Properties

Label 161.4.c.c.160.12
Level $161$
Weight $4$
Character 161.160
Analytic conductor $9.499$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [161,4,Mod(160,161)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(161, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("161.160");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 161.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.49930751092\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 160.12
Character \(\chi\) \(=\) 161.160
Dual form 161.4.c.c.160.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.36931 q^{2} +9.90574i q^{3} +3.35226 q^{4} +8.06501 q^{5} -33.3755i q^{6} +(-16.4867 + 8.43733i) q^{7} +15.6597 q^{8} -71.1238 q^{9} -27.1735 q^{10} +67.8577i q^{11} +33.2067i q^{12} -7.51672i q^{13} +(55.5489 - 28.4280i) q^{14} +79.8899i q^{15} -79.5804 q^{16} -88.2202 q^{17} +239.638 q^{18} +92.8569 q^{19} +27.0360 q^{20} +(-83.5780 - 163.313i) q^{21} -228.634i q^{22} +(91.6350 - 61.4006i) q^{23} +155.121i q^{24} -59.9556 q^{25} +25.3262i q^{26} -437.079i q^{27} +(-55.2678 + 28.2842i) q^{28} +109.684 q^{29} -269.174i q^{30} -60.4173i q^{31} +142.854 q^{32} -672.181 q^{33} +297.241 q^{34} +(-132.965 + 68.0471i) q^{35} -238.426 q^{36} +224.309i q^{37} -312.864 q^{38} +74.4587 q^{39} +126.295 q^{40} -188.711i q^{41} +(281.600 + 550.253i) q^{42} -93.3679i q^{43} +227.477i q^{44} -573.614 q^{45} +(-308.747 + 206.878i) q^{46} +50.8467i q^{47} -788.303i q^{48} +(200.623 - 278.208i) q^{49} +202.009 q^{50} -873.887i q^{51} -25.1980i q^{52} -223.248i q^{53} +1472.65i q^{54} +547.273i q^{55} +(-258.176 + 132.126i) q^{56} +919.816i q^{57} -369.559 q^{58} -301.444i q^{59} +267.812i q^{60} +244.869 q^{61} +203.565i q^{62} +(1172.60 - 600.094i) q^{63} +155.324 q^{64} -60.6224i q^{65} +2264.79 q^{66} +476.214i q^{67} -295.737 q^{68} +(608.218 + 907.713i) q^{69} +(448.002 - 229.272i) q^{70} -574.349 q^{71} -1113.77 q^{72} +806.456i q^{73} -755.766i q^{74} -593.905i q^{75} +311.281 q^{76} +(-572.538 - 1118.75i) q^{77} -250.875 q^{78} +825.242i q^{79} -641.817 q^{80} +2409.25 q^{81} +635.827i q^{82} -1377.06 q^{83} +(-280.176 - 547.469i) q^{84} -711.497 q^{85} +314.585i q^{86} +1086.50i q^{87} +1062.63i q^{88} -414.720 q^{89} +1932.68 q^{90} +(63.4210 + 123.926i) q^{91} +(307.185 - 205.831i) q^{92} +598.479 q^{93} -171.318i q^{94} +748.892 q^{95} +1415.07i q^{96} -325.780 q^{97} +(-675.961 + 937.368i) q^{98} -4826.29i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 8 q^{2} + 184 q^{4} - 228 q^{8} - 436 q^{9} + 168 q^{16} - 404 q^{18} + 204 q^{23} - 140 q^{25} + 256 q^{29} + 1008 q^{32} - 2040 q^{35} - 4412 q^{36} + 1296 q^{39} - 888 q^{46} + 1916 q^{49} + 4080 q^{50}+ \cdots + 6884 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/161\mathbb{Z}\right)^\times\).

\(n\) \(24\) \(120\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.36931 −1.19123 −0.595616 0.803269i \(-0.703092\pi\)
−0.595616 + 0.803269i \(0.703092\pi\)
\(3\) 9.90574i 1.90636i 0.302402 + 0.953181i \(0.402212\pi\)
−0.302402 + 0.953181i \(0.597788\pi\)
\(4\) 3.35226 0.419033
\(5\) 8.06501 0.721357 0.360678 0.932690i \(-0.382545\pi\)
0.360678 + 0.932690i \(0.382545\pi\)
\(6\) 33.3755i 2.27092i
\(7\) −16.4867 + 8.43733i −0.890198 + 0.455573i
\(8\) 15.6597 0.692066
\(9\) −71.1238 −2.63421
\(10\) −27.1735 −0.859303
\(11\) 67.8577i 1.85999i 0.367575 + 0.929994i \(0.380188\pi\)
−0.367575 + 0.929994i \(0.619812\pi\)
\(12\) 33.2067i 0.798828i
\(13\) 7.51672i 0.160366i −0.996780 0.0801832i \(-0.974449\pi\)
0.996780 0.0801832i \(-0.0255505\pi\)
\(14\) 55.5489 28.4280i 1.06043 0.542693i
\(15\) 79.8899i 1.37517i
\(16\) −79.5804 −1.24344
\(17\) −88.2202 −1.25862 −0.629310 0.777154i \(-0.716662\pi\)
−0.629310 + 0.777154i \(0.716662\pi\)
\(18\) 239.638 3.13796
\(19\) 92.8569 1.12120 0.560601 0.828086i \(-0.310570\pi\)
0.560601 + 0.828086i \(0.310570\pi\)
\(20\) 27.0360 0.302272
\(21\) −83.5780 163.313i −0.868487 1.69704i
\(22\) 228.634i 2.21568i
\(23\) 91.6350 61.4006i 0.830748 0.556648i
\(24\) 155.121i 1.31933i
\(25\) −59.9556 −0.479645
\(26\) 25.3262i 0.191034i
\(27\) 437.079i 3.11540i
\(28\) −55.2678 + 28.2842i −0.373023 + 0.190900i
\(29\) 109.684 0.702338 0.351169 0.936312i \(-0.385784\pi\)
0.351169 + 0.936312i \(0.385784\pi\)
\(30\) 269.174i 1.63814i
\(31\) 60.4173i 0.350041i −0.984565 0.175021i \(-0.944001\pi\)
0.984565 0.175021i \(-0.0559992\pi\)
\(32\) 142.854 0.789164
\(33\) −672.181 −3.54581
\(34\) 297.241 1.49931
\(35\) −132.965 + 68.0471i −0.642150 + 0.328630i
\(36\) −238.426 −1.10382
\(37\) 224.309i 0.996652i 0.866990 + 0.498326i \(0.166052\pi\)
−0.866990 + 0.498326i \(0.833948\pi\)
\(38\) −312.864 −1.33561
\(39\) 74.4587 0.305716
\(40\) 126.295 0.499227
\(41\) 188.711i 0.718823i −0.933179 0.359412i \(-0.882977\pi\)
0.933179 0.359412i \(-0.117023\pi\)
\(42\) 281.600 + 550.253i 1.03457 + 2.02157i
\(43\) 93.3679i 0.331127i −0.986199 0.165564i \(-0.947056\pi\)
0.986199 0.165564i \(-0.0529443\pi\)
\(44\) 227.477i 0.779396i
\(45\) −573.614 −1.90021
\(46\) −308.747 + 206.878i −0.989614 + 0.663097i
\(47\) 50.8467i 0.157803i 0.996882 + 0.0789016i \(0.0251413\pi\)
−0.996882 + 0.0789016i \(0.974859\pi\)
\(48\) 788.303i 2.37045i
\(49\) 200.623 278.208i 0.584907 0.811101i
\(50\) 202.009 0.571368
\(51\) 873.887i 2.39938i
\(52\) 25.1980i 0.0671988i
\(53\) 223.248i 0.578595i −0.957239 0.289298i \(-0.906578\pi\)
0.957239 0.289298i \(-0.0934217\pi\)
\(54\) 1472.65i 3.71116i
\(55\) 547.273i 1.34171i
\(56\) −258.176 + 132.126i −0.616076 + 0.315287i
\(57\) 919.816i 2.13742i
\(58\) −369.559 −0.836647
\(59\) 301.444i 0.665163i −0.943074 0.332582i \(-0.892080\pi\)
0.943074 0.332582i \(-0.107920\pi\)
\(60\) 267.812i 0.576240i
\(61\) 244.869 0.513971 0.256985 0.966415i \(-0.417271\pi\)
0.256985 + 0.966415i \(0.417271\pi\)
\(62\) 203.565i 0.416980i
\(63\) 1172.60 600.094i 2.34497 1.20008i
\(64\) 155.324 0.303367
\(65\) 60.6224i 0.115681i
\(66\) 2264.79 4.22388
\(67\) 476.214i 0.868340i 0.900831 + 0.434170i \(0.142958\pi\)
−0.900831 + 0.434170i \(0.857042\pi\)
\(68\) −295.737 −0.527403
\(69\) 608.218 + 907.713i 1.06117 + 1.58371i
\(70\) 448.002 229.272i 0.764950 0.391475i
\(71\) −574.349 −0.960038 −0.480019 0.877258i \(-0.659370\pi\)
−0.480019 + 0.877258i \(0.659370\pi\)
\(72\) −1113.77 −1.82305
\(73\) 806.456i 1.29299i 0.762916 + 0.646497i \(0.223767\pi\)
−0.762916 + 0.646497i \(0.776233\pi\)
\(74\) 755.766i 1.18724i
\(75\) 593.905i 0.914376i
\(76\) 311.281 0.469820
\(77\) −572.538 1118.75i −0.847360 1.65576i
\(78\) −250.875 −0.364179
\(79\) 825.242i 1.17528i 0.809123 + 0.587639i \(0.199943\pi\)
−0.809123 + 0.587639i \(0.800057\pi\)
\(80\) −641.817 −0.896967
\(81\) 2409.25 3.30487
\(82\) 635.827i 0.856285i
\(83\) −1377.06 −1.82111 −0.910553 0.413393i \(-0.864344\pi\)
−0.910553 + 0.413393i \(0.864344\pi\)
\(84\) −280.176 547.469i −0.363925 0.711116i
\(85\) −711.497 −0.907914
\(86\) 314.585i 0.394449i
\(87\) 1086.50i 1.33891i
\(88\) 1062.63i 1.28723i
\(89\) −414.720 −0.493935 −0.246968 0.969024i \(-0.579434\pi\)
−0.246968 + 0.969024i \(0.579434\pi\)
\(90\) 1932.68 2.26359
\(91\) 63.4210 + 123.926i 0.0730586 + 0.142758i
\(92\) 307.185 205.831i 0.348111 0.233254i
\(93\) 598.479 0.667305
\(94\) 171.318i 0.187980i
\(95\) 748.892 0.808786
\(96\) 1415.07i 1.50443i
\(97\) −325.780 −0.341010 −0.170505 0.985357i \(-0.554540\pi\)
−0.170505 + 0.985357i \(0.554540\pi\)
\(98\) −675.961 + 937.368i −0.696759 + 0.966209i
\(99\) 4826.29i 4.89960i
\(100\) −200.987 −0.200987
\(101\) 953.898i 0.939767i −0.882729 0.469883i \(-0.844296\pi\)
0.882729 0.469883i \(-0.155704\pi\)
\(102\) 2944.40i 2.85822i
\(103\) −319.597 −0.305736 −0.152868 0.988247i \(-0.548851\pi\)
−0.152868 + 0.988247i \(0.548851\pi\)
\(104\) 117.709i 0.110984i
\(105\) −674.058 1317.12i −0.626488 1.22417i
\(106\) 752.194i 0.689241i
\(107\) 780.974i 0.705603i 0.935698 + 0.352802i \(0.114771\pi\)
−0.935698 + 0.352802i \(0.885229\pi\)
\(108\) 1465.20i 1.30546i
\(109\) 1008.11i 0.885863i 0.896555 + 0.442932i \(0.146062\pi\)
−0.896555 + 0.442932i \(0.853938\pi\)
\(110\) 1843.93i 1.59829i
\(111\) −2221.94 −1.89998
\(112\) 1312.02 671.446i 1.10691 0.566480i
\(113\) 1478.56i 1.23090i 0.788176 + 0.615449i \(0.211025\pi\)
−0.788176 + 0.615449i \(0.788975\pi\)
\(114\) 3099.15i 2.54616i
\(115\) 739.037 495.196i 0.599266 0.401542i
\(116\) 367.689 0.294303
\(117\) 534.617i 0.422439i
\(118\) 1015.66i 0.792364i
\(119\) 1454.46 744.343i 1.12042 0.573393i
\(120\) 1251.05i 0.951706i
\(121\) −3273.67 −2.45955
\(122\) −825.039 −0.612258
\(123\) 1869.33 1.37034
\(124\) 202.535i 0.146679i
\(125\) −1491.67 −1.06735
\(126\) −3950.84 + 2021.91i −2.79341 + 1.42957i
\(127\) −1397.50 −0.976439 −0.488220 0.872721i \(-0.662353\pi\)
−0.488220 + 0.872721i \(0.662353\pi\)
\(128\) −1666.17 −1.15054
\(129\) 924.878 0.631248
\(130\) 204.256i 0.137803i
\(131\) 1642.65i 1.09556i −0.836622 0.547781i \(-0.815473\pi\)
0.836622 0.547781i \(-0.184527\pi\)
\(132\) −2253.33 −1.48581
\(133\) −1530.90 + 783.464i −0.998092 + 0.510789i
\(134\) 1604.51i 1.03439i
\(135\) 3525.04i 2.24731i
\(136\) −1381.50 −0.871049
\(137\) 622.288i 0.388071i −0.980995 0.194035i \(-0.937842\pi\)
0.980995 0.194035i \(-0.0621576\pi\)
\(138\) −2049.28 3058.37i −1.26410 1.88656i
\(139\) 12.1176i 0.00739428i 0.999993 + 0.00369714i \(0.00117684\pi\)
−0.999993 + 0.00369714i \(0.998823\pi\)
\(140\) −445.735 + 228.112i −0.269082 + 0.137707i
\(141\) −503.674 −0.300830
\(142\) 1935.16 1.14363
\(143\) 510.067 0.298280
\(144\) 5660.06 3.27550
\(145\) 884.602 0.506636
\(146\) 2717.20i 1.54026i
\(147\) 2755.85 + 1987.32i 1.54625 + 1.11504i
\(148\) 751.942i 0.417630i
\(149\) 1325.66i 0.728874i 0.931228 + 0.364437i \(0.118739\pi\)
−0.931228 + 0.364437i \(0.881261\pi\)
\(150\) 2001.05i 1.08923i
\(151\) 1872.71 1.00926 0.504632 0.863334i \(-0.331628\pi\)
0.504632 + 0.863334i \(0.331628\pi\)
\(152\) 1454.11 0.775946
\(153\) 6274.55 3.31547
\(154\) 1929.06 + 3769.42i 1.00940 + 1.97239i
\(155\) 487.267i 0.252504i
\(156\) 249.605 0.128105
\(157\) 464.472 0.236108 0.118054 0.993007i \(-0.462334\pi\)
0.118054 + 0.993007i \(0.462334\pi\)
\(158\) 2780.50i 1.40003i
\(159\) 2211.44 1.10301
\(160\) 1152.12 0.569269
\(161\) −992.702 + 1785.45i −0.485937 + 0.873994i
\(162\) −8117.51 −3.93686
\(163\) 1403.71 0.674522 0.337261 0.941411i \(-0.390500\pi\)
0.337261 + 0.941411i \(0.390500\pi\)
\(164\) 632.610i 0.301211i
\(165\) −5421.15 −2.55779
\(166\) 4639.74 2.16936
\(167\) 3655.37i 1.69378i 0.531769 + 0.846889i \(0.321527\pi\)
−0.531769 + 0.846889i \(0.678473\pi\)
\(168\) −1308.80 2557.43i −0.601050 1.17446i
\(169\) 2140.50 0.974283
\(170\) 2397.26 1.08154
\(171\) −6604.33 −2.95348
\(172\) 312.994i 0.138753i
\(173\) 494.053i 0.217122i −0.994090 0.108561i \(-0.965376\pi\)
0.994090 0.108561i \(-0.0346243\pi\)
\(174\) 3660.76i 1.59495i
\(175\) 988.470 505.865i 0.426979 0.218513i
\(176\) 5400.14i 2.31279i
\(177\) 2986.02 1.26804
\(178\) 1397.32 0.588392
\(179\) 529.860 0.221249 0.110625 0.993862i \(-0.464715\pi\)
0.110625 + 0.993862i \(0.464715\pi\)
\(180\) −1922.91 −0.796249
\(181\) −3305.77 −1.35755 −0.678773 0.734348i \(-0.737488\pi\)
−0.678773 + 0.734348i \(0.737488\pi\)
\(182\) −213.685 417.545i −0.0870297 0.170058i
\(183\) 2425.61i 0.979814i
\(184\) 1434.97 961.513i 0.574933 0.385237i
\(185\) 1809.05i 0.718941i
\(186\) −2016.46 −0.794915
\(187\) 5986.42i 2.34102i
\(188\) 170.452i 0.0661248i
\(189\) 3687.78 + 7205.99i 1.41929 + 2.77332i
\(190\) −2523.25 −0.963452
\(191\) 75.4008i 0.0285645i −0.999898 0.0142822i \(-0.995454\pi\)
0.999898 0.0142822i \(-0.00454633\pi\)
\(192\) 1538.60i 0.578327i
\(193\) −3548.13 −1.32332 −0.661658 0.749805i \(-0.730147\pi\)
−0.661658 + 0.749805i \(0.730147\pi\)
\(194\) 1097.66 0.406222
\(195\) 600.510 0.220530
\(196\) 672.541 932.625i 0.245095 0.339878i
\(197\) −891.499 −0.322420 −0.161210 0.986920i \(-0.551540\pi\)
−0.161210 + 0.986920i \(0.551540\pi\)
\(198\) 16261.3i 5.83656i
\(199\) 3989.79 1.42125 0.710625 0.703571i \(-0.248412\pi\)
0.710625 + 0.703571i \(0.248412\pi\)
\(200\) −938.885 −0.331946
\(201\) −4717.25 −1.65537
\(202\) 3213.98i 1.11948i
\(203\) −1808.33 + 925.439i −0.625220 + 0.319966i
\(204\) 2929.50i 1.00542i
\(205\) 1521.96i 0.518528i
\(206\) 1076.82 0.364203
\(207\) −6517.42 + 4367.04i −2.18837 + 1.46633i
\(208\) 598.184i 0.199407i
\(209\) 6301.05i 2.08542i
\(210\) 2271.11 + 4437.79i 0.746293 + 1.45827i
\(211\) 191.719 0.0625520 0.0312760 0.999511i \(-0.490043\pi\)
0.0312760 + 0.999511i \(0.490043\pi\)
\(212\) 748.388i 0.242450i
\(213\) 5689.36i 1.83018i
\(214\) 2631.34i 0.840537i
\(215\) 753.013i 0.238861i
\(216\) 6844.51i 2.15606i
\(217\) 509.761 + 996.083i 0.159469 + 0.311606i
\(218\) 3396.63i 1.05527i
\(219\) −7988.55 −2.46491
\(220\) 1834.60i 0.562222i
\(221\) 663.127i 0.201840i
\(222\) 7486.42 2.26331
\(223\) 2347.92i 0.705058i 0.935801 + 0.352529i \(0.114678\pi\)
−0.935801 + 0.352529i \(0.885322\pi\)
\(224\) −2355.19 + 1205.31i −0.702513 + 0.359522i
\(225\) 4264.27 1.26349
\(226\) 4981.74i 1.46629i
\(227\) −2146.23 −0.627535 −0.313767 0.949500i \(-0.601591\pi\)
−0.313767 + 0.949500i \(0.601591\pi\)
\(228\) 3083.47i 0.895647i
\(229\) 3282.28 0.947159 0.473579 0.880751i \(-0.342962\pi\)
0.473579 + 0.880751i \(0.342962\pi\)
\(230\) −2490.05 + 1668.47i −0.713864 + 0.478329i
\(231\) 11082.0 5671.41i 3.15647 1.61537i
\(232\) 1717.61 0.486064
\(233\) −2099.94 −0.590438 −0.295219 0.955430i \(-0.595393\pi\)
−0.295219 + 0.955430i \(0.595393\pi\)
\(234\) 1801.29i 0.503223i
\(235\) 410.079i 0.113832i
\(236\) 1010.52i 0.278725i
\(237\) −8174.64 −2.24051
\(238\) −4900.53 + 2507.92i −1.33468 + 0.683044i
\(239\) −450.171 −0.121837 −0.0609187 0.998143i \(-0.519403\pi\)
−0.0609187 + 0.998143i \(0.519403\pi\)
\(240\) 6357.68i 1.70994i
\(241\) −1116.97 −0.298548 −0.149274 0.988796i \(-0.547694\pi\)
−0.149274 + 0.988796i \(0.547694\pi\)
\(242\) 11030.0 2.92990
\(243\) 12064.3i 3.18487i
\(244\) 820.864 0.215371
\(245\) 1618.03 2243.75i 0.421926 0.585093i
\(246\) −6298.34 −1.63239
\(247\) 697.979i 0.179803i
\(248\) 946.116i 0.242252i
\(249\) 13640.8i 3.47169i
\(250\) 5025.90 1.27146
\(251\) 5048.97 1.26967 0.634837 0.772646i \(-0.281067\pi\)
0.634837 + 0.772646i \(0.281067\pi\)
\(252\) 3930.85 2011.68i 0.982621 0.502872i
\(253\) 4166.50 + 6218.14i 1.03536 + 1.54518i
\(254\) 4708.60 1.16317
\(255\) 7047.91i 1.73081i
\(256\) 4371.24 1.06720
\(257\) 4733.73i 1.14896i −0.818520 0.574479i \(-0.805205\pi\)
0.818520 0.574479i \(-0.194795\pi\)
\(258\) −3116.20 −0.751963
\(259\) −1892.57 3698.11i −0.454047 0.887218i
\(260\) 203.222i 0.0484743i
\(261\) −7801.13 −1.85011
\(262\) 5534.59i 1.30507i
\(263\) 2940.09i 0.689330i 0.938726 + 0.344665i \(0.112007\pi\)
−0.938726 + 0.344665i \(0.887993\pi\)
\(264\) −10526.1 −2.45393
\(265\) 1800.50i 0.417373i
\(266\) 5158.09 2639.73i 1.18896 0.608468i
\(267\) 4108.11i 0.941619i
\(268\) 1596.40i 0.363863i
\(269\) 311.175i 0.0705304i −0.999378 0.0352652i \(-0.988772\pi\)
0.999378 0.0352652i \(-0.0112276\pi\)
\(270\) 11877.0i 2.67707i
\(271\) 6023.16i 1.35011i 0.737766 + 0.675057i \(0.235881\pi\)
−0.737766 + 0.675057i \(0.764119\pi\)
\(272\) 7020.60 1.56502
\(273\) −1227.58 + 628.233i −0.272148 + 0.139276i
\(274\) 2096.68i 0.462282i
\(275\) 4068.45i 0.892133i
\(276\) 2038.91 + 3042.89i 0.444666 + 0.663625i
\(277\) −4369.29 −0.947745 −0.473873 0.880593i \(-0.657144\pi\)
−0.473873 + 0.880593i \(0.657144\pi\)
\(278\) 40.8281i 0.00880830i
\(279\) 4297.11i 0.922083i
\(280\) −2082.20 + 1065.60i −0.444411 + 0.227434i
\(281\) 4029.59i 0.855464i 0.903906 + 0.427732i \(0.140687\pi\)
−0.903906 + 0.427732i \(0.859313\pi\)
\(282\) 1697.04 0.358358
\(283\) 3085.19 0.648041 0.324020 0.946050i \(-0.394965\pi\)
0.324020 + 0.946050i \(0.394965\pi\)
\(284\) −1925.37 −0.402288
\(285\) 7418.33i 1.54184i
\(286\) −1718.58 −0.355320
\(287\) 1592.22 + 3111.23i 0.327476 + 0.639895i
\(288\) −10160.3 −2.07883
\(289\) 2869.81 0.584125
\(290\) −2980.50 −0.603521
\(291\) 3227.10i 0.650089i
\(292\) 2703.45i 0.541807i
\(293\) 3065.80 0.611282 0.305641 0.952147i \(-0.401129\pi\)
0.305641 + 0.952147i \(0.401129\pi\)
\(294\) −9285.33 6695.90i −1.84194 1.32828i
\(295\) 2431.15i 0.479820i
\(296\) 3512.60i 0.689749i
\(297\) 29659.1 5.79461
\(298\) 4466.56i 0.868258i
\(299\) −461.531 688.795i −0.0892677 0.133224i
\(300\) 1990.93i 0.383154i
\(301\) 787.775 + 1539.33i 0.150853 + 0.294769i
\(302\) −6309.74 −1.20227
\(303\) 9449.07 1.79153
\(304\) −7389.59 −1.39415
\(305\) 1974.87 0.370756
\(306\) −21140.9 −3.94950
\(307\) 2161.68i 0.401869i 0.979605 + 0.200934i \(0.0643978\pi\)
−0.979605 + 0.200934i \(0.935602\pi\)
\(308\) −1919.30 3750.34i −0.355072 0.693817i
\(309\) 3165.85i 0.582844i
\(310\) 1641.75i 0.300791i
\(311\) 2228.78i 0.406375i −0.979140 0.203187i \(-0.934870\pi\)
0.979140 0.203187i \(-0.0651301\pi\)
\(312\) 1166.00 0.211576
\(313\) 1089.24 0.196700 0.0983502 0.995152i \(-0.468643\pi\)
0.0983502 + 0.995152i \(0.468643\pi\)
\(314\) −1564.95 −0.281259
\(315\) 9457.00 4839.77i 1.69156 0.865683i
\(316\) 2766.43i 0.492481i
\(317\) 2372.67 0.420386 0.210193 0.977660i \(-0.432591\pi\)
0.210193 + 0.977660i \(0.432591\pi\)
\(318\) −7451.04 −1.31394
\(319\) 7442.90i 1.30634i
\(320\) 1252.69 0.218836
\(321\) −7736.12 −1.34514
\(322\) 3344.72 6015.73i 0.578864 1.04113i
\(323\) −8191.85 −1.41117
\(324\) 8076.43 1.38485
\(325\) 450.670i 0.0769189i
\(326\) −4729.54 −0.803512
\(327\) −9986.05 −1.68878
\(328\) 2955.16i 0.497473i
\(329\) −429.010 838.294i −0.0718909 0.140476i
\(330\) 18265.5 3.04692
\(331\) −2835.12 −0.470793 −0.235396 0.971899i \(-0.575639\pi\)
−0.235396 + 0.971899i \(0.575639\pi\)
\(332\) −4616.26 −0.763103
\(333\) 15953.7i 2.62539i
\(334\) 12316.1i 2.01768i
\(335\) 3840.67i 0.626383i
\(336\) 6651.17 + 12996.5i 1.07991 + 2.11017i
\(337\) 7618.13i 1.23141i −0.787976 0.615706i \(-0.788871\pi\)
0.787976 0.615706i \(-0.211129\pi\)
\(338\) −7212.01 −1.16060
\(339\) −14646.3 −2.34654
\(340\) −2385.13 −0.380446
\(341\) 4099.78 0.651072
\(342\) 22252.0 3.51828
\(343\) −960.284 + 6279.45i −0.151168 + 0.988508i
\(344\) 1462.11i 0.229162i
\(345\) 4905.29 + 7320.71i 0.765484 + 1.14242i
\(346\) 1664.62i 0.258643i
\(347\) −5534.30 −0.856187 −0.428093 0.903735i \(-0.640815\pi\)
−0.428093 + 0.903735i \(0.640815\pi\)
\(348\) 3642.24i 0.561047i
\(349\) 1830.97i 0.280830i 0.990093 + 0.140415i \(0.0448437\pi\)
−0.990093 + 0.140415i \(0.955156\pi\)
\(350\) −3330.47 + 1704.42i −0.508631 + 0.260300i
\(351\) −3285.40 −0.499606
\(352\) 9693.74i 1.46784i
\(353\) 2261.42i 0.340973i 0.985360 + 0.170486i \(0.0545339\pi\)
−0.985360 + 0.170486i \(0.945466\pi\)
\(354\) −10060.8 −1.51053
\(355\) −4632.13 −0.692530
\(356\) −1390.25 −0.206975
\(357\) 7373.27 + 14407.5i 1.09309 + 2.13593i
\(358\) −1785.26 −0.263559
\(359\) 6807.82i 1.00084i −0.865781 0.500422i \(-0.833178\pi\)
0.865781 0.500422i \(-0.166822\pi\)
\(360\) −8982.61 −1.31507
\(361\) 1763.40 0.257093
\(362\) 11138.2 1.61715
\(363\) 32428.1i 4.68880i
\(364\) 212.604 + 415.433i 0.0306140 + 0.0598203i
\(365\) 6504.08i 0.932710i
\(366\) 8172.62i 1.16719i
\(367\) −6996.02 −0.995066 −0.497533 0.867445i \(-0.665761\pi\)
−0.497533 + 0.867445i \(0.665761\pi\)
\(368\) −7292.35 + 4886.28i −1.03299 + 0.692161i
\(369\) 13421.9i 1.89353i
\(370\) 6095.26i 0.856425i
\(371\) 1883.62 + 3680.63i 0.263592 + 0.515064i
\(372\) 2006.26 0.279623
\(373\) 3079.09i 0.427424i 0.976897 + 0.213712i \(0.0685553\pi\)
−0.976897 + 0.213712i \(0.931445\pi\)
\(374\) 20170.1i 2.78869i
\(375\) 14776.1i 2.03476i
\(376\) 796.243i 0.109210i
\(377\) 824.464i 0.112631i
\(378\) −12425.3 24279.2i −1.69071 3.30367i
\(379\) 3233.11i 0.438189i 0.975704 + 0.219094i \(0.0703102\pi\)
−0.975704 + 0.219094i \(0.929690\pi\)
\(380\) 2510.48 0.338908
\(381\) 13843.2i 1.86145i
\(382\) 254.049i 0.0340269i
\(383\) −7710.24 −1.02865 −0.514327 0.857594i \(-0.671958\pi\)
−0.514327 + 0.857594i \(0.671958\pi\)
\(384\) 16504.6i 2.19335i
\(385\) −4617.52 9022.73i −0.611249 1.19439i
\(386\) 11954.8 1.57638
\(387\) 6640.67i 0.872259i
\(388\) −1092.10 −0.142895
\(389\) 14944.3i 1.94783i 0.226921 + 0.973913i \(0.427134\pi\)
−0.226921 + 0.973913i \(0.572866\pi\)
\(390\) −2023.31 −0.262703
\(391\) −8084.06 + 5416.77i −1.04560 + 0.700609i
\(392\) 3141.69 4356.64i 0.404794 0.561335i
\(393\) 16271.6 2.08854
\(394\) 3003.74 0.384077
\(395\) 6655.59i 0.847795i
\(396\) 16179.0i 2.05310i
\(397\) 1656.68i 0.209437i −0.994502 0.104719i \(-0.966606\pi\)
0.994502 0.104719i \(-0.0333942\pi\)
\(398\) −13442.8 −1.69304
\(399\) −7760.79 15164.7i −0.973748 1.90272i
\(400\) 4771.29 0.596412
\(401\) 1230.25i 0.153207i −0.997062 0.0766034i \(-0.975592\pi\)
0.997062 0.0766034i \(-0.0244075\pi\)
\(402\) 15893.9 1.97193
\(403\) −454.140 −0.0561348
\(404\) 3197.72i 0.393793i
\(405\) 19430.6 2.38399
\(406\) 6092.82 3118.09i 0.744782 0.381154i
\(407\) −15221.1 −1.85376
\(408\) 13684.8i 1.66053i
\(409\) 11828.0i 1.42997i 0.699138 + 0.714987i \(0.253567\pi\)
−0.699138 + 0.714987i \(0.746433\pi\)
\(410\) 5127.95i 0.617687i
\(411\) 6164.23 0.739803
\(412\) −1071.37 −0.128114
\(413\) 2543.38 + 4969.82i 0.303030 + 0.592127i
\(414\) 21959.2 14713.9i 2.60685 1.74674i
\(415\) −11106.0 −1.31367
\(416\) 1073.79i 0.126555i
\(417\) −120.034 −0.0140962
\(418\) 21230.2i 2.48422i
\(419\) 10137.7 1.18200 0.591001 0.806670i \(-0.298733\pi\)
0.591001 + 0.806670i \(0.298733\pi\)
\(420\) −2259.62 4415.34i −0.262519 0.512968i
\(421\) 4015.66i 0.464873i 0.972612 + 0.232436i \(0.0746697\pi\)
−0.972612 + 0.232436i \(0.925330\pi\)
\(422\) −645.961 −0.0745139
\(423\) 3616.41i 0.415687i
\(424\) 3496.00i 0.400426i
\(425\) 5289.30 0.603691
\(426\) 19169.2i 2.18017i
\(427\) −4037.08 + 2066.04i −0.457536 + 0.234151i
\(428\) 2618.03i 0.295671i
\(429\) 5052.60i 0.568629i
\(430\) 2537.14i 0.284538i
\(431\) 9835.32i 1.09919i −0.835432 0.549595i \(-0.814782\pi\)
0.835432 0.549595i \(-0.185218\pi\)
\(432\) 34782.9i 3.87383i
\(433\) 2225.85 0.247038 0.123519 0.992342i \(-0.460582\pi\)
0.123519 + 0.992342i \(0.460582\pi\)
\(434\) −1717.54 3356.11i −0.189965 0.371195i
\(435\) 8762.64i 0.965831i
\(436\) 3379.44i 0.371206i
\(437\) 8508.94 5701.47i 0.931436 0.624115i
\(438\) 26915.9 2.93628
\(439\) 7601.42i 0.826415i −0.910637 0.413207i \(-0.864408\pi\)
0.910637 0.413207i \(-0.135592\pi\)
\(440\) 8570.12i 0.928555i
\(441\) −14269.1 + 19787.2i −1.54077 + 2.13661i
\(442\) 2234.28i 0.240439i
\(443\) 11039.7 1.18400 0.592001 0.805938i \(-0.298338\pi\)
0.592001 + 0.805938i \(0.298338\pi\)
\(444\) −7448.54 −0.796153
\(445\) −3344.72 −0.356304
\(446\) 7910.86i 0.839888i
\(447\) −13131.6 −1.38950
\(448\) −2560.78 + 1310.52i −0.270057 + 0.138206i
\(449\) −12986.9 −1.36501 −0.682506 0.730880i \(-0.739110\pi\)
−0.682506 + 0.730880i \(0.739110\pi\)
\(450\) −14367.6 −1.50511
\(451\) 12805.5 1.33700
\(452\) 4956.54i 0.515787i
\(453\) 18550.6i 1.92402i
\(454\) 7231.32 0.747539
\(455\) 511.491 + 999.464i 0.0527013 + 0.102979i
\(456\) 14404.0i 1.47923i
\(457\) 14410.2i 1.47501i 0.675343 + 0.737504i \(0.263996\pi\)
−0.675343 + 0.737504i \(0.736004\pi\)
\(458\) −11059.0 −1.12829
\(459\) 38559.2i 3.92111i
\(460\) 2477.45 1660.03i 0.251112 0.168259i
\(461\) 15237.1i 1.53940i −0.638406 0.769700i \(-0.720406\pi\)
0.638406 0.769700i \(-0.279594\pi\)
\(462\) −37338.9 + 19108.8i −3.76009 + 1.92428i
\(463\) 9399.65 0.943496 0.471748 0.881733i \(-0.343623\pi\)
0.471748 + 0.881733i \(0.343623\pi\)
\(464\) −8728.70 −0.873318
\(465\) 4826.74 0.481365
\(466\) 7075.37 0.703348
\(467\) 7176.84 0.711145 0.355573 0.934649i \(-0.384286\pi\)
0.355573 + 0.934649i \(0.384286\pi\)
\(468\) 1792.18i 0.177016i
\(469\) −4017.97 7851.20i −0.395592 0.772995i
\(470\) 1381.68i 0.135601i
\(471\) 4600.95i 0.450107i
\(472\) 4720.51i 0.460337i
\(473\) 6335.73 0.615892
\(474\) 27542.9 2.66896
\(475\) −5567.29 −0.537778
\(476\) 4875.74 2495.23i 0.469494 0.240271i
\(477\) 15878.3i 1.52414i
\(478\) 1516.77 0.145137
\(479\) −8380.58 −0.799413 −0.399706 0.916643i \(-0.630888\pi\)
−0.399706 + 0.916643i \(0.630888\pi\)
\(480\) 11412.6i 1.08523i
\(481\) 1686.07 0.159829
\(482\) 3763.41 0.355640
\(483\) −17686.2 9833.45i −1.66615 0.926372i
\(484\) −10974.2 −1.03063
\(485\) −2627.42 −0.245990
\(486\) 40648.3i 3.79392i
\(487\) 16070.0 1.49528 0.747642 0.664102i \(-0.231186\pi\)
0.747642 + 0.664102i \(0.231186\pi\)
\(488\) 3834.56 0.355702
\(489\) 13904.8i 1.28588i
\(490\) −5451.64 + 7559.88i −0.502612 + 0.696981i
\(491\) 7915.47 0.727536 0.363768 0.931490i \(-0.381490\pi\)
0.363768 + 0.931490i \(0.381490\pi\)
\(492\) 6266.47 0.574216
\(493\) −9676.34 −0.883976
\(494\) 2351.71i 0.214187i
\(495\) 38924.1i 3.53436i
\(496\) 4808.04i 0.435257i
\(497\) 9469.13 4845.97i 0.854625 0.437368i
\(498\) 45960.1i 4.13558i
\(499\) 2712.80 0.243370 0.121685 0.992569i \(-0.461170\pi\)
0.121685 + 0.992569i \(0.461170\pi\)
\(500\) −5000.47 −0.447255
\(501\) −36209.2 −3.22895
\(502\) −17011.6 −1.51248
\(503\) −14344.1 −1.27152 −0.635758 0.771889i \(-0.719312\pi\)
−0.635758 + 0.771889i \(0.719312\pi\)
\(504\) 18362.5 9397.28i 1.62288 0.830532i
\(505\) 7693.20i 0.677907i
\(506\) −14038.2 20950.8i −1.23335 1.84067i
\(507\) 21203.2i 1.85733i
\(508\) −4684.78 −0.409160
\(509\) 9221.60i 0.803026i −0.915853 0.401513i \(-0.868484\pi\)
0.915853 0.401513i \(-0.131516\pi\)
\(510\) 23746.6i 2.06180i
\(511\) −6804.34 13295.8i −0.589053 1.15102i
\(512\) −1398.75 −0.120736
\(513\) 40585.8i 3.49299i
\(514\) 15949.4i 1.36867i
\(515\) −2577.56 −0.220545
\(516\) 3100.44 0.264514
\(517\) −3450.34 −0.293512
\(518\) 6376.64 + 12460.1i 0.540876 + 1.05688i
\(519\) 4893.96 0.413913
\(520\) 949.328i 0.0800592i
\(521\) 9512.86 0.799935 0.399967 0.916529i \(-0.369021\pi\)
0.399967 + 0.916529i \(0.369021\pi\)
\(522\) 26284.5 2.20391
\(523\) 14365.7 1.20108 0.600541 0.799594i \(-0.294952\pi\)
0.600541 + 0.799594i \(0.294952\pi\)
\(524\) 5506.58i 0.459077i
\(525\) 5010.97 + 9791.53i 0.416565 + 0.813976i
\(526\) 9906.08i 0.821152i
\(527\) 5330.03i 0.440569i
\(528\) 53492.4 4.40901
\(529\) 4626.94 11252.9i 0.380286 0.924869i
\(530\) 6066.45i 0.497188i
\(531\) 21439.8i 1.75218i
\(532\) −5131.99 + 2626.38i −0.418233 + 0.214037i
\(533\) −1418.49 −0.115275
\(534\) 13841.5i 1.12169i
\(535\) 6298.56i 0.508992i
\(536\) 7457.36i 0.600949i
\(537\) 5248.66i 0.421781i
\(538\) 1048.45i 0.0840181i
\(539\) 18878.5 + 13613.8i 1.50864 + 1.08792i
\(540\) 11816.9i 0.941699i
\(541\) 4703.19 0.373764 0.186882 0.982382i \(-0.440162\pi\)
0.186882 + 0.982382i \(0.440162\pi\)
\(542\) 20293.9i 1.60830i
\(543\) 32746.1i 2.58797i
\(544\) −12602.6 −0.993258
\(545\) 8130.39i 0.639023i
\(546\) 4136.10 2116.71i 0.324192 0.165910i
\(547\) 6975.55 0.545252 0.272626 0.962120i \(-0.412108\pi\)
0.272626 + 0.962120i \(0.412108\pi\)
\(548\) 2086.07i 0.162614i
\(549\) −17416.0 −1.35391
\(550\) 13707.9i 1.06274i
\(551\) 10184.9 0.787462
\(552\) 9524.50 + 14214.5i 0.734402 + 1.09603i
\(553\) −6962.84 13605.5i −0.535425 1.04623i
\(554\) 14721.5 1.12898
\(555\) −17920.0 −1.37056
\(556\) 40.6215i 0.00309845i
\(557\) 12020.5i 0.914404i −0.889363 0.457202i \(-0.848852\pi\)
0.889363 0.457202i \(-0.151148\pi\)
\(558\) 14478.3i 1.09841i
\(559\) −701.820 −0.0531017
\(560\) 10581.5 5415.22i 0.798478 0.408634i
\(561\) 59299.9 4.46283
\(562\) 13577.0i 1.01906i
\(563\) −12048.9 −0.901954 −0.450977 0.892536i \(-0.648924\pi\)
−0.450977 + 0.892536i \(0.648924\pi\)
\(564\) −1688.45 −0.126058
\(565\) 11924.6i 0.887917i
\(566\) −10395.0 −0.771967
\(567\) −39720.6 + 20327.6i −2.94199 + 1.50561i
\(568\) −8994.12 −0.664410
\(569\) 17880.9i 1.31741i −0.752400 0.658706i \(-0.771104\pi\)
0.752400 0.658706i \(-0.228896\pi\)
\(570\) 24994.7i 1.83669i
\(571\) 8109.37i 0.594337i −0.954825 0.297169i \(-0.903958\pi\)
0.954825 0.297169i \(-0.0960423\pi\)
\(572\) 1709.88 0.124989
\(573\) 746.901 0.0544542
\(574\) −5364.68 10482.7i −0.390100 0.762264i
\(575\) −5494.03 + 3681.31i −0.398464 + 0.266993i
\(576\) −11047.2 −0.799134
\(577\) 20562.4i 1.48358i −0.670635 0.741788i \(-0.733978\pi\)
0.670635 0.741788i \(-0.266022\pi\)
\(578\) −9669.27 −0.695828
\(579\) 35146.9i 2.52272i
\(580\) 2965.42 0.212297
\(581\) 22703.2 11618.7i 1.62115 0.829646i
\(582\) 10873.1i 0.774406i
\(583\) 15149.1 1.07618
\(584\) 12628.8i 0.894838i
\(585\) 4311.70i 0.304729i
\(586\) −10329.6 −0.728179
\(587\) 16711.5i 1.17505i 0.809205 + 0.587526i \(0.199898\pi\)
−0.809205 + 0.587526i \(0.800102\pi\)
\(588\) 9238.34 + 6662.02i 0.647930 + 0.467240i
\(589\) 5610.17i 0.392467i
\(590\) 8191.29i 0.571577i
\(591\) 8830.96i 0.614649i
\(592\) 17850.6i 1.23928i
\(593\) 27240.2i 1.88638i 0.332261 + 0.943188i \(0.392189\pi\)
−0.332261 + 0.943188i \(0.607811\pi\)
\(594\) −99930.9 −6.90272
\(595\) 11730.2 6003.13i 0.808224 0.413621i
\(596\) 4443.96i 0.305422i
\(597\) 39521.8i 2.70942i
\(598\) 1555.04 + 2320.76i 0.106338 + 0.158701i
\(599\) 19766.7 1.34832 0.674161 0.738584i \(-0.264505\pi\)
0.674161 + 0.738584i \(0.264505\pi\)
\(600\) 9300.35i 0.632809i
\(601\) 7070.92i 0.479915i −0.970783 0.239958i \(-0.922866\pi\)
0.970783 0.239958i \(-0.0771335\pi\)
\(602\) −2654.26 5186.48i −0.179700 0.351138i
\(603\) 33870.1i 2.28739i
\(604\) 6277.82 0.422915
\(605\) −26402.1 −1.77421
\(606\) −31836.9 −2.13413
\(607\) 7616.64i 0.509308i 0.967032 + 0.254654i \(0.0819616\pi\)
−0.967032 + 0.254654i \(0.918038\pi\)
\(608\) 13265.0 0.884812
\(609\) −9167.16 17912.8i −0.609971 1.19190i
\(610\) −6653.95 −0.441657
\(611\) 382.200 0.0253063
\(612\) 21034.0 1.38929
\(613\) 18919.1i 1.24655i 0.782003 + 0.623275i \(0.214198\pi\)
−0.782003 + 0.623275i \(0.785802\pi\)
\(614\) 7283.38i 0.478719i
\(615\) 15076.1 0.988501
\(616\) −8965.75 17519.3i −0.586429 1.14589i
\(617\) 8779.01i 0.572819i −0.958107 0.286410i \(-0.907538\pi\)
0.958107 0.286410i \(-0.0924618\pi\)
\(618\) 10666.7i 0.694302i
\(619\) −15250.5 −0.990255 −0.495127 0.868820i \(-0.664879\pi\)
−0.495127 + 0.868820i \(0.664879\pi\)
\(620\) 1633.45i 0.105808i
\(621\) −26836.9 40051.7i −1.73418 2.58811i
\(622\) 7509.46i 0.484086i
\(623\) 6837.37 3499.13i 0.439701 0.225024i
\(624\) −5925.46 −0.380141
\(625\) −4535.88 −0.290296
\(626\) −3669.97 −0.234316
\(627\) −62416.6 −3.97556
\(628\) 1557.03 0.0989370
\(629\) 19788.6i 1.25441i
\(630\) −31863.6 + 16306.7i −2.01504 + 1.03123i
\(631\) 17396.6i 1.09754i 0.835974 + 0.548769i \(0.184903\pi\)
−0.835974 + 0.548769i \(0.815097\pi\)
\(632\) 12923.0i 0.813371i
\(633\) 1899.12i 0.119247i
\(634\) −7994.25 −0.500777
\(635\) −11270.8 −0.704361
\(636\) 7413.34 0.462198
\(637\) −2091.21 1508.03i −0.130073 0.0937994i
\(638\) 25077.4i 1.55615i
\(639\) 40849.9 2.52895
\(640\) −13437.7 −0.829953
\(641\) 1156.57i 0.0712663i 0.999365 + 0.0356331i \(0.0113448\pi\)
−0.999365 + 0.0356331i \(0.988655\pi\)
\(642\) 26065.4 1.60237
\(643\) 26432.2 1.62113 0.810564 0.585650i \(-0.199161\pi\)
0.810564 + 0.585650i \(0.199161\pi\)
\(644\) −3327.80 + 5985.29i −0.203624 + 0.366232i
\(645\) 7459.15 0.455355
\(646\) 27600.9 1.68103
\(647\) 5345.62i 0.324819i 0.986723 + 0.162410i \(0.0519266\pi\)
−0.986723 + 0.162410i \(0.948073\pi\)
\(648\) 37728.0 2.28719
\(649\) 20455.3 1.23720
\(650\) 1518.45i 0.0916283i
\(651\) −9866.94 + 5049.56i −0.594034 + 0.304006i
\(652\) 4705.61 0.282647
\(653\) −31697.8 −1.89959 −0.949793 0.312877i \(-0.898707\pi\)
−0.949793 + 0.312877i \(0.898707\pi\)
\(654\) 33646.1 2.01172
\(655\) 13248.0i 0.790291i
\(656\) 15017.7i 0.893817i
\(657\) 57358.2i 3.40602i
\(658\) 1445.47 + 2824.48i 0.0856387 + 0.167340i
\(659\) 17246.0i 1.01944i −0.860341 0.509719i \(-0.829750\pi\)
0.860341 0.509719i \(-0.170250\pi\)
\(660\) −18173.1 −1.07180
\(661\) 13420.7 0.789719 0.394860 0.918741i \(-0.370793\pi\)
0.394860 + 0.918741i \(0.370793\pi\)
\(662\) 9552.41 0.560823
\(663\) −6568.76 −0.384781
\(664\) −21564.3 −1.26033
\(665\) −12346.8 + 6318.65i −0.719980 + 0.368461i
\(666\) 53752.9i 3.12745i
\(667\) 10050.9 6734.66i 0.583466 0.390955i
\(668\) 12253.8i 0.709749i
\(669\) −23257.8 −1.34410
\(670\) 12940.4i 0.746167i
\(671\) 16616.2i 0.955979i
\(672\) −11939.4 23329.9i −0.685378 1.33924i
\(673\) −19234.2 −1.10167 −0.550836 0.834613i \(-0.685691\pi\)
−0.550836 + 0.834613i \(0.685691\pi\)
\(674\) 25667.9i 1.46690i
\(675\) 26205.3i 1.49429i
\(676\) 7175.52 0.408257
\(677\) −26407.7 −1.49916 −0.749579 0.661915i \(-0.769744\pi\)
−0.749579 + 0.661915i \(0.769744\pi\)
\(678\) 49347.9 2.79527
\(679\) 5371.05 2748.72i 0.303567 0.155355i
\(680\) −11141.8 −0.628337
\(681\) 21260.0i 1.19631i
\(682\) −13813.4 −0.775578
\(683\) 26736.7 1.49788 0.748940 0.662638i \(-0.230563\pi\)
0.748940 + 0.662638i \(0.230563\pi\)
\(684\) −22139.5 −1.23761
\(685\) 5018.76i 0.279937i
\(686\) 3235.50 21157.4i 0.180076 1.17754i
\(687\) 32513.4i 1.80563i
\(688\) 7430.26i 0.411738i
\(689\) −1678.10 −0.0927872
\(690\) −16527.4 24665.8i −0.911868 1.36088i
\(691\) 17045.2i 0.938393i 0.883094 + 0.469197i \(0.155456\pi\)
−0.883094 + 0.469197i \(0.844544\pi\)
\(692\) 1656.20i 0.0909814i
\(693\) 40721.0 + 79569.7i 2.23213 + 4.36162i
\(694\) 18646.8 1.01992
\(695\) 97.7290i 0.00533391i
\(696\) 17014.2i 0.926614i
\(697\) 16648.1i 0.904725i
\(698\) 6169.11i 0.334533i
\(699\) 20801.5i 1.12559i
\(700\) 3313.61 1695.79i 0.178918 0.0915642i
\(701\) 8327.36i 0.448673i −0.974512 0.224337i \(-0.927978\pi\)
0.974512 0.224337i \(-0.0720215\pi\)
\(702\) 11069.5 0.595146
\(703\) 20828.6i 1.11745i
\(704\) 10539.9i 0.564259i
\(705\) −4062.14 −0.217006
\(706\) 7619.44i 0.406178i
\(707\) 8048.35 + 15726.6i 0.428132 + 0.836579i
\(708\) 10009.9 0.531351
\(709\) 20960.5i 1.11028i 0.831757 + 0.555139i \(0.187335\pi\)
−0.831757 + 0.555139i \(0.812665\pi\)
\(710\) 15607.1 0.824964
\(711\) 58694.3i 3.09593i
\(712\) −6494.38 −0.341836
\(713\) −3709.66 5536.34i −0.194850 0.290796i
\(714\) −24842.8 48543.4i −1.30213 2.54439i
\(715\) 4113.70 0.215166
\(716\) 1776.23 0.0927107
\(717\) 4459.28i 0.232266i
\(718\) 22937.7i 1.19224i
\(719\) 36435.9i 1.88989i −0.327231 0.944944i \(-0.606115\pi\)
0.327231 0.944944i \(-0.393885\pi\)
\(720\) 45648.4 2.36280
\(721\) 5269.11 2696.55i 0.272166 0.139285i
\(722\) −5941.44 −0.306257
\(723\) 11064.4i 0.569141i
\(724\) −11081.8 −0.568857
\(725\) −6576.17 −0.336873
\(726\) 109260.i 5.58544i
\(727\) −7126.48 −0.363558 −0.181779 0.983339i \(-0.558185\pi\)
−0.181779 + 0.983339i \(0.558185\pi\)
\(728\) 993.153 + 1940.64i 0.0505614 + 0.0987980i
\(729\) −54455.8 −2.76664
\(730\) 21914.3i 1.11107i
\(731\) 8236.93i 0.416763i
\(732\) 8131.27i 0.410574i
\(733\) −10100.3 −0.508953 −0.254476 0.967079i \(-0.581903\pi\)
−0.254476 + 0.967079i \(0.581903\pi\)
\(734\) 23571.8 1.18535
\(735\) 22226.0 + 16027.8i 1.11540 + 0.804344i
\(736\) 13090.4 8771.32i 0.655597 0.439287i
\(737\) −32314.8 −1.61510
\(738\) 45222.4i 2.25564i
\(739\) −17113.1 −0.851845 −0.425923 0.904760i \(-0.640050\pi\)
−0.425923 + 0.904760i \(0.640050\pi\)
\(740\) 6064.42i 0.301260i
\(741\) 6914.00 0.342770
\(742\) −6346.51 12401.2i −0.313999 0.613561i
\(743\) 15753.2i 0.777831i −0.921273 0.388915i \(-0.872850\pi\)
0.921273 0.388915i \(-0.127150\pi\)
\(744\) 9371.98 0.461819
\(745\) 10691.5i 0.525778i
\(746\) 10374.4i 0.509161i
\(747\) 97941.6 4.79718
\(748\) 20068.1i 0.980964i
\(749\) −6589.33 12875.7i −0.321454 0.628127i
\(750\) 49785.3i 2.42387i
\(751\) 20389.3i 0.990702i −0.868693 0.495351i \(-0.835040\pi\)
0.868693 0.495351i \(-0.164960\pi\)
\(752\) 4046.40i 0.196220i
\(753\) 50013.8i 2.42046i
\(754\) 2777.88i 0.134170i
\(755\) 15103.4 0.728039
\(756\) 12362.4 + 24156.4i 0.594730 + 1.16211i
\(757\) 34888.3i 1.67508i 0.546373 + 0.837542i \(0.316008\pi\)
−0.546373 + 0.837542i \(0.683992\pi\)
\(758\) 10893.3i 0.521984i
\(759\) −61595.3 + 41272.3i −2.94567 + 1.97377i
\(760\) 11727.4 0.559734
\(761\) 22458.1i 1.06978i 0.844921 + 0.534891i \(0.179647\pi\)
−0.844921 + 0.534891i \(0.820353\pi\)
\(762\) 46642.2i 2.21741i
\(763\) −8505.73 16620.4i −0.403575 0.788594i
\(764\) 252.763i 0.0119695i
\(765\) 50604.3 2.39164
\(766\) 25978.2 1.22537
\(767\) −2265.87 −0.106670
\(768\) 43300.4i 2.03447i
\(769\) −6671.74 −0.312860 −0.156430 0.987689i \(-0.549999\pi\)
−0.156430 + 0.987689i \(0.549999\pi\)
\(770\) 15557.9 + 30400.4i 0.728139 + 1.42280i
\(771\) 46891.1 2.19033
\(772\) −11894.3 −0.554513
\(773\) 31728.6 1.47632 0.738162 0.674623i \(-0.235694\pi\)
0.738162 + 0.674623i \(0.235694\pi\)
\(774\) 22374.5i 1.03906i
\(775\) 3622.36i 0.167895i
\(776\) −5101.61 −0.236002
\(777\) 36632.5 18747.3i 1.69136 0.865578i
\(778\) 50351.9i 2.32031i
\(779\) 17523.1i 0.805946i
\(780\) 2013.07 0.0924095
\(781\) 38974.0i 1.78566i
\(782\) 27237.7 18250.8i 1.24555 0.834587i
\(783\) 47940.5i 2.18806i
\(784\) −15965.7 + 22139.9i −0.727299 + 1.00856i
\(785\) 3745.98 0.170318
\(786\) −54824.2 −2.48793
\(787\) −28178.3 −1.27630 −0.638151 0.769912i \(-0.720300\pi\)
−0.638151 + 0.769912i \(0.720300\pi\)
\(788\) −2988.54 −0.135105
\(789\) −29123.8 −1.31411
\(790\) 22424.8i 1.00992i
\(791\) −12475.1 24376.6i −0.560764 1.09574i
\(792\) 75578.2i 3.39085i
\(793\) 1840.61i 0.0824237i
\(794\) 5581.89i 0.249488i
\(795\) 17835.3 0.795664
\(796\) 13374.8 0.595551
\(797\) −3409.52 −0.151533 −0.0757663 0.997126i \(-0.524140\pi\)
−0.0757663 + 0.997126i \(0.524140\pi\)
\(798\) 26148.5 + 51094.8i 1.15996 + 2.26658i
\(799\) 4485.71i 0.198614i
\(800\) −8564.89 −0.378518
\(801\) 29496.5 1.30113
\(802\) 4145.11i 0.182505i
\(803\) −54724.3 −2.40495
\(804\) −15813.5 −0.693655
\(805\) −8006.15 + 14399.7i −0.350534 + 0.630461i
\(806\) 1530.14 0.0668696
\(807\) 3082.42 0.134456
\(808\) 14937.7i 0.650381i
\(809\) 11902.6 0.517273 0.258636 0.965975i \(-0.416727\pi\)
0.258636 + 0.965975i \(0.416727\pi\)
\(810\) −65467.8 −2.83988
\(811\) 10425.1i 0.451387i 0.974198 + 0.225693i \(0.0724648\pi\)
−0.974198 + 0.225693i \(0.927535\pi\)
\(812\) −6061.99 + 3102.32i −0.261988 + 0.134076i
\(813\) −59663.8 −2.57380
\(814\) 51284.5 2.20826
\(815\) 11320.9 0.486571
\(816\) 69544.3i 2.98350i
\(817\) 8669.85i 0.371260i
\(818\) 39852.4i 1.70343i
\(819\) −4510.74 8814.08i −0.192452 0.376055i
\(820\) 5102.01i 0.217280i
\(821\) 34524.3 1.46761 0.733804 0.679361i \(-0.237743\pi\)
0.733804 + 0.679361i \(0.237743\pi\)
\(822\) −20769.2 −0.881276
\(823\) −36056.2 −1.52715 −0.763573 0.645722i \(-0.776557\pi\)
−0.763573 + 0.645722i \(0.776557\pi\)
\(824\) −5004.79 −0.211590
\(825\) 40301.0 1.70073
\(826\) −8569.44 16744.9i −0.360979 0.705361i
\(827\) 25269.4i 1.06252i −0.847209 0.531260i \(-0.821719\pi\)
0.847209 0.531260i \(-0.178281\pi\)
\(828\) −21848.1 + 14639.5i −0.916999 + 0.614441i
\(829\) 24092.6i 1.00937i 0.863303 + 0.504686i \(0.168392\pi\)
−0.863303 + 0.504686i \(0.831608\pi\)
\(830\) 37419.5 1.56488
\(831\) 43281.1i 1.80674i
\(832\) 1167.53i 0.0486499i
\(833\) −17699.0 + 24543.5i −0.736175 + 1.02087i
\(834\) 404.433 0.0167918
\(835\) 29480.6i 1.22182i
\(836\) 21122.8i 0.873860i
\(837\) −26407.1 −1.09052
\(838\) −34157.1 −1.40804
\(839\) 34087.4 1.40265 0.701327 0.712840i \(-0.252591\pi\)
0.701327 + 0.712840i \(0.252591\pi\)
\(840\) −10555.5 20625.7i −0.433572 0.847207i
\(841\) −12358.4 −0.506722
\(842\) 13530.0i 0.553771i
\(843\) −39916.1 −1.63082
\(844\) 642.692 0.0262114
\(845\) 17263.1 0.702805
\(846\) 12184.8i 0.495180i
\(847\) 53972.0 27621.0i 2.18949 1.12051i
\(848\) 17766.2i 0.719451i
\(849\) 30561.1i 1.23540i
\(850\) −17821.3 −0.719135
\(851\) 13772.7 + 20554.5i 0.554784 + 0.827967i
\(852\) 19072.2i 0.766906i
\(853\) 12972.1i 0.520699i −0.965514 0.260350i \(-0.916162\pi\)
0.965514 0.260350i \(-0.0838379\pi\)
\(854\) 13602.2 6961.13i 0.545031 0.278928i
\(855\) −53264.0 −2.13051
\(856\) 12229.8i 0.488324i
\(857\) 31008.7i 1.23598i 0.786185 + 0.617991i \(0.212053\pi\)
−0.786185 + 0.617991i \(0.787947\pi\)
\(858\) 17023.8i 0.677368i
\(859\) 43254.4i 1.71807i 0.511919 + 0.859034i \(0.328935\pi\)
−0.511919 + 0.859034i \(0.671065\pi\)
\(860\) 2524.30i 0.100091i
\(861\) −30819.0 + 15772.1i −1.21987 + 0.624288i
\(862\) 33138.2i 1.30939i
\(863\) −610.927 −0.0240976 −0.0120488 0.999927i \(-0.503835\pi\)
−0.0120488 + 0.999927i \(0.503835\pi\)
\(864\) 62438.4i 2.45856i
\(865\) 3984.54i 0.156623i
\(866\) −7499.59 −0.294280
\(867\) 28427.6i 1.11355i
\(868\) 1708.85 + 3339.13i 0.0668229 + 0.130573i
\(869\) −55999.0 −2.18600
\(870\) 29524.1i 1.15053i
\(871\) 3579.57 0.139253
\(872\) 15786.6i 0.613076i
\(873\) 23170.7 0.898293
\(874\) −28669.3 + 19210.0i −1.10956 + 0.743465i
\(875\) 24592.7 12585.7i 0.950155 0.486256i
\(876\) −26779.7 −1.03288
\(877\) 13040.9 0.502121 0.251061 0.967971i \(-0.419221\pi\)
0.251061 + 0.967971i \(0.419221\pi\)
\(878\) 25611.6i 0.984451i
\(879\) 30369.0i 1.16533i
\(880\) 43552.2i 1.66835i
\(881\) −46396.5 −1.77428 −0.887138 0.461505i \(-0.847310\pi\)
−0.887138 + 0.461505i \(0.847310\pi\)
\(882\) 48076.9 66669.1i 1.83541 2.54520i
\(883\) 4692.24 0.178830 0.0894148 0.995994i \(-0.471500\pi\)
0.0894148 + 0.995994i \(0.471500\pi\)
\(884\) 2222.98i 0.0845778i
\(885\) 24082.3 0.914710
\(886\) −37196.2 −1.41042
\(887\) 46924.2i 1.77628i 0.459572 + 0.888140i \(0.348003\pi\)
−0.459572 + 0.888140i \(0.651997\pi\)
\(888\) −34794.9 −1.31491
\(889\) 23040.1 11791.1i 0.869225 0.444839i
\(890\) 11269.4 0.424440
\(891\) 163486.i 6.14701i
\(892\) 7870.83i 0.295443i
\(893\) 4721.46i 0.176929i
\(894\) 44244.6 1.65521
\(895\) 4273.33 0.159599
\(896\) 27469.6 14058.0i 1.02421 0.524157i
\(897\) 6823.02 4571.81i 0.253973 0.170176i
\(898\) 43757.0 1.62605
\(899\) 6626.81i 0.245847i
\(900\) 14294.9 0.529443
\(901\) 19695.0i 0.728231i
\(902\) −43145.8 −1.59268
\(903\) −15248.2 + 7803.50i −0.561936 + 0.287579i
\(904\) 23153.8i 0.851863i
\(905\) −26661.1 −0.979275
\(906\) 62502.7i 2.29196i
\(907\) 35941.0i 1.31577i −0.753120 0.657883i \(-0.771452\pi\)
0.753120 0.657883i \(-0.228548\pi\)
\(908\) −7194.73 −0.262958
\(909\) 67844.8i 2.47555i
\(910\) −1723.37 3367.51i −0.0627795 0.122672i
\(911\) 12203.7i 0.443827i −0.975066 0.221913i \(-0.928770\pi\)
0.975066 0.221913i \(-0.0712302\pi\)
\(912\) 73199.4i 2.65776i
\(913\) 93444.0i 3.38723i
\(914\) 48552.3i 1.75708i
\(915\) 19562.5i 0.706795i
\(916\) 11003.1 0.396891
\(917\) 13859.5 + 27081.8i 0.499109 + 0.975268i
\(918\) 129918.i 4.67095i
\(919\) 29157.4i 1.04659i 0.852152 + 0.523295i \(0.175297\pi\)
−0.852152 + 0.523295i \(0.824703\pi\)
\(920\) 11573.1 7754.61i 0.414732 0.277893i
\(921\) −21413.1 −0.766107
\(922\) 51338.6i 1.83378i
\(923\) 4317.22i 0.153958i
\(924\) 37150.0 19012.1i 1.32267 0.676895i
\(925\) 13448.6i 0.478039i
\(926\) −31670.4 −1.12392
\(927\) 22731.0 0.805375
\(928\) 15668.8 0.554260
\(929\) 425.736i 0.0150355i −0.999972 0.00751773i \(-0.997607\pi\)
0.999972 0.00751773i \(-0.00239299\pi\)
\(930\) −16262.8 −0.573417
\(931\) 18629.2 25833.5i 0.655798 0.909407i
\(932\) −7039.57 −0.247413
\(933\) 22077.7 0.774697
\(934\) −24181.0 −0.847139
\(935\) 48280.5i 1.68871i
\(936\) 8371.93i 0.292356i
\(937\) 25134.9 0.876330 0.438165 0.898894i \(-0.355628\pi\)
0.438165 + 0.898894i \(0.355628\pi\)
\(938\) 13537.8 + 26453.1i 0.471242 + 0.920816i
\(939\) 10789.7i 0.374982i
\(940\) 1374.69i 0.0476995i
\(941\) 21103.7 0.731094 0.365547 0.930793i \(-0.380882\pi\)
0.365547 + 0.930793i \(0.380882\pi\)
\(942\) 15502.0i 0.536182i
\(943\) −11587.0 17292.6i −0.400132 0.597161i
\(944\) 23989.0i 0.827094i
\(945\) 29742.0 + 58116.4i 1.02382 + 2.00056i
\(946\) −21347.0 −0.733670
\(947\) 49604.3 1.70214 0.851069 0.525054i \(-0.175955\pi\)
0.851069 + 0.525054i \(0.175955\pi\)
\(948\) −27403.5 −0.938846
\(949\) 6061.91 0.207353
\(950\) 18757.9 0.640619
\(951\) 23503.0i 0.801407i
\(952\) 22776.4 11656.2i 0.775406 0.396826i
\(953\) 53062.7i 1.80364i 0.432111 + 0.901820i \(0.357769\pi\)
−0.432111 + 0.901820i \(0.642231\pi\)
\(954\) 53498.9i 1.81561i
\(955\) 608.109i 0.0206052i
\(956\) −1509.09 −0.0510539
\(957\) −73727.4 −2.49035
\(958\) 28236.8 0.952286
\(959\) 5250.45 + 10259.5i 0.176794 + 0.345460i
\(960\) 12408.8i 0.417180i
\(961\) 26140.7 0.877471
\(962\) −5680.88 −0.190394
\(963\) 55545.8i 1.85871i
\(964\) −3744.37 −0.125102
\(965\) −28615.7 −0.954583
\(966\) 59590.3 + 33132.0i 1.98477 + 1.10352i
\(967\) 6990.74 0.232479 0.116239 0.993221i \(-0.462916\pi\)
0.116239 + 0.993221i \(0.462916\pi\)
\(968\) −51264.5 −1.70217
\(969\) 81146.4i 2.69019i
\(970\) 8852.61 0.293031
\(971\) −9987.36 −0.330082 −0.165041 0.986287i \(-0.552776\pi\)
−0.165041 + 0.986287i \(0.552776\pi\)
\(972\) 40442.6i 1.33456i
\(973\) −102.241 199.780i −0.00336864 0.00658238i
\(974\) −54145.0 −1.78123
\(975\) −4464.22 −0.146635
\(976\) −19486.8 −0.639094
\(977\) 19527.2i 0.639439i −0.947512 0.319720i \(-0.896411\pi\)
0.947512 0.319720i \(-0.103589\pi\)
\(978\) 46849.6i 1.53178i
\(979\) 28142.0i 0.918714i
\(980\) 5424.05 7521.63i 0.176801 0.245173i
\(981\) 71700.3i 2.33355i
\(982\) −26669.7 −0.866664
\(983\) 25517.2 0.827947 0.413973 0.910289i \(-0.364141\pi\)
0.413973 + 0.910289i \(0.364141\pi\)
\(984\) 29273.0 0.948364
\(985\) −7189.95 −0.232580
\(986\) 32602.6 1.05302
\(987\) 8303.93 4249.67i 0.267798 0.137050i
\(988\) 2339.81i 0.0753434i
\(989\) −5732.84 8555.76i −0.184321 0.275083i
\(990\) 131147.i 4.21024i
\(991\) −16634.8 −0.533221 −0.266611 0.963804i \(-0.585904\pi\)
−0.266611 + 0.963804i \(0.585904\pi\)
\(992\) 8630.86i 0.276240i
\(993\) 28084.0i 0.897501i
\(994\) −31904.5 + 16327.6i −1.01806 + 0.521006i
\(995\) 32177.7 1.02523
\(996\) 45727.5i 1.45475i
\(997\) 14480.9i 0.459995i −0.973191 0.229997i \(-0.926128\pi\)
0.973191 0.229997i \(-0.0738717\pi\)
\(998\) −9140.29 −0.289910
\(999\) 98040.5 3.10497
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 161.4.c.c.160.12 yes 36
7.6 odd 2 inner 161.4.c.c.160.9 36
23.22 odd 2 inner 161.4.c.c.160.11 yes 36
161.160 even 2 inner 161.4.c.c.160.10 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.4.c.c.160.9 36 7.6 odd 2 inner
161.4.c.c.160.10 yes 36 161.160 even 2 inner
161.4.c.c.160.11 yes 36 23.22 odd 2 inner
161.4.c.c.160.12 yes 36 1.1 even 1 trivial