Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [161,4,Mod(160,161)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(161, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("161.160");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 161 = 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 161.c (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(9.49930751092\) |
Analytic rank: | \(0\) |
Dimension: | \(36\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
160.1 | −5.29875 | − | 6.28001i | 20.0768 | −10.4216 | 33.2762i | 11.5274 | − | 14.4955i | −63.9920 | −12.4385 | 55.2216 | |||||||||||||||
160.2 | −5.29875 | − | 6.28001i | 20.0768 | 10.4216 | 33.2762i | −11.5274 | + | 14.4955i | −63.9920 | −12.4385 | −55.2216 | |||||||||||||||
160.3 | −5.29875 | 6.28001i | 20.0768 | −10.4216 | − | 33.2762i | 11.5274 | + | 14.4955i | −63.9920 | −12.4385 | 55.2216 | |||||||||||||||
160.4 | −5.29875 | 6.28001i | 20.0768 | 10.4216 | − | 33.2762i | −11.5274 | − | 14.4955i | −63.9920 | −12.4385 | −55.2216 | |||||||||||||||
160.5 | −4.42537 | − | 3.10698i | 11.5839 | −13.0444 | 13.7495i | −12.3048 | + | 13.8417i | −15.8600 | 17.3467 | 57.7264 | |||||||||||||||
160.6 | −4.42537 | − | 3.10698i | 11.5839 | 13.0444 | 13.7495i | 12.3048 | − | 13.8417i | −15.8600 | 17.3467 | −57.7264 | |||||||||||||||
160.7 | −4.42537 | 3.10698i | 11.5839 | −13.0444 | − | 13.7495i | −12.3048 | − | 13.8417i | −15.8600 | 17.3467 | 57.7264 | |||||||||||||||
160.8 | −4.42537 | 3.10698i | 11.5839 | 13.0444 | − | 13.7495i | 12.3048 | + | 13.8417i | −15.8600 | 17.3467 | −57.7264 | |||||||||||||||
160.9 | −3.36931 | − | 9.90574i | 3.35226 | −8.06501 | 33.3755i | 16.4867 | + | 8.43733i | 15.6597 | −71.1238 | 27.1735 | |||||||||||||||
160.10 | −3.36931 | − | 9.90574i | 3.35226 | 8.06501 | 33.3755i | −16.4867 | − | 8.43733i | 15.6597 | −71.1238 | −27.1735 | |||||||||||||||
160.11 | −3.36931 | 9.90574i | 3.35226 | −8.06501 | − | 33.3755i | 16.4867 | − | 8.43733i | 15.6597 | −71.1238 | 27.1735 | |||||||||||||||
160.12 | −3.36931 | 9.90574i | 3.35226 | 8.06501 | − | 33.3755i | −16.4867 | + | 8.43733i | 15.6597 | −71.1238 | −27.1735 | |||||||||||||||
160.13 | −2.89408 | − | 3.10338i | 0.375694 | −8.39365 | 8.98142i | 13.9217 | + | 12.2141i | 22.0653 | 17.3690 | 24.2919 | |||||||||||||||
160.14 | −2.89408 | − | 3.10338i | 0.375694 | 8.39365 | 8.98142i | −13.9217 | − | 12.2141i | 22.0653 | 17.3690 | −24.2919 | |||||||||||||||
160.15 | −2.89408 | 3.10338i | 0.375694 | −8.39365 | − | 8.98142i | 13.9217 | − | 12.2141i | 22.0653 | 17.3690 | 24.2919 | |||||||||||||||
160.16 | −2.89408 | 3.10338i | 0.375694 | 8.39365 | − | 8.98142i | −13.9217 | + | 12.2141i | 22.0653 | 17.3690 | −24.2919 | |||||||||||||||
160.17 | 0.765757 | − | 0.826637i | −7.41362 | −5.17868 | − | 0.633003i | 15.9670 | + | 9.38369i | −11.8031 | 26.3167 | −3.96561 | ||||||||||||||
160.18 | 0.765757 | − | 0.826637i | −7.41362 | 5.17868 | − | 0.633003i | −15.9670 | − | 9.38369i | −11.8031 | 26.3167 | 3.96561 | ||||||||||||||
160.19 | 0.765757 | 0.826637i | −7.41362 | −5.17868 | 0.633003i | 15.9670 | − | 9.38369i | −11.8031 | 26.3167 | −3.96561 | ||||||||||||||||
160.20 | 0.765757 | 0.826637i | −7.41362 | 5.17868 | 0.633003i | −15.9670 | + | 9.38369i | −11.8031 | 26.3167 | 3.96561 | ||||||||||||||||
See all 36 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
23.b | odd | 2 | 1 | inner |
161.c | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 161.4.c.c | ✓ | 36 |
7.b | odd | 2 | 1 | inner | 161.4.c.c | ✓ | 36 |
23.b | odd | 2 | 1 | inner | 161.4.c.c | ✓ | 36 |
161.c | even | 2 | 1 | inner | 161.4.c.c | ✓ | 36 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
161.4.c.c | ✓ | 36 | 1.a | even | 1 | 1 | trivial |
161.4.c.c | ✓ | 36 | 7.b | odd | 2 | 1 | inner |
161.4.c.c | ✓ | 36 | 23.b | odd | 2 | 1 | inner |
161.4.c.c | ✓ | 36 | 161.c | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{9} + 2T_{2}^{8} - 57T_{2}^{7} - 87T_{2}^{6} + 1108T_{2}^{5} + 1005T_{2}^{4} - 8880T_{2}^{3} - 1572T_{2}^{2} + 25504T_{2} - 15232 \)
acting on \(S_{4}^{\mathrm{new}}(161, [\chi])\).