Properties

Label 200.4.d.e.101.4
Level $200$
Weight $4$
Character 200.101
Analytic conductor $11.800$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,4,Mod(101,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.101");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 200.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.8003820011\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 2x^{14} + 44x^{12} - 400x^{10} - 3200x^{8} - 25600x^{6} + 180224x^{4} + 524288x^{2} + 16777216 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{21}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 101.4
Root \(-1.92212 + 2.07496i\) of defining polynomial
Character \(\chi\) \(=\) 200.101
Dual form 200.4.d.e.101.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.92212 + 2.07496i) q^{2} -6.67494i q^{3} +(-0.610901 - 7.97664i) q^{4} +(13.8502 + 12.8300i) q^{6} +29.8250 q^{7} +(17.7254 + 14.0645i) q^{8} -17.5548 q^{9} +34.8520i q^{11} +(-53.2436 + 4.07773i) q^{12} -20.6159i q^{13} +(-57.3272 + 61.8856i) q^{14} +(-63.2536 + 9.74588i) q^{16} +89.9765 q^{17} +(33.7424 - 36.4254i) q^{18} +0.475810i q^{19} -199.080i q^{21} +(-72.3164 - 66.9897i) q^{22} +100.299 q^{23} +(93.8795 - 118.316i) q^{24} +(42.7771 + 39.6263i) q^{26} -63.0462i q^{27} +(-18.2201 - 237.903i) q^{28} -132.077i q^{29} -137.250 q^{31} +(101.359 - 149.981i) q^{32} +232.635 q^{33} +(-172.946 + 186.697i) q^{34} +(10.7242 + 140.028i) q^{36} +57.1057i q^{37} +(-0.987285 - 0.914564i) q^{38} -137.610 q^{39} +298.591 q^{41} +(413.082 + 382.656i) q^{42} -248.058i q^{43} +(278.002 - 21.2911i) q^{44} +(-192.787 + 208.117i) q^{46} -323.827 q^{47} +(65.0532 + 422.214i) q^{48} +546.530 q^{49} -600.588i q^{51} +(-164.446 + 12.5943i) q^{52} +55.4295i q^{53} +(130.818 + 121.182i) q^{54} +(528.660 + 419.473i) q^{56} +3.17600 q^{57} +(274.055 + 253.868i) q^{58} +167.879i q^{59} -164.687i q^{61} +(263.810 - 284.787i) q^{62} -523.571 q^{63} +(116.381 + 498.597i) q^{64} +(-447.152 + 482.707i) q^{66} -666.565i q^{67} +(-54.9668 - 717.710i) q^{68} -669.491i q^{69} +384.334 q^{71} +(-311.166 - 246.899i) q^{72} -749.119 q^{73} +(-118.492 - 109.764i) q^{74} +(3.79536 - 0.290673i) q^{76} +1039.46i q^{77} +(264.503 - 285.535i) q^{78} -582.564 q^{79} -894.809 q^{81} +(-573.928 + 619.564i) q^{82} +636.408i q^{83} +(-1587.99 + 121.618i) q^{84} +(514.710 + 476.798i) q^{86} -881.607 q^{87} +(-490.175 + 617.766i) q^{88} -759.913 q^{89} -614.869i q^{91} +(-61.2730 - 800.051i) q^{92} +916.133i q^{93} +(622.435 - 671.928i) q^{94} +(-1001.12 - 676.563i) q^{96} +1279.63 q^{97} +(-1050.50 + 1134.03i) q^{98} -611.819i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{4} - 12 q^{6} - 104 q^{9} - 28 q^{14} - 168 q^{16} + 112 q^{24} + 200 q^{26} - 112 q^{31} - 408 q^{34} - 84 q^{36} + 736 q^{39} + 232 q^{41} - 920 q^{44} + 212 q^{46} + 200 q^{49} + 2320 q^{54}+ \cdots + 3632 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.92212 + 2.07496i −0.679572 + 0.733608i
\(3\) 6.67494i 1.28459i −0.766457 0.642296i \(-0.777982\pi\)
0.766457 0.642296i \(-0.222018\pi\)
\(4\) −0.610901 7.97664i −0.0763627 0.997080i
\(5\) 0 0
\(6\) 13.8502 + 12.8300i 0.942388 + 0.872973i
\(7\) 29.8250 1.61040 0.805199 0.593005i \(-0.202059\pi\)
0.805199 + 0.593005i \(0.202059\pi\)
\(8\) 17.7254 + 14.0645i 0.783360 + 0.621568i
\(9\) −17.5548 −0.650177
\(10\) 0 0
\(11\) 34.8520i 0.955297i 0.878551 + 0.477648i \(0.158511\pi\)
−0.878551 + 0.477648i \(0.841489\pi\)
\(12\) −53.2436 + 4.07773i −1.28084 + 0.0980949i
\(13\) 20.6159i 0.439833i −0.975519 0.219916i \(-0.929422\pi\)
0.975519 0.219916i \(-0.0705784\pi\)
\(14\) −57.3272 + 61.8856i −1.09438 + 1.18140i
\(15\) 0 0
\(16\) −63.2536 + 9.74588i −0.988337 + 0.152279i
\(17\) 89.9765 1.28368 0.641839 0.766840i \(-0.278172\pi\)
0.641839 + 0.766840i \(0.278172\pi\)
\(18\) 33.7424 36.4254i 0.441842 0.476975i
\(19\) 0.475810i 0.00574517i 0.999996 + 0.00287259i \(0.000914374\pi\)
−0.999996 + 0.00287259i \(0.999086\pi\)
\(20\) 0 0
\(21\) 199.080i 2.06870i
\(22\) −72.3164 66.9897i −0.700814 0.649193i
\(23\) 100.299 0.909298 0.454649 0.890671i \(-0.349765\pi\)
0.454649 + 0.890671i \(0.349765\pi\)
\(24\) 93.8795 118.316i 0.798461 1.00630i
\(25\) 0 0
\(26\) 42.7771 + 39.6263i 0.322665 + 0.298898i
\(27\) 63.0462i 0.449380i
\(28\) −18.2201 237.903i −0.122974 1.60570i
\(29\) 132.077i 0.845729i −0.906193 0.422864i \(-0.861025\pi\)
0.906193 0.422864i \(-0.138975\pi\)
\(30\) 0 0
\(31\) −137.250 −0.795186 −0.397593 0.917562i \(-0.630154\pi\)
−0.397593 + 0.917562i \(0.630154\pi\)
\(32\) 101.359 149.981i 0.559933 0.828538i
\(33\) 232.635 1.22717
\(34\) −172.946 + 186.697i −0.872351 + 0.941716i
\(35\) 0 0
\(36\) 10.7242 + 140.028i 0.0496493 + 0.648279i
\(37\) 57.1057i 0.253733i 0.991920 + 0.126866i \(0.0404920\pi\)
−0.991920 + 0.126866i \(0.959508\pi\)
\(38\) −0.987285 0.914564i −0.00421471 0.00390426i
\(39\) −137.610 −0.565005
\(40\) 0 0
\(41\) 298.591 1.13737 0.568684 0.822556i \(-0.307453\pi\)
0.568684 + 0.822556i \(0.307453\pi\)
\(42\) 413.082 + 382.656i 1.51762 + 1.40583i
\(43\) 248.058i 0.879733i −0.898063 0.439866i \(-0.855026\pi\)
0.898063 0.439866i \(-0.144974\pi\)
\(44\) 278.002 21.2911i 0.952507 0.0729490i
\(45\) 0 0
\(46\) −192.787 + 208.117i −0.617934 + 0.667068i
\(47\) −323.827 −1.00500 −0.502501 0.864577i \(-0.667587\pi\)
−0.502501 + 0.864577i \(0.667587\pi\)
\(48\) 65.0532 + 422.214i 0.195617 + 1.26961i
\(49\) 546.530 1.59338
\(50\) 0 0
\(51\) 600.588i 1.64900i
\(52\) −164.446 + 12.5943i −0.438548 + 0.0335868i
\(53\) 55.4295i 0.143657i 0.997417 + 0.0718285i \(0.0228834\pi\)
−0.997417 + 0.0718285i \(0.977117\pi\)
\(54\) 130.818 + 121.182i 0.329669 + 0.305386i
\(55\) 0 0
\(56\) 528.660 + 419.473i 1.26152 + 1.00097i
\(57\) 3.17600 0.00738020
\(58\) 274.055 + 253.868i 0.620434 + 0.574734i
\(59\) 167.879i 0.370440i 0.982697 + 0.185220i \(0.0592998\pi\)
−0.982697 + 0.185220i \(0.940700\pi\)
\(60\) 0 0
\(61\) 164.687i 0.345672i −0.984951 0.172836i \(-0.944707\pi\)
0.984951 0.172836i \(-0.0552930\pi\)
\(62\) 263.810 284.787i 0.540386 0.583355i
\(63\) −523.571 −1.04704
\(64\) 116.381 + 498.597i 0.227307 + 0.973823i
\(65\) 0 0
\(66\) −447.152 + 482.707i −0.833949 + 0.900260i
\(67\) 666.565i 1.21543i −0.794155 0.607715i \(-0.792086\pi\)
0.794155 0.607715i \(-0.207914\pi\)
\(68\) −54.9668 717.710i −0.0980250 1.27993i
\(69\) 669.491i 1.16808i
\(70\) 0 0
\(71\) 384.334 0.642424 0.321212 0.947007i \(-0.395910\pi\)
0.321212 + 0.947007i \(0.395910\pi\)
\(72\) −311.166 246.899i −0.509323 0.404129i
\(73\) −749.119 −1.20107 −0.600533 0.799600i \(-0.705045\pi\)
−0.600533 + 0.799600i \(0.705045\pi\)
\(74\) −118.492 109.764i −0.186141 0.172430i
\(75\) 0 0
\(76\) 3.79536 0.290673i 0.00572840 0.000438717i
\(77\) 1039.46i 1.53841i
\(78\) 264.503 285.535i 0.383962 0.414493i
\(79\) −582.564 −0.829666 −0.414833 0.909898i \(-0.636160\pi\)
−0.414833 + 0.909898i \(0.636160\pi\)
\(80\) 0 0
\(81\) −894.809 −1.22745
\(82\) −573.928 + 619.564i −0.772924 + 0.834383i
\(83\) 636.408i 0.841625i 0.907148 + 0.420813i \(0.138255\pi\)
−0.907148 + 0.420813i \(0.861745\pi\)
\(84\) −1587.99 + 121.618i −2.06266 + 0.157972i
\(85\) 0 0
\(86\) 514.710 + 476.798i 0.645379 + 0.597842i
\(87\) −881.607 −1.08642
\(88\) −490.175 + 617.766i −0.593782 + 0.748341i
\(89\) −759.913 −0.905064 −0.452532 0.891748i \(-0.649479\pi\)
−0.452532 + 0.891748i \(0.649479\pi\)
\(90\) 0 0
\(91\) 614.869i 0.708305i
\(92\) −61.2730 800.051i −0.0694364 0.906643i
\(93\) 916.133i 1.02149i
\(94\) 622.435 671.928i 0.682971 0.737278i
\(95\) 0 0
\(96\) −1001.12 676.563i −1.06433 0.719286i
\(97\) 1279.63 1.33945 0.669723 0.742611i \(-0.266413\pi\)
0.669723 + 0.742611i \(0.266413\pi\)
\(98\) −1050.50 + 1134.03i −1.08282 + 1.16892i
\(99\) 611.819i 0.621112i
\(100\) 0 0
\(101\) 806.217i 0.794273i −0.917760 0.397137i \(-0.870004\pi\)
0.917760 0.397137i \(-0.129996\pi\)
\(102\) 1246.19 + 1154.40i 1.20972 + 1.12062i
\(103\) −497.704 −0.476119 −0.238059 0.971251i \(-0.576511\pi\)
−0.238059 + 0.971251i \(0.576511\pi\)
\(104\) 289.952 365.426i 0.273386 0.344547i
\(105\) 0 0
\(106\) −115.014 106.542i −0.105388 0.0976254i
\(107\) 111.714i 0.100933i −0.998726 0.0504666i \(-0.983929\pi\)
0.998726 0.0504666i \(-0.0160708\pi\)
\(108\) −502.897 + 38.5150i −0.448068 + 0.0343158i
\(109\) 1098.19i 0.965022i 0.875890 + 0.482511i \(0.160275\pi\)
−0.875890 + 0.482511i \(0.839725\pi\)
\(110\) 0 0
\(111\) 381.177 0.325943
\(112\) −1886.54 + 290.671i −1.59162 + 0.245230i
\(113\) 2118.96 1.76403 0.882015 0.471221i \(-0.156187\pi\)
0.882015 + 0.471221i \(0.156187\pi\)
\(114\) −6.10466 + 6.59007i −0.00501538 + 0.00541418i
\(115\) 0 0
\(116\) −1053.53 + 80.6862i −0.843259 + 0.0645821i
\(117\) 361.908i 0.285969i
\(118\) −348.341 322.683i −0.271758 0.251741i
\(119\) 2683.55 2.06723
\(120\) 0 0
\(121\) 116.341 0.0874084
\(122\) 341.718 + 316.548i 0.253588 + 0.234909i
\(123\) 1993.08i 1.46105i
\(124\) 83.8460 + 1094.79i 0.0607225 + 0.792864i
\(125\) 0 0
\(126\) 1006.37 1086.39i 0.711542 0.768120i
\(127\) −567.970 −0.396844 −0.198422 0.980117i \(-0.563582\pi\)
−0.198422 + 0.980117i \(0.563582\pi\)
\(128\) −1258.27 716.879i −0.868876 0.495029i
\(129\) −1655.77 −1.13010
\(130\) 0 0
\(131\) 2238.84i 1.49319i 0.665278 + 0.746596i \(0.268313\pi\)
−0.665278 + 0.746596i \(0.731687\pi\)
\(132\) −142.117 1855.64i −0.0937097 1.22358i
\(133\) 14.1910i 0.00925201i
\(134\) 1383.09 + 1281.22i 0.891650 + 0.825973i
\(135\) 0 0
\(136\) 1594.87 + 1265.47i 1.00558 + 0.797892i
\(137\) 1428.64 0.890925 0.445462 0.895301i \(-0.353039\pi\)
0.445462 + 0.895301i \(0.353039\pi\)
\(138\) 1389.17 + 1286.84i 0.856911 + 0.793793i
\(139\) 1467.79i 0.895659i −0.894119 0.447829i \(-0.852197\pi\)
0.894119 0.447829i \(-0.147803\pi\)
\(140\) 0 0
\(141\) 2161.53i 1.29102i
\(142\) −738.737 + 797.478i −0.436574 + 0.471288i
\(143\) 718.505 0.420171
\(144\) 1110.40 171.087i 0.642594 0.0990086i
\(145\) 0 0
\(146\) 1439.90 1554.39i 0.816211 0.881112i
\(147\) 3648.05i 2.04684i
\(148\) 455.512 34.8860i 0.252992 0.0193757i
\(149\) 2881.15i 1.58411i 0.610449 + 0.792056i \(0.290989\pi\)
−0.610449 + 0.792056i \(0.709011\pi\)
\(150\) 0 0
\(151\) −949.291 −0.511604 −0.255802 0.966729i \(-0.582340\pi\)
−0.255802 + 0.966729i \(0.582340\pi\)
\(152\) −6.69202 + 8.43393i −0.00357101 + 0.00450054i
\(153\) −1579.52 −0.834617
\(154\) −2156.83 1997.97i −1.12859 1.04546i
\(155\) 0 0
\(156\) 84.0661 + 1097.66i 0.0431453 + 0.563356i
\(157\) 3159.30i 1.60599i 0.595988 + 0.802993i \(0.296761\pi\)
−0.595988 + 0.802993i \(0.703239\pi\)
\(158\) 1119.76 1208.80i 0.563818 0.608650i
\(159\) 369.988 0.184541
\(160\) 0 0
\(161\) 2991.42 1.46433
\(162\) 1719.93 1856.69i 0.834139 0.900465i
\(163\) 1361.75i 0.654360i 0.944962 + 0.327180i \(0.106098\pi\)
−0.944962 + 0.327180i \(0.893902\pi\)
\(164\) −182.410 2381.75i −0.0868525 1.13405i
\(165\) 0 0
\(166\) −1320.52 1223.25i −0.617423 0.571945i
\(167\) −641.323 −0.297168 −0.148584 0.988900i \(-0.547472\pi\)
−0.148584 + 0.988900i \(0.547472\pi\)
\(168\) 2799.95 3528.77i 1.28584 1.62054i
\(169\) 1771.98 0.806547
\(170\) 0 0
\(171\) 8.35274i 0.00373538i
\(172\) −1978.67 + 151.539i −0.877164 + 0.0671787i
\(173\) 57.9969i 0.0254880i 0.999919 + 0.0127440i \(0.00405665\pi\)
−0.999919 + 0.0127440i \(0.995943\pi\)
\(174\) 1694.56 1829.30i 0.738299 0.797004i
\(175\) 0 0
\(176\) −339.663 2204.51i −0.145472 0.944155i
\(177\) 1120.58 0.475864
\(178\) 1460.65 1576.79i 0.615056 0.663962i
\(179\) 1608.75i 0.671753i 0.941906 + 0.335876i \(0.109032\pi\)
−0.941906 + 0.335876i \(0.890968\pi\)
\(180\) 0 0
\(181\) 2665.60i 1.09465i 0.836919 + 0.547327i \(0.184354\pi\)
−0.836919 + 0.547327i \(0.815646\pi\)
\(182\) 1275.83 + 1181.85i 0.519619 + 0.481345i
\(183\) −1099.27 −0.444047
\(184\) 1777.85 + 1410.66i 0.712308 + 0.565190i
\(185\) 0 0
\(186\) −1900.94 1760.92i −0.749373 0.694176i
\(187\) 3135.86i 1.22629i
\(188\) 197.827 + 2583.05i 0.0767446 + 1.00207i
\(189\) 1880.35i 0.723680i
\(190\) 0 0
\(191\) −2879.60 −1.09089 −0.545446 0.838146i \(-0.683640\pi\)
−0.545446 + 0.838146i \(0.683640\pi\)
\(192\) 3328.11 776.837i 1.25097 0.291997i
\(193\) 2401.35 0.895611 0.447805 0.894131i \(-0.352206\pi\)
0.447805 + 0.894131i \(0.352206\pi\)
\(194\) −2459.60 + 2655.17i −0.910251 + 0.982629i
\(195\) 0 0
\(196\) −333.876 4359.47i −0.121675 1.58873i
\(197\) 4454.03i 1.61085i −0.592700 0.805423i \(-0.701938\pi\)
0.592700 0.805423i \(-0.298062\pi\)
\(198\) 1269.50 + 1175.99i 0.455653 + 0.422091i
\(199\) −4903.81 −1.74684 −0.873422 0.486964i \(-0.838104\pi\)
−0.873422 + 0.486964i \(0.838104\pi\)
\(200\) 0 0
\(201\) −4449.28 −1.56133
\(202\) 1672.87 + 1549.65i 0.582685 + 0.539766i
\(203\) 3939.20i 1.36196i
\(204\) −4790.67 + 366.900i −1.64419 + 0.125922i
\(205\) 0 0
\(206\) 956.647 1032.72i 0.323557 0.349285i
\(207\) −1760.73 −0.591205
\(208\) 200.920 + 1304.03i 0.0669774 + 0.434703i
\(209\) −16.5829 −0.00548834
\(210\) 0 0
\(211\) 1226.59i 0.400200i 0.979776 + 0.200100i \(0.0641266\pi\)
−0.979776 + 0.200100i \(0.935873\pi\)
\(212\) 442.141 33.8620i 0.143238 0.0109700i
\(213\) 2565.41i 0.825253i
\(214\) 231.803 + 214.729i 0.0740454 + 0.0685914i
\(215\) 0 0
\(216\) 886.712 1117.52i 0.279320 0.352026i
\(217\) −4093.47 −1.28057
\(218\) −2278.69 2110.85i −0.707948 0.655802i
\(219\) 5000.32i 1.54288i
\(220\) 0 0
\(221\) 1854.95i 0.564603i
\(222\) −732.668 + 790.926i −0.221502 + 0.239115i
\(223\) 1542.77 0.463281 0.231641 0.972801i \(-0.425591\pi\)
0.231641 + 0.972801i \(0.425591\pi\)
\(224\) 3023.02 4473.19i 0.901716 1.33428i
\(225\) 0 0
\(226\) −4072.91 + 4396.76i −1.19879 + 1.29411i
\(227\) 3851.34i 1.12609i −0.826426 0.563045i \(-0.809630\pi\)
0.826426 0.563045i \(-0.190370\pi\)
\(228\) −1.94022 25.3338i −0.000563572 0.00735865i
\(229\) 5232.61i 1.50996i −0.655748 0.754980i \(-0.727647\pi\)
0.655748 0.754980i \(-0.272353\pi\)
\(230\) 0 0
\(231\) 6938.32 1.97623
\(232\) 1857.60 2341.13i 0.525678 0.662510i
\(233\) 181.419 0.0510094 0.0255047 0.999675i \(-0.491881\pi\)
0.0255047 + 0.999675i \(0.491881\pi\)
\(234\) −750.943 695.630i −0.209789 0.194337i
\(235\) 0 0
\(236\) 1339.11 102.557i 0.369358 0.0282878i
\(237\) 3888.58i 1.06578i
\(238\) −5158.10 + 5568.25i −1.40483 + 1.51654i
\(239\) −2507.75 −0.678716 −0.339358 0.940657i \(-0.610210\pi\)
−0.339358 + 0.940657i \(0.610210\pi\)
\(240\) 0 0
\(241\) −1089.46 −0.291196 −0.145598 0.989344i \(-0.546511\pi\)
−0.145598 + 0.989344i \(0.546511\pi\)
\(242\) −223.621 + 241.402i −0.0594003 + 0.0641235i
\(243\) 4270.54i 1.12739i
\(244\) −1313.65 + 100.607i −0.344662 + 0.0263964i
\(245\) 0 0
\(246\) 4135.55 + 3830.93i 1.07184 + 0.992892i
\(247\) 9.80925 0.00252691
\(248\) −2432.81 1930.34i −0.622917 0.494262i
\(249\) 4247.99 1.08115
\(250\) 0 0
\(251\) 5380.02i 1.35292i 0.736478 + 0.676461i \(0.236487\pi\)
−0.736478 + 0.676461i \(0.763513\pi\)
\(252\) 319.850 + 4176.34i 0.0799551 + 1.04399i
\(253\) 3495.63i 0.868649i
\(254\) 1091.71 1178.51i 0.269684 0.291128i
\(255\) 0 0
\(256\) 3906.04 1232.92i 0.953622 0.301007i
\(257\) 1377.98 0.334458 0.167229 0.985918i \(-0.446518\pi\)
0.167229 + 0.985918i \(0.446518\pi\)
\(258\) 3182.59 3435.66i 0.767983 0.829049i
\(259\) 1703.18i 0.408611i
\(260\) 0 0
\(261\) 2318.59i 0.549873i
\(262\) −4645.49 4303.32i −1.09542 1.01473i
\(263\) 411.340 0.0964422 0.0482211 0.998837i \(-0.484645\pi\)
0.0482211 + 0.998837i \(0.484645\pi\)
\(264\) 4123.55 + 3271.88i 0.961314 + 0.762767i
\(265\) 0 0
\(266\) −29.4458 27.2769i −0.00678735 0.00628741i
\(267\) 5072.37i 1.16264i
\(268\) −5316.95 + 407.205i −1.21188 + 0.0928135i
\(269\) 407.204i 0.0922961i 0.998935 + 0.0461481i \(0.0146946\pi\)
−0.998935 + 0.0461481i \(0.985305\pi\)
\(270\) 0 0
\(271\) −1329.04 −0.297909 −0.148954 0.988844i \(-0.547591\pi\)
−0.148954 + 0.988844i \(0.547591\pi\)
\(272\) −5691.34 + 876.900i −1.26871 + 0.195478i
\(273\) −4104.21 −0.909884
\(274\) −2746.01 + 2964.36i −0.605448 + 0.653590i
\(275\) 0 0
\(276\) −5340.29 + 408.993i −1.16467 + 0.0891975i
\(277\) 4411.34i 0.956866i −0.878124 0.478433i \(-0.841205\pi\)
0.878124 0.478433i \(-0.158795\pi\)
\(278\) 3045.61 + 2821.28i 0.657063 + 0.608665i
\(279\) 2409.39 0.517012
\(280\) 0 0
\(281\) 5134.23 1.08997 0.544986 0.838445i \(-0.316535\pi\)
0.544986 + 0.838445i \(0.316535\pi\)
\(282\) −4485.08 4154.72i −0.947101 0.877340i
\(283\) 3093.54i 0.649794i 0.945749 + 0.324897i \(0.105330\pi\)
−0.945749 + 0.324897i \(0.894670\pi\)
\(284\) −234.790 3065.70i −0.0490572 0.640548i
\(285\) 0 0
\(286\) −1381.05 + 1490.87i −0.285536 + 0.308241i
\(287\) 8905.47 1.83161
\(288\) −1779.33 + 2632.89i −0.364056 + 0.538696i
\(289\) 3182.77 0.647827
\(290\) 0 0
\(291\) 8541.42i 1.72064i
\(292\) 457.638 + 5975.45i 0.0917166 + 1.19756i
\(293\) 671.319i 0.133853i 0.997758 + 0.0669264i \(0.0213193\pi\)
−0.997758 + 0.0669264i \(0.978681\pi\)
\(294\) 7569.55 + 7011.99i 1.50158 + 1.39098i
\(295\) 0 0
\(296\) −803.162 + 1012.22i −0.157712 + 0.198764i
\(297\) 2197.28 0.429291
\(298\) −5978.26 5537.91i −1.16212 1.07652i
\(299\) 2067.76i 0.399939i
\(300\) 0 0
\(301\) 7398.33i 1.41672i
\(302\) 1824.65 1969.74i 0.347672 0.375317i
\(303\) −5381.45 −1.02032
\(304\) −4.63719 30.0967i −0.000874871 0.00567817i
\(305\) 0 0
\(306\) 3036.02 3277.43i 0.567183 0.612282i
\(307\) 5810.78i 1.08026i 0.841583 + 0.540128i \(0.181624\pi\)
−0.841583 + 0.540128i \(0.818376\pi\)
\(308\) 8291.39 635.007i 1.53392 0.117477i
\(309\) 3322.14i 0.611619i
\(310\) 0 0
\(311\) −7223.30 −1.31703 −0.658514 0.752568i \(-0.728815\pi\)
−0.658514 + 0.752568i \(0.728815\pi\)
\(312\) −2439.19 1935.41i −0.442603 0.351189i
\(313\) −1804.40 −0.325849 −0.162925 0.986638i \(-0.552093\pi\)
−0.162925 + 0.986638i \(0.552093\pi\)
\(314\) −6555.42 6072.56i −1.17817 1.09138i
\(315\) 0 0
\(316\) 355.889 + 4646.91i 0.0633555 + 0.827244i
\(317\) 1593.07i 0.282259i 0.989991 + 0.141129i \(0.0450733\pi\)
−0.989991 + 0.141129i \(0.954927\pi\)
\(318\) −711.162 + 767.710i −0.125409 + 0.135381i
\(319\) 4603.15 0.807922
\(320\) 0 0
\(321\) −745.687 −0.129658
\(322\) −5749.88 + 6207.08i −0.995119 + 1.07425i
\(323\) 42.8117i 0.00737495i
\(324\) 546.640 + 7137.57i 0.0937311 + 1.22386i
\(325\) 0 0
\(326\) −2825.58 2617.45i −0.480044 0.444685i
\(327\) 7330.34 1.23966
\(328\) 5292.65 + 4199.53i 0.890969 + 0.706951i
\(329\) −9658.14 −1.61845
\(330\) 0 0
\(331\) 6213.17i 1.03174i −0.856666 0.515871i \(-0.827468\pi\)
0.856666 0.515871i \(-0.172532\pi\)
\(332\) 5076.40 388.783i 0.839168 0.0642688i
\(333\) 1002.48i 0.164971i
\(334\) 1232.70 1330.72i 0.201947 0.218005i
\(335\) 0 0
\(336\) 1940.21 + 12592.5i 0.315021 + 2.04458i
\(337\) −11379.1 −1.83935 −0.919673 0.392686i \(-0.871546\pi\)
−0.919673 + 0.392686i \(0.871546\pi\)
\(338\) −3405.97 + 3676.79i −0.548107 + 0.591690i
\(339\) 14144.0i 2.26606i
\(340\) 0 0
\(341\) 4783.42i 0.759638i
\(342\) 17.3316 + 16.0550i 0.00274031 + 0.00253846i
\(343\) 6070.27 0.955579
\(344\) 3488.81 4396.93i 0.546814 0.689148i
\(345\) 0 0
\(346\) −120.341 111.477i −0.0186982 0.0173209i
\(347\) 2528.79i 0.391217i 0.980682 + 0.195609i \(0.0626682\pi\)
−0.980682 + 0.195609i \(0.937332\pi\)
\(348\) 538.575 + 7032.27i 0.0829617 + 1.08324i
\(349\) 110.562i 0.0169577i 0.999964 + 0.00847885i \(0.00269893\pi\)
−0.999964 + 0.00847885i \(0.997301\pi\)
\(350\) 0 0
\(351\) −1299.76 −0.197652
\(352\) 5227.14 + 3532.55i 0.791499 + 0.534903i
\(353\) −7118.00 −1.07324 −0.536619 0.843825i \(-0.680299\pi\)
−0.536619 + 0.843825i \(0.680299\pi\)
\(354\) −2153.89 + 2325.16i −0.323384 + 0.349098i
\(355\) 0 0
\(356\) 464.232 + 6061.56i 0.0691131 + 0.902421i
\(357\) 17912.5i 2.65555i
\(358\) −3338.09 3092.22i −0.492804 0.456505i
\(359\) 3118.04 0.458396 0.229198 0.973380i \(-0.426390\pi\)
0.229198 + 0.973380i \(0.426390\pi\)
\(360\) 0 0
\(361\) 6858.77 0.999967
\(362\) −5531.00 5123.60i −0.803047 0.743896i
\(363\) 776.566i 0.112284i
\(364\) −4904.59 + 375.624i −0.706237 + 0.0540881i
\(365\) 0 0
\(366\) 2112.94 2280.95i 0.301762 0.325757i
\(367\) −11007.8 −1.56567 −0.782835 0.622230i \(-0.786227\pi\)
−0.782835 + 0.622230i \(0.786227\pi\)
\(368\) −6344.29 + 977.505i −0.898693 + 0.138467i
\(369\) −5241.70 −0.739491
\(370\) 0 0
\(371\) 1653.18i 0.231345i
\(372\) 7307.66 559.667i 1.01851 0.0780037i
\(373\) 12872.3i 1.78687i −0.449190 0.893436i \(-0.648287\pi\)
0.449190 0.893436i \(-0.351713\pi\)
\(374\) −6506.77 6027.50i −0.899618 0.833354i
\(375\) 0 0
\(376\) −5739.98 4554.46i −0.787278 0.624677i
\(377\) −2722.89 −0.371979
\(378\) 3901.65 + 3614.27i 0.530898 + 0.491793i
\(379\) 6010.29i 0.814586i −0.913298 0.407293i \(-0.866473\pi\)
0.913298 0.407293i \(-0.133527\pi\)
\(380\) 0 0
\(381\) 3791.16i 0.509783i
\(382\) 5534.93 5975.04i 0.741340 0.800287i
\(383\) 4012.72 0.535354 0.267677 0.963509i \(-0.413744\pi\)
0.267677 + 0.963509i \(0.413744\pi\)
\(384\) −4785.12 + 8398.86i −0.635911 + 1.11615i
\(385\) 0 0
\(386\) −4615.68 + 4982.70i −0.608632 + 0.657028i
\(387\) 4354.61i 0.571982i
\(388\) −781.725 10207.1i −0.102284 1.33554i
\(389\) 9488.02i 1.23666i 0.785918 + 0.618331i \(0.212191\pi\)
−0.785918 + 0.618331i \(0.787809\pi\)
\(390\) 0 0
\(391\) 9024.58 1.16724
\(392\) 9687.47 + 7686.65i 1.24819 + 0.990394i
\(393\) 14944.1 1.91814
\(394\) 9241.93 + 8561.19i 1.18173 + 1.09469i
\(395\) 0 0
\(396\) −4880.26 + 373.761i −0.619298 + 0.0474298i
\(397\) 4950.44i 0.625832i 0.949781 + 0.312916i \(0.101306\pi\)
−0.949781 + 0.312916i \(0.898694\pi\)
\(398\) 9425.72 10175.2i 1.18711 1.28150i
\(399\) 94.7242 0.0118851
\(400\) 0 0
\(401\) −8799.56 −1.09583 −0.547917 0.836533i \(-0.684579\pi\)
−0.547917 + 0.836533i \(0.684579\pi\)
\(402\) 8552.05 9232.06i 1.06104 1.14541i
\(403\) 2829.53i 0.349749i
\(404\) −6430.90 + 492.519i −0.791954 + 0.0606528i
\(405\) 0 0
\(406\) 8173.68 + 7571.62i 0.999145 + 0.925550i
\(407\) −1990.25 −0.242390
\(408\) 8446.95 10645.7i 1.02497 1.29176i
\(409\) −7179.75 −0.868009 −0.434005 0.900911i \(-0.642900\pi\)
−0.434005 + 0.900911i \(0.642900\pi\)
\(410\) 0 0
\(411\) 9536.06i 1.14447i
\(412\) 304.048 + 3970.01i 0.0363577 + 0.474729i
\(413\) 5006.98i 0.596556i
\(414\) 3384.34 3653.44i 0.401766 0.433713i
\(415\) 0 0
\(416\) −3092.00 2089.60i −0.364418 0.246277i
\(417\) −9797.42 −1.15056
\(418\) 31.8744 34.4088i 0.00372973 0.00402629i
\(419\) 13557.2i 1.58070i 0.612657 + 0.790349i \(0.290101\pi\)
−0.612657 + 0.790349i \(0.709899\pi\)
\(420\) 0 0
\(421\) 7428.36i 0.859943i −0.902843 0.429971i \(-0.858524\pi\)
0.902843 0.429971i \(-0.141476\pi\)
\(422\) −2545.13 2357.66i −0.293590 0.271965i
\(423\) 5684.72 0.653429
\(424\) −779.587 + 982.511i −0.0892926 + 0.112535i
\(425\) 0 0
\(426\) 5323.11 + 4931.02i 0.605412 + 0.560819i
\(427\) 4911.78i 0.556669i
\(428\) −891.106 + 68.2465i −0.100638 + 0.00770752i
\(429\) 4795.97i 0.539748i
\(430\) 0 0
\(431\) −1591.77 −0.177895 −0.0889475 0.996036i \(-0.528350\pi\)
−0.0889475 + 0.996036i \(0.528350\pi\)
\(432\) 614.441 + 3987.90i 0.0684313 + 0.444139i
\(433\) −10811.6 −1.19994 −0.599970 0.800023i \(-0.704821\pi\)
−0.599970 + 0.800023i \(0.704821\pi\)
\(434\) 7868.14 8493.77i 0.870237 0.939434i
\(435\) 0 0
\(436\) 8759.85 670.885i 0.962204 0.0736916i
\(437\) 47.7234i 0.00522407i
\(438\) −10375.5 9611.23i −1.13187 1.04850i
\(439\) 4891.74 0.531823 0.265911 0.963997i \(-0.414327\pi\)
0.265911 + 0.963997i \(0.414327\pi\)
\(440\) 0 0
\(441\) −9594.21 −1.03598
\(442\) 3848.94 + 3565.43i 0.414197 + 0.383689i
\(443\) 2116.86i 0.227032i 0.993536 + 0.113516i \(0.0362113\pi\)
−0.993536 + 0.113516i \(0.963789\pi\)
\(444\) −232.862 3040.51i −0.0248899 0.324992i
\(445\) 0 0
\(446\) −2965.40 + 3201.19i −0.314833 + 0.339867i
\(447\) 19231.5 2.03494
\(448\) 3471.06 + 14870.7i 0.366054 + 1.56824i
\(449\) 13253.6 1.39305 0.696523 0.717535i \(-0.254730\pi\)
0.696523 + 0.717535i \(0.254730\pi\)
\(450\) 0 0
\(451\) 10406.5i 1.08652i
\(452\) −1294.48 16902.2i −0.134706 1.75888i
\(453\) 6336.46i 0.657202i
\(454\) 7991.37 + 7402.74i 0.826109 + 0.765260i
\(455\) 0 0
\(456\) 56.2960 + 44.6688i 0.00578136 + 0.00458730i
\(457\) 3969.19 0.406282 0.203141 0.979150i \(-0.434885\pi\)
0.203141 + 0.979150i \(0.434885\pi\)
\(458\) 10857.4 + 10057.7i 1.10772 + 1.02613i
\(459\) 5672.68i 0.576858i
\(460\) 0 0
\(461\) 7068.99i 0.714177i 0.934071 + 0.357089i \(0.116231\pi\)
−0.934071 + 0.357089i \(0.883769\pi\)
\(462\) −13336.3 + 14396.7i −1.34299 + 1.44978i
\(463\) −178.581 −0.0179251 −0.00896257 0.999960i \(-0.502853\pi\)
−0.00896257 + 0.999960i \(0.502853\pi\)
\(464\) 1287.21 + 8354.36i 0.128787 + 0.835865i
\(465\) 0 0
\(466\) −348.710 + 376.438i −0.0346646 + 0.0374209i
\(467\) 11576.2i 1.14707i 0.819180 + 0.573536i \(0.194429\pi\)
−0.819180 + 0.573536i \(0.805571\pi\)
\(468\) 2886.81 221.090i 0.285134 0.0218374i
\(469\) 19880.3i 1.95733i
\(470\) 0 0
\(471\) 21088.2 2.06304
\(472\) −2361.13 + 2975.72i −0.230254 + 0.290188i
\(473\) 8645.31 0.840406
\(474\) −8068.64 7474.32i −0.781867 0.724276i
\(475\) 0 0
\(476\) −1639.38 21405.7i −0.157859 2.06119i
\(477\) 973.053i 0.0934025i
\(478\) 4820.20 5203.48i 0.461236 0.497911i
\(479\) −12742.0 −1.21544 −0.607720 0.794152i \(-0.707916\pi\)
−0.607720 + 0.794152i \(0.707916\pi\)
\(480\) 0 0
\(481\) 1177.29 0.111600
\(482\) 2094.07 2260.58i 0.197889 0.213624i
\(483\) 19967.6i 1.88107i
\(484\) −71.0726 928.007i −0.00667474 0.0871532i
\(485\) 0 0
\(486\) −8861.20 8208.50i −0.827062 0.766142i
\(487\) 13309.0 1.23838 0.619188 0.785243i \(-0.287462\pi\)
0.619188 + 0.785243i \(0.287462\pi\)
\(488\) 2316.23 2919.14i 0.214858 0.270785i
\(489\) 9089.62 0.840586
\(490\) 0 0
\(491\) 216.689i 0.0199166i 0.999950 + 0.00995830i \(0.00316988\pi\)
−0.999950 + 0.00995830i \(0.996830\pi\)
\(492\) −15898.1 + 1217.57i −1.45679 + 0.111570i
\(493\) 11883.9i 1.08564i
\(494\) −18.8546 + 20.3538i −0.00171722 + 0.00185377i
\(495\) 0 0
\(496\) 8681.53 1337.62i 0.785912 0.121090i
\(497\) 11462.8 1.03456
\(498\) −8165.14 + 8814.39i −0.734716 + 0.793137i
\(499\) 10800.4i 0.968921i 0.874813 + 0.484460i \(0.160984\pi\)
−0.874813 + 0.484460i \(0.839016\pi\)
\(500\) 0 0
\(501\) 4280.79i 0.381740i
\(502\) −11163.3 10341.0i −0.992516 0.919409i
\(503\) −16697.6 −1.48013 −0.740067 0.672533i \(-0.765206\pi\)
−0.740067 + 0.672533i \(0.765206\pi\)
\(504\) −9280.52 7363.75i −0.820213 0.650809i
\(505\) 0 0
\(506\) −7253.28 6719.02i −0.637248 0.590310i
\(507\) 11827.9i 1.03608i
\(508\) 346.974 + 4530.49i 0.0303041 + 0.395685i
\(509\) 13066.1i 1.13781i 0.822402 + 0.568906i \(0.192633\pi\)
−0.822402 + 0.568906i \(0.807367\pi\)
\(510\) 0 0
\(511\) −22342.5 −1.93419
\(512\) −4949.61 + 10474.7i −0.427234 + 0.904141i
\(513\) 29.9980 0.00258176
\(514\) −2648.64 + 2859.24i −0.227289 + 0.245361i
\(515\) 0 0
\(516\) 1011.51 + 13207.5i 0.0862973 + 1.12680i
\(517\) 11286.0i 0.960075i
\(518\) −3534.02 3273.71i −0.299760 0.277681i
\(519\) 387.126 0.0327417
\(520\) 0 0
\(521\) −269.920 −0.0226975 −0.0113488 0.999936i \(-0.503613\pi\)
−0.0113488 + 0.999936i \(0.503613\pi\)
\(522\) −4810.97 4456.61i −0.403392 0.373679i
\(523\) 19287.7i 1.61260i 0.591506 + 0.806300i \(0.298533\pi\)
−0.591506 + 0.806300i \(0.701467\pi\)
\(524\) 17858.4 1367.71i 1.48883 0.114024i
\(525\) 0 0
\(526\) −790.645 + 853.513i −0.0655395 + 0.0707508i
\(527\) −12349.2 −1.02076
\(528\) −14715.0 + 2267.23i −1.21285 + 0.186872i
\(529\) −2107.06 −0.173178
\(530\) 0 0
\(531\) 2947.08i 0.240852i
\(532\) 113.197 8.66931i 0.00922500 0.000706508i
\(533\) 6155.72i 0.500251i
\(534\) −10525.0 9749.72i −0.852921 0.790096i
\(535\) 0 0
\(536\) 9374.88 11815.1i 0.755472 0.952120i
\(537\) 10738.3 0.862928
\(538\) −844.931 782.695i −0.0677092 0.0627219i
\(539\) 19047.6i 1.52215i
\(540\) 0 0
\(541\) 8722.31i 0.693164i 0.938020 + 0.346582i \(0.112658\pi\)
−0.938020 + 0.346582i \(0.887342\pi\)
\(542\) 2554.57 2757.70i 0.202450 0.218548i
\(543\) 17792.7 1.40618
\(544\) 9119.91 13494.8i 0.718774 1.06357i
\(545\) 0 0
\(546\) 7888.79 8516.07i 0.618332 0.667498i
\(547\) 8718.86i 0.681520i 0.940150 + 0.340760i \(0.110684\pi\)
−0.940150 + 0.340760i \(0.889316\pi\)
\(548\) −872.756 11395.7i −0.0680334 0.888323i
\(549\) 2891.04i 0.224748i
\(550\) 0 0
\(551\) 62.8437 0.00485886
\(552\) 9416.04 11867.0i 0.726039 0.915025i
\(553\) −17375.0 −1.33609
\(554\) 9153.35 + 8479.13i 0.701965 + 0.650260i
\(555\) 0 0
\(556\) −11708.1 + 896.677i −0.893043 + 0.0683949i
\(557\) 11758.7i 0.894489i 0.894412 + 0.447245i \(0.147595\pi\)
−0.894412 + 0.447245i \(0.852405\pi\)
\(558\) −4631.13 + 4999.38i −0.351347 + 0.379284i
\(559\) −5113.94 −0.386935
\(560\) 0 0
\(561\) 20931.7 1.57529
\(562\) −9868.60 + 10653.3i −0.740715 + 0.799613i
\(563\) 5260.52i 0.393791i 0.980424 + 0.196896i \(0.0630860\pi\)
−0.980424 + 0.196896i \(0.936914\pi\)
\(564\) 17241.7 1320.48i 1.28725 0.0985855i
\(565\) 0 0
\(566\) −6418.96 5946.16i −0.476695 0.441582i
\(567\) −26687.7 −1.97668
\(568\) 6812.49 + 5405.46i 0.503250 + 0.399310i
\(569\) 19030.4 1.40210 0.701050 0.713112i \(-0.252715\pi\)
0.701050 + 0.713112i \(0.252715\pi\)
\(570\) 0 0
\(571\) 23227.4i 1.70234i 0.524887 + 0.851172i \(0.324108\pi\)
−0.524887 + 0.851172i \(0.675892\pi\)
\(572\) −438.936 5731.25i −0.0320853 0.418944i
\(573\) 19221.1i 1.40135i
\(574\) −17117.4 + 18478.5i −1.24471 + 1.34369i
\(575\) 0 0
\(576\) −2043.05 8752.77i −0.147790 0.633158i
\(577\) −526.632 −0.0379965 −0.0189983 0.999820i \(-0.506048\pi\)
−0.0189983 + 0.999820i \(0.506048\pi\)
\(578\) −6117.67 + 6604.12i −0.440245 + 0.475251i
\(579\) 16028.9i 1.15049i
\(580\) 0 0
\(581\) 18980.9i 1.35535i
\(582\) 17723.1 + 16417.6i 1.26228 + 1.16930i
\(583\) −1931.83 −0.137235
\(584\) −13278.5 10536.0i −0.940867 0.746544i
\(585\) 0 0
\(586\) −1392.96 1290.36i −0.0981956 0.0909627i
\(587\) 14220.5i 0.999902i −0.866054 0.499951i \(-0.833351\pi\)
0.866054 0.499951i \(-0.166649\pi\)
\(588\) −29099.2 + 2228.60i −2.04087 + 0.156303i
\(589\) 65.3047i 0.00456848i
\(590\) 0 0
\(591\) −29730.4 −2.06928
\(592\) −556.545 3612.14i −0.0386383 0.250774i
\(593\) 10794.3 0.747500 0.373750 0.927529i \(-0.378072\pi\)
0.373750 + 0.927529i \(0.378072\pi\)
\(594\) −4223.45 + 4559.27i −0.291734 + 0.314931i
\(595\) 0 0
\(596\) 22981.9 1760.10i 1.57949 0.120967i
\(597\) 32732.6i 2.24398i
\(598\) 4290.52 + 3974.49i 0.293398 + 0.271787i
\(599\) −10036.9 −0.684634 −0.342317 0.939584i \(-0.611212\pi\)
−0.342317 + 0.939584i \(0.611212\pi\)
\(600\) 0 0
\(601\) 8251.09 0.560015 0.280008 0.959998i \(-0.409663\pi\)
0.280008 + 0.959998i \(0.409663\pi\)
\(602\) 15351.2 + 14220.5i 1.03932 + 0.962764i
\(603\) 11701.4i 0.790245i
\(604\) 579.923 + 7572.15i 0.0390674 + 0.510110i
\(605\) 0 0
\(606\) 10343.8 11166.3i 0.693379 0.748513i
\(607\) 8119.05 0.542903 0.271451 0.962452i \(-0.412496\pi\)
0.271451 + 0.962452i \(0.412496\pi\)
\(608\) 71.3626 + 48.2275i 0.00476009 + 0.00321691i
\(609\) −26293.9 −1.74956
\(610\) 0 0
\(611\) 6675.99i 0.442032i
\(612\) 964.930 + 12599.2i 0.0637336 + 0.832180i
\(613\) 20527.3i 1.35251i 0.736668 + 0.676255i \(0.236398\pi\)
−0.736668 + 0.676255i \(0.763602\pi\)
\(614\) −12057.1 11169.0i −0.792485 0.734112i
\(615\) 0 0
\(616\) −14619.4 + 18424.9i −0.956225 + 1.20513i
\(617\) −27545.7 −1.79732 −0.898661 0.438643i \(-0.855459\pi\)
−0.898661 + 0.438643i \(0.855459\pi\)
\(618\) −6893.31 6385.56i −0.448689 0.415639i
\(619\) 1777.17i 0.115396i −0.998334 0.0576982i \(-0.981624\pi\)
0.998334 0.0576982i \(-0.0183761\pi\)
\(620\) 0 0
\(621\) 6323.49i 0.408620i
\(622\) 13884.1 14988.1i 0.895016 0.966183i
\(623\) −22664.4 −1.45751
\(624\) 8704.32 1341.13i 0.558416 0.0860387i
\(625\) 0 0
\(626\) 3468.28 3744.06i 0.221438 0.239046i
\(627\) 110.690i 0.00705028i
\(628\) 25200.6 1930.02i 1.60130 0.122637i
\(629\) 5138.17i 0.325711i
\(630\) 0 0
\(631\) 16484.4 1.03999 0.519995 0.854169i \(-0.325934\pi\)
0.519995 + 0.854169i \(0.325934\pi\)
\(632\) −10326.2 8193.46i −0.649927 0.515694i
\(633\) 8187.43 0.514093
\(634\) −3305.56 3062.08i −0.207067 0.191815i
\(635\) 0 0
\(636\) −226.026 2951.26i −0.0140920 0.184002i
\(637\) 11267.2i 0.700821i
\(638\) −8847.82 + 9551.35i −0.549041 + 0.592698i
\(639\) −6746.91 −0.417689
\(640\) 0 0
\(641\) −24.7805 −0.00152694 −0.000763470 1.00000i \(-0.500243\pi\)
−0.000763470 1.00000i \(0.500243\pi\)
\(642\) 1433.30 1547.27i 0.0881119 0.0951181i
\(643\) 29107.1i 1.78518i −0.450870 0.892590i \(-0.648886\pi\)
0.450870 0.892590i \(-0.351114\pi\)
\(644\) −1827.47 23861.5i −0.111820 1.46006i
\(645\) 0 0
\(646\) −88.8325 82.2893i −0.00541032 0.00501181i
\(647\) −13419.6 −0.815421 −0.407711 0.913111i \(-0.633673\pi\)
−0.407711 + 0.913111i \(0.633673\pi\)
\(648\) −15860.9 12585.0i −0.961533 0.762941i
\(649\) −5850.91 −0.353880
\(650\) 0 0
\(651\) 27323.6i 1.64500i
\(652\) 10862.2 831.897i 0.652450 0.0499687i
\(653\) 1926.26i 0.115437i 0.998333 + 0.0577186i \(0.0183826\pi\)
−0.998333 + 0.0577186i \(0.981617\pi\)
\(654\) −14089.8 + 15210.1i −0.842438 + 0.909425i
\(655\) 0 0
\(656\) −18887.0 + 2910.03i −1.12410 + 0.173198i
\(657\) 13150.6 0.780905
\(658\) 18564.1 20040.2i 1.09986 1.18731i
\(659\) 13158.1i 0.777797i 0.921281 + 0.388899i \(0.127144\pi\)
−0.921281 + 0.388899i \(0.872856\pi\)
\(660\) 0 0
\(661\) 27392.1i 1.61184i −0.592023 0.805921i \(-0.701670\pi\)
0.592023 0.805921i \(-0.298330\pi\)
\(662\) 12892.1 + 11942.5i 0.756895 + 0.701143i
\(663\) −12381.7 −0.725285
\(664\) −8950.75 + 11280.6i −0.523127 + 0.659296i
\(665\) 0 0
\(666\) 2080.10 + 1926.88i 0.121024 + 0.112110i
\(667\) 13247.3i 0.769019i
\(668\) 391.785 + 5115.61i 0.0226926 + 0.296301i
\(669\) 10297.9i 0.595128i
\(670\) 0 0
\(671\) 5739.65 0.330219
\(672\) −29858.3 20178.5i −1.71400 1.15834i
\(673\) −5569.75 −0.319017 −0.159508 0.987197i \(-0.550991\pi\)
−0.159508 + 0.987197i \(0.550991\pi\)
\(674\) 21872.0 23611.2i 1.24997 1.34936i
\(675\) 0 0
\(676\) −1082.51 14134.5i −0.0615901 0.804192i
\(677\) 4130.23i 0.234472i −0.993104 0.117236i \(-0.962597\pi\)
0.993104 0.117236i \(-0.0374034\pi\)
\(678\) 29348.1 + 27186.4i 1.66240 + 1.53995i
\(679\) 38164.8 2.15704
\(680\) 0 0
\(681\) −25707.5 −1.44657
\(682\) 9925.39 + 9194.31i 0.557277 + 0.516229i
\(683\) 22875.3i 1.28155i −0.767728 0.640776i \(-0.778613\pi\)
0.767728 0.640776i \(-0.221387\pi\)
\(684\) −66.6268 + 5.10270i −0.00372447 + 0.000285244i
\(685\) 0 0
\(686\) −11667.8 + 12595.5i −0.649385 + 0.701021i
\(687\) −34927.3 −1.93968
\(688\) 2417.55 + 15690.6i 0.133965 + 0.869473i
\(689\) 1142.73 0.0631851
\(690\) 0 0
\(691\) 19910.4i 1.09613i −0.836435 0.548066i \(-0.815364\pi\)
0.836435 0.548066i \(-0.184636\pi\)
\(692\) 462.620 35.4304i 0.0254136 0.00194633i
\(693\) 18247.5i 1.00024i
\(694\) −5247.12 4860.63i −0.287000 0.265860i
\(695\) 0 0
\(696\) −15626.9 12399.3i −0.851056 0.675282i
\(697\) 26866.2 1.46001
\(698\) −229.411 212.513i −0.0124403 0.0115240i
\(699\) 1210.96i 0.0655262i
\(700\) 0 0
\(701\) 3428.44i 0.184722i 0.995726 + 0.0923612i \(0.0294414\pi\)
−0.995726 + 0.0923612i \(0.970559\pi\)
\(702\) 2498.29 2696.94i 0.134319 0.144999i
\(703\) −27.1715 −0.00145774
\(704\) −17377.1 + 4056.11i −0.930290 + 0.217145i
\(705\) 0 0
\(706\) 13681.7 14769.6i 0.729343 0.787337i
\(707\) 24045.4i 1.27910i
\(708\) −684.564 8938.47i −0.0363383 0.474475i
\(709\) 15608.3i 0.826771i 0.910556 + 0.413385i \(0.135654\pi\)
−0.910556 + 0.413385i \(0.864346\pi\)
\(710\) 0 0
\(711\) 10226.8 0.539430
\(712\) −13469.8 10687.8i −0.708991 0.562558i
\(713\) −13766.0 −0.723061
\(714\) 37167.7 + 34430.0i 1.94813 + 1.80464i
\(715\) 0 0
\(716\) 12832.4 982.789i 0.669791 0.0512968i
\(717\) 16739.1i 0.871873i
\(718\) −5993.26 + 6469.81i −0.311513 + 0.336283i
\(719\) −8282.41 −0.429599 −0.214800 0.976658i \(-0.568910\pi\)
−0.214800 + 0.976658i \(0.568910\pi\)
\(720\) 0 0
\(721\) −14844.0 −0.766741
\(722\) −13183.4 + 14231.7i −0.679550 + 0.733584i
\(723\) 7272.08i 0.374068i
\(724\) 21262.5 1628.42i 1.09146 0.0835907i
\(725\) 0 0
\(726\) 1611.34 + 1492.65i 0.0823726 + 0.0763052i
\(727\) 20590.4 1.05042 0.525210 0.850973i \(-0.323987\pi\)
0.525210 + 0.850973i \(0.323987\pi\)
\(728\) 8647.81 10898.8i 0.440260 0.554858i
\(729\) 4345.77 0.220788
\(730\) 0 0
\(731\) 22319.4i 1.12929i
\(732\) 671.548 + 8768.51i 0.0339086 + 0.442751i
\(733\) 24257.3i 1.22232i −0.791506 0.611162i \(-0.790703\pi\)
0.791506 0.611162i \(-0.209297\pi\)
\(734\) 21158.3 22840.6i 1.06399 1.14859i
\(735\) 0 0
\(736\) 10166.2 15043.0i 0.509146 0.753387i
\(737\) 23231.1 1.16110
\(738\) 10075.2 10876.3i 0.502537 0.542497i
\(739\) 25426.8i 1.26569i −0.774280 0.632843i \(-0.781888\pi\)
0.774280 0.632843i \(-0.218112\pi\)
\(740\) 0 0
\(741\) 65.4761i 0.00324605i
\(742\) −3430.29 3177.62i −0.169717 0.157216i
\(743\) 22658.4 1.11878 0.559391 0.828904i \(-0.311035\pi\)
0.559391 + 0.828904i \(0.311035\pi\)
\(744\) −12884.9 + 16238.8i −0.634925 + 0.800194i
\(745\) 0 0
\(746\) 26709.5 + 24742.2i 1.31086 + 1.21431i
\(747\) 11172.0i 0.547205i
\(748\) 25013.6 1915.70i 1.22271 0.0936430i
\(749\) 3331.88i 0.162542i
\(750\) 0 0
\(751\) −10999.0 −0.534431 −0.267215 0.963637i \(-0.586104\pi\)
−0.267215 + 0.963637i \(0.586104\pi\)
\(752\) 20483.2 3155.98i 0.993281 0.153041i
\(753\) 35911.3 1.73795
\(754\) 5233.73 5649.89i 0.252787 0.272887i
\(755\) 0 0
\(756\) −14998.9 + 1148.71i −0.721567 + 0.0552621i
\(757\) 30279.9i 1.45382i 0.686734 + 0.726909i \(0.259044\pi\)
−0.686734 + 0.726909i \(0.740956\pi\)
\(758\) 12471.1 + 11552.5i 0.597587 + 0.553570i
\(759\) 23333.1 1.11586
\(760\) 0 0
\(761\) 4374.09 0.208358 0.104179 0.994559i \(-0.466778\pi\)
0.104179 + 0.994559i \(0.466778\pi\)
\(762\) −7866.50 7287.07i −0.373981 0.346434i
\(763\) 32753.4i 1.55407i
\(764\) 1759.15 + 22969.5i 0.0833034 + 1.08771i
\(765\) 0 0
\(766\) −7712.93 + 8326.23i −0.363812 + 0.392740i
\(767\) 3460.97 0.162932
\(768\) −8229.69 26072.5i −0.386671 1.22502i
\(769\) 12982.1 0.608774 0.304387 0.952548i \(-0.401548\pi\)
0.304387 + 0.952548i \(0.401548\pi\)
\(770\) 0 0
\(771\) 9197.90i 0.429642i
\(772\) −1466.99 19154.7i −0.0683912 0.892996i
\(773\) 34056.3i 1.58463i 0.610112 + 0.792316i \(0.291125\pi\)
−0.610112 + 0.792316i \(0.708875\pi\)
\(774\) −9035.63 8370.08i −0.419611 0.388703i
\(775\) 0 0
\(776\) 22681.9 + 17997.3i 1.04927 + 0.832557i
\(777\) 11368.6 0.524898
\(778\) −19687.2 18237.1i −0.907226 0.840402i
\(779\) 142.073i 0.00653437i
\(780\) 0 0
\(781\) 13394.8i 0.613706i
\(782\) −17346.3 + 18725.6i −0.793227 + 0.856300i
\(783\) −8326.97 −0.380053
\(784\) −34570.0 + 5326.41i −1.57480 + 0.242639i
\(785\) 0 0
\(786\) −28724.4 + 31008.4i −1.30352 + 1.40717i
\(787\) 11962.9i 0.541842i 0.962602 + 0.270921i \(0.0873282\pi\)
−0.962602 + 0.270921i \(0.912672\pi\)
\(788\) −35528.2 + 2720.98i −1.60614 + 0.123009i
\(789\) 2745.67i 0.123889i
\(790\) 0 0
\(791\) 63198.1 2.84079
\(792\) 8604.91 10844.7i 0.386063 0.486555i
\(793\) −3395.17 −0.152038
\(794\) −10272.0 9515.34i −0.459116 0.425298i
\(795\) 0 0
\(796\) 2995.75 + 39116.0i 0.133394 + 1.74174i
\(797\) 17898.9i 0.795498i −0.917494 0.397749i \(-0.869791\pi\)
0.917494 0.397749i \(-0.130209\pi\)
\(798\) −182.071 + 196.549i −0.00807676 + 0.00871898i
\(799\) −29136.9 −1.29010
\(800\) 0 0
\(801\) 13340.1 0.588452
\(802\) 16913.8 18258.7i 0.744698 0.803913i
\(803\) 26108.3i 1.14737i
\(804\) 2718.07 + 35490.3i 0.119228 + 1.55677i
\(805\) 0 0
\(806\) −5871.15 5438.69i −0.256579 0.237680i
\(807\) 2718.06 0.118563
\(808\) 11339.0 14290.5i 0.493695 0.622202i
\(809\) −27690.6 −1.20340 −0.601700 0.798722i \(-0.705510\pi\)
−0.601700 + 0.798722i \(0.705510\pi\)
\(810\) 0 0
\(811\) 44013.9i 1.90572i −0.303412 0.952859i \(-0.598126\pi\)
0.303412 0.952859i \(-0.401874\pi\)
\(812\) −31421.6 + 2406.46i −1.35798 + 0.104003i
\(813\) 8871.24i 0.382691i
\(814\) 3825.49 4129.68i 0.164722 0.177820i
\(815\) 0 0
\(816\) 5853.26 + 37989.3i 0.251109 + 1.62977i
\(817\) 118.028 0.00505422
\(818\) 13800.3 14897.7i 0.589875 0.636779i
\(819\) 10793.9i 0.460524i
\(820\) 0 0
\(821\) 30978.8i 1.31689i 0.752628 + 0.658446i \(0.228786\pi\)
−0.752628 + 0.658446i \(0.771214\pi\)
\(822\) 19786.9 + 18329.5i 0.839596 + 0.777753i
\(823\) 41684.8 1.76554 0.882771 0.469804i \(-0.155675\pi\)
0.882771 + 0.469804i \(0.155675\pi\)
\(824\) −8822.01 6999.95i −0.372973 0.295940i
\(825\) 0 0
\(826\) −10389.3 9624.03i −0.437638 0.405403i
\(827\) 11988.7i 0.504096i 0.967715 + 0.252048i \(0.0811042\pi\)
−0.967715 + 0.252048i \(0.918896\pi\)
\(828\) 1075.63 + 14044.7i 0.0451460 + 0.589478i
\(829\) 2023.64i 0.0847814i 0.999101 + 0.0423907i \(0.0134974\pi\)
−0.999101 + 0.0423907i \(0.986503\pi\)
\(830\) 0 0
\(831\) −29445.4 −1.22918
\(832\) 10279.0 2399.30i 0.428319 0.0999770i
\(833\) 49174.8 2.04539
\(834\) 18831.8 20329.2i 0.781886 0.844058i
\(835\) 0 0
\(836\) 10.1305 + 132.276i 0.000419105 + 0.00547232i
\(837\) 8653.07i 0.357340i
\(838\) −28130.6 26058.6i −1.15961 1.07420i
\(839\) 10706.3 0.440553 0.220276 0.975438i \(-0.429304\pi\)
0.220276 + 0.975438i \(0.429304\pi\)
\(840\) 0 0
\(841\) 6944.60 0.284743
\(842\) 15413.5 + 14278.2i 0.630861 + 0.584393i
\(843\) 34270.6i 1.40017i
\(844\) 9784.09 749.327i 0.399031 0.0305603i
\(845\) 0 0
\(846\) −10926.7 + 11795.6i −0.444052 + 0.479361i
\(847\) 3469.86 0.140762
\(848\) −540.209 3506.11i −0.0218760 0.141982i
\(849\) 20649.2 0.834721
\(850\) 0 0
\(851\) 5727.66i 0.230719i
\(852\) −20463.3 + 1567.21i −0.822843 + 0.0630185i
\(853\) 29816.5i 1.19683i −0.801186 0.598416i \(-0.795797\pi\)
0.801186 0.598416i \(-0.204203\pi\)
\(854\) 10191.7 + 9441.03i 0.408377 + 0.378297i
\(855\) 0 0
\(856\) 1571.21 1980.19i 0.0627368 0.0790670i
\(857\) −6572.14 −0.261960 −0.130980 0.991385i \(-0.541812\pi\)
−0.130980 + 0.991385i \(0.541812\pi\)
\(858\) 9951.44 + 9218.44i 0.395964 + 0.366798i
\(859\) 45723.7i 1.81615i −0.418809 0.908075i \(-0.637552\pi\)
0.418809 0.908075i \(-0.362448\pi\)
\(860\) 0 0
\(861\) 59443.5i 2.35288i
\(862\) 3059.57 3302.85i 0.120893 0.130505i
\(863\) −13343.7 −0.526331 −0.263166 0.964751i \(-0.584767\pi\)
−0.263166 + 0.964751i \(0.584767\pi\)
\(864\) −9455.76 6390.29i −0.372328 0.251623i
\(865\) 0 0
\(866\) 20781.3 22433.7i 0.815446 0.880286i
\(867\) 21244.8i 0.832193i
\(868\) 2500.71 + 32652.1i 0.0977874 + 1.27683i
\(869\) 20303.5i 0.792577i
\(870\) 0 0
\(871\) −13741.8 −0.534586
\(872\) −15445.4 + 19465.9i −0.599826 + 0.755960i
\(873\) −22463.6 −0.870878
\(874\) −99.0240 91.7301i −0.00383242 0.00355013i
\(875\) 0 0
\(876\) 39885.8 3054.70i 1.53837 0.117818i
\(877\) 41636.8i 1.60317i −0.597884 0.801583i \(-0.703992\pi\)
0.597884 0.801583i \(-0.296008\pi\)
\(878\) −9402.52 + 10150.2i −0.361412 + 0.390150i
\(879\) 4481.01 0.171946
\(880\) 0 0
\(881\) −31220.6 −1.19392 −0.596962 0.802269i \(-0.703626\pi\)
−0.596962 + 0.802269i \(0.703626\pi\)
\(882\) 18441.2 19907.6i 0.704023 0.760003i
\(883\) 35199.4i 1.34151i 0.741679 + 0.670755i \(0.234030\pi\)
−0.741679 + 0.670755i \(0.765970\pi\)
\(884\) −14796.2 + 1133.19i −0.562954 + 0.0431146i
\(885\) 0 0
\(886\) −4392.40 4068.86i −0.166552 0.154284i
\(887\) −12744.8 −0.482444 −0.241222 0.970470i \(-0.577548\pi\)
−0.241222 + 0.970470i \(0.577548\pi\)
\(888\) 6756.52 + 5361.05i 0.255331 + 0.202596i
\(889\) −16939.7 −0.639076
\(890\) 0 0
\(891\) 31185.8i 1.17258i
\(892\) −942.482 12306.1i −0.0353774 0.461929i
\(893\) 154.080i 0.00577391i
\(894\) −36965.2 + 39904.5i −1.38289 + 1.49285i
\(895\) 0 0
\(896\) −37527.8 21380.9i −1.39924 0.797194i
\(897\) −13802.2 −0.513758
\(898\) −25475.1 + 27500.7i −0.946675 + 1.02195i
\(899\) 18127.6i 0.672512i
\(900\) 0 0
\(901\) 4987.35i 0.184409i
\(902\) −21593.0 20002.5i −0.797083 0.738372i
\(903\) −49383.4 −1.81991
\(904\) 37559.5 + 29802.1i 1.38187 + 1.09646i
\(905\) 0 0
\(906\) −13147.9 12179.4i −0.482129 0.446617i
\(907\) 16588.8i 0.607299i −0.952784 0.303650i \(-0.901795\pi\)
0.952784 0.303650i \(-0.0982052\pi\)
\(908\) −30720.8 + 2352.79i −1.12280 + 0.0859912i
\(909\) 14153.0i 0.516418i
\(910\) 0 0
\(911\) −46114.7 −1.67711 −0.838555 0.544816i \(-0.816599\pi\)
−0.838555 + 0.544816i \(0.816599\pi\)
\(912\) −200.893 + 30.9529i −0.00729413 + 0.00112385i
\(913\) −22180.1 −0.804002
\(914\) −7629.26 + 8235.90i −0.276098 + 0.298052i
\(915\) 0 0
\(916\) −41738.7 + 3196.61i −1.50555 + 0.115305i
\(917\) 66773.3i 2.40463i
\(918\) 11770.6 + 10903.6i 0.423188 + 0.392017i
\(919\) −47522.6 −1.70580 −0.852898 0.522077i \(-0.825157\pi\)
−0.852898 + 0.522077i \(0.825157\pi\)
\(920\) 0 0
\(921\) 38786.6 1.38769
\(922\) −14667.9 13587.5i −0.523926 0.485335i
\(923\) 7923.40i 0.282559i
\(924\) −4238.63 55344.5i −0.150910 1.97046i
\(925\) 0 0
\(926\) 343.253 370.547i 0.0121814 0.0131500i
\(927\) 8737.09 0.309562
\(928\) −19809.1 13387.2i −0.700718 0.473552i
\(929\) −13494.3 −0.476570 −0.238285 0.971195i \(-0.576585\pi\)
−0.238285 + 0.971195i \(0.576585\pi\)
\(930\) 0 0
\(931\) 260.044i 0.00915425i
\(932\) −110.829 1447.12i −0.00389521 0.0508604i
\(933\) 48215.1i 1.69184i
\(934\) −24020.1 22250.9i −0.841502 0.779519i
\(935\) 0 0
\(936\) −5090.04 + 6414.97i −0.177749 + 0.224017i
\(937\) −12453.1 −0.434179 −0.217089 0.976152i \(-0.569656\pi\)
−0.217089 + 0.976152i \(0.569656\pi\)
\(938\) 41250.7 + 38212.3i 1.43591 + 1.33014i
\(939\) 12044.3i 0.418584i
\(940\) 0 0
\(941\) 40466.5i 1.40188i −0.713220 0.700940i \(-0.752764\pi\)
0.713220 0.700940i \(-0.247236\pi\)
\(942\) −40534.0 + 43757.0i −1.40198 + 1.51346i
\(943\) 29948.5 1.03421
\(944\) −1636.13 10618.9i −0.0564104 0.366120i
\(945\) 0 0
\(946\) −16617.3 + 17938.7i −0.571117 + 0.616529i
\(947\) 2645.96i 0.0907943i 0.998969 + 0.0453971i \(0.0144553\pi\)
−0.998969 + 0.0453971i \(0.985545\pi\)
\(948\) 31017.8 2375.54i 1.06267 0.0813860i
\(949\) 15443.8i 0.528268i
\(950\) 0 0
\(951\) 10633.7 0.362587
\(952\) 47567.0 + 37742.7i 1.61939 + 1.28492i
\(953\) −40045.8 −1.36119 −0.680593 0.732662i \(-0.738278\pi\)
−0.680593 + 0.732662i \(0.738278\pi\)
\(954\) 2019.04 + 1870.32i 0.0685209 + 0.0634738i
\(955\) 0 0
\(956\) 1531.99 + 20003.4i 0.0518285 + 0.676734i
\(957\) 30725.8i 1.03785i
\(958\) 24491.6 26439.1i 0.825979 0.891657i
\(959\) 42609.1 1.43474
\(960\) 0 0
\(961\) −10953.5 −0.367679
\(962\) −2262.89 + 2442.82i −0.0758403 + 0.0818707i
\(963\) 1961.12i 0.0656244i
\(964\) 665.553 + 8690.23i 0.0222365 + 0.290346i
\(965\) 0 0
\(966\) 41431.9 + 38380.1i 1.37997 + 1.27832i
\(967\) −11049.0 −0.367439 −0.183719 0.982979i \(-0.558814\pi\)
−0.183719 + 0.982979i \(0.558814\pi\)
\(968\) 2062.19 + 1636.27i 0.0684723 + 0.0543302i
\(969\) 285.765 0.00947380
\(970\) 0 0
\(971\) 26708.5i 0.882717i 0.897331 + 0.441358i \(0.145503\pi\)
−0.897331 + 0.441358i \(0.854497\pi\)
\(972\) 34064.6 2608.88i 1.12410 0.0860904i
\(973\) 43776.9i 1.44237i
\(974\) −25581.5 + 27615.7i −0.841566 + 0.908483i
\(975\) 0 0
\(976\) 1605.02 + 10417.0i 0.0526387 + 0.341640i
\(977\) 11102.6 0.363566 0.181783 0.983339i \(-0.441813\pi\)
0.181783 + 0.983339i \(0.441813\pi\)
\(978\) −17471.3 + 18860.6i −0.571239 + 0.616661i
\(979\) 26484.5i 0.864604i
\(980\) 0 0
\(981\) 19278.5i 0.627435i
\(982\) −449.621 416.503i −0.0146110 0.0135348i
\(983\) −33544.2 −1.08840 −0.544198 0.838957i \(-0.683166\pi\)
−0.544198 + 0.838957i \(0.683166\pi\)
\(984\) 28031.6 35328.1i 0.908144 1.14453i
\(985\) 0 0
\(986\) 24658.5 + 22842.2i 0.796436 + 0.737773i
\(987\) 64467.5i 2.07905i
\(988\) −5.99249 78.2449i −0.000192962 0.00251954i
\(989\) 24880.0i 0.799939i
\(990\) 0 0
\(991\) 5538.20 0.177524 0.0887622 0.996053i \(-0.471709\pi\)
0.0887622 + 0.996053i \(0.471709\pi\)
\(992\) −13911.5 + 20584.9i −0.445251 + 0.658841i
\(993\) −41472.5 −1.32537
\(994\) −22032.8 + 23784.8i −0.703057 + 0.758961i
\(995\) 0 0
\(996\) −2595.10 33884.7i −0.0825591 1.07799i
\(997\) 24192.6i 0.768492i −0.923231 0.384246i \(-0.874461\pi\)
0.923231 0.384246i \(-0.125539\pi\)
\(998\) −22410.3 20759.6i −0.710808 0.658452i
\(999\) 3600.30 0.114022
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.4.d.e.101.4 16
4.3 odd 2 800.4.d.e.401.13 16
5.2 odd 4 40.4.f.a.29.5 16
5.3 odd 4 40.4.f.a.29.12 yes 16
5.4 even 2 inner 200.4.d.e.101.13 16
8.3 odd 2 800.4.d.e.401.3 16
8.5 even 2 inner 200.4.d.e.101.3 16
15.2 even 4 360.4.d.d.109.12 16
15.8 even 4 360.4.d.d.109.5 16
20.3 even 4 160.4.f.a.49.3 16
20.7 even 4 160.4.f.a.49.13 16
20.19 odd 2 800.4.d.e.401.4 16
40.3 even 4 160.4.f.a.49.14 16
40.13 odd 4 40.4.f.a.29.6 yes 16
40.19 odd 2 800.4.d.e.401.14 16
40.27 even 4 160.4.f.a.49.4 16
40.29 even 2 inner 200.4.d.e.101.14 16
40.37 odd 4 40.4.f.a.29.11 yes 16
60.23 odd 4 1440.4.d.d.1009.16 16
60.47 odd 4 1440.4.d.d.1009.2 16
120.53 even 4 360.4.d.d.109.11 16
120.77 even 4 360.4.d.d.109.6 16
120.83 odd 4 1440.4.d.d.1009.1 16
120.107 odd 4 1440.4.d.d.1009.15 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.4.f.a.29.5 16 5.2 odd 4
40.4.f.a.29.6 yes 16 40.13 odd 4
40.4.f.a.29.11 yes 16 40.37 odd 4
40.4.f.a.29.12 yes 16 5.3 odd 4
160.4.f.a.49.3 16 20.3 even 4
160.4.f.a.49.4 16 40.27 even 4
160.4.f.a.49.13 16 20.7 even 4
160.4.f.a.49.14 16 40.3 even 4
200.4.d.e.101.3 16 8.5 even 2 inner
200.4.d.e.101.4 16 1.1 even 1 trivial
200.4.d.e.101.13 16 5.4 even 2 inner
200.4.d.e.101.14 16 40.29 even 2 inner
360.4.d.d.109.5 16 15.8 even 4
360.4.d.d.109.6 16 120.77 even 4
360.4.d.d.109.11 16 120.53 even 4
360.4.d.d.109.12 16 15.2 even 4
800.4.d.e.401.3 16 8.3 odd 2
800.4.d.e.401.4 16 20.19 odd 2
800.4.d.e.401.13 16 4.3 odd 2
800.4.d.e.401.14 16 40.19 odd 2
1440.4.d.d.1009.1 16 120.83 odd 4
1440.4.d.d.1009.2 16 60.47 odd 4
1440.4.d.d.1009.15 16 120.107 odd 4
1440.4.d.d.1009.16 16 60.23 odd 4