Properties

Label 1600.2.d.g.801.1
Level $1600$
Weight $2$
Character 1600.801
Analytic conductor $12.776$
Analytic rank $0$
Dimension $4$
CM discriminant -40
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1600,2,Mod(801,1600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1600.801");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1600 = 2^{6} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1600.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.7760643234\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 320)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 801.1
Root \(0.618034i\) of defining polynomial
Character \(\chi\) \(=\) 1600.801
Dual form 1600.2.d.g.801.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.47214 q^{7} +3.00000 q^{9} -2.00000i q^{11} +4.47214i q^{13} -6.00000i q^{19} +4.47214 q^{23} -4.47214i q^{37} +2.00000 q^{41} +13.4164 q^{47} +13.0000 q^{49} -13.4164i q^{53} -14.0000i q^{59} -13.4164 q^{63} +8.94427i q^{77} +9.00000 q^{81} +14.0000 q^{89} -20.0000i q^{91} -6.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{9} + 8 q^{41} + 52 q^{49} + 36 q^{81} + 56 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1600\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1151\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −4.47214 −1.69031 −0.845154 0.534522i \(-0.820491\pi\)
−0.845154 + 0.534522i \(0.820491\pi\)
\(8\) 0 0
\(9\) 3.00000 1.00000
\(10\) 0 0
\(11\) − 2.00000i − 0.603023i −0.953463 0.301511i \(-0.902509\pi\)
0.953463 0.301511i \(-0.0974911\pi\)
\(12\) 0 0
\(13\) 4.47214i 1.24035i 0.784465 + 0.620174i \(0.212938\pi\)
−0.784465 + 0.620174i \(0.787062\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) − 6.00000i − 1.37649i −0.725476 0.688247i \(-0.758380\pi\)
0.725476 0.688247i \(-0.241620\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.47214 0.932505 0.466252 0.884652i \(-0.345604\pi\)
0.466252 + 0.884652i \(0.345604\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 4.47214i − 0.735215i −0.929981 0.367607i \(-0.880177\pi\)
0.929981 0.367607i \(-0.119823\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 13.4164 1.95698 0.978492 0.206284i \(-0.0661372\pi\)
0.978492 + 0.206284i \(0.0661372\pi\)
\(48\) 0 0
\(49\) 13.0000 1.85714
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 13.4164i − 1.84289i −0.388514 0.921443i \(-0.627012\pi\)
0.388514 0.921443i \(-0.372988\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 14.0000i − 1.82264i −0.411693 0.911322i \(-0.635063\pi\)
0.411693 0.911322i \(-0.364937\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) −13.4164 −1.69031
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 8.94427i 1.01929i
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 14.0000 1.48400 0.741999 0.670402i \(-0.233878\pi\)
0.741999 + 0.670402i \(0.233878\pi\)
\(90\) 0 0
\(91\) − 20.0000i − 2.09657i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 0 0
\(99\) − 6.00000i − 0.603023i
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 4.47214 0.440653 0.220326 0.975426i \(-0.429288\pi\)
0.220326 + 0.975426i \(0.429288\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 13.4164i 1.24035i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 7.00000 0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −22.3607 −1.98419 −0.992095 0.125491i \(-0.959949\pi\)
−0.992095 + 0.125491i \(0.959949\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 22.0000i 1.92215i 0.276289 + 0.961074i \(0.410895\pi\)
−0.276289 + 0.961074i \(0.589105\pi\)
\(132\) 0 0
\(133\) 26.8328i 2.32670i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) − 14.0000i − 1.18746i −0.804663 0.593732i \(-0.797654\pi\)
0.804663 0.593732i \(-0.202346\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 8.94427 0.747958
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 22.3607i − 1.78458i −0.451466 0.892288i \(-0.649099\pi\)
0.451466 0.892288i \(-0.350901\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −20.0000 −1.57622
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.47214 −0.346064 −0.173032 0.984916i \(-0.555356\pi\)
−0.173032 + 0.984916i \(0.555356\pi\)
\(168\) 0 0
\(169\) −7.00000 −0.538462
\(170\) 0 0
\(171\) − 18.0000i − 1.37649i
\(172\) 0 0
\(173\) − 13.4164i − 1.02003i −0.860165 0.510015i \(-0.829640\pi\)
0.860165 0.510015i \(-0.170360\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 26.0000i 1.94333i 0.236360 + 0.971666i \(0.424046\pi\)
−0.236360 + 0.971666i \(0.575954\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 22.3607i − 1.59313i −0.604551 0.796566i \(-0.706648\pi\)
0.604551 0.796566i \(-0.293352\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 13.4164 0.932505
\(208\) 0 0
\(209\) −12.0000 −0.830057
\(210\) 0 0
\(211\) 22.0000i 1.51454i 0.653101 + 0.757271i \(0.273468\pi\)
−0.653101 + 0.757271i \(0.726532\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 22.3607 1.49738 0.748691 0.662919i \(-0.230683\pi\)
0.748691 + 0.662919i \(0.230683\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 18.0000 1.15948 0.579741 0.814801i \(-0.303154\pi\)
0.579741 + 0.814801i \(0.303154\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 26.8328 1.70733
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 2.00000i − 0.126239i −0.998006 0.0631194i \(-0.979895\pi\)
0.998006 0.0631194i \(-0.0201049\pi\)
\(252\) 0 0
\(253\) − 8.94427i − 0.562322i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 20.0000i 1.24274i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −31.3050 −1.93035 −0.965173 0.261612i \(-0.915746\pi\)
−0.965173 + 0.261612i \(0.915746\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 31.3050i 1.88093i 0.339887 + 0.940466i \(0.389611\pi\)
−0.339887 + 0.940466i \(0.610389\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −22.0000 −1.31241 −0.656205 0.754583i \(-0.727839\pi\)
−0.656205 + 0.754583i \(0.727839\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −8.94427 −0.527964
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4.47214i 0.261265i 0.991431 + 0.130632i \(0.0417008\pi\)
−0.991431 + 0.130632i \(0.958299\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 20.0000i 1.15663i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 31.3050i 1.75826i 0.476581 + 0.879131i \(0.341876\pi\)
−0.476581 + 0.879131i \(0.658124\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −60.0000 −3.30791
\(330\) 0 0
\(331\) − 18.0000i − 0.989369i −0.869072 0.494685i \(-0.835284\pi\)
0.869072 0.494685i \(-0.164716\pi\)
\(332\) 0 0
\(333\) − 13.4164i − 0.735215i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −26.8328 −1.44884
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −17.0000 −0.894737
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −22.3607 −1.16722 −0.583609 0.812035i \(-0.698360\pi\)
−0.583609 + 0.812035i \(0.698360\pi\)
\(368\) 0 0
\(369\) 6.00000 0.312348
\(370\) 0 0
\(371\) 60.0000i 3.11504i
\(372\) 0 0
\(373\) − 31.3050i − 1.62091i −0.585802 0.810454i \(-0.699220\pi\)
0.585802 0.810454i \(-0.300780\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 34.0000i 1.74646i 0.487306 + 0.873231i \(0.337980\pi\)
−0.487306 + 0.873231i \(0.662020\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −13.4164 −0.685546 −0.342773 0.939418i \(-0.611366\pi\)
−0.342773 + 0.939418i \(0.611366\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 4.47214i − 0.224450i −0.993683 0.112225i \(-0.964202\pi\)
0.993683 0.112225i \(-0.0357978\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −38.0000 −1.89763 −0.948815 0.315833i \(-0.897716\pi\)
−0.948815 + 0.315833i \(0.897716\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −8.94427 −0.443351
\(408\) 0 0
\(409\) 14.0000 0.692255 0.346128 0.938187i \(-0.387496\pi\)
0.346128 + 0.938187i \(0.387496\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 62.6099i 3.08083i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 26.0000i 1.27018i 0.772437 + 0.635092i \(0.219038\pi\)
−0.772437 + 0.635092i \(0.780962\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 40.2492 1.95698
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 26.8328i − 1.28359i
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 39.0000 1.85714
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −34.0000 −1.60456 −0.802280 0.596948i \(-0.796380\pi\)
−0.802280 + 0.596948i \(0.796380\pi\)
\(450\) 0 0
\(451\) − 4.00000i − 0.188353i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 22.3607 1.03919 0.519594 0.854413i \(-0.326083\pi\)
0.519594 + 0.854413i \(0.326083\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 40.2492i − 1.84289i
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 20.0000 0.911922
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 31.3050 1.41856 0.709281 0.704925i \(-0.249020\pi\)
0.709281 + 0.704925i \(0.249020\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 2.00000i − 0.0902587i −0.998981 0.0451294i \(-0.985630\pi\)
0.998981 0.0451294i \(-0.0143700\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) − 6.00000i − 0.268597i −0.990941 0.134298i \(-0.957122\pi\)
0.990941 0.134298i \(-0.0428781\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 40.2492 1.79462 0.897312 0.441397i \(-0.145517\pi\)
0.897312 + 0.441397i \(0.145517\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 26.8328i − 1.18011i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −38.0000 −1.66481 −0.832405 0.554168i \(-0.813037\pi\)
−0.832405 + 0.554168i \(0.813037\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −3.00000 −0.130435
\(530\) 0 0
\(531\) − 42.0000i − 1.82264i
\(532\) 0 0
\(533\) 8.94427i 0.387419i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 26.0000i − 1.11990i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 13.4164i 0.568471i 0.958754 + 0.284236i \(0.0917398\pi\)
−0.958754 + 0.284236i \(0.908260\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −40.2492 −1.69031
\(568\) 0 0
\(569\) 46.0000 1.92842 0.964210 0.265139i \(-0.0854179\pi\)
0.964210 + 0.265139i \(0.0854179\pi\)
\(570\) 0 0
\(571\) − 18.0000i − 0.753277i −0.926360 0.376638i \(-0.877080\pi\)
0.926360 0.376638i \(-0.122920\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −26.8328 −1.11130
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 42.0000 1.71322 0.856608 0.515968i \(-0.172568\pi\)
0.856608 + 0.515968i \(0.172568\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 49.1935 1.99670 0.998351 0.0574012i \(-0.0182814\pi\)
0.998351 + 0.0574012i \(0.0182814\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 60.0000i 2.42734i
\(612\) 0 0
\(613\) − 49.1935i − 1.98691i −0.114239 0.993453i \(-0.536443\pi\)
0.114239 0.993453i \(-0.463557\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) − 46.0000i − 1.84890i −0.381308 0.924448i \(-0.624526\pi\)
0.381308 0.924448i \(-0.375474\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −62.6099 −2.50841
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 58.1378i 2.30350i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 2.00000 0.0789953 0.0394976 0.999220i \(-0.487424\pi\)
0.0394976 + 0.999220i \(0.487424\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −40.2492 −1.58236 −0.791180 0.611583i \(-0.790533\pi\)
−0.791180 + 0.611583i \(0.790533\pi\)
\(648\) 0 0
\(649\) −28.0000 −1.09910
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 4.47214i 0.175008i 0.996164 + 0.0875041i \(0.0278891\pi\)
−0.996164 + 0.0875041i \(0.972111\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 26.0000i 1.01282i 0.862294 + 0.506408i \(0.169027\pi\)
−0.862294 + 0.506408i \(0.830973\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 49.1935i 1.89066i 0.326116 + 0.945330i \(0.394260\pi\)
−0.326116 + 0.945330i \(0.605740\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 60.0000 2.28582
\(690\) 0 0
\(691\) − 42.0000i − 1.59776i −0.601494 0.798878i \(-0.705427\pi\)
0.601494 0.798878i \(-0.294573\pi\)
\(692\) 0 0
\(693\) 26.8328i 1.01929i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) −26.8328 −1.01202
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −20.0000 −0.744839
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −4.47214 −0.165862 −0.0829312 0.996555i \(-0.526428\pi\)
−0.0829312 + 0.996555i \(0.526428\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) − 49.1935i − 1.81700i −0.417881 0.908502i \(-0.637227\pi\)
0.417881 0.908502i \(-0.362773\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) − 54.0000i − 1.98642i −0.116326 0.993211i \(-0.537112\pi\)
0.116326 0.993211i \(-0.462888\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 40.2492 1.47660 0.738300 0.674472i \(-0.235629\pi\)
0.738300 + 0.674472i \(0.235629\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 31.3050i 1.13780i 0.822407 + 0.568899i \(0.192630\pi\)
−0.822407 + 0.568899i \(0.807370\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −22.0000 −0.797499 −0.398750 0.917060i \(-0.630556\pi\)
−0.398750 + 0.917060i \(0.630556\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 62.6099 2.26071
\(768\) 0 0
\(769\) 54.0000 1.94729 0.973645 0.228069i \(-0.0732413\pi\)
0.973645 + 0.228069i \(0.0732413\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 22.3607i 0.804258i 0.915583 + 0.402129i \(0.131730\pi\)
−0.915583 + 0.402129i \(0.868270\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 12.0000i − 0.429945i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 40.2492i − 1.42570i −0.701316 0.712850i \(-0.747404\pi\)
0.701316 0.712850i \(-0.252596\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 42.0000 1.48400
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −26.0000 −0.914111 −0.457056 0.889438i \(-0.651096\pi\)
−0.457056 + 0.889438i \(0.651096\pi\)
\(810\) 0 0
\(811\) − 2.00000i − 0.0702295i −0.999383 0.0351147i \(-0.988820\pi\)
0.999383 0.0351147i \(-0.0111797\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) − 60.0000i − 2.09657i
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) −31.3050 −1.09122 −0.545611 0.838039i \(-0.683702\pi\)
−0.545611 + 0.838039i \(0.683702\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −31.3050 −1.07565
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 20.0000i − 0.685591i
\(852\) 0 0
\(853\) 58.1378i 1.99060i 0.0968435 + 0.995300i \(0.469125\pi\)
−0.0968435 + 0.995300i \(0.530875\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) − 14.0000i − 0.477674i −0.971060 0.238837i \(-0.923234\pi\)
0.971060 0.238837i \(-0.0767661\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 58.1378 1.97903 0.989516 0.144421i \(-0.0461320\pi\)
0.989516 + 0.144421i \(0.0461320\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 58.1378i − 1.96317i −0.191018 0.981586i \(-0.561179\pi\)
0.191018 0.981586i \(-0.438821\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 58.0000 1.95407 0.977035 0.213080i \(-0.0683494\pi\)
0.977035 + 0.213080i \(0.0683494\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −4.47214 −0.150160 −0.0750798 0.997178i \(-0.523921\pi\)
−0.0750798 + 0.997178i \(0.523921\pi\)
\(888\) 0 0
\(889\) 100.000 3.35389
\(890\) 0 0
\(891\) − 18.0000i − 0.603023i
\(892\) 0 0
\(893\) − 80.4984i − 2.69378i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 98.3870i − 3.24902i
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 13.4164 0.440653
\(928\) 0 0
\(929\) −34.0000 −1.11550 −0.557752 0.830008i \(-0.688336\pi\)
−0.557752 + 0.830008i \(0.688336\pi\)
\(930\) 0 0
\(931\) − 78.0000i − 2.55635i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 8.94427 0.291266
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 31.3050 1.00670 0.503350 0.864083i \(-0.332101\pi\)
0.503350 + 0.864083i \(0.332101\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 62.0000i 1.98967i 0.101482 + 0.994837i \(0.467641\pi\)
−0.101482 + 0.994837i \(0.532359\pi\)
\(972\) 0 0
\(973\) 62.6099i 2.00718i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) − 28.0000i − 0.894884i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 40.2492 1.28375 0.641875 0.766809i \(-0.278157\pi\)
0.641875 + 0.766809i \(0.278157\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 49.1935i 1.55797i 0.627040 + 0.778987i \(0.284266\pi\)
−0.627040 + 0.778987i \(0.715734\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1600.2.d.g.801.1 4
4.3 odd 2 inner 1600.2.d.g.801.4 4
5.2 odd 4 320.2.f.a.289.3 yes 4
5.3 odd 4 320.2.f.a.289.2 yes 4
5.4 even 2 inner 1600.2.d.g.801.3 4
8.3 odd 2 inner 1600.2.d.g.801.3 4
8.5 even 2 inner 1600.2.d.g.801.2 4
15.2 even 4 2880.2.d.e.289.1 4
15.8 even 4 2880.2.d.e.289.4 4
16.3 odd 4 6400.2.a.bj.1.1 2
16.5 even 4 6400.2.a.bj.1.2 2
16.11 odd 4 6400.2.a.bi.1.1 2
16.13 even 4 6400.2.a.bi.1.2 2
20.3 even 4 320.2.f.a.289.1 4
20.7 even 4 320.2.f.a.289.4 yes 4
20.19 odd 2 inner 1600.2.d.g.801.2 4
40.3 even 4 320.2.f.a.289.3 yes 4
40.13 odd 4 320.2.f.a.289.4 yes 4
40.19 odd 2 CM 1600.2.d.g.801.1 4
40.27 even 4 320.2.f.a.289.2 yes 4
40.29 even 2 inner 1600.2.d.g.801.4 4
40.37 odd 4 320.2.f.a.289.1 4
60.23 odd 4 2880.2.d.e.289.3 4
60.47 odd 4 2880.2.d.e.289.2 4
80.3 even 4 1280.2.c.c.769.2 2
80.13 odd 4 1280.2.c.b.769.2 2
80.19 odd 4 6400.2.a.bj.1.2 2
80.27 even 4 1280.2.c.b.769.2 2
80.29 even 4 6400.2.a.bi.1.1 2
80.37 odd 4 1280.2.c.c.769.2 2
80.43 even 4 1280.2.c.b.769.1 2
80.53 odd 4 1280.2.c.c.769.1 2
80.59 odd 4 6400.2.a.bi.1.2 2
80.67 even 4 1280.2.c.c.769.1 2
80.69 even 4 6400.2.a.bj.1.1 2
80.77 odd 4 1280.2.c.b.769.1 2
120.53 even 4 2880.2.d.e.289.2 4
120.77 even 4 2880.2.d.e.289.3 4
120.83 odd 4 2880.2.d.e.289.1 4
120.107 odd 4 2880.2.d.e.289.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
320.2.f.a.289.1 4 20.3 even 4
320.2.f.a.289.1 4 40.37 odd 4
320.2.f.a.289.2 yes 4 5.3 odd 4
320.2.f.a.289.2 yes 4 40.27 even 4
320.2.f.a.289.3 yes 4 5.2 odd 4
320.2.f.a.289.3 yes 4 40.3 even 4
320.2.f.a.289.4 yes 4 20.7 even 4
320.2.f.a.289.4 yes 4 40.13 odd 4
1280.2.c.b.769.1 2 80.43 even 4
1280.2.c.b.769.1 2 80.77 odd 4
1280.2.c.b.769.2 2 80.13 odd 4
1280.2.c.b.769.2 2 80.27 even 4
1280.2.c.c.769.1 2 80.53 odd 4
1280.2.c.c.769.1 2 80.67 even 4
1280.2.c.c.769.2 2 80.3 even 4
1280.2.c.c.769.2 2 80.37 odd 4
1600.2.d.g.801.1 4 1.1 even 1 trivial
1600.2.d.g.801.1 4 40.19 odd 2 CM
1600.2.d.g.801.2 4 8.5 even 2 inner
1600.2.d.g.801.2 4 20.19 odd 2 inner
1600.2.d.g.801.3 4 5.4 even 2 inner
1600.2.d.g.801.3 4 8.3 odd 2 inner
1600.2.d.g.801.4 4 4.3 odd 2 inner
1600.2.d.g.801.4 4 40.29 even 2 inner
2880.2.d.e.289.1 4 15.2 even 4
2880.2.d.e.289.1 4 120.83 odd 4
2880.2.d.e.289.2 4 60.47 odd 4
2880.2.d.e.289.2 4 120.53 even 4
2880.2.d.e.289.3 4 60.23 odd 4
2880.2.d.e.289.3 4 120.77 even 4
2880.2.d.e.289.4 4 15.8 even 4
2880.2.d.e.289.4 4 120.107 odd 4
6400.2.a.bi.1.1 2 16.11 odd 4
6400.2.a.bi.1.1 2 80.29 even 4
6400.2.a.bi.1.2 2 16.13 even 4
6400.2.a.bi.1.2 2 80.59 odd 4
6400.2.a.bj.1.1 2 16.3 odd 4
6400.2.a.bj.1.1 2 80.69 even 4
6400.2.a.bj.1.2 2 16.5 even 4
6400.2.a.bj.1.2 2 80.19 odd 4