4 1.12346
\(907\) 32037.9 1.17288 0.586439 0.809993i \(-0.300529\pi\)
0.586439 + 0.809993i \(0.300529\pi\)
\(908\) 44387.9 1.62232
\(909\) 11061.4 0.403612
\(910\) −38411.6 −1.39927
\(911\) 12881.7 0.468485 0.234242 0.972178i \(-0.424739\pi\)
0.234242 + 0.972178i \(0.424739\pi\)
\(912\) 6805.73 0.247106
\(913\) −6982.69 −0.253114
\(914\) −44465.6 −1.60918
\(915\) 27080.0 0.978402
\(916\) −12916.4 −0.465905
\(917\) −12299.8 −0.442937
\(918\) −8833.79 −0.317602
\(919\) 7311.92 0.262457 0.131229 0.991352i \(-0.458108\pi\)
0.131229 + 0.991352i \(0.458108\pi\)
\(920\) 0 0
\(921\) 13981.7 0.500232
\(922\) 14087.8 0.503207
\(923\) −49711.3 −1.77277
\(924\) −16639.9 −0.592437
\(925\) −668.047 −0.0237462
\(926\) 3562.01 0.126409
\(927\) −1935.59 −0.0685795
\(928\) 3251.87 0.115030
\(929\) 35059.5 1.23817 0.619087 0.785322i \(-0.287503\pi\)
0.619087 + 0.785322i \(0.287503\pi\)
\(930\) 1698.02 0.0598712
\(931\) 11657.6 0.410379
\(932\) −12504.0 −0.439467
\(933\) 13135.5 0.460919
\(934\) 35798.2 1.25413
\(935\) 43530.8 1.52258
\(936\) 5861.93 0.204704
\(937\) −25471.7 −0.888072 −0.444036 0.896009i \(-0.646454\pi\)
−0.444036 + 0.896009i \(0.646454\pi\)
\(938\) 20224.0 0.703983
\(939\) 13332.5 0.463354
\(940\) 65780.6 2.28247
\(941\) −22426.5 −0.776923 −0.388461 0.921465i \(-0.626993\pi\)
−0.388461 + 0.921465i \(0.626993\pi\)
\(942\) −7815.03 −0.270305
\(943\) 0 0
\(944\) 23885.7 0.823532
\(945\) −3095.89 −0.106571
\(946\) 38103.0 1.30955
\(947\) −36090.9 −1.23843 −0.619216 0.785220i \(-0.712550\pi\)
−0.619216 + 0.785220i \(0.712550\pi\)
\(948\) 28743.3 0.984746
\(949\) −73171.9 −2.50291
\(950\) −1966.00 −0.0671426
\(951\) 23644.8 0.806242
\(952\) 6776.27 0.230693
\(953\) 16379.8 0.556762 0.278381 0.960471i \(-0.410202\pi\)
0.278381 + 0.960471i \(0.410202\pi\)
\(954\) 10278.3 0.348817
\(955\) 13919.2 0.471639
\(956\) 34546.0 1.16872
\(957\) 2002.43 0.0676378
\(958\) −24089.9 −0.812432
\(959\) −22935.8 −0.772301
\(960\) −23355.9 −0.785216
\(961\) −29636.9 −0.994828
\(962\) 24491.1 0.820815
\(963\) 14279.2 0.477820
\(964\) 21289.9 0.711308
\(965\) −12612.7 −0.420742
\(966\) 0 0
\(967\) −22686.2 −0.754434 −0.377217 0.926125i \(-0.623119\pi\)
−0.377217 + 0.926125i \(0.623119\pi\)
\(968\) −11618.1 −0.385765
\(969\) −11768.5 −0.390154
\(970\) 73117.5 2.42027
\(971\) −53773.7 −1.77722 −0.888610 0.458663i \(-0.848328\pi\)
−0.888610 + 0.458663i \(0.848328\pi\)
\(972\) 2416.46 0.0797407
\(973\) 25482.4 0.839597
\(974\) 58323.0 1.91867
\(975\) 2167.90 0.0712086
\(976\) −37456.8 −1.22844
\(977\) 20398.6 0.667972 0.333986 0.942578i \(-0.391606\pi\)
0.333986 + 0.942578i \(0.391606\pi\)
\(978\) 645.738 0.0211129
\(979\) 40767.0 1.33087
\(980\) −24568.2 −0.800819
\(981\) −7400.30 −0.240850
\(982\) −35922.4 −1.16734
\(983\) 12118.6 0.393208 0.196604 0.980483i \(-0.437009\pi\)
0.196604 + 0.980483i \(0.437009\pi\)
\(984\) 960.943 0.0311318
\(985\) 49074.8 1.58746
\(986\) −4170.75 −0.134710
\(987\) −19639.3 −0.633359
\(988\) 39942.1 1.28616
\(989\) 0 0
\(990\) −21487.3 −0.689809
\(991\) −26885.7 −0.861809 −0.430904 0.902398i \(-0.641805\pi\)
−0.430904 + 0.902398i \(0.641805\pi\)
\(992\) −3166.57 −0.101350
\(993\) −381.181 −0.0121817
\(994\) 28365.5 0.905130
\(995\) 5099.10 0.162465
\(996\) −3978.43 −0.126568
\(997\) 21022.7 0.667797 0.333899 0.942609i \(-0.391636\pi\)
0.333899 + 0.942609i \(0.391636\pi\)
\(998\) −52834.5 −1.67580
\(999\) 1973.93 0.0625148
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1587.4.a.b.1.1 2
23.22 odd 2 69.4.a.a.1.1 2
69.68 even 2 207.4.a.c.1.2 2
92.91 even 2 1104.4.a.h.1.2 2
115.114 odd 2 1725.4.a.n.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
69.4.a.a.1.1 2 23.22 odd 2
207.4.a.c.1.2 2 69.68 even 2
1104.4.a.h.1.2 2 92.91 even 2
1587.4.a.b.1.1 2 1.1 even 1 trivial
1725.4.a.n.1.2 2 115.114 odd 2