Properties

Label 360.4.d.d.109.6
Level $360$
Weight $4$
Character 360.109
Analytic conductor $21.241$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [360,4,Mod(109,360)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(360, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("360.109");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 360.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.2406876021\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2x^{14} + 44x^{12} + 400x^{10} - 3200x^{8} + 25600x^{6} + 180224x^{4} - 524288x^{2} + 16777216 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{21}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 109.6
Root \(2.07496 - 1.92212i\) of defining polynomial
Character \(\chi\) \(=\) 360.109
Dual form 360.4.d.d.109.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.07496 + 1.92212i) q^{2} +(0.610901 - 7.97664i) q^{4} +(11.1461 - 0.874848i) q^{5} +29.8250i q^{7} +(14.0645 + 17.7254i) q^{8} +(-21.4460 + 23.2393i) q^{10} +34.8520i q^{11} +20.6159 q^{13} +(-57.3272 - 61.8856i) q^{14} +(-63.2536 - 9.74588i) q^{16} -89.9765i q^{17} +0.475810i q^{19} +(-0.169205 - 89.4426i) q^{20} +(-66.9897 - 72.3164i) q^{22} +100.299i q^{23} +(123.469 - 19.5022i) q^{25} +(-42.7771 + 39.6263i) q^{26} +(237.903 + 18.2201i) q^{28} +132.077i q^{29} -137.250 q^{31} +(149.981 - 101.359i) q^{32} +(172.946 + 186.697i) q^{34} +(26.0923 + 332.431i) q^{35} +57.1057 q^{37} +(-0.914564 - 0.987285i) q^{38} +(172.271 + 185.264i) q^{40} -298.591 q^{41} +248.058 q^{43} +(278.002 + 21.2911i) q^{44} +(-192.787 - 208.117i) q^{46} +323.827i q^{47} -546.530 q^{49} +(-218.708 + 277.789i) q^{50} +(12.5943 - 164.446i) q^{52} +55.4295 q^{53} +(30.4902 + 388.462i) q^{55} +(-528.660 + 419.473i) q^{56} +(-253.868 - 274.055i) q^{58} -167.879i q^{59} +164.687i q^{61} +(284.787 - 263.810i) q^{62} +(-116.381 + 498.597i) q^{64} +(229.786 - 18.0358i) q^{65} -666.565 q^{67} +(-717.710 - 54.9668i) q^{68} +(-693.113 - 639.628i) q^{70} -384.334 q^{71} +749.119i q^{73} +(-118.492 + 109.764i) q^{74} +(3.79536 + 0.290673i) q^{76} -1039.46 q^{77} +582.564 q^{79} +(-713.555 - 53.2909i) q^{80} +(619.564 - 573.928i) q^{82} +636.408 q^{83} +(-78.7158 - 1002.88i) q^{85} +(-514.710 + 476.798i) q^{86} +(-617.766 + 490.175i) q^{88} -759.913 q^{89} +614.869i q^{91} +(800.051 + 61.2730i) q^{92} +(-622.435 - 671.928i) q^{94} +(0.416261 + 5.30340i) q^{95} +1279.63i q^{97} +(1134.03 - 1050.50i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{4} - 48 q^{10} - 28 q^{14} - 168 q^{16} + 196 q^{20} - 24 q^{25} - 200 q^{26} - 112 q^{31} + 408 q^{34} + 672 q^{40} - 232 q^{41} - 920 q^{44} + 212 q^{46} - 200 q^{49} + 648 q^{50} + 392 q^{55}+ \cdots + 1064 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/360\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(217\) \(271\) \(281\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.07496 + 1.92212i −0.733608 + 0.679572i
\(3\) 0 0
\(4\) 0.610901 7.97664i 0.0763627 0.997080i
\(5\) 11.1461 0.874848i 0.996934 0.0782488i
\(6\) 0 0
\(7\) 29.8250i 1.61040i 0.593005 + 0.805199i \(0.297941\pi\)
−0.593005 + 0.805199i \(0.702059\pi\)
\(8\) 14.0645 + 17.7254i 0.621568 + 0.783360i
\(9\) 0 0
\(10\) −21.4460 + 23.2393i −0.678183 + 0.734893i
\(11\) 34.8520i 0.955297i 0.878551 + 0.477648i \(0.158511\pi\)
−0.878551 + 0.477648i \(0.841489\pi\)
\(12\) 0 0
\(13\) 20.6159 0.439833 0.219916 0.975519i \(-0.429422\pi\)
0.219916 + 0.975519i \(0.429422\pi\)
\(14\) −57.3272 61.8856i −1.09438 1.18140i
\(15\) 0 0
\(16\) −63.2536 9.74588i −0.988337 0.152279i
\(17\) 89.9765i 1.28368i −0.766840 0.641839i \(-0.778172\pi\)
0.766840 0.641839i \(-0.221828\pi\)
\(18\) 0 0
\(19\) 0.475810i 0.00574517i 0.999996 + 0.00287259i \(0.000914374\pi\)
−0.999996 + 0.00287259i \(0.999086\pi\)
\(20\) −0.169205 89.4426i −0.00189177 0.999998i
\(21\) 0 0
\(22\) −66.9897 72.3164i −0.649193 0.700814i
\(23\) 100.299i 0.909298i 0.890671 + 0.454649i \(0.150235\pi\)
−0.890671 + 0.454649i \(0.849765\pi\)
\(24\) 0 0
\(25\) 123.469 19.5022i 0.987754 0.156018i
\(26\) −42.7771 + 39.6263i −0.322665 + 0.298898i
\(27\) 0 0
\(28\) 237.903 + 18.2201i 1.60570 + 0.122974i
\(29\) 132.077i 0.845729i 0.906193 + 0.422864i \(0.138975\pi\)
−0.906193 + 0.422864i \(0.861025\pi\)
\(30\) 0 0
\(31\) −137.250 −0.795186 −0.397593 0.917562i \(-0.630154\pi\)
−0.397593 + 0.917562i \(0.630154\pi\)
\(32\) 149.981 101.359i 0.828538 0.559933i
\(33\) 0 0
\(34\) 172.946 + 186.697i 0.872351 + 0.941716i
\(35\) 26.0923 + 332.431i 0.126012 + 1.60546i
\(36\) 0 0
\(37\) 57.1057 0.253733 0.126866 0.991920i \(-0.459508\pi\)
0.126866 + 0.991920i \(0.459508\pi\)
\(38\) −0.914564 0.987285i −0.00390426 0.00421471i
\(39\) 0 0
\(40\) 172.271 + 185.264i 0.680959 + 0.732322i
\(41\) −298.591 −1.13737 −0.568684 0.822556i \(-0.692547\pi\)
−0.568684 + 0.822556i \(0.692547\pi\)
\(42\) 0 0
\(43\) 248.058 0.879733 0.439866 0.898063i \(-0.355026\pi\)
0.439866 + 0.898063i \(0.355026\pi\)
\(44\) 278.002 + 21.2911i 0.952507 + 0.0729490i
\(45\) 0 0
\(46\) −192.787 208.117i −0.617934 0.667068i
\(47\) 323.827i 1.00500i 0.864577 + 0.502501i \(0.167587\pi\)
−0.864577 + 0.502501i \(0.832413\pi\)
\(48\) 0 0
\(49\) −546.530 −1.59338
\(50\) −218.708 + 277.789i −0.618600 + 0.785706i
\(51\) 0 0
\(52\) 12.5943 164.446i 0.0335868 0.438548i
\(53\) 55.4295 0.143657 0.0718285 0.997417i \(-0.477117\pi\)
0.0718285 + 0.997417i \(0.477117\pi\)
\(54\) 0 0
\(55\) 30.4902 + 388.462i 0.0747508 + 0.952368i
\(56\) −528.660 + 419.473i −1.26152 + 1.00097i
\(57\) 0 0
\(58\) −253.868 274.055i −0.574734 0.620434i
\(59\) 167.879i 0.370440i −0.982697 0.185220i \(-0.940700\pi\)
0.982697 0.185220i \(-0.0592998\pi\)
\(60\) 0 0
\(61\) 164.687i 0.345672i 0.984951 + 0.172836i \(0.0552930\pi\)
−0.984951 + 0.172836i \(0.944707\pi\)
\(62\) 284.787 263.810i 0.583355 0.540386i
\(63\) 0 0
\(64\) −116.381 + 498.597i −0.227307 + 0.973823i
\(65\) 229.786 18.0358i 0.438484 0.0344164i
\(66\) 0 0
\(67\) −666.565 −1.21543 −0.607715 0.794155i \(-0.707914\pi\)
−0.607715 + 0.794155i \(0.707914\pi\)
\(68\) −717.710 54.9668i −1.27993 0.0980250i
\(69\) 0 0
\(70\) −693.113 639.628i −1.18347 1.09214i
\(71\) −384.334 −0.642424 −0.321212 0.947007i \(-0.604090\pi\)
−0.321212 + 0.947007i \(0.604090\pi\)
\(72\) 0 0
\(73\) 749.119i 1.20107i 0.799600 + 0.600533i \(0.205045\pi\)
−0.799600 + 0.600533i \(0.794955\pi\)
\(74\) −118.492 + 109.764i −0.186141 + 0.172430i
\(75\) 0 0
\(76\) 3.79536 + 0.290673i 0.00572840 + 0.000438717i
\(77\) −1039.46 −1.53841
\(78\) 0 0
\(79\) 582.564 0.829666 0.414833 0.909898i \(-0.363840\pi\)
0.414833 + 0.909898i \(0.363840\pi\)
\(80\) −713.555 53.2909i −0.997223 0.0744763i
\(81\) 0 0
\(82\) 619.564 573.928i 0.834383 0.772924i
\(83\) 636.408 0.841625 0.420813 0.907148i \(-0.361745\pi\)
0.420813 + 0.907148i \(0.361745\pi\)
\(84\) 0 0
\(85\) −78.7158 1002.88i −0.100446 1.27974i
\(86\) −514.710 + 476.798i −0.645379 + 0.597842i
\(87\) 0 0
\(88\) −617.766 + 490.175i −0.748341 + 0.593782i
\(89\) −759.913 −0.905064 −0.452532 0.891748i \(-0.649479\pi\)
−0.452532 + 0.891748i \(0.649479\pi\)
\(90\) 0 0
\(91\) 614.869i 0.708305i
\(92\) 800.051 + 61.2730i 0.906643 + 0.0694364i
\(93\) 0 0
\(94\) −622.435 671.928i −0.682971 0.737278i
\(95\) 0.416261 + 5.30340i 0.000449553 + 0.00572756i
\(96\) 0 0
\(97\) 1279.63i 1.33945i 0.742611 + 0.669723i \(0.233587\pi\)
−0.742611 + 0.669723i \(0.766413\pi\)
\(98\) 1134.03 1050.50i 1.16892 1.08282i
\(99\) 0 0
\(100\) −80.1346 996.784i −0.0801346 0.996784i
\(101\) 806.217i 0.794273i −0.917760 0.397137i \(-0.870004\pi\)
0.917760 0.397137i \(-0.129996\pi\)
\(102\) 0 0
\(103\) 497.704i 0.476119i 0.971251 + 0.238059i \(0.0765113\pi\)
−0.971251 + 0.238059i \(0.923489\pi\)
\(104\) 289.952 + 365.426i 0.273386 + 0.344547i
\(105\) 0 0
\(106\) −115.014 + 106.542i −0.105388 + 0.0976254i
\(107\) 111.714 0.100933 0.0504666 0.998726i \(-0.483929\pi\)
0.0504666 + 0.998726i \(0.483929\pi\)
\(108\) 0 0
\(109\) 1098.19i 0.965022i 0.875890 + 0.482511i \(0.160275\pi\)
−0.875890 + 0.482511i \(0.839725\pi\)
\(110\) −809.937 747.437i −0.702041 0.647866i
\(111\) 0 0
\(112\) 290.671 1886.54i 0.245230 1.59162i
\(113\) 2118.96i 1.76403i 0.471221 + 0.882015i \(0.343813\pi\)
−0.471221 + 0.882015i \(0.656187\pi\)
\(114\) 0 0
\(115\) 87.7466 + 1117.94i 0.0711514 + 0.906510i
\(116\) 1053.53 + 80.6862i 0.843259 + 0.0645821i
\(117\) 0 0
\(118\) 322.683 + 348.341i 0.251741 + 0.271758i
\(119\) 2683.55 2.06723
\(120\) 0 0
\(121\) 116.341 0.0874084
\(122\) −316.548 341.718i −0.234909 0.253588i
\(123\) 0 0
\(124\) −83.8460 + 1094.79i −0.0607225 + 0.792864i
\(125\) 1359.13 325.390i 0.972517 0.232830i
\(126\) 0 0
\(127\) 567.970i 0.396844i −0.980117 0.198422i \(-0.936418\pi\)
0.980117 0.198422i \(-0.0635816\pi\)
\(128\) −716.879 1258.27i −0.495029 0.868876i
\(129\) 0 0
\(130\) −442.130 + 479.100i −0.298287 + 0.323230i
\(131\) 2238.84i 1.49319i 0.665278 + 0.746596i \(0.268313\pi\)
−0.665278 + 0.746596i \(0.731687\pi\)
\(132\) 0 0
\(133\) −14.1910 −0.00925201
\(134\) 1383.09 1281.22i 0.891650 0.825973i
\(135\) 0 0
\(136\) 1594.87 1265.47i 1.00558 0.797892i
\(137\) 1428.64i 0.890925i −0.895301 0.445462i \(-0.853039\pi\)
0.895301 0.445462i \(-0.146961\pi\)
\(138\) 0 0
\(139\) 1467.79i 0.895659i −0.894119 0.447829i \(-0.852197\pi\)
0.894119 0.447829i \(-0.147803\pi\)
\(140\) 2667.62 5.04655i 1.61039 0.00304651i
\(141\) 0 0
\(142\) 797.478 738.737i 0.471288 0.436574i
\(143\) 718.505i 0.420171i
\(144\) 0 0
\(145\) 115.548 + 1472.14i 0.0661772 + 0.843136i
\(146\) −1439.90 1554.39i −0.816211 0.881112i
\(147\) 0 0
\(148\) 34.8860 455.512i 0.0193757 0.252992i
\(149\) 2881.15i 1.58411i −0.610449 0.792056i \(-0.709011\pi\)
0.610449 0.792056i \(-0.290989\pi\)
\(150\) 0 0
\(151\) −949.291 −0.511604 −0.255802 0.966729i \(-0.582340\pi\)
−0.255802 + 0.966729i \(0.582340\pi\)
\(152\) −8.43393 + 6.69202i −0.00450054 + 0.00357101i
\(153\) 0 0
\(154\) 2156.83 1997.97i 1.12859 1.04546i
\(155\) −1529.79 + 120.073i −0.792748 + 0.0622223i
\(156\) 0 0
\(157\) 3159.30 1.60599 0.802993 0.595988i \(-0.203239\pi\)
0.802993 + 0.595988i \(0.203239\pi\)
\(158\) −1208.80 + 1119.76i −0.608650 + 0.563818i
\(159\) 0 0
\(160\) 1583.03 1260.96i 0.782183 0.623049i
\(161\) −2991.42 −1.46433
\(162\) 0 0
\(163\) −1361.75 −0.654360 −0.327180 0.944962i \(-0.606098\pi\)
−0.327180 + 0.944962i \(0.606098\pi\)
\(164\) −182.410 + 2381.75i −0.0868525 + 1.13405i
\(165\) 0 0
\(166\) −1320.52 + 1223.25i −0.617423 + 0.571945i
\(167\) 641.323i 0.297168i 0.988900 + 0.148584i \(0.0474716\pi\)
−0.988900 + 0.148584i \(0.952528\pi\)
\(168\) 0 0
\(169\) −1771.98 −0.806547
\(170\) 2091.00 + 1929.64i 0.943365 + 0.870568i
\(171\) 0 0
\(172\) 151.539 1978.67i 0.0671787 0.877164i
\(173\) 57.9969 0.0254880 0.0127440 0.999919i \(-0.495943\pi\)
0.0127440 + 0.999919i \(0.495943\pi\)
\(174\) 0 0
\(175\) 581.653 + 3682.47i 0.251251 + 1.59068i
\(176\) 339.663 2204.51i 0.145472 0.944155i
\(177\) 0 0
\(178\) 1576.79 1460.65i 0.663962 0.615056i
\(179\) 1608.75i 0.671753i −0.941906 0.335876i \(-0.890968\pi\)
0.941906 0.335876i \(-0.109032\pi\)
\(180\) 0 0
\(181\) 2665.60i 1.09465i −0.836919 0.547327i \(-0.815646\pi\)
0.836919 0.547327i \(-0.184354\pi\)
\(182\) −1181.85 1275.83i −0.481345 0.519619i
\(183\) 0 0
\(184\) −1777.85 + 1410.66i −0.712308 + 0.565190i
\(185\) 636.504 49.9588i 0.252955 0.0198543i
\(186\) 0 0
\(187\) 3135.86 1.22629
\(188\) 2583.05 + 197.827i 1.00207 + 0.0767446i
\(189\) 0 0
\(190\) −11.0575 10.2042i −0.00422209 0.00389628i
\(191\) 2879.60 1.09089 0.545446 0.838146i \(-0.316360\pi\)
0.545446 + 0.838146i \(0.316360\pi\)
\(192\) 0 0
\(193\) 2401.35i 0.895611i −0.894131 0.447805i \(-0.852206\pi\)
0.894131 0.447805i \(-0.147794\pi\)
\(194\) −2459.60 2655.17i −0.910251 0.982629i
\(195\) 0 0
\(196\) −333.876 + 4359.47i −0.121675 + 1.58873i
\(197\) 4454.03 1.61085 0.805423 0.592700i \(-0.201938\pi\)
0.805423 + 0.592700i \(0.201938\pi\)
\(198\) 0 0
\(199\) 4903.81 1.74684 0.873422 0.486964i \(-0.161896\pi\)
0.873422 + 0.486964i \(0.161896\pi\)
\(200\) 2082.22 + 1914.26i 0.736174 + 0.676792i
\(201\) 0 0
\(202\) 1549.65 + 1672.87i 0.539766 + 0.582685i
\(203\) −3939.20 −1.36196
\(204\) 0 0
\(205\) −3328.11 + 261.222i −1.13388 + 0.0889977i
\(206\) −956.647 1032.72i −0.323557 0.349285i
\(207\) 0 0
\(208\) −1304.03 200.920i −0.434703 0.0669774i
\(209\) −16.5829 −0.00548834
\(210\) 0 0
\(211\) 1226.59i 0.400200i −0.979776 0.200100i \(-0.935873\pi\)
0.979776 0.200100i \(-0.0641266\pi\)
\(212\) 33.8620 442.141i 0.0109700 0.143238i
\(213\) 0 0
\(214\) −231.803 + 214.729i −0.0740454 + 0.0685914i
\(215\) 2764.87 217.013i 0.877035 0.0688380i
\(216\) 0 0
\(217\) 4093.47i 1.28057i
\(218\) −2110.85 2278.69i −0.655802 0.707948i
\(219\) 0 0
\(220\) 3117.25 5.89714i 0.955295 0.00180721i
\(221\) 1854.95i 0.564603i
\(222\) 0 0
\(223\) 1542.77i 0.463281i −0.972801 0.231641i \(-0.925591\pi\)
0.972801 0.231641i \(-0.0744093\pi\)
\(224\) 3023.02 + 4473.19i 0.901716 + 1.33428i
\(225\) 0 0
\(226\) −4072.91 4396.76i −1.19879 1.29411i
\(227\) 3851.34 1.12609 0.563045 0.826426i \(-0.309630\pi\)
0.563045 + 0.826426i \(0.309630\pi\)
\(228\) 0 0
\(229\) 5232.61i 1.50996i −0.655748 0.754980i \(-0.727647\pi\)
0.655748 0.754980i \(-0.272353\pi\)
\(230\) −2330.89 2151.02i −0.668236 0.616671i
\(231\) 0 0
\(232\) −2341.13 + 1857.60i −0.662510 + 0.525678i
\(233\) 181.419i 0.0510094i 0.999675 + 0.0255047i \(0.00811927\pi\)
−0.999675 + 0.0255047i \(0.991881\pi\)
\(234\) 0 0
\(235\) 283.300 + 3609.40i 0.0786402 + 1.00192i
\(236\) −1339.11 102.557i −0.369358 0.0282878i
\(237\) 0 0
\(238\) −5568.25 + 5158.10i −1.51654 + 1.40483i
\(239\) −2507.75 −0.678716 −0.339358 0.940657i \(-0.610210\pi\)
−0.339358 + 0.940657i \(0.610210\pi\)
\(240\) 0 0
\(241\) −1089.46 −0.291196 −0.145598 0.989344i \(-0.546511\pi\)
−0.145598 + 0.989344i \(0.546511\pi\)
\(242\) −241.402 + 223.621i −0.0641235 + 0.0594003i
\(243\) 0 0
\(244\) 1313.65 + 100.607i 0.344662 + 0.0263964i
\(245\) −6091.65 + 478.130i −1.58850 + 0.124680i
\(246\) 0 0
\(247\) 9.80925i 0.00252691i
\(248\) −1930.34 2432.81i −0.494262 0.622917i
\(249\) 0 0
\(250\) −2194.71 + 3287.59i −0.555222 + 0.831702i
\(251\) 5380.02i 1.35292i 0.736478 + 0.676461i \(0.236487\pi\)
−0.736478 + 0.676461i \(0.763513\pi\)
\(252\) 0 0
\(253\) −3495.63 −0.868649
\(254\) 1091.71 + 1178.51i 0.269684 + 0.291128i
\(255\) 0 0
\(256\) 3906.04 + 1232.92i 0.953622 + 0.301007i
\(257\) 1377.98i 0.334458i −0.985918 0.167229i \(-0.946518\pi\)
0.985918 0.167229i \(-0.0534819\pi\)
\(258\) 0 0
\(259\) 1703.18i 0.408611i
\(260\) −3.48832 1843.94i −0.000832064 0.439832i
\(261\) 0 0
\(262\) −4303.32 4645.49i −1.01473 1.09542i
\(263\) 411.340i 0.0964422i 0.998837 + 0.0482211i \(0.0153552\pi\)
−0.998837 + 0.0482211i \(0.984645\pi\)
\(264\) 0 0
\(265\) 617.820 48.4924i 0.143217 0.0112410i
\(266\) 29.4458 27.2769i 0.00678735 0.00628741i
\(267\) 0 0
\(268\) −407.205 + 5316.95i −0.0928135 + 1.21188i
\(269\) 407.204i 0.0922961i −0.998935 0.0461481i \(-0.985305\pi\)
0.998935 0.0461481i \(-0.0146946\pi\)
\(270\) 0 0
\(271\) −1329.04 −0.297909 −0.148954 0.988844i \(-0.547591\pi\)
−0.148954 + 0.988844i \(0.547591\pi\)
\(272\) −876.900 + 5691.34i −0.195478 + 1.26871i
\(273\) 0 0
\(274\) 2746.01 + 2964.36i 0.605448 + 0.653590i
\(275\) 679.691 + 4303.15i 0.149043 + 0.943598i
\(276\) 0 0
\(277\) −4411.34 −0.956866 −0.478433 0.878124i \(-0.658795\pi\)
−0.478433 + 0.878124i \(0.658795\pi\)
\(278\) 2821.28 + 3045.61i 0.608665 + 0.657063i
\(279\) 0 0
\(280\) −5525.51 + 5137.97i −1.17933 + 1.09661i
\(281\) −5134.23 −1.08997 −0.544986 0.838445i \(-0.683465\pi\)
−0.544986 + 0.838445i \(0.683465\pi\)
\(282\) 0 0
\(283\) −3093.54 −0.649794 −0.324897 0.945749i \(-0.605330\pi\)
−0.324897 + 0.945749i \(0.605330\pi\)
\(284\) −234.790 + 3065.70i −0.0490572 + 0.640548i
\(285\) 0 0
\(286\) −1381.05 1490.87i −0.285536 0.308241i
\(287\) 8905.47i 1.83161i
\(288\) 0 0
\(289\) −3182.77 −0.647827
\(290\) −3069.39 2832.53i −0.621520 0.573559i
\(291\) 0 0
\(292\) 5975.45 + 457.638i 1.19756 + 0.0917166i
\(293\) 671.319 0.133853 0.0669264 0.997758i \(-0.478681\pi\)
0.0669264 + 0.997758i \(0.478681\pi\)
\(294\) 0 0
\(295\) −146.868 1871.19i −0.0289865 0.369304i
\(296\) 803.162 + 1012.22i 0.157712 + 0.198764i
\(297\) 0 0
\(298\) 5537.91 + 5978.26i 1.07652 + 1.16212i
\(299\) 2067.76i 0.399939i
\(300\) 0 0
\(301\) 7398.33i 1.41672i
\(302\) 1969.74 1824.65i 0.375317 0.347672i
\(303\) 0 0
\(304\) 4.63719 30.0967i 0.000874871 0.00567817i
\(305\) 144.076 + 1835.61i 0.0270484 + 0.344612i
\(306\) 0 0
\(307\) 5810.78 1.08026 0.540128 0.841583i \(-0.318376\pi\)
0.540128 + 0.841583i \(0.318376\pi\)
\(308\) −635.007 + 8291.39i −0.117477 + 1.53392i
\(309\) 0 0
\(310\) 2943.46 3189.59i 0.539282 0.584376i
\(311\) 7223.30 1.31703 0.658514 0.752568i \(-0.271185\pi\)
0.658514 + 0.752568i \(0.271185\pi\)
\(312\) 0 0
\(313\) 1804.40i 0.325849i 0.986638 + 0.162925i \(0.0520928\pi\)
−0.986638 + 0.162925i \(0.947907\pi\)
\(314\) −6555.42 + 6072.56i −1.17817 + 1.09138i
\(315\) 0 0
\(316\) 355.889 4646.91i 0.0633555 0.827244i
\(317\) −1593.07 −0.282259 −0.141129 0.989991i \(-0.545073\pi\)
−0.141129 + 0.989991i \(0.545073\pi\)
\(318\) 0 0
\(319\) −4603.15 −0.807922
\(320\) −860.994 + 5659.21i −0.150409 + 0.988624i
\(321\) 0 0
\(322\) 6207.08 5749.88i 1.07425 0.995119i
\(323\) 42.8117 0.00737495
\(324\) 0 0
\(325\) 2545.43 402.056i 0.434446 0.0686217i
\(326\) 2825.58 2617.45i 0.480044 0.444685i
\(327\) 0 0
\(328\) −4199.53 5292.65i −0.706951 0.890969i
\(329\) −9658.14 −1.61845
\(330\) 0 0
\(331\) 6213.17i 1.03174i 0.856666 + 0.515871i \(0.172532\pi\)
−0.856666 + 0.515871i \(0.827468\pi\)
\(332\) 388.783 5076.40i 0.0642688 0.839168i
\(333\) 0 0
\(334\) −1232.70 1330.72i −0.201947 0.218005i
\(335\) −7429.57 + 583.143i −1.21170 + 0.0951059i
\(336\) 0 0
\(337\) 11379.1i 1.83935i −0.392686 0.919673i \(-0.628454\pi\)
0.392686 0.919673i \(-0.371546\pi\)
\(338\) 3676.79 3405.97i 0.591690 0.548107i
\(339\) 0 0
\(340\) −8047.73 + 15.2245i −1.28367 + 0.00242843i
\(341\) 4783.42i 0.759638i
\(342\) 0 0
\(343\) 6070.27i 0.955579i
\(344\) 3488.81 + 4396.93i 0.546814 + 0.689148i
\(345\) 0 0
\(346\) −120.341 + 111.477i −0.0186982 + 0.0173209i
\(347\) −2528.79 −0.391217 −0.195609 0.980682i \(-0.562668\pi\)
−0.195609 + 0.980682i \(0.562668\pi\)
\(348\) 0 0
\(349\) 110.562i 0.0169577i 0.999964 + 0.00847885i \(0.00269893\pi\)
−0.999964 + 0.00847885i \(0.997301\pi\)
\(350\) −8285.06 6522.96i −1.26530 0.996191i
\(351\) 0 0
\(352\) 3532.55 + 5227.14i 0.534903 + 0.791499i
\(353\) 7118.00i 1.07324i −0.843825 0.536619i \(-0.819701\pi\)
0.843825 0.536619i \(-0.180299\pi\)
\(354\) 0 0
\(355\) −4283.81 + 336.234i −0.640454 + 0.0502689i
\(356\) −464.232 + 6061.56i −0.0691131 + 0.902421i
\(357\) 0 0
\(358\) 3092.22 + 3338.09i 0.456505 + 0.492804i
\(359\) 3118.04 0.458396 0.229198 0.973380i \(-0.426390\pi\)
0.229198 + 0.973380i \(0.426390\pi\)
\(360\) 0 0
\(361\) 6858.77 0.999967
\(362\) 5123.60 + 5531.00i 0.743896 + 0.803047i
\(363\) 0 0
\(364\) 4904.59 + 375.624i 0.706237 + 0.0540881i
\(365\) 655.365 + 8349.73i 0.0939819 + 1.19738i
\(366\) 0 0
\(367\) 11007.8i 1.56567i −0.622230 0.782835i \(-0.713773\pi\)
0.622230 0.782835i \(-0.286227\pi\)
\(368\) 977.505 6344.29i 0.138467 0.898693i
\(369\) 0 0
\(370\) −1224.69 + 1327.10i −0.172077 + 0.186466i
\(371\) 1653.18i 0.231345i
\(372\) 0 0
\(373\) 12872.3 1.78687 0.893436 0.449190i \(-0.148287\pi\)
0.893436 + 0.449190i \(0.148287\pi\)
\(374\) −6506.77 + 6027.50i −0.899618 + 0.833354i
\(375\) 0 0
\(376\) −5739.98 + 4554.46i −0.787278 + 0.624677i
\(377\) 2722.89i 0.371979i
\(378\) 0 0
\(379\) 6010.29i 0.814586i −0.913298 0.407293i \(-0.866473\pi\)
0.913298 0.407293i \(-0.133527\pi\)
\(380\) 42.5577 0.0805096i 0.00574516 1.08686e-5i
\(381\) 0 0
\(382\) −5975.04 + 5534.93i −0.800287 + 0.741340i
\(383\) 4012.72i 0.535354i 0.963509 + 0.267677i \(0.0862559\pi\)
−0.963509 + 0.267677i \(0.913744\pi\)
\(384\) 0 0
\(385\) −11585.9 + 909.369i −1.53369 + 0.120379i
\(386\) 4615.68 + 4982.70i 0.608632 + 0.657028i
\(387\) 0 0
\(388\) 10207.1 + 781.725i 1.33554 + 0.102284i
\(389\) 9488.02i 1.23666i −0.785918 0.618331i \(-0.787809\pi\)
0.785918 0.618331i \(-0.212191\pi\)
\(390\) 0 0
\(391\) 9024.58 1.16724
\(392\) −7686.65 9687.47i −0.990394 1.24819i
\(393\) 0 0
\(394\) −9241.93 + 8561.19i −1.18173 + 1.09469i
\(395\) 6493.30 509.655i 0.827122 0.0649204i
\(396\) 0 0
\(397\) 4950.44 0.625832 0.312916 0.949781i \(-0.398694\pi\)
0.312916 + 0.949781i \(0.398694\pi\)
\(398\) −10175.2 + 9425.72i −1.28150 + 1.18711i
\(399\) 0 0
\(400\) −7999.94 + 30.2683i −0.999993 + 0.00378354i
\(401\) 8799.56 1.09583 0.547917 0.836533i \(-0.315421\pi\)
0.547917 + 0.836533i \(0.315421\pi\)
\(402\) 0 0
\(403\) −2829.53 −0.349749
\(404\) −6430.90 492.519i −0.791954 0.0606528i
\(405\) 0 0
\(406\) 8173.68 7571.62i 0.999145 0.925550i
\(407\) 1990.25i 0.242390i
\(408\) 0 0
\(409\) 7179.75 0.868009 0.434005 0.900911i \(-0.357100\pi\)
0.434005 + 0.900911i \(0.357100\pi\)
\(410\) 6403.60 6939.06i 0.771344 0.835843i
\(411\) 0 0
\(412\) 3970.01 + 304.048i 0.474729 + 0.0363577i
\(413\) 5006.98 0.596556
\(414\) 0 0
\(415\) 7093.45 556.761i 0.839045 0.0658562i
\(416\) 3092.00 2089.60i 0.364418 0.246277i
\(417\) 0 0
\(418\) 34.4088 31.8744i 0.00402629 0.00372973i
\(419\) 13557.2i 1.58070i −0.612657 0.790349i \(-0.709899\pi\)
0.612657 0.790349i \(-0.290101\pi\)
\(420\) 0 0
\(421\) 7428.36i 0.859943i 0.902843 + 0.429971i \(0.141476\pi\)
−0.902843 + 0.429971i \(0.858524\pi\)
\(422\) 2357.66 + 2545.13i 0.271965 + 0.293590i
\(423\) 0 0
\(424\) 779.587 + 982.511i 0.0892926 + 0.112535i
\(425\) −1754.74 11109.3i −0.200276 1.26796i
\(426\) 0 0
\(427\) −4911.78 −0.556669
\(428\) 68.2465 891.106i 0.00770752 0.100638i
\(429\) 0 0
\(430\) −5319.86 + 5764.71i −0.596620 + 0.646509i
\(431\) 1591.77 0.177895 0.0889475 0.996036i \(-0.471650\pi\)
0.0889475 + 0.996036i \(0.471650\pi\)
\(432\) 0 0
\(433\) 10811.6i 1.19994i 0.800023 + 0.599970i \(0.204821\pi\)
−0.800023 + 0.599970i \(0.795179\pi\)
\(434\) 7868.14 + 8493.77i 0.870237 + 0.939434i
\(435\) 0 0
\(436\) 8759.85 + 670.885i 0.962204 + 0.0736916i
\(437\) −47.7234 −0.00522407
\(438\) 0 0
\(439\) −4891.74 −0.531823 −0.265911 0.963997i \(-0.585673\pi\)
−0.265911 + 0.963997i \(0.585673\pi\)
\(440\) −6456.83 + 6003.97i −0.699584 + 0.650518i
\(441\) 0 0
\(442\) 3565.43 + 3848.94i 0.383689 + 0.414197i
\(443\) 2116.86 0.227032 0.113516 0.993536i \(-0.463789\pi\)
0.113516 + 0.993536i \(0.463789\pi\)
\(444\) 0 0
\(445\) −8470.04 + 664.809i −0.902289 + 0.0708201i
\(446\) 2965.40 + 3201.19i 0.314833 + 0.339867i
\(447\) 0 0
\(448\) −14870.7 3471.06i −1.56824 0.366054i
\(449\) 13253.6 1.39305 0.696523 0.717535i \(-0.254730\pi\)
0.696523 + 0.717535i \(0.254730\pi\)
\(450\) 0 0
\(451\) 10406.5i 1.08652i
\(452\) 16902.2 + 1294.48i 1.75888 + 0.134706i
\(453\) 0 0
\(454\) −7991.37 + 7402.74i −0.826109 + 0.765260i
\(455\) 537.917 + 6853.37i 0.0554240 + 0.706134i
\(456\) 0 0
\(457\) 3969.19i 0.406282i 0.979150 + 0.203141i \(0.0651150\pi\)
−0.979150 + 0.203141i \(0.934885\pi\)
\(458\) 10057.7 + 10857.4i 1.02613 + 1.10772i
\(459\) 0 0
\(460\) 8971.02 16.9712i 0.909296 0.00172019i
\(461\) 7068.99i 0.714177i 0.934071 + 0.357089i \(0.116231\pi\)
−0.934071 + 0.357089i \(0.883769\pi\)
\(462\) 0 0
\(463\) 178.581i 0.0179251i 0.999960 + 0.00896257i \(0.00285291\pi\)
−0.999960 + 0.00896257i \(0.997147\pi\)
\(464\) 1287.21 8354.36i 0.128787 0.835865i
\(465\) 0 0
\(466\) −348.710 376.438i −0.0346646 0.0374209i
\(467\) −11576.2 −1.14707 −0.573536 0.819180i \(-0.694429\pi\)
−0.573536 + 0.819180i \(0.694429\pi\)
\(468\) 0 0
\(469\) 19880.3i 1.95733i
\(470\) −7525.54 6944.81i −0.738568 0.681575i
\(471\) 0 0
\(472\) 2975.72 2361.13i 0.290188 0.230254i
\(473\) 8645.31i 0.840406i
\(474\) 0 0
\(475\) 9.27935 + 58.7479i 0.000896349 + 0.00567482i
\(476\) 1639.38 21405.7i 0.157859 2.06119i
\(477\) 0 0
\(478\) 5203.48 4820.20i 0.497911 0.461236i
\(479\) −12742.0 −1.21544 −0.607720 0.794152i \(-0.707916\pi\)
−0.607720 + 0.794152i \(0.707916\pi\)
\(480\) 0 0
\(481\) 1177.29 0.111600
\(482\) 2260.58 2094.07i 0.213624 0.197889i
\(483\) 0 0
\(484\) 71.0726 928.007i 0.00667474 0.0871532i
\(485\) 1119.48 + 14262.8i 0.104810 + 1.33534i
\(486\) 0 0
\(487\) 13309.0i 1.23838i 0.785243 + 0.619188i \(0.212538\pi\)
−0.785243 + 0.619188i \(0.787462\pi\)
\(488\) −2919.14 + 2316.23i −0.270785 + 0.214858i
\(489\) 0 0
\(490\) 11720.9 12701.0i 1.08060 1.17096i
\(491\) 216.689i 0.0199166i 0.999950 + 0.00995830i \(0.00316988\pi\)
−0.999950 + 0.00995830i \(0.996830\pi\)
\(492\) 0 0
\(493\) 11883.9 1.08564
\(494\) −18.8546 20.3538i −0.00171722 0.00185377i
\(495\) 0 0
\(496\) 8681.53 + 1337.62i 0.785912 + 0.121090i
\(497\) 11462.8i 1.03456i
\(498\) 0 0
\(499\) 10800.4i 0.968921i 0.874813 + 0.484460i \(0.160984\pi\)
−0.874813 + 0.484460i \(0.839016\pi\)
\(500\) −1765.22 11040.1i −0.157886 0.987457i
\(501\) 0 0
\(502\) −10341.0 11163.3i −0.919409 0.992516i
\(503\) 16697.6i 1.48013i −0.672533 0.740067i \(-0.734794\pi\)
0.672533 0.740067i \(-0.265206\pi\)
\(504\) 0 0
\(505\) −705.317 8986.14i −0.0621509 0.791838i
\(506\) 7253.28 6719.02i 0.637248 0.590310i
\(507\) 0 0
\(508\) −4530.49 346.974i −0.395685 0.0303041i
\(509\) 13066.1i 1.13781i −0.822402 0.568906i \(-0.807367\pi\)
0.822402 0.568906i \(-0.192633\pi\)
\(510\) 0 0
\(511\) −22342.5 −1.93419
\(512\) −10474.7 + 4949.61i −0.904141 + 0.427234i
\(513\) 0 0
\(514\) 2648.64 + 2859.24i 0.227289 + 0.245361i
\(515\) 435.415 + 5547.44i 0.0372557 + 0.474659i
\(516\) 0 0
\(517\) −11286.0 −0.960075
\(518\) −3273.71 3534.02i −0.277681 0.299760i
\(519\) 0 0
\(520\) 3551.51 + 3819.39i 0.299508 + 0.322099i
\(521\) 269.920 0.0226975 0.0113488 0.999936i \(-0.496387\pi\)
0.0113488 + 0.999936i \(0.496387\pi\)
\(522\) 0 0
\(523\) −19287.7 −1.61260 −0.806300 0.591506i \(-0.798533\pi\)
−0.806300 + 0.591506i \(0.798533\pi\)
\(524\) 17858.4 + 1367.71i 1.48883 + 0.114024i
\(525\) 0 0
\(526\) −790.645 853.513i −0.0655395 0.0707508i
\(527\) 12349.2i 1.02076i
\(528\) 0 0
\(529\) 2107.06 0.173178
\(530\) −1188.74 + 1288.15i −0.0974258 + 0.105573i
\(531\) 0 0
\(532\) −8.66931 + 113.197i −0.000706508 + 0.00922500i
\(533\) −6155.72 −0.500251
\(534\) 0 0
\(535\) 1245.18 97.7332i 0.100624 0.00789790i
\(536\) −9374.88 11815.1i −0.755472 0.952120i
\(537\) 0 0
\(538\) 782.695 + 844.931i 0.0627219 + 0.0677092i
\(539\) 19047.6i 1.52215i
\(540\) 0 0
\(541\) 8722.31i 0.693164i −0.938020 0.346582i \(-0.887342\pi\)
0.938020 0.346582i \(-0.112658\pi\)
\(542\) 2757.70 2554.57i 0.218548 0.202450i
\(543\) 0 0
\(544\) −9119.91 13494.8i −0.718774 1.06357i
\(545\) 960.748 + 12240.5i 0.0755118 + 0.962063i
\(546\) 0 0
\(547\) 8718.86 0.681520 0.340760 0.940150i \(-0.389316\pi\)
0.340760 + 0.940150i \(0.389316\pi\)
\(548\) −11395.7 872.756i −0.888323 0.0680334i
\(549\) 0 0
\(550\) −9681.50 7622.40i −0.750583 0.590946i
\(551\) −62.8437 −0.00485886
\(552\) 0 0
\(553\) 17375.0i 1.33609i
\(554\) 9153.35 8479.13i 0.701965 0.650260i
\(555\) 0 0
\(556\) −11708.1 896.677i −0.893043 0.0683949i
\(557\) −11758.7 −0.894489 −0.447245 0.894412i \(-0.647595\pi\)
−0.447245 + 0.894412i \(0.647595\pi\)
\(558\) 0 0
\(559\) 5113.94 0.386935
\(560\) 1589.40 21281.8i 0.119936 1.60593i
\(561\) 0 0
\(562\) 10653.3 9868.60i 0.799613 0.740715i
\(563\) 5260.52 0.393791 0.196896 0.980424i \(-0.436914\pi\)
0.196896 + 0.980424i \(0.436914\pi\)
\(564\) 0 0
\(565\) 1853.77 + 23618.1i 0.138033 + 1.75862i
\(566\) 6418.96 5946.16i 0.476695 0.441582i
\(567\) 0 0
\(568\) −5405.46 6812.49i −0.399310 0.503250i
\(569\) 19030.4 1.40210 0.701050 0.713112i \(-0.252715\pi\)
0.701050 + 0.713112i \(0.252715\pi\)
\(570\) 0 0
\(571\) 23227.4i 1.70234i −0.524887 0.851172i \(-0.675892\pi\)
0.524887 0.851172i \(-0.324108\pi\)
\(572\) 5731.25 + 438.936i 0.418944 + 0.0320853i
\(573\) 0 0
\(574\) 17117.4 + 18478.5i 1.24471 + 1.34369i
\(575\) 1956.06 + 12383.9i 0.141867 + 0.898163i
\(576\) 0 0
\(577\) 526.632i 0.0379965i −0.999820 0.0189983i \(-0.993952\pi\)
0.999820 0.0189983i \(-0.00604770\pi\)
\(578\) 6604.12 6117.67i 0.475251 0.440245i
\(579\) 0 0
\(580\) 11813.3 22.3482i 0.845727 0.00159993i
\(581\) 18980.9i 1.35535i
\(582\) 0 0
\(583\) 1931.83i 0.137235i
\(584\) −13278.5 + 10536.0i −0.940867 + 0.746544i
\(585\) 0 0
\(586\) −1392.96 + 1290.36i −0.0981956 + 0.0909627i
\(587\) 14220.5 0.999902 0.499951 0.866054i \(-0.333351\pi\)
0.499951 + 0.866054i \(0.333351\pi\)
\(588\) 0 0
\(589\) 65.3047i 0.00456848i
\(590\) 3901.39 + 3600.34i 0.272234 + 0.251226i
\(591\) 0 0
\(592\) −3612.14 556.545i −0.250774 0.0386383i
\(593\) 10794.3i 0.747500i 0.927529 + 0.373750i \(0.121928\pi\)
−0.927529 + 0.373750i \(0.878072\pi\)
\(594\) 0 0
\(595\) 29911.0 2347.70i 2.06089 0.161758i
\(596\) −22981.9 1760.10i −1.57949 0.120967i
\(597\) 0 0
\(598\) −3974.49 4290.52i −0.271787 0.293398i
\(599\) −10036.9 −0.684634 −0.342317 0.939584i \(-0.611212\pi\)
−0.342317 + 0.939584i \(0.611212\pi\)
\(600\) 0 0
\(601\) 8251.09 0.560015 0.280008 0.959998i \(-0.409663\pi\)
0.280008 + 0.959998i \(0.409663\pi\)
\(602\) −14220.5 15351.2i −0.962764 1.03932i
\(603\) 0 0
\(604\) −579.923 + 7572.15i −0.0390674 + 0.510110i
\(605\) 1296.74 101.780i 0.0871404 0.00683960i
\(606\) 0 0
\(607\) 8119.05i 0.542903i 0.962452 + 0.271451i \(0.0875036\pi\)
−0.962452 + 0.271451i \(0.912496\pi\)
\(608\) 48.2275 + 71.3626i 0.00321691 + 0.00476009i
\(609\) 0 0
\(610\) −3827.21 3531.88i −0.254032 0.234429i
\(611\) 6675.99i 0.442032i
\(612\) 0 0
\(613\) −20527.3 −1.35251 −0.676255 0.736668i \(-0.736398\pi\)
−0.676255 + 0.736668i \(0.736398\pi\)
\(614\) −12057.1 + 11169.0i −0.792485 + 0.734112i
\(615\) 0 0
\(616\) −14619.4 18424.9i −0.956225 1.20513i
\(617\) 27545.7i 1.79732i 0.438643 + 0.898661i \(0.355459\pi\)
−0.438643 + 0.898661i \(0.644541\pi\)
\(618\) 0 0
\(619\) 1777.17i 0.115396i −0.998334 0.0576982i \(-0.981624\pi\)
0.998334 0.0576982i \(-0.0183761\pi\)
\(620\) 23.2234 + 12276.0i 0.00150431 + 0.795184i
\(621\) 0 0
\(622\) −14988.1 + 13884.1i −0.966183 + 0.895016i
\(623\) 22664.4i 1.45751i
\(624\) 0 0
\(625\) 14864.3 4815.85i 0.951317 0.308214i
\(626\) −3468.28 3744.06i −0.221438 0.239046i
\(627\) 0 0
\(628\) 1930.02 25200.6i 0.122637 1.60130i
\(629\) 5138.17i 0.325711i
\(630\) 0 0
\(631\) 16484.4 1.03999 0.519995 0.854169i \(-0.325934\pi\)
0.519995 + 0.854169i \(0.325934\pi\)
\(632\) 8193.46 + 10326.2i 0.515694 + 0.649927i
\(633\) 0 0
\(634\) 3305.56 3062.08i 0.207067 0.191815i
\(635\) −496.887 6330.63i −0.0310526 0.395627i
\(636\) 0 0
\(637\) −11267.2 −0.700821
\(638\) 9551.35 8847.82i 0.592698 0.549041i
\(639\) 0 0
\(640\) −9091.17 13397.6i −0.561500 0.827477i
\(641\) 24.7805 0.00152694 0.000763470 1.00000i \(-0.499757\pi\)
0.000763470 1.00000i \(0.499757\pi\)
\(642\) 0 0
\(643\) 29107.1 1.78518 0.892590 0.450870i \(-0.148886\pi\)
0.892590 + 0.450870i \(0.148886\pi\)
\(644\) −1827.47 + 23861.5i −0.111820 + 1.46006i
\(645\) 0 0
\(646\) −88.8325 + 82.2893i −0.00541032 + 0.00501181i
\(647\) 13419.6i 0.815421i 0.913111 + 0.407711i \(0.133673\pi\)
−0.913111 + 0.407711i \(0.866327\pi\)
\(648\) 0 0
\(649\) 5850.91 0.353880
\(650\) −4508.86 + 5726.88i −0.272080 + 0.345579i
\(651\) 0 0
\(652\) −831.897 + 10862.2i −0.0499687 + 0.652450i
\(653\) 1926.26 0.115437 0.0577186 0.998333i \(-0.481617\pi\)
0.0577186 + 0.998333i \(0.481617\pi\)
\(654\) 0 0
\(655\) 1958.64 + 24954.2i 0.116840 + 1.48861i
\(656\) 18887.0 + 2910.03i 1.12410 + 0.173198i
\(657\) 0 0
\(658\) 20040.2 18564.1i 1.18731 1.09986i
\(659\) 13158.1i 0.777797i −0.921281 0.388899i \(-0.872856\pi\)
0.921281 0.388899i \(-0.127144\pi\)
\(660\) 0 0
\(661\) 27392.1i 1.61184i 0.592023 + 0.805921i \(0.298330\pi\)
−0.592023 + 0.805921i \(0.701670\pi\)
\(662\) −11942.5 12892.1i −0.701143 0.756895i
\(663\) 0 0
\(664\) 8950.75 + 11280.6i 0.523127 + 0.659296i
\(665\) −158.174 + 12.4150i −0.00922364 + 0.000723959i
\(666\) 0 0
\(667\) −13247.3 −0.769019
\(668\) 5115.61 + 391.785i 0.296301 + 0.0226926i
\(669\) 0 0
\(670\) 14295.2 15490.5i 0.824285 0.893211i
\(671\) −5739.65 −0.330219
\(672\) 0 0
\(673\) 5569.75i 0.319017i 0.987197 + 0.159508i \(0.0509909\pi\)
−0.987197 + 0.159508i \(0.949009\pi\)
\(674\) 21872.0 + 23611.2i 1.24997 + 1.34936i
\(675\) 0 0
\(676\) −1082.51 + 14134.5i −0.0615901 + 0.804192i
\(677\) 4130.23 0.234472 0.117236 0.993104i \(-0.462597\pi\)
0.117236 + 0.993104i \(0.462597\pi\)
\(678\) 0 0
\(679\) −38164.8 −2.15704
\(680\) 16669.4 15500.3i 0.940064 0.874131i
\(681\) 0 0
\(682\) 9194.31 + 9925.39i 0.516229 + 0.557277i
\(683\) −22875.3 −1.28155 −0.640776 0.767728i \(-0.721387\pi\)
−0.640776 + 0.767728i \(0.721387\pi\)
\(684\) 0 0
\(685\) −1249.84 15923.7i −0.0697138 0.888193i
\(686\) 11667.8 + 12595.5i 0.649385 + 0.701021i
\(687\) 0 0
\(688\) −15690.6 2417.55i −0.869473 0.133965i
\(689\) 1142.73 0.0631851
\(690\) 0 0
\(691\) 19910.4i 1.09613i 0.836435 + 0.548066i \(0.184636\pi\)
−0.836435 + 0.548066i \(0.815364\pi\)
\(692\) 35.4304 462.620i 0.00194633 0.0254136i
\(693\) 0 0
\(694\) 5247.12 4860.63i 0.287000 0.265860i
\(695\) −1284.10 16360.1i −0.0700842 0.892912i
\(696\) 0 0
\(697\) 26866.2i 1.46001i
\(698\) −212.513 229.411i −0.0115240 0.0124403i
\(699\) 0 0
\(700\) 29729.1 2390.01i 1.60522 0.129049i
\(701\) 3428.44i 0.184722i 0.995726 + 0.0923612i \(0.0294414\pi\)
−0.995726 + 0.0923612i \(0.970559\pi\)
\(702\) 0 0
\(703\) 27.1715i 0.00145774i
\(704\) −17377.1 4056.11i −0.930290 0.217145i
\(705\) 0 0
\(706\) 13681.7 + 14769.6i 0.729343 + 0.787337i
\(707\) 24045.4 1.27910
\(708\) 0 0
\(709\) 15608.3i 0.826771i 0.910556 + 0.413385i \(0.135654\pi\)
−0.910556 + 0.413385i \(0.864346\pi\)
\(710\) 8242.45 8931.68i 0.435681 0.472113i
\(711\) 0 0
\(712\) −10687.8 13469.8i −0.562558 0.708991i
\(713\) 13766.0i 0.723061i
\(714\) 0 0
\(715\) 628.583 + 8008.50i 0.0328778 + 0.418882i
\(716\) −12832.4 982.789i −0.669791 0.0512968i
\(717\) 0 0
\(718\) −6469.81 + 5993.26i −0.336283 + 0.311513i
\(719\) −8282.41 −0.429599 −0.214800 0.976658i \(-0.568910\pi\)
−0.214800 + 0.976658i \(0.568910\pi\)
\(720\) 0 0
\(721\) −14844.0 −0.766741
\(722\) −14231.7 + 13183.4i −0.733584 + 0.679550i
\(723\) 0 0
\(724\) −21262.5 1628.42i −1.09146 0.0835907i
\(725\) 2575.80 + 16307.5i 0.131949 + 0.835372i
\(726\) 0 0
\(727\) 20590.4i 1.05042i 0.850973 + 0.525210i \(0.176013\pi\)
−0.850973 + 0.525210i \(0.823987\pi\)
\(728\) −10898.8 + 8647.81i −0.554858 + 0.440260i
\(729\) 0 0
\(730\) −17409.0 16065.6i −0.882654 0.814543i
\(731\) 22319.4i 1.12929i
\(732\) 0 0
\(733\) 24257.3 1.22232 0.611162 0.791506i \(-0.290703\pi\)
0.611162 + 0.791506i \(0.290703\pi\)
\(734\) 21158.3 + 22840.6i 1.06399 + 1.14859i
\(735\) 0 0
\(736\) 10166.2 + 15043.0i 0.509146 + 0.753387i
\(737\) 23231.1i 1.16110i
\(738\) 0 0
\(739\) 25426.8i 1.26569i −0.774280 0.632843i \(-0.781888\pi\)
0.774280 0.632843i \(-0.218112\pi\)
\(740\) −9.66259 5107.68i −0.000480005 0.253732i
\(741\) 0 0
\(742\) −3177.62 3430.29i −0.157216 0.169717i
\(743\) 22658.4i 1.11878i 0.828904 + 0.559391i \(0.188965\pi\)
−0.828904 + 0.559391i \(0.811035\pi\)
\(744\) 0 0
\(745\) −2520.56 32113.4i −0.123955 1.57925i
\(746\) −26709.5 + 24742.2i −1.31086 + 1.21431i
\(747\) 0 0
\(748\) 1915.70 25013.6i 0.0936430 1.22271i
\(749\) 3331.88i 0.162542i
\(750\) 0 0
\(751\) −10999.0 −0.534431 −0.267215 0.963637i \(-0.586104\pi\)
−0.267215 + 0.963637i \(0.586104\pi\)
\(752\) 3155.98 20483.2i 0.153041 0.993281i
\(753\) 0 0
\(754\) −5233.73 5649.89i −0.252787 0.272887i
\(755\) −10580.9 + 830.485i −0.510035 + 0.0400324i
\(756\) 0 0
\(757\) 30279.9 1.45382 0.726909 0.686734i \(-0.240956\pi\)
0.726909 + 0.686734i \(0.240956\pi\)
\(758\) 11552.5 + 12471.1i 0.553570 + 0.597587i
\(759\) 0 0
\(760\) −88.1506 + 81.9680i −0.00420731 + 0.00391223i
\(761\) −4374.09 −0.208358 −0.104179 0.994559i \(-0.533222\pi\)
−0.104179 + 0.994559i \(0.533222\pi\)
\(762\) 0 0
\(763\) −32753.4 −1.55407
\(764\) 1759.15 22969.5i 0.0833034 1.08771i
\(765\) 0 0
\(766\) −7712.93 8326.23i −0.363812 0.392740i
\(767\) 3460.97i 0.162932i
\(768\) 0 0
\(769\) −12982.1 −0.608774 −0.304387 0.952548i \(-0.598452\pi\)
−0.304387 + 0.952548i \(0.598452\pi\)
\(770\) 22292.3 24156.4i 1.04332 1.13056i
\(771\) 0 0
\(772\) −19154.7 1466.99i −0.892996 0.0683912i
\(773\) 34056.3 1.58463 0.792316 0.610112i \(-0.208875\pi\)
0.792316 + 0.610112i \(0.208875\pi\)
\(774\) 0 0
\(775\) −16946.1 + 2676.67i −0.785448 + 0.124063i
\(776\) −22681.9 + 17997.3i −1.04927 + 0.832557i
\(777\) 0 0
\(778\) 18237.1 + 19687.2i 0.840402 + 0.907226i
\(779\) 142.073i 0.00653437i
\(780\) 0 0
\(781\) 13394.8i 0.613706i
\(782\) −18725.6 + 17346.3i −0.856300 + 0.793227i
\(783\) 0 0
\(784\) 34570.0 + 5326.41i 1.57480 + 0.242639i
\(785\) 35213.8 2763.91i 1.60106 0.125667i
\(786\) 0 0
\(787\) 11962.9 0.541842 0.270921 0.962602i \(-0.412672\pi\)
0.270921 + 0.962602i \(0.412672\pi\)
\(788\) 2720.98 35528.2i 0.123009 1.60614i
\(789\) 0 0
\(790\) −12493.7 + 13538.4i −0.562666 + 0.609716i
\(791\) −63198.1 −2.84079
\(792\) 0 0
\(793\) 3395.17i 0.152038i
\(794\) −10272.0 + 9515.34i −0.459116 + 0.425298i
\(795\) 0 0
\(796\) 2995.75 39116.0i 0.133394 1.74174i
\(797\) 17898.9 0.795498 0.397749 0.917494i \(-0.369791\pi\)
0.397749 + 0.917494i \(0.369791\pi\)
\(798\) 0 0
\(799\) 29136.9 1.29010
\(800\) 16541.4 15439.7i 0.731032 0.682343i
\(801\) 0 0
\(802\) −18258.7 + 16913.8i −0.803913 + 0.744698i
\(803\) −26108.3 −1.14737
\(804\) 0 0
\(805\) −33342.6 + 2617.04i −1.45984 + 0.114582i
\(806\) 5871.15 5438.69i 0.256579 0.237680i
\(807\) 0 0
\(808\) 14290.5 11339.0i 0.622202 0.493695i
\(809\) −27690.6 −1.20340 −0.601700 0.798722i \(-0.705510\pi\)
−0.601700 + 0.798722i \(0.705510\pi\)
\(810\) 0 0
\(811\) 44013.9i 1.90572i 0.303412 + 0.952859i \(0.401874\pi\)
−0.303412 + 0.952859i \(0.598126\pi\)
\(812\) −2406.46 + 31421.6i −0.104003 + 1.35798i
\(813\) 0 0
\(814\) −3825.49 4129.68i −0.164722 0.177820i
\(815\) −15178.2 + 1191.33i −0.652354 + 0.0512029i
\(816\) 0 0
\(817\) 118.028i 0.00505422i
\(818\) −14897.7 + 13800.3i −0.636779 + 0.589875i
\(819\) 0 0
\(820\) 50.5232 + 26706.7i 0.00215164 + 1.13737i
\(821\) 30978.8i 1.31689i 0.752628 + 0.658446i \(0.228786\pi\)
−0.752628 + 0.658446i \(0.771214\pi\)
\(822\) 0 0
\(823\) 41684.8i 1.76554i −0.469804 0.882771i \(-0.655675\pi\)
0.469804 0.882771i \(-0.344325\pi\)
\(824\) −8822.01 + 6999.95i −0.372973 + 0.295940i
\(825\) 0 0
\(826\) −10389.3 + 9624.03i −0.437638 + 0.405403i
\(827\) −11988.7 −0.504096 −0.252048 0.967715i \(-0.581104\pi\)
−0.252048 + 0.967715i \(0.581104\pi\)
\(828\) 0 0
\(829\) 2023.64i 0.0847814i 0.999101 + 0.0423907i \(0.0134974\pi\)
−0.999101 + 0.0423907i \(0.986503\pi\)
\(830\) −13648.4 + 14789.7i −0.570776 + 0.618504i
\(831\) 0 0
\(832\) −2399.30 + 10279.0i −0.0999770 + 0.428319i
\(833\) 49174.8i 2.04539i
\(834\) 0 0
\(835\) 561.061 + 7148.23i 0.0232531 + 0.296257i
\(836\) −10.1305 + 132.276i −0.000419105 + 0.00547232i
\(837\) 0 0
\(838\) 26058.6 + 28130.6i 1.07420 + 1.15961i
\(839\) 10706.3 0.440553 0.220276 0.975438i \(-0.429304\pi\)
0.220276 + 0.975438i \(0.429304\pi\)
\(840\) 0 0
\(841\) 6944.60 0.284743
\(842\) −14278.2 15413.5i −0.584393 0.630861i
\(843\) 0 0
\(844\) −9784.09 749.327i −0.399031 0.0305603i
\(845\) −19750.6 + 1550.22i −0.804074 + 0.0631114i
\(846\) 0 0
\(847\) 3469.86i 0.140762i
\(848\) −3506.11 540.209i −0.141982 0.0218760i
\(849\) 0 0
\(850\) 24994.5 + 19678.6i 1.00859 + 0.794082i
\(851\) 5727.66i 0.230719i
\(852\) 0 0
\(853\) 29816.5 1.19683 0.598416 0.801186i \(-0.295797\pi\)
0.598416 + 0.801186i \(0.295797\pi\)
\(854\) 10191.7 9441.03i 0.408377 0.378297i
\(855\) 0 0
\(856\) 1571.21 + 1980.19i 0.0627368 + 0.0790670i
\(857\) 6572.14i 0.261960i 0.991385 + 0.130980i \(0.0418124\pi\)
−0.991385 + 0.130980i \(0.958188\pi\)
\(858\) 0 0
\(859\) 45723.7i 1.81615i −0.418809 0.908075i \(-0.637552\pi\)
0.418809 0.908075i \(-0.362448\pi\)
\(860\) −41.9728 22187.0i −0.00166426 0.879731i
\(861\) 0 0
\(862\) −3302.85 + 3059.57i −0.130505 + 0.120893i
\(863\) 13343.7i 0.526331i −0.964751 0.263166i \(-0.915233\pi\)
0.964751 0.263166i \(-0.0847665\pi\)
\(864\) 0 0
\(865\) 646.437 50.7385i 0.0254098 0.00199440i
\(866\) −20781.3 22433.7i −0.815446 0.880286i
\(867\) 0 0
\(868\) −32652.1 2500.71i −1.27683 0.0977874i
\(869\) 20303.5i 0.792577i
\(870\) 0 0
\(871\) −13741.8 −0.534586
\(872\) −19465.9 + 15445.4i −0.755960 + 0.599826i
\(873\) 0 0
\(874\) 99.0240 91.7301i 0.00383242 0.00355013i
\(875\) 9704.74 + 40536.2i 0.374949 + 1.56614i
\(876\) 0 0
\(877\) −41636.8 −1.60317 −0.801583 0.597884i \(-0.796008\pi\)
−0.801583 + 0.597884i \(0.796008\pi\)
\(878\) 10150.2 9402.52i 0.390150 0.361412i
\(879\) 0 0
\(880\) 1857.29 24868.8i 0.0711469 0.952644i
\(881\) 31220.6 1.19392 0.596962 0.802269i \(-0.296374\pi\)
0.596962 + 0.802269i \(0.296374\pi\)
\(882\) 0 0
\(883\) −35199.4 −1.34151 −0.670755 0.741679i \(-0.734030\pi\)
−0.670755 + 0.741679i \(0.734030\pi\)
\(884\) −14796.2 1133.19i −0.562954 0.0431146i
\(885\) 0 0
\(886\) −4392.40 + 4068.86i −0.166552 + 0.154284i
\(887\) 12744.8i 0.482444i 0.970470 + 0.241222i \(0.0775482\pi\)
−0.970470 + 0.241222i \(0.922452\pi\)
\(888\) 0 0
\(889\) 16939.7 0.639076
\(890\) 16297.1 17659.9i 0.613799 0.665125i
\(891\) 0 0
\(892\) −12306.1 942.482i −0.461929 0.0353774i
\(893\) −154.080 −0.00577391
\(894\) 0 0
\(895\) −1407.41 17931.2i −0.0525638 0.669693i
\(896\) 37527.8 21380.9i 1.39924 0.797194i
\(897\) 0 0
\(898\) −27500.7 + 25475.1i −1.02195 + 0.946675i
\(899\) 18127.6i 0.672512i
\(900\) 0 0
\(901\) 4987.35i 0.184409i
\(902\) 20002.5 + 21593.0i 0.738372 + 0.797083i
\(903\) 0 0
\(904\) −37559.5 + 29802.1i −1.38187 + 1.09646i
\(905\) −2331.99 29710.9i −0.0856553 1.09130i
\(906\) 0 0
\(907\) −16588.8 −0.607299 −0.303650 0.952784i \(-0.598205\pi\)
−0.303650 + 0.952784i \(0.598205\pi\)
\(908\) 2352.79 30720.8i 0.0859912 1.12280i
\(909\) 0 0
\(910\) −14289.2 13186.5i −0.520528 0.480361i
\(911\) 46114.7 1.67711 0.838555 0.544816i \(-0.183401\pi\)
0.838555 + 0.544816i \(0.183401\pi\)
\(912\) 0 0
\(913\) 22180.1i 0.804002i
\(914\) −7629.26 8235.90i −0.276098 0.298052i
\(915\) 0 0
\(916\) −41738.7 3196.61i −1.50555 0.115305i
\(917\) −66773.3 −2.40463
\(918\) 0 0
\(919\) 47522.6 1.70580 0.852898 0.522077i \(-0.174843\pi\)
0.852898 + 0.522077i \(0.174843\pi\)
\(920\) −18581.9 + 17278.6i −0.665898 + 0.619194i
\(921\) 0 0
\(922\) −13587.5 14667.9i −0.485335 0.523926i
\(923\) −7923.40 −0.282559
\(924\) 0 0
\(925\) 7050.80 1113.69i 0.250626 0.0395868i
\(926\) −343.253 370.547i −0.0121814 0.0131500i
\(927\) 0 0
\(928\) 13387.2 + 19809.1i 0.473552 + 0.700718i
\(929\) −13494.3 −0.476570 −0.238285 0.971195i \(-0.576585\pi\)
−0.238285 + 0.971195i \(0.576585\pi\)
\(930\) 0 0
\(931\) 260.044i 0.00915425i
\(932\) 1447.12 + 110.829i 0.0508604 + 0.00389521i
\(933\) 0 0
\(934\) 24020.1 22250.9i 0.841502 0.779519i
\(935\) 34952.5 2743.40i 1.22253 0.0959559i
\(936\) 0 0
\(937\) 12453.1i 0.434179i −0.976152 0.217089i \(-0.930344\pi\)
0.976152 0.217089i \(-0.0696563\pi\)
\(938\) 38212.3 + 41250.7i 1.33014 + 1.43591i
\(939\) 0 0
\(940\) 28963.9 54.7933i 1.00500 0.00190124i
\(941\) 40466.5i 1.40188i −0.713220 0.700940i \(-0.752764\pi\)
0.713220 0.700940i \(-0.247236\pi\)
\(942\) 0 0
\(943\) 29948.5i 1.03421i
\(944\) −1636.13 + 10618.9i −0.0564104 + 0.366120i
\(945\) 0 0
\(946\) −16617.3 17938.7i −0.571117 0.616529i
\(947\) −2645.96 −0.0907943 −0.0453971 0.998969i \(-0.514455\pi\)
−0.0453971 + 0.998969i \(0.514455\pi\)
\(948\) 0 0
\(949\) 15443.8i 0.528268i
\(950\) −132.175 104.063i −0.00451402 0.00355396i
\(951\) 0 0
\(952\) 37742.7 + 47567.0i 1.28492 + 1.61939i
\(953\) 40045.8i 1.36119i −0.732662 0.680593i \(-0.761722\pi\)
0.732662 0.680593i \(-0.238278\pi\)
\(954\) 0 0
\(955\) 32096.1 2519.21i 1.08755 0.0853609i
\(956\) −1531.99 + 20003.4i −0.0518285 + 0.676734i
\(957\) 0 0
\(958\) 26439.1 24491.6i 0.891657 0.825979i
\(959\) 42609.1 1.43474
\(960\) 0 0
\(961\) −10953.5 −0.367679
\(962\) −2442.82 + 2262.89i −0.0818707 + 0.0758403i
\(963\) 0 0
\(964\) −665.553 + 8690.23i −0.0222365 + 0.290346i
\(965\) −2100.82 26765.6i −0.0700805 0.892865i
\(966\) 0 0
\(967\) 11049.0i 0.367439i −0.982979 0.183719i \(-0.941186\pi\)
0.982979 0.183719i \(-0.0588137\pi\)
\(968\) 1636.27 + 2062.19i 0.0543302 + 0.0684723i
\(969\) 0 0
\(970\) −29737.7 27442.9i −0.984350 0.908390i
\(971\) 26708.5i 0.882717i 0.897331 + 0.441358i \(0.145503\pi\)
−0.897331 + 0.441358i \(0.854497\pi\)
\(972\) 0 0
\(973\) 43776.9 1.44237
\(974\) −25581.5 27615.7i −0.841566 0.908483i
\(975\) 0 0
\(976\) 1605.02 10417.0i 0.0526387 0.341640i
\(977\) 11102.6i 0.363566i −0.983339 0.181783i \(-0.941813\pi\)
0.983339 0.181783i \(-0.0581869\pi\)
\(978\) 0 0
\(979\) 26484.5i 0.864604i
\(980\) 92.4758 + 48883.0i 0.00301432 + 1.59338i
\(981\) 0 0
\(982\) −416.503 449.621i −0.0135348 0.0146110i
\(983\) 33544.2i 1.08840i −0.838957 0.544198i \(-0.816834\pi\)
0.838957 0.544198i \(-0.183166\pi\)
\(984\) 0 0
\(985\) 49644.9 3896.60i 1.60591 0.126047i
\(986\) −24658.5 + 22842.2i −0.796436 + 0.737773i
\(987\) 0 0
\(988\) 78.2449 + 5.99249i 0.00251954 + 0.000192962i
\(989\) 24880.0i 0.799939i
\(990\) 0 0
\(991\) 5538.20 0.177524 0.0887622 0.996053i \(-0.471709\pi\)
0.0887622 + 0.996053i \(0.471709\pi\)
\(992\) −20584.9 + 13911.5i −0.658841 + 0.445251i
\(993\) 0 0
\(994\) 22032.8 + 23784.8i 0.703057 + 0.758961i
\(995\) 54658.2 4290.09i 1.74149 0.136688i
\(996\) 0 0
\(997\) −24192.6 −0.768492 −0.384246 0.923231i \(-0.625539\pi\)
−0.384246 + 0.923231i \(0.625539\pi\)
\(998\) −20759.6 22410.3i −0.658452 0.710808i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 360.4.d.d.109.6 16
3.2 odd 2 40.4.f.a.29.11 yes 16
4.3 odd 2 1440.4.d.d.1009.15 16
5.4 even 2 inner 360.4.d.d.109.11 16
8.3 odd 2 1440.4.d.d.1009.2 16
8.5 even 2 inner 360.4.d.d.109.12 16
12.11 even 2 160.4.f.a.49.4 16
15.2 even 4 200.4.d.e.101.14 16
15.8 even 4 200.4.d.e.101.3 16
15.14 odd 2 40.4.f.a.29.6 yes 16
20.19 odd 2 1440.4.d.d.1009.1 16
24.5 odd 2 40.4.f.a.29.5 16
24.11 even 2 160.4.f.a.49.13 16
40.19 odd 2 1440.4.d.d.1009.16 16
40.29 even 2 inner 360.4.d.d.109.5 16
60.23 odd 4 800.4.d.e.401.3 16
60.47 odd 4 800.4.d.e.401.14 16
60.59 even 2 160.4.f.a.49.14 16
120.29 odd 2 40.4.f.a.29.12 yes 16
120.53 even 4 200.4.d.e.101.4 16
120.59 even 2 160.4.f.a.49.3 16
120.77 even 4 200.4.d.e.101.13 16
120.83 odd 4 800.4.d.e.401.13 16
120.107 odd 4 800.4.d.e.401.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.4.f.a.29.5 16 24.5 odd 2
40.4.f.a.29.6 yes 16 15.14 odd 2
40.4.f.a.29.11 yes 16 3.2 odd 2
40.4.f.a.29.12 yes 16 120.29 odd 2
160.4.f.a.49.3 16 120.59 even 2
160.4.f.a.49.4 16 12.11 even 2
160.4.f.a.49.13 16 24.11 even 2
160.4.f.a.49.14 16 60.59 even 2
200.4.d.e.101.3 16 15.8 even 4
200.4.d.e.101.4 16 120.53 even 4
200.4.d.e.101.13 16 120.77 even 4
200.4.d.e.101.14 16 15.2 even 4
360.4.d.d.109.5 16 40.29 even 2 inner
360.4.d.d.109.6 16 1.1 even 1 trivial
360.4.d.d.109.11 16 5.4 even 2 inner
360.4.d.d.109.12 16 8.5 even 2 inner
800.4.d.e.401.3 16 60.23 odd 4
800.4.d.e.401.4 16 120.107 odd 4
800.4.d.e.401.13 16 120.83 odd 4
800.4.d.e.401.14 16 60.47 odd 4
1440.4.d.d.1009.1 16 20.19 odd 2
1440.4.d.d.1009.2 16 8.3 odd 2
1440.4.d.d.1009.15 16 4.3 odd 2
1440.4.d.d.1009.16 16 40.19 odd 2