Properties

Label 6400.2.a.bi.1.2
Level 64006400
Weight 22
Character 6400.1
Self dual yes
Analytic conductor 51.10451.104
Analytic rank 11
Dimension 22
CM discriminant -40
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6400,2,Mod(1,6400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6400.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 6400=2852 6400 = 2^{8} \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 6400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 51.104257293651.1042572936
Analytic rank: 11
Dimension: 22
Coefficient field: Q(ζ10)+\Q(\zeta_{10})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x1 x^{2} - x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 320)
Fricke sign: +1+1
Sato-Tate group: N(U(1))N(\mathrm{U}(1))

Embedding invariants

Embedding label 1.2
Root 1.618031.61803 of defining polynomial
Character χ\chi == 6400.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+4.47214q73.00000q92.00000q114.47214q13+6.00000q194.47214q234.47214q372.00000q41+13.4164q47+13.0000q4913.4164q5314.0000q5913.4164q638.94427q77+9.00000q8114.0000q8920.0000q91+6.00000q99+O(q100)q+4.47214 q^{7} -3.00000 q^{9} -2.00000 q^{11} -4.47214 q^{13} +6.00000 q^{19} -4.47214 q^{23} -4.47214 q^{37} -2.00000 q^{41} +13.4164 q^{47} +13.0000 q^{49} -13.4164 q^{53} -14.0000 q^{59} -13.4164 q^{63} -8.94427 q^{77} +9.00000 q^{81} -14.0000 q^{89} -20.0000 q^{91} +6.00000 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q6q94q11+12q194q41+26q4928q59+18q8128q8940q91+12q99+O(q100) 2 q - 6 q^{9} - 4 q^{11} + 12 q^{19} - 4 q^{41} + 26 q^{49} - 28 q^{59} + 18 q^{81} - 28 q^{89} - 40 q^{91} + 12 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
44 0 0
55 0 0
66 0 0
77 4.47214 1.69031 0.845154 0.534522i 0.179509π-0.179509\pi
0.845154 + 0.534522i 0.179509π0.179509\pi
88 0 0
99 −3.00000 −1.00000
1010 0 0
1111 −2.00000 −0.603023 −0.301511 0.953463i 0.597491π-0.597491\pi
−0.301511 + 0.953463i 0.597491π0.597491\pi
1212 0 0
1313 −4.47214 −1.24035 −0.620174 0.784465i 0.712938π-0.712938\pi
−0.620174 + 0.784465i 0.712938π0.712938\pi
1414 0 0
1515 0 0
1616 0 0
1717 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1818 0 0
1919 6.00000 1.37649 0.688247 0.725476i 0.258380π-0.258380\pi
0.688247 + 0.725476i 0.258380π0.258380\pi
2020 0 0
2121 0 0
2222 0 0
2323 −4.47214 −0.932505 −0.466252 0.884652i 0.654396π-0.654396\pi
−0.466252 + 0.884652i 0.654396π0.654396\pi
2424 0 0
2525 0 0
2626 0 0
2727 0 0
2828 0 0
2929 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3030 0 0
3131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3232 0 0
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 −4.47214 −0.735215 −0.367607 0.929981i 0.619823π-0.619823\pi
−0.367607 + 0.929981i 0.619823π0.619823\pi
3838 0 0
3939 0 0
4040 0 0
4141 −2.00000 −0.312348 −0.156174 0.987730i 0.549916π-0.549916\pi
−0.156174 + 0.987730i 0.549916π0.549916\pi
4242 0 0
4343 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4444 0 0
4545 0 0
4646 0 0
4747 13.4164 1.95698 0.978492 0.206284i 0.0661372π-0.0661372\pi
0.978492 + 0.206284i 0.0661372π0.0661372\pi
4848 0 0
4949 13.0000 1.85714
5050 0 0
5151 0 0
5252 0 0
5353 −13.4164 −1.84289 −0.921443 0.388514i 0.872988π-0.872988\pi
−0.921443 + 0.388514i 0.872988π0.872988\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 −14.0000 −1.82264 −0.911322 0.411693i 0.864937π-0.864937\pi
−0.911322 + 0.411693i 0.864937π0.864937\pi
6060 0 0
6161 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6262 0 0
6363 −13.4164 −1.69031
6464 0 0
6565 0 0
6666 0 0
6767 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7272 0 0
7373 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7474 0 0
7575 0 0
7676 0 0
7777 −8.94427 −1.01929
7878 0 0
7979 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8080 0 0
8181 9.00000 1.00000
8282 0 0
8383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 −14.0000 −1.48400 −0.741999 0.670402i 0.766122π-0.766122\pi
−0.741999 + 0.670402i 0.766122π0.766122\pi
9090 0 0
9191 −20.0000 −2.09657
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
9898 0 0
9999 6.00000 0.603023
100100 0 0
101101 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
102102 0 0
103103 −4.47214 −0.440653 −0.220326 0.975426i 0.570712π-0.570712\pi
−0.220326 + 0.975426i 0.570712π0.570712\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
108108 0 0
109109 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
110110 0 0
111111 0 0
112112 0 0
113113 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
114114 0 0
115115 0 0
116116 0 0
117117 13.4164 1.24035
118118 0 0
119119 0 0
120120 0 0
121121 −7.00000 −0.636364
122122 0 0
123123 0 0
124124 0 0
125125 0 0
126126 0 0
127127 −22.3607 −1.98419 −0.992095 0.125491i 0.959949π-0.959949\pi
−0.992095 + 0.125491i 0.959949π0.959949\pi
128128 0 0
129129 0 0
130130 0 0
131131 −22.0000 −1.92215 −0.961074 0.276289i 0.910895π-0.910895\pi
−0.961074 + 0.276289i 0.910895π0.910895\pi
132132 0 0
133133 26.8328 2.32670
134134 0 0
135135 0 0
136136 0 0
137137 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
138138 0 0
139139 −14.0000 −1.18746 −0.593732 0.804663i 0.702346π-0.702346\pi
−0.593732 + 0.804663i 0.702346π0.702346\pi
140140 0 0
141141 0 0
142142 0 0
143143 8.94427 0.747958
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
150150 0 0
151151 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 22.3607 1.78458 0.892288 0.451466i 0.149099π-0.149099\pi
0.892288 + 0.451466i 0.149099π0.149099\pi
158158 0 0
159159 0 0
160160 0 0
161161 −20.0000 −1.57622
162162 0 0
163163 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
164164 0 0
165165 0 0
166166 0 0
167167 4.47214 0.346064 0.173032 0.984916i 0.444644π-0.444644\pi
0.173032 + 0.984916i 0.444644π0.444644\pi
168168 0 0
169169 7.00000 0.538462
170170 0 0
171171 −18.0000 −1.37649
172172 0 0
173173 13.4164 1.02003 0.510015 0.860165i 0.329640π-0.329640\pi
0.510015 + 0.860165i 0.329640π0.329640\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 −26.0000 −1.94333 −0.971666 0.236360i 0.924046π-0.924046\pi
−0.971666 + 0.236360i 0.924046π0.924046\pi
180180 0 0
181181 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
192192 0 0
193193 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
194194 0 0
195195 0 0
196196 0 0
197197 −22.3607 −1.59313 −0.796566 0.604551i 0.793352π-0.793352\pi
−0.796566 + 0.604551i 0.793352π0.793352\pi
198198 0 0
199199 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 13.4164 0.932505
208208 0 0
209209 −12.0000 −0.830057
210210 0 0
211211 −22.0000 −1.51454 −0.757271 0.653101i 0.773468π-0.773468\pi
−0.757271 + 0.653101i 0.773468π0.773468\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 22.3607 1.49738 0.748691 0.662919i 0.230683π-0.230683\pi
0.748691 + 0.662919i 0.230683π0.230683\pi
224224 0 0
225225 0 0
226226 0 0
227227 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
228228 0 0
229229 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
240240 0 0
241241 18.0000 1.15948 0.579741 0.814801i 0.303154π-0.303154\pi
0.579741 + 0.814801i 0.303154π0.303154\pi
242242 0 0
243243 0 0
244244 0 0
245245 0 0
246246 0 0
247247 −26.8328 −1.70733
248248 0 0
249249 0 0
250250 0 0
251251 −2.00000 −0.126239 −0.0631194 0.998006i 0.520105π-0.520105\pi
−0.0631194 + 0.998006i 0.520105π0.520105\pi
252252 0 0
253253 8.94427 0.562322
254254 0 0
255255 0 0
256256 0 0
257257 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
258258 0 0
259259 −20.0000 −1.24274
260260 0 0
261261 0 0
262262 0 0
263263 31.3050 1.93035 0.965173 0.261612i 0.0842542π-0.0842542\pi
0.965173 + 0.261612i 0.0842542π0.0842542\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
270270 0 0
271271 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 31.3050 1.88093 0.940466 0.339887i 0.110389π-0.110389\pi
0.940466 + 0.339887i 0.110389π0.110389\pi
278278 0 0
279279 0 0
280280 0 0
281281 22.0000 1.31241 0.656205 0.754583i 0.272161π-0.272161\pi
0.656205 + 0.754583i 0.272161π0.272161\pi
282282 0 0
283283 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
284284 0 0
285285 0 0
286286 0 0
287287 −8.94427 −0.527964
288288 0 0
289289 −17.0000 −1.00000
290290 0 0
291291 0 0
292292 0 0
293293 4.47214 0.261265 0.130632 0.991431i 0.458299π-0.458299\pi
0.130632 + 0.991431i 0.458299π0.458299\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 20.0000 1.15663
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 0 0
313313 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
314314 0 0
315315 0 0
316316 0 0
317317 −31.3050 −1.75826 −0.879131 0.476581i 0.841876π-0.841876\pi
−0.879131 + 0.476581i 0.841876π0.841876\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 60.0000 3.30791
330330 0 0
331331 −18.0000 −0.989369 −0.494685 0.869072i 0.664716π-0.664716\pi
−0.494685 + 0.869072i 0.664716π0.664716\pi
332332 0 0
333333 13.4164 0.735215
334334 0 0
335335 0 0
336336 0 0
337337 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
338338 0 0
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 26.8328 1.44884
344344 0 0
345345 0 0
346346 0 0
347347 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
348348 0 0
349349 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
360360 0 0
361361 17.0000 0.894737
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 −22.3607 −1.16722 −0.583609 0.812035i 0.698360π-0.698360\pi
−0.583609 + 0.812035i 0.698360π0.698360\pi
368368 0 0
369369 6.00000 0.312348
370370 0 0
371371 −60.0000 −3.11504
372372 0 0
373373 −31.3050 −1.62091 −0.810454 0.585802i 0.800780π-0.800780\pi
−0.810454 + 0.585802i 0.800780π0.800780\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 34.0000 1.74646 0.873231 0.487306i 0.162020π-0.162020\pi
0.873231 + 0.487306i 0.162020π0.162020\pi
380380 0 0
381381 0 0
382382 0 0
383383 −13.4164 −0.685546 −0.342773 0.939418i 0.611366π-0.611366\pi
−0.342773 + 0.939418i 0.611366π0.611366\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 4.47214 0.224450 0.112225 0.993683i 0.464202π-0.464202\pi
0.112225 + 0.993683i 0.464202π0.464202\pi
398398 0 0
399399 0 0
400400 0 0
401401 −38.0000 −1.89763 −0.948815 0.315833i 0.897716π-0.897716\pi
−0.948815 + 0.315833i 0.897716π0.897716\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 8.94427 0.443351
408408 0 0
409409 −14.0000 −0.692255 −0.346128 0.938187i 0.612504π-0.612504\pi
−0.346128 + 0.938187i 0.612504π0.612504\pi
410410 0 0
411411 0 0
412412 0 0
413413 −62.6099 −3.08083
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 −26.0000 −1.27018 −0.635092 0.772437i 0.719038π-0.719038\pi
−0.635092 + 0.772437i 0.719038π0.719038\pi
420420 0 0
421421 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
422422 0 0
423423 −40.2492 −1.95698
424424 0 0
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
432432 0 0
433433 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
434434 0 0
435435 0 0
436436 0 0
437437 −26.8328 −1.28359
438438 0 0
439439 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
440440 0 0
441441 −39.0000 −1.85714
442442 0 0
443443 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 −34.0000 −1.60456 −0.802280 0.596948i 0.796380π-0.796380\pi
−0.802280 + 0.596948i 0.796380π0.796380\pi
450450 0 0
451451 4.00000 0.188353
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
462462 0 0
463463 22.3607 1.03919 0.519594 0.854413i 0.326083π-0.326083\pi
0.519594 + 0.854413i 0.326083π0.326083\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 40.2492 1.84289
478478 0 0
479479 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
480480 0 0
481481 20.0000 0.911922
482482 0 0
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 −31.3050 −1.41856 −0.709281 0.704925i 0.750980π-0.750980\pi
−0.709281 + 0.704925i 0.750980π0.750980\pi
488488 0 0
489489 0 0
490490 0 0
491491 −2.00000 −0.0902587 −0.0451294 0.998981i 0.514370π-0.514370\pi
−0.0451294 + 0.998981i 0.514370π0.514370\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 6.00000 0.268597 0.134298 0.990941i 0.457122π-0.457122\pi
0.134298 + 0.990941i 0.457122π0.457122\pi
500500 0 0
501501 0 0
502502 0 0
503503 −40.2492 −1.79462 −0.897312 0.441397i 0.854483π-0.854483\pi
−0.897312 + 0.441397i 0.854483π0.854483\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 0 0
509509 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 −26.8328 −1.18011
518518 0 0
519519 0 0
520520 0 0
521521 38.0000 1.66481 0.832405 0.554168i 0.186963π-0.186963\pi
0.832405 + 0.554168i 0.186963π0.186963\pi
522522 0 0
523523 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 −3.00000 −0.130435
530530 0 0
531531 42.0000 1.82264
532532 0 0
533533 8.94427 0.387419
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 −26.0000 −1.11990
540540 0 0
541541 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 −13.4164 −0.568471 −0.284236 0.958754i 0.591740π-0.591740\pi
−0.284236 + 0.958754i 0.591740π0.591740\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
564564 0 0
565565 0 0
566566 0 0
567567 40.2492 1.69031
568568 0 0
569569 −46.0000 −1.92842 −0.964210 0.265139i 0.914582π-0.914582\pi
−0.964210 + 0.265139i 0.914582π0.914582\pi
570570 0 0
571571 −18.0000 −0.753277 −0.376638 0.926360i 0.622920π-0.622920\pi
−0.376638 + 0.926360i 0.622920π0.622920\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 26.8328 1.11130
584584 0 0
585585 0 0
586586 0 0
587587 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
600600 0 0
601601 −42.0000 −1.71322 −0.856608 0.515968i 0.827432π-0.827432\pi
−0.856608 + 0.515968i 0.827432π0.827432\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 0 0
607607 49.1935 1.99670 0.998351 0.0574012i 0.0182814π-0.0182814\pi
0.998351 + 0.0574012i 0.0182814π0.0182814\pi
608608 0 0
609609 0 0
610610 0 0
611611 −60.0000 −2.42734
612612 0 0
613613 −49.1935 −1.98691 −0.993453 0.114239i 0.963557π-0.963557\pi
−0.993453 + 0.114239i 0.963557π0.963557\pi
614614 0 0
615615 0 0
616616 0 0
617617 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
618618 0 0
619619 −46.0000 −1.84890 −0.924448 0.381308i 0.875474π-0.875474\pi
−0.924448 + 0.381308i 0.875474π0.875474\pi
620620 0 0
621621 0 0
622622 0 0
623623 −62.6099 −2.50841
624624 0 0
625625 0 0
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 −58.1378 −2.30350
638638 0 0
639639 0 0
640640 0 0
641641 2.00000 0.0789953 0.0394976 0.999220i 0.487424π-0.487424\pi
0.0394976 + 0.999220i 0.487424π0.487424\pi
642642 0 0
643643 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
644644 0 0
645645 0 0
646646 0 0
647647 40.2492 1.58236 0.791180 0.611583i 0.209467π-0.209467\pi
0.791180 + 0.611583i 0.209467π0.209467\pi
648648 0 0
649649 28.0000 1.09910
650650 0 0
651651 0 0
652652 0 0
653653 −4.47214 −0.175008 −0.0875041 0.996164i 0.527889π-0.527889\pi
−0.0875041 + 0.996164i 0.527889π0.527889\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 −26.0000 −1.01282 −0.506408 0.862294i 0.669027π-0.669027\pi
−0.506408 + 0.862294i 0.669027π0.669027\pi
660660 0 0
661661 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
674674 0 0
675675 0 0
676676 0 0
677677 49.1935 1.89066 0.945330 0.326116i 0.105740π-0.105740\pi
0.945330 + 0.326116i 0.105740π0.105740\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 60.0000 2.28582
690690 0 0
691691 42.0000 1.59776 0.798878 0.601494i 0.205427π-0.205427\pi
0.798878 + 0.601494i 0.205427π0.205427\pi
692692 0 0
693693 26.8328 1.01929
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
702702 0 0
703703 −26.8328 −1.01202
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 0 0
721721 −20.0000 −0.744839
722722 0 0
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 4.47214 0.165862 0.0829312 0.996555i 0.473572π-0.473572\pi
0.0829312 + 0.996555i 0.473572π0.473572\pi
728728 0 0
729729 −27.0000 −1.00000
730730 0 0
731731 0 0
732732 0 0
733733 49.1935 1.81700 0.908502 0.417881i 0.137227π-0.137227\pi
0.908502 + 0.417881i 0.137227π0.137227\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 54.0000 1.98642 0.993211 0.116326i 0.0371118π-0.0371118\pi
0.993211 + 0.116326i 0.0371118π0.0371118\pi
740740 0 0
741741 0 0
742742 0 0
743743 −40.2492 −1.47660 −0.738300 0.674472i 0.764371π-0.764371\pi
−0.738300 + 0.674472i 0.764371π0.764371\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 31.3050 1.13780 0.568899 0.822407i 0.307370π-0.307370\pi
0.568899 + 0.822407i 0.307370π0.307370\pi
758758 0 0
759759 0 0
760760 0 0
761761 22.0000 0.797499 0.398750 0.917060i 0.369444π-0.369444\pi
0.398750 + 0.917060i 0.369444π0.369444\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 62.6099 2.26071
768768 0 0
769769 54.0000 1.94729 0.973645 0.228069i 0.0732413π-0.0732413\pi
0.973645 + 0.228069i 0.0732413π0.0732413\pi
770770 0 0
771771 0 0
772772 0 0
773773 22.3607 0.804258 0.402129 0.915583i 0.368270π-0.368270\pi
0.402129 + 0.915583i 0.368270π0.368270\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 −12.0000 −0.429945
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 0 0
786786 0 0
787787 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 40.2492 1.42570 0.712850 0.701316i 0.247404π-0.247404\pi
0.712850 + 0.701316i 0.247404π0.247404\pi
798798 0 0
799799 0 0
800800 0 0
801801 42.0000 1.48400
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 26.0000 0.914111 0.457056 0.889438i 0.348904π-0.348904\pi
0.457056 + 0.889438i 0.348904π0.348904\pi
810810 0 0
811811 −2.00000 −0.0702295 −0.0351147 0.999383i 0.511180π-0.511180\pi
−0.0351147 + 0.999383i 0.511180π0.511180\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 60.0000 2.09657
820820 0 0
821821 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
822822 0 0
823823 31.3050 1.09122 0.545611 0.838039i 0.316298π-0.316298\pi
0.545611 + 0.838039i 0.316298π0.316298\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
828828 0 0
829829 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
840840 0 0
841841 −29.0000 −1.00000
842842 0 0
843843 0 0
844844 0 0
845845 0 0
846846 0 0
847847 −31.3050 −1.07565
848848 0 0
849849 0 0
850850 0 0
851851 20.0000 0.685591
852852 0 0
853853 58.1378 1.99060 0.995300 0.0968435i 0.0308746π-0.0308746\pi
0.995300 + 0.0968435i 0.0308746π0.0308746\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
858858 0 0
859859 −14.0000 −0.477674 −0.238837 0.971060i 0.576766π-0.576766\pi
−0.238837 + 0.971060i 0.576766π0.576766\pi
860860 0 0
861861 0 0
862862 0 0
863863 58.1378 1.97903 0.989516 0.144421i 0.0461320π-0.0461320\pi
0.989516 + 0.144421i 0.0461320π0.0461320\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 58.1378 1.96317 0.981586 0.191018i 0.0611790π-0.0611790\pi
0.981586 + 0.191018i 0.0611790π0.0611790\pi
878878 0 0
879879 0 0
880880 0 0
881881 58.0000 1.95407 0.977035 0.213080i 0.0683494π-0.0683494\pi
0.977035 + 0.213080i 0.0683494π0.0683494\pi
882882 0 0
883883 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
884884 0 0
885885 0 0
886886 0 0
887887 4.47214 0.150160 0.0750798 0.997178i 0.476079π-0.476079\pi
0.0750798 + 0.997178i 0.476079π0.476079\pi
888888 0 0
889889 −100.000 −3.35389
890890 0 0
891891 −18.0000 −0.603023
892892 0 0
893893 80.4984 2.69378
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 −98.3870 −3.24902
918918 0 0
919919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 13.4164 0.440653
928928 0 0
929929 −34.0000 −1.11550 −0.557752 0.830008i 0.688336π-0.688336\pi
−0.557752 + 0.830008i 0.688336π0.688336\pi
930930 0 0
931931 78.0000 2.55635
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
942942 0 0
943943 8.94427 0.291266
944944 0 0
945945 0 0
946946 0 0
947947 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −31.0000 −1.00000
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 −31.3050 −1.00670 −0.503350 0.864083i 0.667899π-0.667899\pi
−0.503350 + 0.864083i 0.667899π0.667899\pi
968968 0 0
969969 0 0
970970 0 0
971971 62.0000 1.98967 0.994837 0.101482i 0.0323585π-0.0323585\pi
0.994837 + 0.101482i 0.0323585π0.0323585\pi
972972 0 0
973973 −62.6099 −2.00718
974974 0 0
975975 0 0
976976 0 0
977977 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
978978 0 0
979979 28.0000 0.894884
980980 0 0
981981 0 0
982982 0 0
983983 −40.2492 −1.28375 −0.641875 0.766809i 0.721843π-0.721843\pi
−0.641875 + 0.766809i 0.721843π0.721843\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 49.1935 1.55797 0.778987 0.627040i 0.215734π-0.215734\pi
0.778987 + 0.627040i 0.215734π0.215734\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6400.2.a.bi.1.2 2
4.3 odd 2 6400.2.a.bj.1.1 2
5.2 odd 4 1280.2.c.b.769.1 2
5.3 odd 4 1280.2.c.b.769.2 2
5.4 even 2 inner 6400.2.a.bi.1.1 2
8.3 odd 2 inner 6400.2.a.bi.1.1 2
8.5 even 2 6400.2.a.bj.1.2 2
16.3 odd 4 1600.2.d.g.801.3 4
16.5 even 4 1600.2.d.g.801.1 4
16.11 odd 4 1600.2.d.g.801.4 4
16.13 even 4 1600.2.d.g.801.2 4
20.3 even 4 1280.2.c.c.769.2 2
20.7 even 4 1280.2.c.c.769.1 2
20.19 odd 2 6400.2.a.bj.1.2 2
40.3 even 4 1280.2.c.b.769.1 2
40.13 odd 4 1280.2.c.c.769.1 2
40.19 odd 2 CM 6400.2.a.bi.1.2 2
40.27 even 4 1280.2.c.b.769.2 2
40.29 even 2 6400.2.a.bj.1.1 2
40.37 odd 4 1280.2.c.c.769.2 2
80.3 even 4 320.2.f.a.289.3 yes 4
80.13 odd 4 320.2.f.a.289.4 yes 4
80.19 odd 4 1600.2.d.g.801.1 4
80.27 even 4 320.2.f.a.289.4 yes 4
80.29 even 4 1600.2.d.g.801.4 4
80.37 odd 4 320.2.f.a.289.3 yes 4
80.43 even 4 320.2.f.a.289.1 4
80.53 odd 4 320.2.f.a.289.2 yes 4
80.59 odd 4 1600.2.d.g.801.2 4
80.67 even 4 320.2.f.a.289.2 yes 4
80.69 even 4 1600.2.d.g.801.3 4
80.77 odd 4 320.2.f.a.289.1 4
240.53 even 4 2880.2.d.e.289.4 4
240.77 even 4 2880.2.d.e.289.3 4
240.83 odd 4 2880.2.d.e.289.1 4
240.107 odd 4 2880.2.d.e.289.2 4
240.173 even 4 2880.2.d.e.289.2 4
240.197 even 4 2880.2.d.e.289.1 4
240.203 odd 4 2880.2.d.e.289.3 4
240.227 odd 4 2880.2.d.e.289.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
320.2.f.a.289.1 4 80.43 even 4
320.2.f.a.289.1 4 80.77 odd 4
320.2.f.a.289.2 yes 4 80.53 odd 4
320.2.f.a.289.2 yes 4 80.67 even 4
320.2.f.a.289.3 yes 4 80.3 even 4
320.2.f.a.289.3 yes 4 80.37 odd 4
320.2.f.a.289.4 yes 4 80.13 odd 4
320.2.f.a.289.4 yes 4 80.27 even 4
1280.2.c.b.769.1 2 5.2 odd 4
1280.2.c.b.769.1 2 40.3 even 4
1280.2.c.b.769.2 2 5.3 odd 4
1280.2.c.b.769.2 2 40.27 even 4
1280.2.c.c.769.1 2 20.7 even 4
1280.2.c.c.769.1 2 40.13 odd 4
1280.2.c.c.769.2 2 20.3 even 4
1280.2.c.c.769.2 2 40.37 odd 4
1600.2.d.g.801.1 4 16.5 even 4
1600.2.d.g.801.1 4 80.19 odd 4
1600.2.d.g.801.2 4 16.13 even 4
1600.2.d.g.801.2 4 80.59 odd 4
1600.2.d.g.801.3 4 16.3 odd 4
1600.2.d.g.801.3 4 80.69 even 4
1600.2.d.g.801.4 4 16.11 odd 4
1600.2.d.g.801.4 4 80.29 even 4
2880.2.d.e.289.1 4 240.83 odd 4
2880.2.d.e.289.1 4 240.197 even 4
2880.2.d.e.289.2 4 240.107 odd 4
2880.2.d.e.289.2 4 240.173 even 4
2880.2.d.e.289.3 4 240.77 even 4
2880.2.d.e.289.3 4 240.203 odd 4
2880.2.d.e.289.4 4 240.53 even 4
2880.2.d.e.289.4 4 240.227 odd 4
6400.2.a.bi.1.1 2 5.4 even 2 inner
6400.2.a.bi.1.1 2 8.3 odd 2 inner
6400.2.a.bi.1.2 2 1.1 even 1 trivial
6400.2.a.bi.1.2 2 40.19 odd 2 CM
6400.2.a.bj.1.1 2 4.3 odd 2
6400.2.a.bj.1.1 2 40.29 even 2
6400.2.a.bj.1.2 2 8.5 even 2
6400.2.a.bj.1.2 2 20.19 odd 2