Properties

Label 161.4.c.c
Level 161161
Weight 44
Character orbit 161.c
Analytic conductor 9.4999.499
Analytic rank 00
Dimension 3636
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [161,4,Mod(160,161)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(161, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("161.160"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 161=723 161 = 7 \cdot 23
Weight: k k == 4 4
Character orbit: [χ][\chi] == 161.c (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 9.499307510929.49930751092
Analytic rank: 00
Dimension: 3636
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 36q8q2+184q4228q8436q9+168q16404q18+204q23140q25+256q29+1008q322040q354412q36+1296q39888q46+1916q49+4080q50++6884q98+O(q100) 36 q - 8 q^{2} + 184 q^{4} - 228 q^{8} - 436 q^{9} + 168 q^{16} - 404 q^{18} + 204 q^{23} - 140 q^{25} + 256 q^{29} + 1008 q^{32} - 2040 q^{35} - 4412 q^{36} + 1296 q^{39} - 888 q^{46} + 1916 q^{49} + 4080 q^{50}+ \cdots + 6884 q^{98}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
160.1 −5.29875 6.28001i 20.0768 −10.4216 33.2762i 11.5274 14.4955i −63.9920 −12.4385 55.2216
160.2 −5.29875 6.28001i 20.0768 10.4216 33.2762i −11.5274 + 14.4955i −63.9920 −12.4385 −55.2216
160.3 −5.29875 6.28001i 20.0768 −10.4216 33.2762i 11.5274 + 14.4955i −63.9920 −12.4385 55.2216
160.4 −5.29875 6.28001i 20.0768 10.4216 33.2762i −11.5274 14.4955i −63.9920 −12.4385 −55.2216
160.5 −4.42537 3.10698i 11.5839 −13.0444 13.7495i −12.3048 + 13.8417i −15.8600 17.3467 57.7264
160.6 −4.42537 3.10698i 11.5839 13.0444 13.7495i 12.3048 13.8417i −15.8600 17.3467 −57.7264
160.7 −4.42537 3.10698i 11.5839 −13.0444 13.7495i −12.3048 13.8417i −15.8600 17.3467 57.7264
160.8 −4.42537 3.10698i 11.5839 13.0444 13.7495i 12.3048 + 13.8417i −15.8600 17.3467 −57.7264
160.9 −3.36931 9.90574i 3.35226 −8.06501 33.3755i 16.4867 + 8.43733i 15.6597 −71.1238 27.1735
160.10 −3.36931 9.90574i 3.35226 8.06501 33.3755i −16.4867 8.43733i 15.6597 −71.1238 −27.1735
160.11 −3.36931 9.90574i 3.35226 −8.06501 33.3755i 16.4867 8.43733i 15.6597 −71.1238 27.1735
160.12 −3.36931 9.90574i 3.35226 8.06501 33.3755i −16.4867 + 8.43733i 15.6597 −71.1238 −27.1735
160.13 −2.89408 3.10338i 0.375694 −8.39365 8.98142i 13.9217 + 12.2141i 22.0653 17.3690 24.2919
160.14 −2.89408 3.10338i 0.375694 8.39365 8.98142i −13.9217 12.2141i 22.0653 17.3690 −24.2919
160.15 −2.89408 3.10338i 0.375694 −8.39365 8.98142i 13.9217 12.2141i 22.0653 17.3690 24.2919
160.16 −2.89408 3.10338i 0.375694 8.39365 8.98142i −13.9217 + 12.2141i 22.0653 17.3690 −24.2919
160.17 0.765757 0.826637i −7.41362 −5.17868 0.633003i 15.9670 + 9.38369i −11.8031 26.3167 −3.96561
160.18 0.765757 0.826637i −7.41362 5.17868 0.633003i −15.9670 9.38369i −11.8031 26.3167 3.96561
160.19 0.765757 0.826637i −7.41362 −5.17868 0.633003i 15.9670 9.38369i −11.8031 26.3167 −3.96561
160.20 0.765757 0.826637i −7.41362 5.17868 0.633003i −15.9670 + 9.38369i −11.8031 26.3167 3.96561
See all 36 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 160.36
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
23.b odd 2 1 inner
161.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 161.4.c.c 36
7.b odd 2 1 inner 161.4.c.c 36
23.b odd 2 1 inner 161.4.c.c 36
161.c even 2 1 inner 161.4.c.c 36
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
161.4.c.c 36 1.a even 1 1 trivial
161.4.c.c 36 7.b odd 2 1 inner
161.4.c.c 36 23.b odd 2 1 inner
161.4.c.c 36 161.c even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T29+2T2857T2787T26+1108T25+1005T248880T231572T22+25504T215232 T_{2}^{9} + 2T_{2}^{8} - 57T_{2}^{7} - 87T_{2}^{6} + 1108T_{2}^{5} + 1005T_{2}^{4} - 8880T_{2}^{3} - 1572T_{2}^{2} + 25504T_{2} - 15232 acting on S4new(161,[χ])S_{4}^{\mathrm{new}}(161, [\chi]). Copy content Toggle raw display