Properties

Label 160.4.f.a.49.4
Level $160$
Weight $4$
Character 160.49
Analytic conductor $9.440$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [160,4,Mod(49,160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("160.49");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 160.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.44030560092\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2x^{14} + 44x^{12} + 400x^{10} - 3200x^{8} + 25600x^{6} + 180224x^{4} - 524288x^{2} + 16777216 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{40}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.4
Root \(2.07496 + 1.92212i\) of defining polynomial
Character \(\chi\) \(=\) 160.49
Dual form 160.4.f.a.49.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-6.67494 q^{3} +(-11.1461 + 0.874848i) q^{5} -29.8250i q^{7} +17.5548 q^{9} +34.8520i q^{11} +20.6159 q^{13} +(74.3992 - 5.83956i) q^{15} +89.9765i q^{17} -0.475810i q^{19} +199.080i q^{21} +100.299i q^{23} +(123.469 - 19.5022i) q^{25} +63.0462 q^{27} -132.077i q^{29} +137.250 q^{31} -232.635i q^{33} +(26.0923 + 332.431i) q^{35} +57.1057 q^{37} -137.610 q^{39} +298.591 q^{41} -248.058 q^{43} +(-195.667 + 15.3578i) q^{45} +323.827i q^{47} -546.530 q^{49} -600.588i q^{51} -55.4295 q^{53} +(-30.4902 - 388.462i) q^{55} +3.17600i q^{57} -167.879i q^{59} +164.687i q^{61} -523.571i q^{63} +(-229.786 + 18.0358i) q^{65} +666.565 q^{67} -669.491i q^{69} -384.334 q^{71} +749.119i q^{73} +(-824.150 + 130.176i) q^{75} +1039.46 q^{77} -582.564 q^{79} -894.809 q^{81} +636.408 q^{83} +(-78.7158 - 1002.88i) q^{85} +881.607i q^{87} +759.913 q^{89} -614.869i q^{91} -916.133 q^{93} +(0.416261 + 5.30340i) q^{95} +1279.63i q^{97} +611.819i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 104 q^{9} + 56 q^{15} - 24 q^{25} + 112 q^{31} + 736 q^{39} + 232 q^{41} - 200 q^{49} - 392 q^{55} - 600 q^{65} - 2096 q^{71} - 2992 q^{79} - 728 q^{81} - 208 q^{89} + 1064 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/160\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(101\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −6.67494 −1.28459 −0.642296 0.766457i \(-0.722018\pi\)
−0.642296 + 0.766457i \(0.722018\pi\)
\(4\) 0 0
\(5\) −11.1461 + 0.874848i −0.996934 + 0.0782488i
\(6\) 0 0
\(7\) 29.8250i 1.61040i −0.593005 0.805199i \(-0.702059\pi\)
0.593005 0.805199i \(-0.297941\pi\)
\(8\) 0 0
\(9\) 17.5548 0.650177
\(10\) 0 0
\(11\) 34.8520i 0.955297i 0.878551 + 0.477648i \(0.158511\pi\)
−0.878551 + 0.477648i \(0.841489\pi\)
\(12\) 0 0
\(13\) 20.6159 0.439833 0.219916 0.975519i \(-0.429422\pi\)
0.219916 + 0.975519i \(0.429422\pi\)
\(14\) 0 0
\(15\) 74.3992 5.83956i 1.28065 0.100518i
\(16\) 0 0
\(17\) 89.9765i 1.28368i 0.766840 + 0.641839i \(0.221828\pi\)
−0.766840 + 0.641839i \(0.778172\pi\)
\(18\) 0 0
\(19\) 0.475810i 0.00574517i −0.999996 0.00287259i \(-0.999086\pi\)
0.999996 0.00287259i \(-0.000914374\pi\)
\(20\) 0 0
\(21\) 199.080i 2.06870i
\(22\) 0 0
\(23\) 100.299i 0.909298i 0.890671 + 0.454649i \(0.150235\pi\)
−0.890671 + 0.454649i \(0.849765\pi\)
\(24\) 0 0
\(25\) 123.469 19.5022i 0.987754 0.156018i
\(26\) 0 0
\(27\) 63.0462 0.449380
\(28\) 0 0
\(29\) 132.077i 0.845729i −0.906193 0.422864i \(-0.861025\pi\)
0.906193 0.422864i \(-0.138975\pi\)
\(30\) 0 0
\(31\) 137.250 0.795186 0.397593 0.917562i \(-0.369846\pi\)
0.397593 + 0.917562i \(0.369846\pi\)
\(32\) 0 0
\(33\) 232.635i 1.22717i
\(34\) 0 0
\(35\) 26.0923 + 332.431i 0.126012 + 1.60546i
\(36\) 0 0
\(37\) 57.1057 0.253733 0.126866 0.991920i \(-0.459508\pi\)
0.126866 + 0.991920i \(0.459508\pi\)
\(38\) 0 0
\(39\) −137.610 −0.565005
\(40\) 0 0
\(41\) 298.591 1.13737 0.568684 0.822556i \(-0.307453\pi\)
0.568684 + 0.822556i \(0.307453\pi\)
\(42\) 0 0
\(43\) −248.058 −0.879733 −0.439866 0.898063i \(-0.644974\pi\)
−0.439866 + 0.898063i \(0.644974\pi\)
\(44\) 0 0
\(45\) −195.667 + 15.3578i −0.648184 + 0.0508756i
\(46\) 0 0
\(47\) 323.827i 1.00500i 0.864577 + 0.502501i \(0.167587\pi\)
−0.864577 + 0.502501i \(0.832413\pi\)
\(48\) 0 0
\(49\) −546.530 −1.59338
\(50\) 0 0
\(51\) 600.588i 1.64900i
\(52\) 0 0
\(53\) −55.4295 −0.143657 −0.0718285 0.997417i \(-0.522883\pi\)
−0.0718285 + 0.997417i \(0.522883\pi\)
\(54\) 0 0
\(55\) −30.4902 388.462i −0.0747508 0.952368i
\(56\) 0 0
\(57\) 3.17600i 0.00738020i
\(58\) 0 0
\(59\) 167.879i 0.370440i −0.982697 0.185220i \(-0.940700\pi\)
0.982697 0.185220i \(-0.0592998\pi\)
\(60\) 0 0
\(61\) 164.687i 0.345672i 0.984951 + 0.172836i \(0.0552930\pi\)
−0.984951 + 0.172836i \(0.944707\pi\)
\(62\) 0 0
\(63\) 523.571i 1.04704i
\(64\) 0 0
\(65\) −229.786 + 18.0358i −0.438484 + 0.0344164i
\(66\) 0 0
\(67\) 666.565 1.21543 0.607715 0.794155i \(-0.292086\pi\)
0.607715 + 0.794155i \(0.292086\pi\)
\(68\) 0 0
\(69\) 669.491i 1.16808i
\(70\) 0 0
\(71\) −384.334 −0.642424 −0.321212 0.947007i \(-0.604090\pi\)
−0.321212 + 0.947007i \(0.604090\pi\)
\(72\) 0 0
\(73\) 749.119i 1.20107i 0.799600 + 0.600533i \(0.205045\pi\)
−0.799600 + 0.600533i \(0.794955\pi\)
\(74\) 0 0
\(75\) −824.150 + 130.176i −1.26886 + 0.200419i
\(76\) 0 0
\(77\) 1039.46 1.53841
\(78\) 0 0
\(79\) −582.564 −0.829666 −0.414833 0.909898i \(-0.636160\pi\)
−0.414833 + 0.909898i \(0.636160\pi\)
\(80\) 0 0
\(81\) −894.809 −1.22745
\(82\) 0 0
\(83\) 636.408 0.841625 0.420813 0.907148i \(-0.361745\pi\)
0.420813 + 0.907148i \(0.361745\pi\)
\(84\) 0 0
\(85\) −78.7158 1002.88i −0.100446 1.27974i
\(86\) 0 0
\(87\) 881.607i 1.08642i
\(88\) 0 0
\(89\) 759.913 0.905064 0.452532 0.891748i \(-0.350521\pi\)
0.452532 + 0.891748i \(0.350521\pi\)
\(90\) 0 0
\(91\) 614.869i 0.708305i
\(92\) 0 0
\(93\) −916.133 −1.02149
\(94\) 0 0
\(95\) 0.416261 + 5.30340i 0.000449553 + 0.00572756i
\(96\) 0 0
\(97\) 1279.63i 1.33945i 0.742611 + 0.669723i \(0.233587\pi\)
−0.742611 + 0.669723i \(0.766413\pi\)
\(98\) 0 0
\(99\) 611.819i 0.621112i
\(100\) 0 0
\(101\) 806.217i 0.794273i 0.917760 + 0.397137i \(0.129996\pi\)
−0.917760 + 0.397137i \(0.870004\pi\)
\(102\) 0 0
\(103\) 497.704i 0.476119i −0.971251 0.238059i \(-0.923489\pi\)
0.971251 0.238059i \(-0.0765113\pi\)
\(104\) 0 0
\(105\) −174.165 2218.96i −0.161874 2.06236i
\(106\) 0 0
\(107\) 111.714 0.100933 0.0504666 0.998726i \(-0.483929\pi\)
0.0504666 + 0.998726i \(0.483929\pi\)
\(108\) 0 0
\(109\) 1098.19i 0.965022i 0.875890 + 0.482511i \(0.160275\pi\)
−0.875890 + 0.482511i \(0.839725\pi\)
\(110\) 0 0
\(111\) −381.177 −0.325943
\(112\) 0 0
\(113\) 2118.96i 1.76403i −0.471221 0.882015i \(-0.656187\pi\)
0.471221 0.882015i \(-0.343813\pi\)
\(114\) 0 0
\(115\) −87.7466 1117.94i −0.0711514 0.906510i
\(116\) 0 0
\(117\) 361.908 0.285969
\(118\) 0 0
\(119\) 2683.55 2.06723
\(120\) 0 0
\(121\) 116.341 0.0874084
\(122\) 0 0
\(123\) −1993.08 −1.46105
\(124\) 0 0
\(125\) −1359.13 + 325.390i −0.972517 + 0.232830i
\(126\) 0 0
\(127\) 567.970i 0.396844i 0.980117 + 0.198422i \(0.0635816\pi\)
−0.980117 + 0.198422i \(0.936418\pi\)
\(128\) 0 0
\(129\) 1655.77 1.13010
\(130\) 0 0
\(131\) 2238.84i 1.49319i 0.665278 + 0.746596i \(0.268313\pi\)
−0.665278 + 0.746596i \(0.731687\pi\)
\(132\) 0 0
\(133\) −14.1910 −0.00925201
\(134\) 0 0
\(135\) −702.717 + 55.1559i −0.448002 + 0.0351634i
\(136\) 0 0
\(137\) 1428.64i 0.890925i 0.895301 + 0.445462i \(0.146961\pi\)
−0.895301 + 0.445462i \(0.853039\pi\)
\(138\) 0 0
\(139\) 1467.79i 0.895659i 0.894119 + 0.447829i \(0.147803\pi\)
−0.894119 + 0.447829i \(0.852197\pi\)
\(140\) 0 0
\(141\) 2161.53i 1.29102i
\(142\) 0 0
\(143\) 718.505i 0.420171i
\(144\) 0 0
\(145\) 115.548 + 1472.14i 0.0661772 + 0.843136i
\(146\) 0 0
\(147\) 3648.05 2.04684
\(148\) 0 0
\(149\) 2881.15i 1.58411i 0.610449 + 0.792056i \(0.290989\pi\)
−0.610449 + 0.792056i \(0.709011\pi\)
\(150\) 0 0
\(151\) 949.291 0.511604 0.255802 0.966729i \(-0.417660\pi\)
0.255802 + 0.966729i \(0.417660\pi\)
\(152\) 0 0
\(153\) 1579.52i 0.834617i
\(154\) 0 0
\(155\) −1529.79 + 120.073i −0.792748 + 0.0622223i
\(156\) 0 0
\(157\) 3159.30 1.60599 0.802993 0.595988i \(-0.203239\pi\)
0.802993 + 0.595988i \(0.203239\pi\)
\(158\) 0 0
\(159\) 369.988 0.184541
\(160\) 0 0
\(161\) 2991.42 1.46433
\(162\) 0 0
\(163\) 1361.75 0.654360 0.327180 0.944962i \(-0.393902\pi\)
0.327180 + 0.944962i \(0.393902\pi\)
\(164\) 0 0
\(165\) 203.520 + 2592.96i 0.0960243 + 1.22340i
\(166\) 0 0
\(167\) 641.323i 0.297168i 0.988900 + 0.148584i \(0.0474716\pi\)
−0.988900 + 0.148584i \(0.952528\pi\)
\(168\) 0 0
\(169\) −1771.98 −0.806547
\(170\) 0 0
\(171\) 8.35274i 0.00373538i
\(172\) 0 0
\(173\) −57.9969 −0.0254880 −0.0127440 0.999919i \(-0.504057\pi\)
−0.0127440 + 0.999919i \(0.504057\pi\)
\(174\) 0 0
\(175\) −581.653 3682.47i −0.251251 1.59068i
\(176\) 0 0
\(177\) 1120.58i 0.475864i
\(178\) 0 0
\(179\) 1608.75i 0.671753i −0.941906 0.335876i \(-0.890968\pi\)
0.941906 0.335876i \(-0.109032\pi\)
\(180\) 0 0
\(181\) 2665.60i 1.09465i −0.836919 0.547327i \(-0.815646\pi\)
0.836919 0.547327i \(-0.184354\pi\)
\(182\) 0 0
\(183\) 1099.27i 0.444047i
\(184\) 0 0
\(185\) −636.504 + 49.9588i −0.252955 + 0.0198543i
\(186\) 0 0
\(187\) −3135.86 −1.22629
\(188\) 0 0
\(189\) 1880.35i 0.723680i
\(190\) 0 0
\(191\) 2879.60 1.09089 0.545446 0.838146i \(-0.316360\pi\)
0.545446 + 0.838146i \(0.316360\pi\)
\(192\) 0 0
\(193\) 2401.35i 0.895611i −0.894131 0.447805i \(-0.852206\pi\)
0.894131 0.447805i \(-0.147794\pi\)
\(194\) 0 0
\(195\) 1533.81 120.388i 0.563273 0.0442110i
\(196\) 0 0
\(197\) −4454.03 −1.61085 −0.805423 0.592700i \(-0.798062\pi\)
−0.805423 + 0.592700i \(0.798062\pi\)
\(198\) 0 0
\(199\) −4903.81 −1.74684 −0.873422 0.486964i \(-0.838104\pi\)
−0.873422 + 0.486964i \(0.838104\pi\)
\(200\) 0 0
\(201\) −4449.28 −1.56133
\(202\) 0 0
\(203\) −3939.20 −1.36196
\(204\) 0 0
\(205\) −3328.11 + 261.222i −1.13388 + 0.0889977i
\(206\) 0 0
\(207\) 1760.73i 0.591205i
\(208\) 0 0
\(209\) 16.5829 0.00548834
\(210\) 0 0
\(211\) 1226.59i 0.400200i 0.979776 + 0.200100i \(0.0641266\pi\)
−0.979776 + 0.200100i \(0.935873\pi\)
\(212\) 0 0
\(213\) 2565.41 0.825253
\(214\) 0 0
\(215\) 2764.87 217.013i 0.877035 0.0688380i
\(216\) 0 0
\(217\) 4093.47i 1.28057i
\(218\) 0 0
\(219\) 5000.32i 1.54288i
\(220\) 0 0
\(221\) 1854.95i 0.564603i
\(222\) 0 0
\(223\) 1542.77i 0.463281i 0.972801 + 0.231641i \(0.0744093\pi\)
−0.972801 + 0.231641i \(0.925591\pi\)
\(224\) 0 0
\(225\) 2167.48 342.357i 0.642215 0.101439i
\(226\) 0 0
\(227\) 3851.34 1.12609 0.563045 0.826426i \(-0.309630\pi\)
0.563045 + 0.826426i \(0.309630\pi\)
\(228\) 0 0
\(229\) 5232.61i 1.50996i −0.655748 0.754980i \(-0.727647\pi\)
0.655748 0.754980i \(-0.272353\pi\)
\(230\) 0 0
\(231\) −6938.32 −1.97623
\(232\) 0 0
\(233\) 181.419i 0.0510094i −0.999675 0.0255047i \(-0.991881\pi\)
0.999675 0.0255047i \(-0.00811927\pi\)
\(234\) 0 0
\(235\) −283.300 3609.40i −0.0786402 1.00192i
\(236\) 0 0
\(237\) 3888.58 1.06578
\(238\) 0 0
\(239\) −2507.75 −0.678716 −0.339358 0.940657i \(-0.610210\pi\)
−0.339358 + 0.940657i \(0.610210\pi\)
\(240\) 0 0
\(241\) −1089.46 −0.291196 −0.145598 0.989344i \(-0.546511\pi\)
−0.145598 + 0.989344i \(0.546511\pi\)
\(242\) 0 0
\(243\) 4270.54 1.12739
\(244\) 0 0
\(245\) 6091.65 478.130i 1.58850 0.124680i
\(246\) 0 0
\(247\) 9.80925i 0.00252691i
\(248\) 0 0
\(249\) −4247.99 −1.08115
\(250\) 0 0
\(251\) 5380.02i 1.35292i 0.736478 + 0.676461i \(0.236487\pi\)
−0.736478 + 0.676461i \(0.763513\pi\)
\(252\) 0 0
\(253\) −3495.63 −0.868649
\(254\) 0 0
\(255\) 525.423 + 6694.18i 0.129032 + 1.64395i
\(256\) 0 0
\(257\) 1377.98i 0.334458i 0.985918 + 0.167229i \(0.0534819\pi\)
−0.985918 + 0.167229i \(0.946518\pi\)
\(258\) 0 0
\(259\) 1703.18i 0.408611i
\(260\) 0 0
\(261\) 2318.59i 0.549873i
\(262\) 0 0
\(263\) 411.340i 0.0964422i 0.998837 + 0.0482211i \(0.0153552\pi\)
−0.998837 + 0.0482211i \(0.984645\pi\)
\(264\) 0 0
\(265\) 617.820 48.4924i 0.143217 0.0112410i
\(266\) 0 0
\(267\) −5072.37 −1.16264
\(268\) 0 0
\(269\) 407.204i 0.0922961i 0.998935 + 0.0461481i \(0.0146946\pi\)
−0.998935 + 0.0461481i \(0.985305\pi\)
\(270\) 0 0
\(271\) 1329.04 0.297909 0.148954 0.988844i \(-0.452409\pi\)
0.148954 + 0.988844i \(0.452409\pi\)
\(272\) 0 0
\(273\) 4104.21i 0.909884i
\(274\) 0 0
\(275\) 679.691 + 4303.15i 0.149043 + 0.943598i
\(276\) 0 0
\(277\) −4411.34 −0.956866 −0.478433 0.878124i \(-0.658795\pi\)
−0.478433 + 0.878124i \(0.658795\pi\)
\(278\) 0 0
\(279\) 2409.39 0.517012
\(280\) 0 0
\(281\) 5134.23 1.08997 0.544986 0.838445i \(-0.316535\pi\)
0.544986 + 0.838445i \(0.316535\pi\)
\(282\) 0 0
\(283\) 3093.54 0.649794 0.324897 0.945749i \(-0.394670\pi\)
0.324897 + 0.945749i \(0.394670\pi\)
\(284\) 0 0
\(285\) −2.77852 35.3999i −0.000577492 0.00735757i
\(286\) 0 0
\(287\) 8905.47i 1.83161i
\(288\) 0 0
\(289\) −3182.77 −0.647827
\(290\) 0 0
\(291\) 8541.42i 1.72064i
\(292\) 0 0
\(293\) −671.319 −0.133853 −0.0669264 0.997758i \(-0.521319\pi\)
−0.0669264 + 0.997758i \(0.521319\pi\)
\(294\) 0 0
\(295\) 146.868 + 1871.19i 0.0289865 + 0.369304i
\(296\) 0 0
\(297\) 2197.28i 0.429291i
\(298\) 0 0
\(299\) 2067.76i 0.399939i
\(300\) 0 0
\(301\) 7398.33i 1.41672i
\(302\) 0 0
\(303\) 5381.45i 1.02032i
\(304\) 0 0
\(305\) −144.076 1835.61i −0.0270484 0.344612i
\(306\) 0 0
\(307\) −5810.78 −1.08026 −0.540128 0.841583i \(-0.681624\pi\)
−0.540128 + 0.841583i \(0.681624\pi\)
\(308\) 0 0
\(309\) 3322.14i 0.611619i
\(310\) 0 0
\(311\) 7223.30 1.31703 0.658514 0.752568i \(-0.271185\pi\)
0.658514 + 0.752568i \(0.271185\pi\)
\(312\) 0 0
\(313\) 1804.40i 0.325849i 0.986638 + 0.162925i \(0.0520928\pi\)
−0.986638 + 0.162925i \(0.947907\pi\)
\(314\) 0 0
\(315\) 458.045 + 5835.75i 0.0819299 + 1.04383i
\(316\) 0 0
\(317\) 1593.07 0.282259 0.141129 0.989991i \(-0.454927\pi\)
0.141129 + 0.989991i \(0.454927\pi\)
\(318\) 0 0
\(319\) 4603.15 0.807922
\(320\) 0 0
\(321\) −745.687 −0.129658
\(322\) 0 0
\(323\) 42.8117 0.00737495
\(324\) 0 0
\(325\) 2545.43 402.056i 0.434446 0.0686217i
\(326\) 0 0
\(327\) 7330.34i 1.23966i
\(328\) 0 0
\(329\) 9658.14 1.61845
\(330\) 0 0
\(331\) 6213.17i 1.03174i −0.856666 0.515871i \(-0.827468\pi\)
0.856666 0.515871i \(-0.172532\pi\)
\(332\) 0 0
\(333\) 1002.48 0.164971
\(334\) 0 0
\(335\) −7429.57 + 583.143i −1.21170 + 0.0951059i
\(336\) 0 0
\(337\) 11379.1i 1.83935i −0.392686 0.919673i \(-0.628454\pi\)
0.392686 0.919673i \(-0.371546\pi\)
\(338\) 0 0
\(339\) 14144.0i 2.26606i
\(340\) 0 0
\(341\) 4783.42i 0.759638i
\(342\) 0 0
\(343\) 6070.27i 0.955579i
\(344\) 0 0
\(345\) 585.703 + 7462.19i 0.0914006 + 1.16450i
\(346\) 0 0
\(347\) −2528.79 −0.391217 −0.195609 0.980682i \(-0.562668\pi\)
−0.195609 + 0.980682i \(0.562668\pi\)
\(348\) 0 0
\(349\) 110.562i 0.0169577i 0.999964 + 0.00847885i \(0.00269893\pi\)
−0.999964 + 0.00847885i \(0.997301\pi\)
\(350\) 0 0
\(351\) 1299.76 0.197652
\(352\) 0 0
\(353\) 7118.00i 1.07324i 0.843825 + 0.536619i \(0.180299\pi\)
−0.843825 + 0.536619i \(0.819701\pi\)
\(354\) 0 0
\(355\) 4283.81 336.234i 0.640454 0.0502689i
\(356\) 0 0
\(357\) −17912.5 −2.65555
\(358\) 0 0
\(359\) 3118.04 0.458396 0.229198 0.973380i \(-0.426390\pi\)
0.229198 + 0.973380i \(0.426390\pi\)
\(360\) 0 0
\(361\) 6858.77 0.999967
\(362\) 0 0
\(363\) −776.566 −0.112284
\(364\) 0 0
\(365\) −655.365 8349.73i −0.0939819 1.19738i
\(366\) 0 0
\(367\) 11007.8i 1.56567i 0.622230 + 0.782835i \(0.286227\pi\)
−0.622230 + 0.782835i \(0.713773\pi\)
\(368\) 0 0
\(369\) 5241.70 0.739491
\(370\) 0 0
\(371\) 1653.18i 0.231345i
\(372\) 0 0
\(373\) 12872.3 1.78687 0.893436 0.449190i \(-0.148287\pi\)
0.893436 + 0.449190i \(0.148287\pi\)
\(374\) 0 0
\(375\) 9072.14 2171.96i 1.24929 0.299092i
\(376\) 0 0
\(377\) 2722.89i 0.371979i
\(378\) 0 0
\(379\) 6010.29i 0.814586i 0.913298 + 0.407293i \(0.133527\pi\)
−0.913298 + 0.407293i \(0.866473\pi\)
\(380\) 0 0
\(381\) 3791.16i 0.509783i
\(382\) 0 0
\(383\) 4012.72i 0.535354i 0.963509 + 0.267677i \(0.0862559\pi\)
−0.963509 + 0.267677i \(0.913744\pi\)
\(384\) 0 0
\(385\) −11585.9 + 909.369i −1.53369 + 0.120379i
\(386\) 0 0
\(387\) −4354.61 −0.571982
\(388\) 0 0
\(389\) 9488.02i 1.23666i 0.785918 + 0.618331i \(0.212191\pi\)
−0.785918 + 0.618331i \(0.787809\pi\)
\(390\) 0 0
\(391\) −9024.58 −1.16724
\(392\) 0 0
\(393\) 14944.1i 1.91814i
\(394\) 0 0
\(395\) 6493.30 509.655i 0.827122 0.0649204i
\(396\) 0 0
\(397\) 4950.44 0.625832 0.312916 0.949781i \(-0.398694\pi\)
0.312916 + 0.949781i \(0.398694\pi\)
\(398\) 0 0
\(399\) 94.7242 0.0118851
\(400\) 0 0
\(401\) −8799.56 −1.09583 −0.547917 0.836533i \(-0.684579\pi\)
−0.547917 + 0.836533i \(0.684579\pi\)
\(402\) 0 0
\(403\) 2829.53 0.349749
\(404\) 0 0
\(405\) 9973.59 782.822i 1.22368 0.0960462i
\(406\) 0 0
\(407\) 1990.25i 0.242390i
\(408\) 0 0
\(409\) 7179.75 0.868009 0.434005 0.900911i \(-0.357100\pi\)
0.434005 + 0.900911i \(0.357100\pi\)
\(410\) 0 0
\(411\) 9536.06i 1.14447i
\(412\) 0 0
\(413\) −5006.98 −0.596556
\(414\) 0 0
\(415\) −7093.45 + 556.761i −0.839045 + 0.0658562i
\(416\) 0 0
\(417\) 9797.42i 1.15056i
\(418\) 0 0
\(419\) 13557.2i 1.58070i −0.612657 0.790349i \(-0.709899\pi\)
0.612657 0.790349i \(-0.290101\pi\)
\(420\) 0 0
\(421\) 7428.36i 0.859943i 0.902843 + 0.429971i \(0.141476\pi\)
−0.902843 + 0.429971i \(0.858524\pi\)
\(422\) 0 0
\(423\) 5684.72i 0.653429i
\(424\) 0 0
\(425\) 1754.74 + 11109.3i 0.200276 + 1.26796i
\(426\) 0 0
\(427\) 4911.78 0.556669
\(428\) 0 0
\(429\) 4795.97i 0.539748i
\(430\) 0 0
\(431\) 1591.77 0.177895 0.0889475 0.996036i \(-0.471650\pi\)
0.0889475 + 0.996036i \(0.471650\pi\)
\(432\) 0 0
\(433\) 10811.6i 1.19994i 0.800023 + 0.599970i \(0.204821\pi\)
−0.800023 + 0.599970i \(0.795179\pi\)
\(434\) 0 0
\(435\) −771.273 9826.45i −0.0850108 1.08309i
\(436\) 0 0
\(437\) 47.7234 0.00522407
\(438\) 0 0
\(439\) 4891.74 0.531823 0.265911 0.963997i \(-0.414327\pi\)
0.265911 + 0.963997i \(0.414327\pi\)
\(440\) 0 0
\(441\) −9594.21 −1.03598
\(442\) 0 0
\(443\) 2116.86 0.227032 0.113516 0.993536i \(-0.463789\pi\)
0.113516 + 0.993536i \(0.463789\pi\)
\(444\) 0 0
\(445\) −8470.04 + 664.809i −0.902289 + 0.0708201i
\(446\) 0 0
\(447\) 19231.5i 2.03494i
\(448\) 0 0
\(449\) −13253.6 −1.39305 −0.696523 0.717535i \(-0.745270\pi\)
−0.696523 + 0.717535i \(0.745270\pi\)
\(450\) 0 0
\(451\) 10406.5i 1.08652i
\(452\) 0 0
\(453\) −6336.46 −0.657202
\(454\) 0 0
\(455\) 537.917 + 6853.37i 0.0554240 + 0.706134i
\(456\) 0 0
\(457\) 3969.19i 0.406282i 0.979150 + 0.203141i \(0.0651150\pi\)
−0.979150 + 0.203141i \(0.934885\pi\)
\(458\) 0 0
\(459\) 5672.68i 0.576858i
\(460\) 0 0
\(461\) 7068.99i 0.714177i −0.934071 0.357089i \(-0.883769\pi\)
0.934071 0.357089i \(-0.116231\pi\)
\(462\) 0 0
\(463\) 178.581i 0.0179251i −0.999960 0.00896257i \(-0.997147\pi\)
0.999960 0.00896257i \(-0.00285291\pi\)
\(464\) 0 0
\(465\) 10211.3 801.477i 1.01836 0.0799303i
\(466\) 0 0
\(467\) −11576.2 −1.14707 −0.573536 0.819180i \(-0.694429\pi\)
−0.573536 + 0.819180i \(0.694429\pi\)
\(468\) 0 0
\(469\) 19880.3i 1.95733i
\(470\) 0 0
\(471\) −21088.2 −2.06304
\(472\) 0 0
\(473\) 8645.31i 0.840406i
\(474\) 0 0
\(475\) −9.27935 58.7479i −0.000896349 0.00567482i
\(476\) 0 0
\(477\) −973.053 −0.0934025
\(478\) 0 0
\(479\) −12742.0 −1.21544 −0.607720 0.794152i \(-0.707916\pi\)
−0.607720 + 0.794152i \(0.707916\pi\)
\(480\) 0 0
\(481\) 1177.29 0.111600
\(482\) 0 0
\(483\) −19967.6 −1.88107
\(484\) 0 0
\(485\) −1119.48 14262.8i −0.104810 1.33534i
\(486\) 0 0
\(487\) 13309.0i 1.23838i −0.785243 0.619188i \(-0.787462\pi\)
0.785243 0.619188i \(-0.212538\pi\)
\(488\) 0 0
\(489\) −9089.62 −0.840586
\(490\) 0 0
\(491\) 216.689i 0.0199166i 0.999950 + 0.00995830i \(0.00316988\pi\)
−0.999950 + 0.00995830i \(0.996830\pi\)
\(492\) 0 0
\(493\) 11883.9 1.08564
\(494\) 0 0
\(495\) −535.248 6819.37i −0.0486013 0.619208i
\(496\) 0 0
\(497\) 11462.8i 1.03456i
\(498\) 0 0
\(499\) 10800.4i 0.968921i −0.874813 0.484460i \(-0.839016\pi\)
0.874813 0.484460i \(-0.160984\pi\)
\(500\) 0 0
\(501\) 4280.79i 0.381740i
\(502\) 0 0
\(503\) 16697.6i 1.48013i −0.672533 0.740067i \(-0.734794\pi\)
0.672533 0.740067i \(-0.265206\pi\)
\(504\) 0 0
\(505\) −705.317 8986.14i −0.0621509 0.791838i
\(506\) 0 0
\(507\) 11827.9 1.03608
\(508\) 0 0
\(509\) 13066.1i 1.13781i 0.822402 + 0.568906i \(0.192633\pi\)
−0.822402 + 0.568906i \(0.807367\pi\)
\(510\) 0 0
\(511\) 22342.5 1.93419
\(512\) 0 0
\(513\) 29.9980i 0.00258176i
\(514\) 0 0
\(515\) 435.415 + 5547.44i 0.0372557 + 0.474659i
\(516\) 0 0
\(517\) −11286.0 −0.960075
\(518\) 0 0
\(519\) 387.126 0.0327417
\(520\) 0 0
\(521\) −269.920 −0.0226975 −0.0113488 0.999936i \(-0.503613\pi\)
−0.0113488 + 0.999936i \(0.503613\pi\)
\(522\) 0 0
\(523\) 19287.7 1.61260 0.806300 0.591506i \(-0.201467\pi\)
0.806300 + 0.591506i \(0.201467\pi\)
\(524\) 0 0
\(525\) 3882.50 + 24580.2i 0.322755 + 2.04337i
\(526\) 0 0
\(527\) 12349.2i 1.02076i
\(528\) 0 0
\(529\) 2107.06 0.173178
\(530\) 0 0
\(531\) 2947.08i 0.240852i
\(532\) 0 0
\(533\) 6155.72 0.500251
\(534\) 0 0
\(535\) −1245.18 + 97.7332i −0.100624 + 0.00789790i
\(536\) 0 0
\(537\) 10738.3i 0.862928i
\(538\) 0 0
\(539\) 19047.6i 1.52215i
\(540\) 0 0
\(541\) 8722.31i 0.693164i −0.938020 0.346582i \(-0.887342\pi\)
0.938020 0.346582i \(-0.112658\pi\)
\(542\) 0 0
\(543\) 17792.7i 1.40618i
\(544\) 0 0
\(545\) −960.748 12240.5i −0.0755118 0.962063i
\(546\) 0 0
\(547\) −8718.86 −0.681520 −0.340760 0.940150i \(-0.610684\pi\)
−0.340760 + 0.940150i \(0.610684\pi\)
\(548\) 0 0
\(549\) 2891.04i 0.224748i
\(550\) 0 0
\(551\) −62.8437 −0.00485886
\(552\) 0 0
\(553\) 17375.0i 1.33609i
\(554\) 0 0
\(555\) 4248.62 333.472i 0.324944 0.0255047i
\(556\) 0 0
\(557\) 11758.7 0.894489 0.447245 0.894412i \(-0.352405\pi\)
0.447245 + 0.894412i \(0.352405\pi\)
\(558\) 0 0
\(559\) −5113.94 −0.386935
\(560\) 0 0
\(561\) 20931.7 1.57529
\(562\) 0 0
\(563\) 5260.52 0.393791 0.196896 0.980424i \(-0.436914\pi\)
0.196896 + 0.980424i \(0.436914\pi\)
\(564\) 0 0
\(565\) 1853.77 + 23618.1i 0.138033 + 1.75862i
\(566\) 0 0
\(567\) 26687.7i 1.97668i
\(568\) 0 0
\(569\) −19030.4 −1.40210 −0.701050 0.713112i \(-0.747285\pi\)
−0.701050 + 0.713112i \(0.747285\pi\)
\(570\) 0 0
\(571\) 23227.4i 1.70234i 0.524887 + 0.851172i \(0.324108\pi\)
−0.524887 + 0.851172i \(0.675892\pi\)
\(572\) 0 0
\(573\) −19221.1 −1.40135
\(574\) 0 0
\(575\) 1956.06 + 12383.9i 0.141867 + 0.898163i
\(576\) 0 0
\(577\) 526.632i 0.0379965i −0.999820 0.0189983i \(-0.993952\pi\)
0.999820 0.0189983i \(-0.00604770\pi\)
\(578\) 0 0
\(579\) 16028.9i 1.15049i
\(580\) 0 0
\(581\) 18980.9i 1.35535i
\(582\) 0 0
\(583\) 1931.83i 0.137235i
\(584\) 0 0
\(585\) −4033.85 + 316.614i −0.285092 + 0.0223767i
\(586\) 0 0
\(587\) 14220.5 0.999902 0.499951 0.866054i \(-0.333351\pi\)
0.499951 + 0.866054i \(0.333351\pi\)
\(588\) 0 0
\(589\) 65.3047i 0.00456848i
\(590\) 0 0
\(591\) 29730.4 2.06928
\(592\) 0 0
\(593\) 10794.3i 0.747500i −0.927529 0.373750i \(-0.878072\pi\)
0.927529 0.373750i \(-0.121928\pi\)
\(594\) 0 0
\(595\) −29911.0 + 2347.70i −2.06089 + 0.161758i
\(596\) 0 0
\(597\) 32732.6 2.24398
\(598\) 0 0
\(599\) −10036.9 −0.684634 −0.342317 0.939584i \(-0.611212\pi\)
−0.342317 + 0.939584i \(0.611212\pi\)
\(600\) 0 0
\(601\) 8251.09 0.560015 0.280008 0.959998i \(-0.409663\pi\)
0.280008 + 0.959998i \(0.409663\pi\)
\(602\) 0 0
\(603\) 11701.4 0.790245
\(604\) 0 0
\(605\) −1296.74 + 101.780i −0.0871404 + 0.00683960i
\(606\) 0 0
\(607\) 8119.05i 0.542903i −0.962452 0.271451i \(-0.912496\pi\)
0.962452 0.271451i \(-0.0875036\pi\)
\(608\) 0 0
\(609\) 26293.9 1.74956
\(610\) 0 0
\(611\) 6675.99i 0.442032i
\(612\) 0 0
\(613\) −20527.3 −1.35251 −0.676255 0.736668i \(-0.736398\pi\)
−0.676255 + 0.736668i \(0.736398\pi\)
\(614\) 0 0
\(615\) 22214.9 1743.64i 1.45657 0.114326i
\(616\) 0 0
\(617\) 27545.7i 1.79732i −0.438643 0.898661i \(-0.644541\pi\)
0.438643 0.898661i \(-0.355459\pi\)
\(618\) 0 0
\(619\) 1777.17i 0.115396i 0.998334 + 0.0576982i \(0.0183761\pi\)
−0.998334 + 0.0576982i \(0.981624\pi\)
\(620\) 0 0
\(621\) 6323.49i 0.408620i
\(622\) 0 0
\(623\) 22664.4i 1.45751i
\(624\) 0 0
\(625\) 14864.3 4815.85i 0.951317 0.308214i
\(626\) 0 0
\(627\) −110.690 −0.00705028
\(628\) 0 0
\(629\) 5138.17i 0.325711i
\(630\) 0 0
\(631\) −16484.4 −1.03999 −0.519995 0.854169i \(-0.674066\pi\)
−0.519995 + 0.854169i \(0.674066\pi\)
\(632\) 0 0
\(633\) 8187.43i 0.514093i
\(634\) 0 0
\(635\) −496.887 6330.63i −0.0310526 0.395627i
\(636\) 0 0
\(637\) −11267.2 −0.700821
\(638\) 0 0
\(639\) −6746.91 −0.417689
\(640\) 0 0
\(641\) −24.7805 −0.00152694 −0.000763470 1.00000i \(-0.500243\pi\)
−0.000763470 1.00000i \(0.500243\pi\)
\(642\) 0 0
\(643\) −29107.1 −1.78518 −0.892590 0.450870i \(-0.851114\pi\)
−0.892590 + 0.450870i \(0.851114\pi\)
\(644\) 0 0
\(645\) −18455.3 + 1448.55i −1.12663 + 0.0884288i
\(646\) 0 0
\(647\) 13419.6i 0.815421i 0.913111 + 0.407711i \(0.133673\pi\)
−0.913111 + 0.407711i \(0.866327\pi\)
\(648\) 0 0
\(649\) 5850.91 0.353880
\(650\) 0 0
\(651\) 27323.6i 1.64500i
\(652\) 0 0
\(653\) −1926.26 −0.115437 −0.0577186 0.998333i \(-0.518383\pi\)
−0.0577186 + 0.998333i \(0.518383\pi\)
\(654\) 0 0
\(655\) −1958.64 24954.2i −0.116840 1.48861i
\(656\) 0 0
\(657\) 13150.6i 0.780905i
\(658\) 0 0
\(659\) 13158.1i 0.777797i −0.921281 0.388899i \(-0.872856\pi\)
0.921281 0.388899i \(-0.127144\pi\)
\(660\) 0 0
\(661\) 27392.1i 1.61184i 0.592023 + 0.805921i \(0.298330\pi\)
−0.592023 + 0.805921i \(0.701670\pi\)
\(662\) 0 0
\(663\) 12381.7i 0.725285i
\(664\) 0 0
\(665\) 158.174 12.4150i 0.00922364 0.000723959i
\(666\) 0 0
\(667\) 13247.3 0.769019
\(668\) 0 0
\(669\) 10297.9i 0.595128i
\(670\) 0 0
\(671\) −5739.65 −0.330219
\(672\) 0 0
\(673\) 5569.75i 0.319017i 0.987197 + 0.159508i \(0.0509909\pi\)
−0.987197 + 0.159508i \(0.949009\pi\)
\(674\) 0 0
\(675\) 7784.27 1229.54i 0.443877 0.0701112i
\(676\) 0 0
\(677\) −4130.23 −0.234472 −0.117236 0.993104i \(-0.537403\pi\)
−0.117236 + 0.993104i \(0.537403\pi\)
\(678\) 0 0
\(679\) 38164.8 2.15704
\(680\) 0 0
\(681\) −25707.5 −1.44657
\(682\) 0 0
\(683\) −22875.3 −1.28155 −0.640776 0.767728i \(-0.721387\pi\)
−0.640776 + 0.767728i \(0.721387\pi\)
\(684\) 0 0
\(685\) −1249.84 15923.7i −0.0697138 0.888193i
\(686\) 0 0
\(687\) 34927.3i 1.93968i
\(688\) 0 0
\(689\) −1142.73 −0.0631851
\(690\) 0 0
\(691\) 19910.4i 1.09613i −0.836435 0.548066i \(-0.815364\pi\)
0.836435 0.548066i \(-0.184636\pi\)
\(692\) 0 0
\(693\) 18247.5 1.00024
\(694\) 0 0
\(695\) −1284.10 16360.1i −0.0700842 0.892912i
\(696\) 0 0
\(697\) 26866.2i 1.46001i
\(698\) 0 0
\(699\) 1210.96i 0.0655262i
\(700\) 0 0
\(701\) 3428.44i 0.184722i −0.995726 0.0923612i \(-0.970559\pi\)
0.995726 0.0923612i \(-0.0294414\pi\)
\(702\) 0 0
\(703\) 27.1715i 0.00145774i
\(704\) 0 0
\(705\) 1891.01 + 24092.5i 0.101021 + 1.28706i
\(706\) 0 0
\(707\) 24045.4 1.27910
\(708\) 0 0
\(709\) 15608.3i 0.826771i 0.910556 + 0.413385i \(0.135654\pi\)
−0.910556 + 0.413385i \(0.864346\pi\)
\(710\) 0 0
\(711\) −10226.8 −0.539430
\(712\) 0 0
\(713\) 13766.0i 0.723061i
\(714\) 0 0
\(715\) −628.583 8008.50i −0.0328778 0.418882i
\(716\) 0 0
\(717\) 16739.1 0.871873
\(718\) 0 0
\(719\) −8282.41 −0.429599 −0.214800 0.976658i \(-0.568910\pi\)
−0.214800 + 0.976658i \(0.568910\pi\)
\(720\) 0 0
\(721\) −14844.0 −0.766741
\(722\) 0 0
\(723\) 7272.08 0.374068
\(724\) 0 0
\(725\) −2575.80 16307.5i −0.131949 0.835372i
\(726\) 0 0
\(727\) 20590.4i 1.05042i −0.850973 0.525210i \(-0.823987\pi\)
0.850973 0.525210i \(-0.176013\pi\)
\(728\) 0 0
\(729\) −4345.77 −0.220788
\(730\) 0 0
\(731\) 22319.4i 1.12929i
\(732\) 0 0
\(733\) 24257.3 1.22232 0.611162 0.791506i \(-0.290703\pi\)
0.611162 + 0.791506i \(0.290703\pi\)
\(734\) 0 0
\(735\) −40661.4 + 3191.49i −2.04057 + 0.160163i
\(736\) 0 0
\(737\) 23231.1i 1.16110i
\(738\) 0 0
\(739\) 25426.8i 1.26569i 0.774280 + 0.632843i \(0.218112\pi\)
−0.774280 + 0.632843i \(0.781888\pi\)
\(740\) 0 0
\(741\) 65.4761i 0.00324605i
\(742\) 0 0
\(743\) 22658.4i 1.11878i 0.828904 + 0.559391i \(0.188965\pi\)
−0.828904 + 0.559391i \(0.811035\pi\)
\(744\) 0 0
\(745\) −2520.56 32113.4i −0.123955 1.57925i
\(746\) 0 0
\(747\) 11172.0 0.547205
\(748\) 0 0
\(749\) 3331.88i 0.162542i
\(750\) 0 0
\(751\) 10999.0 0.534431 0.267215 0.963637i \(-0.413896\pi\)
0.267215 + 0.963637i \(0.413896\pi\)
\(752\) 0 0
\(753\) 35911.3i 1.73795i
\(754\) 0 0
\(755\) −10580.9 + 830.485i −0.510035 + 0.0400324i
\(756\) 0 0
\(757\) 30279.9 1.45382 0.726909 0.686734i \(-0.240956\pi\)
0.726909 + 0.686734i \(0.240956\pi\)
\(758\) 0 0
\(759\) 23333.1 1.11586
\(760\) 0 0
\(761\) 4374.09 0.208358 0.104179 0.994559i \(-0.466778\pi\)
0.104179 + 0.994559i \(0.466778\pi\)
\(762\) 0 0
\(763\) 32753.4 1.55407
\(764\) 0 0
\(765\) −1381.84 17605.4i −0.0653078 0.832058i
\(766\) 0 0
\(767\) 3460.97i 0.162932i
\(768\) 0 0
\(769\) −12982.1 −0.608774 −0.304387 0.952548i \(-0.598452\pi\)
−0.304387 + 0.952548i \(0.598452\pi\)
\(770\) 0 0
\(771\) 9197.90i 0.429642i
\(772\) 0 0
\(773\) −34056.3 −1.58463 −0.792316 0.610112i \(-0.791125\pi\)
−0.792316 + 0.610112i \(0.791125\pi\)
\(774\) 0 0
\(775\) 16946.1 2676.67i 0.785448 0.124063i
\(776\) 0 0
\(777\) 11368.6i 0.524898i
\(778\) 0 0
\(779\) 142.073i 0.00653437i
\(780\) 0 0
\(781\) 13394.8i 0.613706i
\(782\) 0 0
\(783\) 8326.97i 0.380053i
\(784\) 0 0
\(785\) −35213.8 + 2763.91i −1.60106 + 0.125667i
\(786\) 0 0
\(787\) −11962.9 −0.541842 −0.270921 0.962602i \(-0.587328\pi\)
−0.270921 + 0.962602i \(0.587328\pi\)
\(788\) 0 0
\(789\) 2745.67i 0.123889i
\(790\) 0 0
\(791\) −63198.1 −2.84079
\(792\) 0 0
\(793\) 3395.17i 0.152038i
\(794\) 0 0
\(795\) −4123.91 + 323.684i −0.183975 + 0.0144401i
\(796\) 0 0
\(797\) −17898.9 −0.795498 −0.397749 0.917494i \(-0.630209\pi\)
−0.397749 + 0.917494i \(0.630209\pi\)
\(798\) 0 0
\(799\) −29136.9 −1.29010
\(800\) 0 0
\(801\) 13340.1 0.588452
\(802\) 0 0
\(803\) −26108.3 −1.14737
\(804\) 0 0
\(805\) −33342.6 + 2617.04i −1.45984 + 0.114582i
\(806\) 0 0
\(807\) 2718.06i 0.118563i
\(808\) 0 0
\(809\) 27690.6 1.20340 0.601700 0.798722i \(-0.294490\pi\)
0.601700 + 0.798722i \(0.294490\pi\)
\(810\) 0 0
\(811\) 44013.9i 1.90572i −0.303412 0.952859i \(-0.598126\pi\)
0.303412 0.952859i \(-0.401874\pi\)
\(812\) 0 0
\(813\) −8871.24 −0.382691
\(814\) 0 0
\(815\) −15178.2 + 1191.33i −0.652354 + 0.0512029i
\(816\) 0 0
\(817\) 118.028i 0.00505422i
\(818\) 0 0
\(819\) 10793.9i 0.460524i
\(820\) 0 0
\(821\) 30978.8i 1.31689i −0.752628 0.658446i \(-0.771214\pi\)
0.752628 0.658446i \(-0.228786\pi\)
\(822\) 0 0
\(823\) 41684.8i 1.76554i 0.469804 + 0.882771i \(0.344325\pi\)
−0.469804 + 0.882771i \(0.655675\pi\)
\(824\) 0 0
\(825\) −4536.89 28723.2i −0.191460 1.21214i
\(826\) 0 0
\(827\) −11988.7 −0.504096 −0.252048 0.967715i \(-0.581104\pi\)
−0.252048 + 0.967715i \(0.581104\pi\)
\(828\) 0 0
\(829\) 2023.64i 0.0847814i 0.999101 + 0.0423907i \(0.0134974\pi\)
−0.999101 + 0.0423907i \(0.986503\pi\)
\(830\) 0 0
\(831\) 29445.4 1.22918
\(832\) 0 0
\(833\) 49174.8i 2.04539i
\(834\) 0 0
\(835\) −561.061 7148.23i −0.0232531 0.296257i
\(836\) 0 0
\(837\) 8653.07 0.357340
\(838\) 0 0
\(839\) 10706.3 0.440553 0.220276 0.975438i \(-0.429304\pi\)
0.220276 + 0.975438i \(0.429304\pi\)
\(840\) 0 0
\(841\) 6944.60 0.284743
\(842\) 0 0
\(843\) −34270.6 −1.40017
\(844\) 0 0
\(845\) 19750.6 1550.22i 0.804074 0.0631114i
\(846\) 0 0
\(847\) 3469.86i 0.140762i
\(848\) 0 0
\(849\) −20649.2 −0.834721
\(850\) 0 0
\(851\) 5727.66i 0.230719i
\(852\) 0 0
\(853\) 29816.5 1.19683 0.598416 0.801186i \(-0.295797\pi\)
0.598416 + 0.801186i \(0.295797\pi\)
\(854\) 0 0
\(855\) 7.30738 + 93.1001i 0.000292289 + 0.00372393i
\(856\) 0 0
\(857\) 6572.14i 0.261960i −0.991385 0.130980i \(-0.958188\pi\)
0.991385 0.130980i \(-0.0418124\pi\)
\(858\) 0 0
\(859\) 45723.7i 1.81615i 0.418809 + 0.908075i \(0.362448\pi\)
−0.418809 + 0.908075i \(0.637552\pi\)
\(860\) 0 0
\(861\) 59443.5i 2.35288i
\(862\) 0 0
\(863\) 13343.7i 0.526331i −0.964751 0.263166i \(-0.915233\pi\)
0.964751 0.263166i \(-0.0847665\pi\)
\(864\) 0 0
\(865\) 646.437 50.7385i 0.0254098 0.00199440i
\(866\) 0 0
\(867\) 21244.8 0.832193
\(868\) 0 0
\(869\) 20303.5i 0.792577i
\(870\) 0 0
\(871\) 13741.8 0.534586
\(872\) 0 0
\(873\) 22463.6i 0.870878i
\(874\) 0 0
\(875\) 9704.74 + 40536.2i 0.374949 + 1.56614i
\(876\) 0 0
\(877\) −41636.8 −1.60317 −0.801583 0.597884i \(-0.796008\pi\)
−0.801583 + 0.597884i \(0.796008\pi\)
\(878\) 0 0
\(879\) 4481.01 0.171946
\(880\) 0 0
\(881\) −31220.6 −1.19392 −0.596962 0.802269i \(-0.703626\pi\)
−0.596962 + 0.802269i \(0.703626\pi\)
\(882\) 0 0
\(883\) 35199.4 1.34151 0.670755 0.741679i \(-0.265970\pi\)
0.670755 + 0.741679i \(0.265970\pi\)
\(884\) 0 0
\(885\) −980.338 12490.1i −0.0372358 0.474405i
\(886\) 0 0
\(887\) 12744.8i 0.482444i 0.970470 + 0.241222i \(0.0775482\pi\)
−0.970470 + 0.241222i \(0.922452\pi\)
\(888\) 0 0
\(889\) 16939.7 0.639076
\(890\) 0 0
\(891\) 31185.8i 1.17258i
\(892\) 0 0
\(893\) 154.080 0.00577391
\(894\) 0 0
\(895\) 1407.41 + 17931.2i 0.0525638 + 0.669693i
\(896\) 0 0
\(897\) 13802.2i 0.513758i
\(898\) 0 0
\(899\) 18127.6i 0.672512i
\(900\) 0 0
\(901\) 4987.35i 0.184409i
\(902\) 0 0
\(903\) 49383.4i 1.81991i
\(904\) 0 0
\(905\) 2331.99 + 29710.9i 0.0856553 + 1.09130i
\(906\) 0 0
\(907\) 16588.8 0.607299 0.303650 0.952784i \(-0.401795\pi\)
0.303650 + 0.952784i \(0.401795\pi\)
\(908\) 0 0
\(909\) 14153.0i 0.516418i
\(910\) 0 0
\(911\) 46114.7 1.67711 0.838555 0.544816i \(-0.183401\pi\)
0.838555 + 0.544816i \(0.183401\pi\)
\(912\) 0 0
\(913\) 22180.1i 0.804002i
\(914\) 0 0
\(915\) 961.697 + 12252.6i 0.0347461 + 0.442686i
\(916\) 0 0
\(917\) 66773.3 2.40463
\(918\) 0 0
\(919\) −47522.6 −1.70580 −0.852898 0.522077i \(-0.825157\pi\)
−0.852898 + 0.522077i \(0.825157\pi\)
\(920\) 0 0
\(921\) 38786.6 1.38769
\(922\) 0 0
\(923\) −7923.40 −0.282559
\(924\) 0 0
\(925\) 7050.80 1113.69i 0.250626 0.0395868i
\(926\) 0 0
\(927\) 8737.09i 0.309562i
\(928\) 0 0
\(929\) 13494.3 0.476570 0.238285 0.971195i \(-0.423415\pi\)
0.238285 + 0.971195i \(0.423415\pi\)
\(930\) 0 0
\(931\) 260.044i 0.00915425i
\(932\) 0 0
\(933\) −48215.1 −1.69184
\(934\) 0 0
\(935\) 34952.5 2743.40i 1.22253 0.0959559i
\(936\) 0 0
\(937\) 12453.1i 0.434179i −0.976152 0.217089i \(-0.930344\pi\)
0.976152 0.217089i \(-0.0696563\pi\)
\(938\) 0 0
\(939\) 12044.3i 0.418584i
\(940\) 0 0
\(941\) 40466.5i 1.40188i 0.713220 + 0.700940i \(0.247236\pi\)
−0.713220 + 0.700940i \(0.752764\pi\)
\(942\) 0 0
\(943\) 29948.5i 1.03421i
\(944\) 0 0
\(945\) 1645.02 + 20958.5i 0.0566271 + 0.721461i
\(946\) 0 0
\(947\) −2645.96 −0.0907943 −0.0453971 0.998969i \(-0.514455\pi\)
−0.0453971 + 0.998969i \(0.514455\pi\)
\(948\) 0 0
\(949\) 15443.8i 0.528268i
\(950\) 0 0
\(951\) −10633.7 −0.362587
\(952\) 0 0
\(953\) 40045.8i 1.36119i 0.732662 + 0.680593i \(0.238278\pi\)
−0.732662 + 0.680593i \(0.761722\pi\)
\(954\) 0 0
\(955\) −32096.1 + 2519.21i −1.08755 + 0.0853609i
\(956\) 0 0
\(957\) −30725.8 −1.03785
\(958\) 0 0
\(959\) 42609.1 1.43474
\(960\) 0 0
\(961\) −10953.5 −0.367679
\(962\) 0 0
\(963\) 1961.12 0.0656244
\(964\) 0 0
\(965\) 2100.82 + 26765.6i 0.0700805 + 0.892865i
\(966\) 0 0
\(967\) 11049.0i 0.367439i 0.982979 + 0.183719i \(0.0588137\pi\)
−0.982979 + 0.183719i \(0.941186\pi\)
\(968\) 0 0
\(969\) −285.765 −0.00947380
\(970\) 0 0
\(971\) 26708.5i 0.882717i 0.897331 + 0.441358i \(0.145503\pi\)
−0.897331 + 0.441358i \(0.854497\pi\)
\(972\) 0 0
\(973\) 43776.9 1.44237
\(974\) 0 0
\(975\) −16990.6 + 2683.70i −0.558087 + 0.0881509i
\(976\) 0 0
\(977\) 11102.6i 0.363566i 0.983339 + 0.181783i \(0.0581869\pi\)
−0.983339 + 0.181783i \(0.941813\pi\)
\(978\) 0 0
\(979\) 26484.5i 0.864604i
\(980\) 0 0
\(981\) 19278.5i 0.627435i
\(982\) 0 0
\(983\) 33544.2i 1.08840i −0.838957 0.544198i \(-0.816834\pi\)
0.838957 0.544198i \(-0.183166\pi\)
\(984\) 0 0
\(985\) 49644.9 3896.60i 1.60591 0.126047i
\(986\) 0 0
\(987\) −64467.5 −2.07905
\(988\) 0 0
\(989\) 24880.0i 0.799939i
\(990\) 0 0
\(991\) −5538.20 −0.177524 −0.0887622 0.996053i \(-0.528291\pi\)
−0.0887622 + 0.996053i \(0.528291\pi\)
\(992\) 0 0
\(993\) 41472.5i 1.32537i
\(994\) 0 0
\(995\) 54658.2 4290.09i 1.74149 0.136688i
\(996\) 0 0
\(997\) −24192.6 −0.768492 −0.384246 0.923231i \(-0.625539\pi\)
−0.384246 + 0.923231i \(0.625539\pi\)
\(998\) 0 0
\(999\) 3600.30 0.114022
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 160.4.f.a.49.4 16
3.2 odd 2 1440.4.d.d.1009.15 16
4.3 odd 2 40.4.f.a.29.11 yes 16
5.2 odd 4 800.4.d.e.401.14 16
5.3 odd 4 800.4.d.e.401.3 16
5.4 even 2 inner 160.4.f.a.49.14 16
8.3 odd 2 40.4.f.a.29.5 16
8.5 even 2 inner 160.4.f.a.49.13 16
12.11 even 2 360.4.d.d.109.6 16
15.14 odd 2 1440.4.d.d.1009.1 16
20.3 even 4 200.4.d.e.101.3 16
20.7 even 4 200.4.d.e.101.14 16
20.19 odd 2 40.4.f.a.29.6 yes 16
24.5 odd 2 1440.4.d.d.1009.2 16
24.11 even 2 360.4.d.d.109.12 16
40.3 even 4 200.4.d.e.101.4 16
40.13 odd 4 800.4.d.e.401.13 16
40.19 odd 2 40.4.f.a.29.12 yes 16
40.27 even 4 200.4.d.e.101.13 16
40.29 even 2 inner 160.4.f.a.49.3 16
40.37 odd 4 800.4.d.e.401.4 16
60.59 even 2 360.4.d.d.109.11 16
120.29 odd 2 1440.4.d.d.1009.16 16
120.59 even 2 360.4.d.d.109.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.4.f.a.29.5 16 8.3 odd 2
40.4.f.a.29.6 yes 16 20.19 odd 2
40.4.f.a.29.11 yes 16 4.3 odd 2
40.4.f.a.29.12 yes 16 40.19 odd 2
160.4.f.a.49.3 16 40.29 even 2 inner
160.4.f.a.49.4 16 1.1 even 1 trivial
160.4.f.a.49.13 16 8.5 even 2 inner
160.4.f.a.49.14 16 5.4 even 2 inner
200.4.d.e.101.3 16 20.3 even 4
200.4.d.e.101.4 16 40.3 even 4
200.4.d.e.101.13 16 40.27 even 4
200.4.d.e.101.14 16 20.7 even 4
360.4.d.d.109.5 16 120.59 even 2
360.4.d.d.109.6 16 12.11 even 2
360.4.d.d.109.11 16 60.59 even 2
360.4.d.d.109.12 16 24.11 even 2
800.4.d.e.401.3 16 5.3 odd 4
800.4.d.e.401.4 16 40.37 odd 4
800.4.d.e.401.13 16 40.13 odd 4
800.4.d.e.401.14 16 5.2 odd 4
1440.4.d.d.1009.1 16 15.14 odd 2
1440.4.d.d.1009.2 16 24.5 odd 2
1440.4.d.d.1009.15 16 3.2 odd 2
1440.4.d.d.1009.16 16 120.29 odd 2