Properties

Label 161.4.c.c.160.2
Level $161$
Weight $4$
Character 161.160
Analytic conductor $9.499$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [161,4,Mod(160,161)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(161, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("161.160");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 161.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.49930751092\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 160.2
Character \(\chi\) \(=\) 161.160
Dual form 161.4.c.c.160.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.29875 q^{2} -6.28001i q^{3} +20.0768 q^{4} +10.4216 q^{5} +33.2762i q^{6} +(-11.5274 + 14.4955i) q^{7} -63.9920 q^{8} -12.4385 q^{9} -55.2216 q^{10} +47.9270i q^{11} -126.082i q^{12} -43.6247i q^{13} +(61.0808 - 76.8080i) q^{14} -65.4478i q^{15} +178.463 q^{16} -89.5819 q^{17} +65.9086 q^{18} -94.5661 q^{19} +209.233 q^{20} +(91.0318 + 72.3921i) q^{21} -253.953i q^{22} +(-54.9894 + 95.6199i) q^{23} +401.870i q^{24} -16.3899 q^{25} +231.157i q^{26} -91.4463i q^{27} +(-231.433 + 291.023i) q^{28} -231.117 q^{29} +346.792i q^{30} +91.7580i q^{31} -433.697 q^{32} +300.982 q^{33} +474.672 q^{34} +(-120.134 + 151.066i) q^{35} -249.725 q^{36} +74.6290i q^{37} +501.082 q^{38} -273.964 q^{39} -666.900 q^{40} +377.735i q^{41} +(-482.355 - 383.588i) q^{42} -305.195i q^{43} +962.221i q^{44} -129.629 q^{45} +(291.375 - 506.666i) q^{46} +87.3335i q^{47} -1120.75i q^{48} +(-77.2383 - 334.190i) q^{49} +86.8462 q^{50} +562.575i q^{51} -875.844i q^{52} +118.644i q^{53} +484.552i q^{54} +499.477i q^{55} +(737.661 - 927.595i) q^{56} +593.876i q^{57} +1224.63 q^{58} +440.635i q^{59} -1313.98i q^{60} +470.158 q^{61} -486.203i q^{62} +(143.384 - 180.302i) q^{63} +870.349 q^{64} -454.640i q^{65} -1594.83 q^{66} +207.499i q^{67} -1798.52 q^{68} +(600.494 + 345.334i) q^{69} +(636.561 - 800.464i) q^{70} +393.876 q^{71} +795.964 q^{72} -397.322i q^{73} -395.441i q^{74} +102.929i q^{75} -1898.58 q^{76} +(-694.726 - 552.474i) q^{77} +1451.67 q^{78} -574.659i q^{79} +1859.88 q^{80} -910.123 q^{81} -2001.52i q^{82} -1080.93 q^{83} +(1827.63 + 1453.40i) q^{84} -933.588 q^{85} +1617.15i q^{86} +1451.42i q^{87} -3066.94i q^{88} +559.712 q^{89} +686.874 q^{90} +(632.362 + 502.879i) q^{91} +(-1104.01 + 1919.74i) q^{92} +576.241 q^{93} -462.759i q^{94} -985.531 q^{95} +2723.62i q^{96} -697.226 q^{97} +(409.267 + 1770.79i) q^{98} -596.140i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 8 q^{2} + 184 q^{4} - 228 q^{8} - 436 q^{9} + 168 q^{16} - 404 q^{18} + 204 q^{23} - 140 q^{25} + 256 q^{29} + 1008 q^{32} - 2040 q^{35} - 4412 q^{36} + 1296 q^{39} - 888 q^{46} + 1916 q^{49} + 4080 q^{50}+ \cdots + 6884 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/161\mathbb{Z}\right)^\times\).

\(n\) \(24\) \(120\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.29875 −1.87339 −0.936696 0.350143i \(-0.886133\pi\)
−0.936696 + 0.350143i \(0.886133\pi\)
\(3\) 6.28001i 1.20859i −0.796761 0.604294i \(-0.793455\pi\)
0.796761 0.604294i \(-0.206545\pi\)
\(4\) 20.0768 2.50960
\(5\) 10.4216 0.932138 0.466069 0.884748i \(-0.345670\pi\)
0.466069 + 0.884748i \(0.345670\pi\)
\(6\) 33.2762i 2.26416i
\(7\) −11.5274 + 14.4955i −0.622421 + 0.782683i
\(8\) −63.9920 −2.82807
\(9\) −12.4385 −0.460685
\(10\) −55.2216 −1.74626
\(11\) 47.9270i 1.31369i 0.754028 + 0.656843i \(0.228108\pi\)
−0.754028 + 0.656843i \(0.771892\pi\)
\(12\) 126.082i 3.03307i
\(13\) 43.6247i 0.930717i −0.885122 0.465358i \(-0.845925\pi\)
0.885122 0.465358i \(-0.154075\pi\)
\(14\) 61.0808 76.8080i 1.16604 1.46627i
\(15\) 65.4478i 1.12657i
\(16\) 178.463 2.78849
\(17\) −89.5819 −1.27805 −0.639023 0.769187i \(-0.720661\pi\)
−0.639023 + 0.769187i \(0.720661\pi\)
\(18\) 65.9086 0.863044
\(19\) −94.5661 −1.14184 −0.570920 0.821006i \(-0.693413\pi\)
−0.570920 + 0.821006i \(0.693413\pi\)
\(20\) 209.233 2.33929
\(21\) 91.0318 + 72.3921i 0.945941 + 0.752250i
\(22\) 253.953i 2.46105i
\(23\) −54.9894 + 95.6199i −0.498525 + 0.866875i
\(24\) 401.870i 3.41797i
\(25\) −16.3899 −0.131119
\(26\) 231.157i 1.74360i
\(27\) 91.4463i 0.651809i
\(28\) −231.433 + 291.023i −1.56203 + 1.96422i
\(29\) −231.117 −1.47991 −0.739955 0.672657i \(-0.765153\pi\)
−0.739955 + 0.672657i \(0.765153\pi\)
\(30\) 346.792i 2.11051i
\(31\) 91.7580i 0.531620i 0.964025 + 0.265810i \(0.0856394\pi\)
−0.964025 + 0.265810i \(0.914361\pi\)
\(32\) −433.697 −2.39586
\(33\) 300.982 1.58770
\(34\) 474.672 2.39428
\(35\) −120.134 + 151.066i −0.580182 + 0.729568i
\(36\) −249.725 −1.15614
\(37\) 74.6290i 0.331593i 0.986160 + 0.165796i \(0.0530195\pi\)
−0.986160 + 0.165796i \(0.946981\pi\)
\(38\) 501.082 2.13911
\(39\) −273.964 −1.12485
\(40\) −666.900 −2.63615
\(41\) 377.735i 1.43884i 0.694577 + 0.719418i \(0.255591\pi\)
−0.694577 + 0.719418i \(0.744409\pi\)
\(42\) −482.355 383.588i −1.77212 1.40926i
\(43\) 305.195i 1.08237i −0.840904 0.541184i \(-0.817976\pi\)
0.840904 0.541184i \(-0.182024\pi\)
\(44\) 962.221i 3.29682i
\(45\) −129.629 −0.429422
\(46\) 291.375 506.666i 0.933934 1.62400i
\(47\) 87.3335i 0.271040i 0.990775 + 0.135520i \(0.0432706\pi\)
−0.990775 + 0.135520i \(0.956729\pi\)
\(48\) 1120.75i 3.37013i
\(49\) −77.2383 334.190i −0.225185 0.974316i
\(50\) 86.8462 0.245638
\(51\) 562.575i 1.54463i
\(52\) 875.844i 2.33573i
\(53\) 118.644i 0.307490i 0.988111 + 0.153745i \(0.0491335\pi\)
−0.988111 + 0.153745i \(0.950867\pi\)
\(54\) 484.552i 1.22109i
\(55\) 499.477i 1.22454i
\(56\) 737.661 927.595i 1.76025 2.21348i
\(57\) 593.876i 1.38001i
\(58\) 1224.63 2.77245
\(59\) 440.635i 0.972301i 0.873875 + 0.486151i \(0.161599\pi\)
−0.873875 + 0.486151i \(0.838401\pi\)
\(60\) 1313.98i 2.82724i
\(61\) 470.158 0.986845 0.493422 0.869790i \(-0.335746\pi\)
0.493422 + 0.869790i \(0.335746\pi\)
\(62\) 486.203i 0.995933i
\(63\) 143.384 180.302i 0.286740 0.360570i
\(64\) 870.349 1.69990
\(65\) 454.640i 0.867556i
\(66\) −1594.83 −2.97439
\(67\) 207.499i 0.378358i 0.981943 + 0.189179i \(0.0605827\pi\)
−0.981943 + 0.189179i \(0.939417\pi\)
\(68\) −1798.52 −3.20739
\(69\) 600.494 + 345.334i 1.04769 + 0.602512i
\(70\) 636.561 800.464i 1.08691 1.36677i
\(71\) 393.876 0.658373 0.329186 0.944265i \(-0.393226\pi\)
0.329186 + 0.944265i \(0.393226\pi\)
\(72\) 795.964 1.30285
\(73\) 397.322i 0.637028i −0.947918 0.318514i \(-0.896816\pi\)
0.947918 0.318514i \(-0.103184\pi\)
\(74\) 395.441i 0.621204i
\(75\) 102.929i 0.158469i
\(76\) −1898.58 −2.86556
\(77\) −694.726 552.474i −1.02820 0.817665i
\(78\) 1451.67 2.10729
\(79\) 574.659i 0.818407i −0.912443 0.409203i \(-0.865807\pi\)
0.912443 0.409203i \(-0.134193\pi\)
\(80\) 1859.88 2.59926
\(81\) −910.123 −1.24845
\(82\) 2001.52i 2.69550i
\(83\) −1080.93 −1.42948 −0.714742 0.699388i \(-0.753456\pi\)
−0.714742 + 0.699388i \(0.753456\pi\)
\(84\) 1827.63 + 1453.40i 2.37393 + 1.88785i
\(85\) −933.588 −1.19132
\(86\) 1617.15i 2.02770i
\(87\) 1451.42i 1.78860i
\(88\) 3066.94i 3.71520i
\(89\) 559.712 0.666622 0.333311 0.942817i \(-0.391834\pi\)
0.333311 + 0.942817i \(0.391834\pi\)
\(90\) 686.874 0.804476
\(91\) 632.362 + 502.879i 0.728456 + 0.579298i
\(92\) −1104.01 + 1919.74i −1.25110 + 2.17551i
\(93\) 576.241 0.642510
\(94\) 462.759i 0.507765i
\(95\) −985.531 −1.06435
\(96\) 2723.62i 2.89561i
\(97\) −697.226 −0.729821 −0.364910 0.931043i \(-0.618900\pi\)
−0.364910 + 0.931043i \(0.618900\pi\)
\(98\) 409.267 + 1770.79i 0.421859 + 1.82528i
\(99\) 596.140i 0.605196i
\(100\) −329.057 −0.329057
\(101\) 1725.47i 1.69991i −0.526859 0.849953i \(-0.676631\pi\)
0.526859 0.849953i \(-0.323369\pi\)
\(102\) 2980.95i 2.89370i
\(103\) 1392.83 1.33243 0.666213 0.745761i \(-0.267914\pi\)
0.666213 + 0.745761i \(0.267914\pi\)
\(104\) 2791.63i 2.63213i
\(105\) 948.698 + 754.443i 0.881747 + 0.701201i
\(106\) 628.665i 0.576050i
\(107\) 2181.41i 1.97088i 0.170010 + 0.985442i \(0.445620\pi\)
−0.170010 + 0.985442i \(0.554380\pi\)
\(108\) 1835.95i 1.63578i
\(109\) 1010.52i 0.887982i 0.896031 + 0.443991i \(0.146438\pi\)
−0.896031 + 0.443991i \(0.853562\pi\)
\(110\) 2646.61i 2.29404i
\(111\) 468.671 0.400759
\(112\) −2057.22 + 2586.91i −1.73561 + 2.18250i
\(113\) 1020.13i 0.849251i −0.905369 0.424625i \(-0.860406\pi\)
0.905369 0.424625i \(-0.139594\pi\)
\(114\) 3146.80i 2.58531i
\(115\) −573.078 + 996.514i −0.464694 + 0.808047i
\(116\) −4640.09 −3.71398
\(117\) 542.626i 0.428768i
\(118\) 2334.82i 1.82150i
\(119\) 1032.65 1298.53i 0.795483 1.00031i
\(120\) 4188.13i 3.18602i
\(121\) −965.999 −0.725770
\(122\) −2491.25 −1.84875
\(123\) 2372.18 1.73896
\(124\) 1842.21i 1.33415i
\(125\) −1473.51 −1.05436
\(126\) −759.754 + 955.377i −0.537177 + 0.675490i
\(127\) 266.210 0.186002 0.0930012 0.995666i \(-0.470354\pi\)
0.0930012 + 0.995666i \(0.470354\pi\)
\(128\) −1142.19 −0.788720
\(129\) −1916.63 −1.30814
\(130\) 2409.03i 1.62527i
\(131\) 1981.22i 1.32138i 0.750661 + 0.660688i \(0.229735\pi\)
−0.750661 + 0.660688i \(0.770265\pi\)
\(132\) 6042.76 3.98450
\(133\) 1090.10 1370.78i 0.710705 0.893698i
\(134\) 1099.49i 0.708814i
\(135\) 953.018i 0.607576i
\(136\) 5732.52 3.61441
\(137\) 1780.13i 1.11012i −0.831810 0.555061i \(-0.812695\pi\)
0.831810 0.555061i \(-0.187305\pi\)
\(138\) −3181.87 1829.84i −1.96274 1.12874i
\(139\) 780.661i 0.476365i 0.971220 + 0.238183i \(0.0765517\pi\)
−0.971220 + 0.238183i \(0.923448\pi\)
\(140\) −2411.91 + 3032.93i −1.45602 + 1.83092i
\(141\) 548.455 0.327576
\(142\) −2087.05 −1.23339
\(143\) 2090.80 1.22267
\(144\) −2219.82 −1.28462
\(145\) −2408.61 −1.37948
\(146\) 2105.31i 1.19340i
\(147\) −2098.72 + 485.057i −1.17755 + 0.272156i
\(148\) 1498.31i 0.832165i
\(149\) 913.349i 0.502178i −0.967964 0.251089i \(-0.919211\pi\)
0.967964 0.251089i \(-0.0807886\pi\)
\(150\) 545.395i 0.296875i
\(151\) 456.923 0.246251 0.123125 0.992391i \(-0.460708\pi\)
0.123125 + 0.992391i \(0.460708\pi\)
\(152\) 6051.47 3.22920
\(153\) 1114.26 0.588777
\(154\) 3681.18 + 2927.42i 1.92622 + 1.53181i
\(155\) 956.266i 0.495543i
\(156\) −5500.31 −2.82293
\(157\) −1411.70 −0.717616 −0.358808 0.933411i \(-0.616817\pi\)
−0.358808 + 0.933411i \(0.616817\pi\)
\(158\) 3044.97i 1.53320i
\(159\) 745.084 0.371629
\(160\) −4519.83 −2.23327
\(161\) −752.173 1899.35i −0.368196 0.929748i
\(162\) 4822.52 2.33884
\(163\) −1005.07 −0.482963 −0.241481 0.970405i \(-0.577633\pi\)
−0.241481 + 0.970405i \(0.577633\pi\)
\(164\) 7583.70i 3.61090i
\(165\) 3136.72 1.47996
\(166\) 5727.57 2.67798
\(167\) 2879.54i 1.33429i −0.744930 0.667143i \(-0.767517\pi\)
0.744930 0.667143i \(-0.232483\pi\)
\(168\) −5825.30 4632.51i −2.67519 2.12742i
\(169\) 293.884 0.133766
\(170\) 4946.85 2.23180
\(171\) 1176.26 0.526029
\(172\) 6127.34i 2.71631i
\(173\) 358.433i 0.157521i 0.996894 + 0.0787606i \(0.0250963\pi\)
−0.996894 + 0.0787606i \(0.974904\pi\)
\(174\) 7690.70i 3.35075i
\(175\) 188.933 237.580i 0.0816115 0.102625i
\(176\) 8553.21i 3.66320i
\(177\) 2767.19 1.17511
\(178\) −2965.78 −1.24884
\(179\) 1662.36 0.694140 0.347070 0.937839i \(-0.387177\pi\)
0.347070 + 0.937839i \(0.387177\pi\)
\(180\) −2602.54 −1.07768
\(181\) −506.312 −0.207922 −0.103961 0.994581i \(-0.533152\pi\)
−0.103961 + 0.994581i \(0.533152\pi\)
\(182\) −3350.73 2664.63i −1.36468 1.08525i
\(183\) 2952.59i 1.19269i
\(184\) 3518.88 6118.90i 1.40987 2.45158i
\(185\) 777.755i 0.309090i
\(186\) −3053.36 −1.20367
\(187\) 4293.39i 1.67895i
\(188\) 1753.38i 0.680203i
\(189\) 1325.56 + 1054.14i 0.510160 + 0.405700i
\(190\) 5222.09 1.99395
\(191\) 1517.23i 0.574781i 0.957814 + 0.287390i \(0.0927877\pi\)
−0.957814 + 0.287390i \(0.907212\pi\)
\(192\) 5465.80i 2.05448i
\(193\) −2118.34 −0.790059 −0.395029 0.918668i \(-0.629266\pi\)
−0.395029 + 0.918668i \(0.629266\pi\)
\(194\) 3694.43 1.36724
\(195\) −2855.14 −1.04852
\(196\) −1550.70 6709.47i −0.565123 2.44514i
\(197\) −2452.11 −0.886832 −0.443416 0.896316i \(-0.646233\pi\)
−0.443416 + 0.896316i \(0.646233\pi\)
\(198\) 3158.80i 1.13377i
\(199\) −899.046 −0.320260 −0.160130 0.987096i \(-0.551191\pi\)
−0.160130 + 0.987096i \(0.551191\pi\)
\(200\) 1048.82 0.370815
\(201\) 1303.09 0.457279
\(202\) 9142.83i 3.18459i
\(203\) 2664.18 3350.16i 0.921126 1.15830i
\(204\) 11294.7i 3.87641i
\(205\) 3936.61i 1.34119i
\(206\) −7380.28 −2.49616
\(207\) 683.986 1189.37i 0.229663 0.399357i
\(208\) 7785.41i 2.59529i
\(209\) 4532.27i 1.50002i
\(210\) −5026.92 3997.61i −1.65186 1.31362i
\(211\) −4959.66 −1.61818 −0.809092 0.587682i \(-0.800041\pi\)
−0.809092 + 0.587682i \(0.800041\pi\)
\(212\) 2381.99i 0.771678i
\(213\) 2473.54i 0.795701i
\(214\) 11558.7i 3.69224i
\(215\) 3180.63i 1.00892i
\(216\) 5851.83i 1.84336i
\(217\) −1330.08 1057.73i −0.416090 0.330891i
\(218\) 5354.48i 1.66354i
\(219\) −2495.18 −0.769904
\(220\) 10027.9i 3.07309i
\(221\) 3907.98i 1.18950i
\(222\) −2483.37 −0.750779
\(223\) 4634.33i 1.39165i 0.718212 + 0.695824i \(0.244961\pi\)
−0.718212 + 0.695824i \(0.755039\pi\)
\(224\) 4999.40 6286.66i 1.49123 1.87520i
\(225\) 203.866 0.0604048
\(226\) 5405.39i 1.59098i
\(227\) 4129.30 1.20736 0.603681 0.797226i \(-0.293700\pi\)
0.603681 + 0.797226i \(0.293700\pi\)
\(228\) 11923.1i 3.46328i
\(229\) −5674.46 −1.63746 −0.818732 0.574176i \(-0.805322\pi\)
−0.818732 + 0.574176i \(0.805322\pi\)
\(230\) 3036.60 5280.28i 0.870555 1.51379i
\(231\) −3469.54 + 4362.88i −0.988220 + 1.24267i
\(232\) 14789.6 4.18529
\(233\) 5713.00 1.60631 0.803157 0.595767i \(-0.203152\pi\)
0.803157 + 0.595767i \(0.203152\pi\)
\(234\) 2875.24i 0.803250i
\(235\) 910.156i 0.252647i
\(236\) 8846.54i 2.44009i
\(237\) −3608.86 −0.989117
\(238\) −5471.73 + 6880.61i −1.49025 + 1.87396i
\(239\) 1879.68 0.508730 0.254365 0.967108i \(-0.418134\pi\)
0.254365 + 0.967108i \(0.418134\pi\)
\(240\) 11680.0i 3.14143i
\(241\) 4685.18 1.25228 0.626138 0.779712i \(-0.284634\pi\)
0.626138 + 0.779712i \(0.284634\pi\)
\(242\) 5118.59 1.35965
\(243\) 3246.53i 0.857058i
\(244\) 9439.26 2.47658
\(245\) −804.948 3482.80i −0.209903 0.908197i
\(246\) −12569.6 −3.25775
\(247\) 4125.42i 1.06273i
\(248\) 5871.77i 1.50346i
\(249\) 6788.23i 1.72766i
\(250\) 7807.77 1.97523
\(251\) −4651.56 −1.16974 −0.584868 0.811129i \(-0.698854\pi\)
−0.584868 + 0.811129i \(0.698854\pi\)
\(252\) 2878.68 3619.89i 0.719603 0.904887i
\(253\) −4582.78 2635.48i −1.13880 0.654906i
\(254\) −1410.58 −0.348456
\(255\) 5862.94i 1.43981i
\(256\) −910.619 −0.222319
\(257\) 971.769i 0.235865i 0.993022 + 0.117932i \(0.0376266\pi\)
−0.993022 + 0.117932i \(0.962373\pi\)
\(258\) 10155.7 2.45065
\(259\) −1081.78 860.278i −0.259532 0.206390i
\(260\) 9127.71i 2.17722i
\(261\) 2874.75 0.681772
\(262\) 10498.0i 2.47546i
\(263\) 7180.14i 1.68345i 0.539909 + 0.841723i \(0.318459\pi\)
−0.539909 + 0.841723i \(0.681541\pi\)
\(264\) −19260.4 −4.49014
\(265\) 1236.46i 0.286623i
\(266\) −5776.18 + 7263.43i −1.33143 + 1.67425i
\(267\) 3515.00i 0.805672i
\(268\) 4165.91i 0.949528i
\(269\) 6468.84i 1.46622i −0.680112 0.733108i \(-0.738069\pi\)
0.680112 0.733108i \(-0.261931\pi\)
\(270\) 5049.81i 1.13823i
\(271\) 634.490i 0.142223i −0.997468 0.0711116i \(-0.977345\pi\)
0.997468 0.0711116i \(-0.0226547\pi\)
\(272\) −15987.1 −3.56382
\(273\) 3158.09 3971.24i 0.700132 0.880403i
\(274\) 9432.46i 2.07969i
\(275\) 785.521i 0.172250i
\(276\) 12056.0 + 6933.20i 2.62929 + 1.51206i
\(277\) 1288.44 0.279476 0.139738 0.990188i \(-0.455374\pi\)
0.139738 + 0.990188i \(0.455374\pi\)
\(278\) 4136.53i 0.892419i
\(279\) 1141.33i 0.244909i
\(280\) 7687.61 9667.03i 1.64080 2.06327i
\(281\) 4383.66i 0.930630i −0.885145 0.465315i \(-0.845941\pi\)
0.885145 0.465315i \(-0.154059\pi\)
\(282\) −2906.13 −0.613679
\(283\) 864.804 0.181651 0.0908256 0.995867i \(-0.471049\pi\)
0.0908256 + 0.995867i \(0.471049\pi\)
\(284\) 7907.76 1.65225
\(285\) 6189.15i 1.28636i
\(286\) −11078.6 −2.29054
\(287\) −5475.45 4354.30i −1.12615 0.895561i
\(288\) 5394.55 1.10374
\(289\) 3111.91 0.633404
\(290\) 12762.7 2.58431
\(291\) 4378.59i 0.882052i
\(292\) 7976.95i 1.59868i
\(293\) −3793.25 −0.756328 −0.378164 0.925739i \(-0.623444\pi\)
−0.378164 + 0.925739i \(0.623444\pi\)
\(294\) 11120.6 2570.20i 2.20601 0.509854i
\(295\) 4592.13i 0.906319i
\(296\) 4775.66i 0.937769i
\(297\) 4382.75 0.856273
\(298\) 4839.61i 0.940776i
\(299\) 4171.39 + 2398.90i 0.806815 + 0.463986i
\(300\) 2066.48i 0.397695i
\(301\) 4423.95 + 3518.11i 0.847151 + 0.673688i
\(302\) −2421.12 −0.461324
\(303\) −10835.9 −2.05449
\(304\) −16876.6 −3.18401
\(305\) 4899.80 0.919875
\(306\) −5904.21 −1.10301
\(307\) 1137.77i 0.211519i 0.994392 + 0.105759i \(0.0337273\pi\)
−0.994392 + 0.105759i \(0.966273\pi\)
\(308\) −13947.9 11091.9i −2.58037 2.05201i
\(309\) 8747.00i 1.61035i
\(310\) 5067.02i 0.928346i
\(311\) 4686.11i 0.854421i −0.904152 0.427210i \(-0.859496\pi\)
0.904152 0.427210i \(-0.140504\pi\)
\(312\) 17531.5 3.18117
\(313\) −5048.25 −0.911642 −0.455821 0.890071i \(-0.650654\pi\)
−0.455821 + 0.890071i \(0.650654\pi\)
\(314\) 7480.24 1.34438
\(315\) 1494.29 1879.04i 0.267281 0.336101i
\(316\) 11537.3i 2.05387i
\(317\) 1339.33 0.237301 0.118650 0.992936i \(-0.462143\pi\)
0.118650 + 0.992936i \(0.462143\pi\)
\(318\) −3948.02 −0.696207
\(319\) 11076.8i 1.94414i
\(320\) 9070.45 1.58454
\(321\) 13699.3 2.38199
\(322\) 3985.58 + 10064.2i 0.689775 + 1.74178i
\(323\) 8471.41 1.45932
\(324\) −18272.4 −3.13312
\(325\) 715.006i 0.122035i
\(326\) 5325.61 0.904779
\(327\) 6346.06 1.07320
\(328\) 24172.0i 4.06913i
\(329\) −1265.94 1006.73i −0.212139 0.168701i
\(330\) −16620.7 −2.77254
\(331\) 10115.1 1.67968 0.839840 0.542833i \(-0.182648\pi\)
0.839840 + 0.542833i \(0.182648\pi\)
\(332\) −21701.6 −3.58743
\(333\) 928.273i 0.152760i
\(334\) 15258.0i 2.49964i
\(335\) 2162.47i 0.352682i
\(336\) 16245.8 + 12919.3i 2.63775 + 2.09764i
\(337\) 2949.04i 0.476689i 0.971181 + 0.238345i \(0.0766048\pi\)
−0.971181 + 0.238345i \(0.923395\pi\)
\(338\) −1557.22 −0.250596
\(339\) −6406.39 −1.02639
\(340\) −18743.4 −2.98972
\(341\) −4397.69 −0.698381
\(342\) −6232.72 −0.985458
\(343\) 5734.61 + 2732.74i 0.902740 + 0.430186i
\(344\) 19530.0i 3.06101i
\(345\) 6258.12 + 3598.94i 0.976596 + 0.561624i
\(346\) 1899.25i 0.295099i
\(347\) −9464.27 −1.46418 −0.732088 0.681211i \(-0.761454\pi\)
−0.732088 + 0.681211i \(0.761454\pi\)
\(348\) 29139.8i 4.48867i
\(349\) 2632.49i 0.403764i 0.979410 + 0.201882i \(0.0647058\pi\)
−0.979410 + 0.201882i \(0.935294\pi\)
\(350\) −1001.11 + 1258.88i −0.152890 + 0.192257i
\(351\) −3989.32 −0.606650
\(352\) 20785.8i 3.14741i
\(353\) 3385.70i 0.510489i 0.966877 + 0.255245i \(0.0821560\pi\)
−0.966877 + 0.255245i \(0.917844\pi\)
\(354\) −14662.7 −2.20145
\(355\) 4104.82 0.613694
\(356\) 11237.2 1.67295
\(357\) −8154.80 6485.02i −1.20896 0.961411i
\(358\) −8808.46 −1.30040
\(359\) 4929.56i 0.724713i 0.932040 + 0.362356i \(0.118028\pi\)
−0.932040 + 0.362356i \(0.881972\pi\)
\(360\) 8295.23 1.21444
\(361\) 2083.75 0.303797
\(362\) 2682.83 0.389520
\(363\) 6066.48i 0.877157i
\(364\) 12695.8 + 10096.2i 1.82813 + 1.45380i
\(365\) 4140.74i 0.593797i
\(366\) 15645.1i 2.23437i
\(367\) 7489.07 1.06519 0.532597 0.846369i \(-0.321216\pi\)
0.532597 + 0.846369i \(0.321216\pi\)
\(368\) −9813.59 + 17064.6i −1.39013 + 2.41727i
\(369\) 4698.46i 0.662851i
\(370\) 4121.13i 0.579047i
\(371\) −1719.80 1367.65i −0.240667 0.191388i
\(372\) 11569.1 1.61244
\(373\) 876.538i 0.121677i 0.998148 + 0.0608383i \(0.0193774\pi\)
−0.998148 + 0.0608383i \(0.980623\pi\)
\(374\) 22749.6i 3.14534i
\(375\) 9253.66i 1.27429i
\(376\) 5588.64i 0.766522i
\(377\) 10082.4i 1.37738i
\(378\) −7023.81 5585.62i −0.955730 0.760035i
\(379\) 1013.71i 0.137389i 0.997638 + 0.0686947i \(0.0218834\pi\)
−0.997638 + 0.0686947i \(0.978117\pi\)
\(380\) −19786.3 −2.67110
\(381\) 1671.80i 0.224800i
\(382\) 8039.44i 1.07679i
\(383\) −10199.9 −1.36081 −0.680404 0.732837i \(-0.738196\pi\)
−0.680404 + 0.732837i \(0.738196\pi\)
\(384\) 7172.95i 0.953238i
\(385\) −7240.16 5757.67i −0.958423 0.762176i
\(386\) 11224.6 1.48009
\(387\) 3796.17i 0.498631i
\(388\) −13998.1 −1.83156
\(389\) 4076.15i 0.531283i 0.964072 + 0.265641i \(0.0855837\pi\)
−0.964072 + 0.265641i \(0.914416\pi\)
\(390\) 15128.7 1.96429
\(391\) 4926.05 8565.81i 0.637139 1.10791i
\(392\) 4942.63 + 21385.5i 0.636838 + 2.75544i
\(393\) 12442.1 1.59700
\(394\) 12993.1 1.66138
\(395\) 5988.87i 0.762868i
\(396\) 11968.6i 1.51880i
\(397\) 9867.65i 1.24746i −0.781638 0.623732i \(-0.785616\pi\)
0.781638 0.623732i \(-0.214384\pi\)
\(398\) 4763.82 0.599972
\(399\) −8608.52 6845.84i −1.08011 0.858949i
\(400\) −2925.00 −0.365625
\(401\) 8945.57i 1.11402i −0.830507 0.557008i \(-0.811949\pi\)
0.830507 0.557008i \(-0.188051\pi\)
\(402\) −6904.78 −0.856664
\(403\) 4002.92 0.494788
\(404\) 34641.8i 4.26608i
\(405\) −9484.95 −1.16373
\(406\) −14116.8 + 17751.7i −1.72563 + 2.16995i
\(407\) −3576.75 −0.435609
\(408\) 36000.3i 4.36833i
\(409\) 10016.8i 1.21099i −0.795848 0.605497i \(-0.792974\pi\)
0.795848 0.605497i \(-0.207026\pi\)
\(410\) 20859.1i 2.51258i
\(411\) −11179.2 −1.34168
\(412\) 27963.6 3.34386
\(413\) −6387.22 5079.37i −0.761004 0.605181i
\(414\) −3624.27 + 6302.17i −0.430249 + 0.748152i
\(415\) −11265.0 −1.33248
\(416\) 18919.9i 2.22987i
\(417\) 4902.55 0.575729
\(418\) 24015.4i 2.81012i
\(419\) 2444.90 0.285063 0.142531 0.989790i \(-0.454476\pi\)
0.142531 + 0.989790i \(0.454476\pi\)
\(420\) 19046.8 + 15146.8i 2.21283 + 1.75973i
\(421\) 1860.40i 0.215369i 0.994185 + 0.107684i \(0.0343436\pi\)
−0.994185 + 0.107684i \(0.965656\pi\)
\(422\) 26280.0 3.03149
\(423\) 1086.30i 0.124864i
\(424\) 7592.25i 0.869605i
\(425\) 1468.24 0.167577
\(426\) 13106.7i 1.49066i
\(427\) −5419.69 + 6815.16i −0.614233 + 0.772386i
\(428\) 43795.7i 4.94613i
\(429\) 13130.3i 1.47770i
\(430\) 16853.4i 1.89010i
\(431\) 12526.2i 1.39992i −0.714183 0.699959i \(-0.753202\pi\)
0.714183 0.699959i \(-0.246798\pi\)
\(432\) 16319.8i 1.81756i
\(433\) 13473.0 1.49531 0.747657 0.664085i \(-0.231179\pi\)
0.747657 + 0.664085i \(0.231179\pi\)
\(434\) 7047.75 + 5604.65i 0.779499 + 0.619889i
\(435\) 15126.1i 1.66722i
\(436\) 20288.0i 2.22848i
\(437\) 5200.13 9042.40i 0.569236 0.989832i
\(438\) 13221.4 1.44233
\(439\) 1417.33i 0.154089i 0.997028 + 0.0770447i \(0.0245484\pi\)
−0.997028 + 0.0770447i \(0.975452\pi\)
\(440\) 31962.5i 3.46307i
\(441\) 960.729 + 4156.83i 0.103739 + 0.448853i
\(442\) 20707.4i 2.22840i
\(443\) −3245.54 −0.348082 −0.174041 0.984738i \(-0.555683\pi\)
−0.174041 + 0.984738i \(0.555683\pi\)
\(444\) 9409.41 1.00575
\(445\) 5833.10 0.621384
\(446\) 24556.2i 2.60710i
\(447\) −5735.84 −0.606926
\(448\) −10032.9 + 12616.1i −1.05805 + 1.33048i
\(449\) 14035.4 1.47521 0.737605 0.675232i \(-0.235957\pi\)
0.737605 + 0.675232i \(0.235957\pi\)
\(450\) −1080.24 −0.113162
\(451\) −18103.7 −1.89018
\(452\) 20480.8i 2.13128i
\(453\) 2869.48i 0.297616i
\(454\) −21880.1 −2.26186
\(455\) 6590.23 + 5240.81i 0.679021 + 0.539985i
\(456\) 38003.3i 3.90278i
\(457\) 3867.75i 0.395899i 0.980212 + 0.197950i \(0.0634282\pi\)
−0.980212 + 0.197950i \(0.936572\pi\)
\(458\) 30067.6 3.06761
\(459\) 8191.93i 0.833043i
\(460\) −11505.6 + 20006.8i −1.16620 + 2.02787i
\(461\) 12035.2i 1.21591i −0.793970 0.607957i \(-0.791989\pi\)
0.793970 0.607957i \(-0.208011\pi\)
\(462\) 18384.2 23117.8i 1.85132 2.32801i
\(463\) −17921.7 −1.79890 −0.899451 0.437021i \(-0.856033\pi\)
−0.899451 + 0.437021i \(0.856033\pi\)
\(464\) −41245.9 −4.12671
\(465\) 6005.36 0.598907
\(466\) −30271.8 −3.00926
\(467\) −10655.0 −1.05579 −0.527897 0.849309i \(-0.677019\pi\)
−0.527897 + 0.849309i \(0.677019\pi\)
\(468\) 10894.2i 1.07603i
\(469\) −3007.80 2391.92i −0.296135 0.235498i
\(470\) 4822.69i 0.473307i
\(471\) 8865.47i 0.867302i
\(472\) 28197.1i 2.74974i
\(473\) 14627.1 1.42189
\(474\) 19122.5 1.85300
\(475\) 1549.93 0.149717
\(476\) 20732.2 26070.4i 1.99634 2.51037i
\(477\) 1475.75i 0.141656i
\(478\) −9959.96 −0.953050
\(479\) −4391.21 −0.418871 −0.209436 0.977822i \(-0.567163\pi\)
−0.209436 + 0.977822i \(0.567163\pi\)
\(480\) 28384.6i 2.69911i
\(481\) 3255.67 0.308619
\(482\) −24825.6 −2.34601
\(483\) −11927.9 + 4723.65i −1.12368 + 0.444997i
\(484\) −19394.2 −1.82139
\(485\) −7266.22 −0.680293
\(486\) 17202.6i 1.60561i
\(487\) 6792.51 0.632029 0.316014 0.948754i \(-0.397655\pi\)
0.316014 + 0.948754i \(0.397655\pi\)
\(488\) −30086.3 −2.79087
\(489\) 6311.83i 0.583703i
\(490\) 4265.22 + 18454.5i 0.393231 + 1.70141i
\(491\) −11228.3 −1.03203 −0.516014 0.856580i \(-0.672585\pi\)
−0.516014 + 0.856580i \(0.672585\pi\)
\(492\) 47625.7 4.36409
\(493\) 20703.9 1.89139
\(494\) 21859.6i 1.99091i
\(495\) 6212.75i 0.564126i
\(496\) 16375.4i 1.48242i
\(497\) −4540.36 + 5709.42i −0.409785 + 0.515297i
\(498\) 35969.2i 3.23658i
\(499\) 17063.0 1.53075 0.765375 0.643584i \(-0.222553\pi\)
0.765375 + 0.643584i \(0.222553\pi\)
\(500\) −29583.4 −2.64602
\(501\) −18083.6 −1.61260
\(502\) 24647.5 2.19137
\(503\) 2795.65 0.247817 0.123909 0.992294i \(-0.460457\pi\)
0.123909 + 0.992294i \(0.460457\pi\)
\(504\) −9175.39 + 11537.9i −0.810922 + 1.01972i
\(505\) 17982.2i 1.58455i
\(506\) 24283.0 + 13964.8i 2.13342 + 1.22690i
\(507\) 1845.59i 0.161668i
\(508\) 5344.64 0.466792
\(509\) 21726.4i 1.89195i 0.324236 + 0.945976i \(0.394893\pi\)
−0.324236 + 0.945976i \(0.605107\pi\)
\(510\) 31066.3i 2.69733i
\(511\) 5759.37 + 4580.09i 0.498590 + 0.396499i
\(512\) 13962.7 1.20521
\(513\) 8647.72i 0.744262i
\(514\) 5149.17i 0.441868i
\(515\) 14515.6 1.24200
\(516\) −38479.7 −3.28290
\(517\) −4185.63 −0.356062
\(518\) 5732.11 + 4558.40i 0.486205 + 0.386650i
\(519\) 2250.96 0.190378
\(520\) 29093.3i 2.45351i
\(521\) −18173.2 −1.52818 −0.764092 0.645108i \(-0.776813\pi\)
−0.764092 + 0.645108i \(0.776813\pi\)
\(522\) −15232.6 −1.27723
\(523\) 7338.81 0.613583 0.306791 0.951777i \(-0.400745\pi\)
0.306791 + 0.951777i \(0.400745\pi\)
\(524\) 39776.6i 3.31612i
\(525\) −1492.00 1186.50i −0.124031 0.0986347i
\(526\) 38045.8i 3.15376i
\(527\) 8219.85i 0.679435i
\(528\) 53714.3 4.42730
\(529\) −6119.33 10516.2i −0.502945 0.864318i
\(530\) 6551.70i 0.536958i
\(531\) 5480.84i 0.447925i
\(532\) 21885.7 27520.9i 1.78358 2.24282i
\(533\) 16478.6 1.33915
\(534\) 18625.1i 1.50934i
\(535\) 22733.8i 1.83714i
\(536\) 13278.3i 1.07002i
\(537\) 10439.7i 0.838929i
\(538\) 34276.8i 2.74680i
\(539\) 16016.8 3701.80i 1.27994 0.295822i
\(540\) 19133.6i 1.52477i
\(541\) 2587.58 0.205635 0.102818 0.994700i \(-0.467214\pi\)
0.102818 + 0.994700i \(0.467214\pi\)
\(542\) 3362.00i 0.266440i
\(543\) 3179.65i 0.251292i
\(544\) 38851.4 3.06202
\(545\) 10531.2i 0.827721i
\(546\) −16733.9 + 21042.6i −1.31162 + 1.64934i
\(547\) −903.404 −0.0706157 −0.0353078 0.999376i \(-0.511241\pi\)
−0.0353078 + 0.999376i \(0.511241\pi\)
\(548\) 35739.3i 2.78596i
\(549\) −5848.06 −0.454625
\(550\) 4162.28i 0.322691i
\(551\) 21855.8 1.68982
\(552\) −38426.8 22098.6i −2.96296 1.70395i
\(553\) 8329.96 + 6624.32i 0.640553 + 0.509393i
\(554\) −6827.14 −0.523569
\(555\) 4884.31 0.373563
\(556\) 15673.2i 1.19549i
\(557\) 13166.5i 1.00158i 0.865568 + 0.500791i \(0.166957\pi\)
−0.865568 + 0.500791i \(0.833043\pi\)
\(558\) 6047.64i 0.458812i
\(559\) −13314.1 −1.00738
\(560\) −21439.5 + 26959.8i −1.61783 + 2.03439i
\(561\) −26962.5 −2.02916
\(562\) 23227.9i 1.74344i
\(563\) 3702.82 0.277185 0.138592 0.990349i \(-0.455742\pi\)
0.138592 + 0.990349i \(0.455742\pi\)
\(564\) 11011.2 0.822085
\(565\) 10631.4i 0.791618i
\(566\) −4582.38 −0.340304
\(567\) 10491.3 13192.7i 0.777064 0.977144i
\(568\) −25204.9 −1.86192
\(569\) 20116.4i 1.48211i 0.671443 + 0.741056i \(0.265675\pi\)
−0.671443 + 0.741056i \(0.734325\pi\)
\(570\) 32794.8i 2.40986i
\(571\) 21657.8i 1.58730i 0.608372 + 0.793652i \(0.291823\pi\)
−0.608372 + 0.793652i \(0.708177\pi\)
\(572\) 41976.6 3.06841
\(573\) 9528.23 0.694673
\(574\) 29013.1 + 23072.4i 2.10972 + 1.67774i
\(575\) 901.273 1567.20i 0.0653664 0.113664i
\(576\) −10825.8 −0.783120
\(577\) 801.281i 0.0578124i 0.999582 + 0.0289062i \(0.00920241\pi\)
−0.999582 + 0.0289062i \(0.990798\pi\)
\(578\) −16489.3 −1.18661
\(579\) 13303.2i 0.954856i
\(580\) −48357.2 −3.46194
\(581\) 12460.3 15668.6i 0.889741 1.11883i
\(582\) 23201.1i 1.65243i
\(583\) −5686.25 −0.403946
\(584\) 25425.4i 1.80156i
\(585\) 5655.04i 0.399670i
\(586\) 20099.5 1.41690
\(587\) 19033.1i 1.33829i −0.743130 0.669147i \(-0.766660\pi\)
0.743130 0.669147i \(-0.233340\pi\)
\(588\) −42135.5 + 9738.40i −2.95517 + 0.683001i
\(589\) 8677.19i 0.607025i
\(590\) 24332.6i 1.69789i
\(591\) 15399.3i 1.07181i
\(592\) 13318.5i 0.924643i
\(593\) 5571.59i 0.385831i −0.981215 0.192915i \(-0.938206\pi\)
0.981215 0.192915i \(-0.0617943\pi\)
\(594\) −23223.1 −1.60413
\(595\) 10761.8 13532.8i 0.741500 0.932422i
\(596\) 18337.1i 1.26026i
\(597\) 5646.02i 0.387062i
\(598\) −22103.2 12711.2i −1.51148 0.869228i
\(599\) −10548.2 −0.719509 −0.359754 0.933047i \(-0.617140\pi\)
−0.359754 + 0.933047i \(0.617140\pi\)
\(600\) 6586.62i 0.448163i
\(601\) 8239.33i 0.559217i 0.960114 + 0.279608i \(0.0902046\pi\)
−0.960114 + 0.279608i \(0.909795\pi\)
\(602\) −23441.4 18641.6i −1.58705 1.26208i
\(603\) 2580.97i 0.174304i
\(604\) 9173.55 0.617991
\(605\) −10067.3 −0.676517
\(606\) 57417.0 3.84886
\(607\) 2964.72i 0.198245i −0.995075 0.0991223i \(-0.968397\pi\)
0.995075 0.0991223i \(-0.0316035\pi\)
\(608\) 41013.1 2.73569
\(609\) −21039.0 16731.1i −1.39991 1.11326i
\(610\) −25962.8 −1.72329
\(611\) 3809.90 0.252262
\(612\) 22370.9 1.47760
\(613\) 18386.0i 1.21143i 0.795683 + 0.605713i \(0.207112\pi\)
−0.795683 + 0.605713i \(0.792888\pi\)
\(614\) 6028.79i 0.396258i
\(615\) 24721.9 1.62095
\(616\) 44456.8 + 35353.9i 2.90782 + 2.31242i
\(617\) 29618.3i 1.93255i 0.257504 + 0.966277i \(0.417100\pi\)
−0.257504 + 0.966277i \(0.582900\pi\)
\(618\) 46348.2i 3.01683i
\(619\) −12876.2 −0.836086 −0.418043 0.908427i \(-0.637284\pi\)
−0.418043 + 0.908427i \(0.637284\pi\)
\(620\) 19198.8i 1.24361i
\(621\) 8744.09 + 5028.58i 0.565037 + 0.324943i
\(622\) 24830.5i 1.60067i
\(623\) −6452.02 + 8113.30i −0.414919 + 0.521754i
\(624\) −48892.4 −3.13664
\(625\) −13307.6 −0.851688
\(626\) 26749.4 1.70786
\(627\) −28462.7 −1.81290
\(628\) −28342.4 −1.80093
\(629\) 6685.41i 0.423791i
\(630\) −7917.86 + 9956.57i −0.500723 + 0.629650i
\(631\) 9606.63i 0.606076i −0.952978 0.303038i \(-0.901999\pi\)
0.952978 0.303038i \(-0.0980009\pi\)
\(632\) 36773.5i 2.31451i
\(633\) 31146.7i 1.95572i
\(634\) −7096.78 −0.444557
\(635\) 2774.34 0.173380
\(636\) 14958.9 0.932640
\(637\) −14579.0 + 3369.50i −0.906812 + 0.209583i
\(638\) 58693.0i 3.64213i
\(639\) −4899.22 −0.303303
\(640\) −11903.5 −0.735196
\(641\) 18771.9i 1.15670i −0.815789 0.578350i \(-0.803697\pi\)
0.815789 0.578350i \(-0.196303\pi\)
\(642\) −72589.0 −4.46240
\(643\) −773.918 −0.0474655 −0.0237328 0.999718i \(-0.507555\pi\)
−0.0237328 + 0.999718i \(0.507555\pi\)
\(644\) −15101.2 38132.8i −0.924024 2.33330i
\(645\) −19974.4 −1.21936
\(646\) −44887.9 −2.73389
\(647\) 18640.8i 1.13268i 0.824170 + 0.566342i \(0.191642\pi\)
−0.824170 + 0.566342i \(0.808358\pi\)
\(648\) 58240.6 3.53072
\(649\) −21118.3 −1.27730
\(650\) 3788.64i 0.228620i
\(651\) −6642.55 + 8352.89i −0.399911 + 0.502881i
\(652\) −20178.5 −1.21204
\(653\) −22227.7 −1.33207 −0.666033 0.745922i \(-0.732009\pi\)
−0.666033 + 0.745922i \(0.732009\pi\)
\(654\) −33626.2 −2.01053
\(655\) 20647.5i 1.23170i
\(656\) 67411.8i 4.01218i
\(657\) 4942.09i 0.293469i
\(658\) 6707.91 + 5334.40i 0.397419 + 0.316043i
\(659\) 16967.7i 1.00298i −0.865163 0.501492i \(-0.832785\pi\)
0.865163 0.501492i \(-0.167215\pi\)
\(660\) 62975.3 3.71410
\(661\) −453.229 −0.0266695 −0.0133348 0.999911i \(-0.504245\pi\)
−0.0133348 + 0.999911i \(0.504245\pi\)
\(662\) −53597.3 −3.14670
\(663\) 24542.2 1.43762
\(664\) 69170.6 4.04268
\(665\) 11360.6 14285.8i 0.662475 0.833050i
\(666\) 4918.69i 0.286179i
\(667\) 12709.0 22099.4i 0.737772 1.28290i
\(668\) 57812.0i 3.34852i
\(669\) 29103.6 1.68193
\(670\) 11458.4i 0.660712i
\(671\) 22533.3i 1.29640i
\(672\) −39480.2 31396.3i −2.26634 1.80229i
\(673\) 7504.04 0.429806 0.214903 0.976635i \(-0.431056\pi\)
0.214903 + 0.976635i \(0.431056\pi\)
\(674\) 15626.2i 0.893026i
\(675\) 1498.80i 0.0854649i
\(676\) 5900.25 0.335699
\(677\) 5278.65 0.299668 0.149834 0.988711i \(-0.452126\pi\)
0.149834 + 0.988711i \(0.452126\pi\)
\(678\) 33945.9 1.92284
\(679\) 8037.20 10106.6i 0.454256 0.571218i
\(680\) 59742.1 3.36913
\(681\) 25932.0i 1.45920i
\(682\) 23302.3 1.30834
\(683\) −26270.0 −1.47173 −0.735867 0.677126i \(-0.763225\pi\)
−0.735867 + 0.677126i \(0.763225\pi\)
\(684\) 23615.5 1.32012
\(685\) 18551.8i 1.03479i
\(686\) −30386.3 14480.1i −1.69119 0.805908i
\(687\) 35635.7i 1.97902i
\(688\) 54466.1i 3.01817i
\(689\) 5175.80 0.286186
\(690\) −33160.2 19069.9i −1.82955 1.05214i
\(691\) 3209.75i 0.176707i −0.996089 0.0883537i \(-0.971839\pi\)
0.996089 0.0883537i \(-0.0281606\pi\)
\(692\) 7196.19i 0.395315i
\(693\) 8641.35 + 6871.95i 0.473676 + 0.376686i
\(694\) 50148.8 2.74297
\(695\) 8135.74i 0.444038i
\(696\) 92879.0i 5.05829i
\(697\) 33838.2i 1.83890i
\(698\) 13948.9i 0.756409i
\(699\) 35877.7i 1.94137i
\(700\) 3793.17 4769.85i 0.204812 0.257547i
\(701\) 26555.0i 1.43077i 0.698732 + 0.715384i \(0.253748\pi\)
−0.698732 + 0.715384i \(0.746252\pi\)
\(702\) 21138.4 1.13649
\(703\) 7057.38i 0.378626i
\(704\) 41713.3i 2.23314i
\(705\) 5715.79 0.305346
\(706\) 17940.0i 0.956347i
\(707\) 25011.5 + 19890.1i 1.33049 + 1.05806i
\(708\) 55556.3 2.94906
\(709\) 24535.2i 1.29963i 0.760092 + 0.649815i \(0.225154\pi\)
−0.760092 + 0.649815i \(0.774846\pi\)
\(710\) −21750.4 −1.14969
\(711\) 7147.89i 0.377028i
\(712\) −35817.1 −1.88526
\(713\) −8773.89 5045.72i −0.460848 0.265026i
\(714\) 43210.3 + 34362.5i 2.26485 + 1.80110i
\(715\) 21789.5 1.13970
\(716\) 33375.0 1.74201
\(717\) 11804.4i 0.614845i
\(718\) 26120.5i 1.35767i
\(719\) 1509.08i 0.0782744i −0.999234 0.0391372i \(-0.987539\pi\)
0.999234 0.0391372i \(-0.0124609\pi\)
\(720\) −23134.1 −1.19744
\(721\) −16055.7 + 20189.8i −0.829330 + 1.04287i
\(722\) −11041.3 −0.569132
\(723\) 29422.9i 1.51349i
\(724\) −10165.1 −0.521801
\(725\) 3787.99 0.194045
\(726\) 32144.8i 1.64326i
\(727\) −16361.6 −0.834687 −0.417343 0.908749i \(-0.637039\pi\)
−0.417343 + 0.908749i \(0.637039\pi\)
\(728\) −40466.1 32180.2i −2.06013 1.63830i
\(729\) −4185.09 −0.212625
\(730\) 21940.7i 1.11242i
\(731\) 27340.0i 1.38332i
\(732\) 59278.6i 2.99317i
\(733\) −24970.5 −1.25826 −0.629131 0.777299i \(-0.716589\pi\)
−0.629131 + 0.777299i \(0.716589\pi\)
\(734\) −39682.8 −1.99553
\(735\) −21872.0 + 5055.08i −1.09764 + 0.253686i
\(736\) 23848.8 41470.1i 1.19440 2.07691i
\(737\) −9944.80 −0.497044
\(738\) 24896.0i 1.24178i
\(739\) 26596.0 1.32388 0.661941 0.749556i \(-0.269733\pi\)
0.661941 + 0.749556i \(0.269733\pi\)
\(740\) 15614.8i 0.775693i
\(741\) 25907.7 1.28440
\(742\) 9112.80 + 7246.87i 0.450864 + 0.358546i
\(743\) 20527.4i 1.01356i 0.862075 + 0.506782i \(0.169165\pi\)
−0.862075 + 0.506782i \(0.830835\pi\)
\(744\) −36874.8 −1.81706
\(745\) 9518.57i 0.468099i
\(746\) 4644.56i 0.227948i
\(747\) 13445.1 0.658542
\(748\) 86197.6i 4.21350i
\(749\) −31620.6 25146.0i −1.54258 1.22672i
\(750\) 49032.9i 2.38724i
\(751\) 4277.52i 0.207842i 0.994586 + 0.103921i \(0.0331389\pi\)
−0.994586 + 0.103921i \(0.966861\pi\)
\(752\) 15585.8i 0.755793i
\(753\) 29211.8i 1.41373i
\(754\) 53424.3i 2.58037i
\(755\) 4761.88 0.229540
\(756\) 26613.0 + 21163.7i 1.28030 + 1.01814i
\(757\) 9903.01i 0.475470i 0.971330 + 0.237735i \(0.0764050\pi\)
−0.971330 + 0.237735i \(0.923595\pi\)
\(758\) 5371.38i 0.257384i
\(759\) −16550.8 + 28779.9i −0.791511 + 1.37634i
\(760\) 63066.1 3.01006
\(761\) 13640.8i 0.649776i 0.945753 + 0.324888i \(0.105327\pi\)
−0.945753 + 0.324888i \(0.894673\pi\)
\(762\) 8858.46i 0.421139i
\(763\) −14647.9 11648.6i −0.695008 0.552699i
\(764\) 30461.2i 1.44247i
\(765\) 11612.4 0.548822
\(766\) 54046.6 2.54933
\(767\) 19222.6 0.904937
\(768\) 5718.70i 0.268692i
\(769\) 7455.44 0.349610 0.174805 0.984603i \(-0.444071\pi\)
0.174805 + 0.984603i \(0.444071\pi\)
\(770\) 38363.8 + 30508.5i 1.79550 + 1.42786i
\(771\) 6102.72 0.285064
\(772\) −42529.4 −1.98273
\(773\) −13983.5 −0.650651 −0.325325 0.945602i \(-0.605474\pi\)
−0.325325 + 0.945602i \(0.605474\pi\)
\(774\) 20115.0i 0.934132i
\(775\) 1503.91i 0.0697057i
\(776\) 44616.9 2.06398
\(777\) −5402.56 + 6793.61i −0.249441 + 0.313667i
\(778\) 21598.5i 0.995301i
\(779\) 35720.9i 1.64292i
\(780\) −57322.1 −2.63136
\(781\) 18877.3i 0.864894i
\(782\) −26101.9 + 45388.1i −1.19361 + 2.07554i
\(783\) 21134.8i 0.964619i
\(784\) −13784.2 59640.7i −0.627925 2.71687i
\(785\) −14712.2 −0.668917
\(786\) −65927.6 −2.99181
\(787\) −18558.6 −0.840588 −0.420294 0.907388i \(-0.638073\pi\)
−0.420294 + 0.907388i \(0.638073\pi\)
\(788\) −49230.6 −2.22559
\(789\) 45091.3 2.03459
\(790\) 31733.5i 1.42915i
\(791\) 14787.2 + 11759.4i 0.664694 + 0.528591i
\(792\) 38148.2i 1.71154i
\(793\) 20510.5i 0.918473i
\(794\) 52286.3i 2.33699i
\(795\) 7764.98 0.346410
\(796\) −18050.0 −0.803724
\(797\) −9082.85 −0.403677 −0.201839 0.979419i \(-0.564692\pi\)
−0.201839 + 0.979419i \(0.564692\pi\)
\(798\) 45614.4 + 36274.4i 2.02348 + 1.60915i
\(799\) 7823.50i 0.346402i
\(800\) 7108.27 0.314144
\(801\) −6961.98 −0.307103
\(802\) 47400.4i 2.08699i
\(803\) 19042.5 0.836854
\(804\) 26162.0 1.14759
\(805\) −7838.85 19794.3i −0.343209 0.866653i
\(806\) −21210.5 −0.926931
\(807\) −40624.4 −1.77205
\(808\) 110416.i 4.80745i
\(809\) 10645.8 0.462655 0.231327 0.972876i \(-0.425693\pi\)
0.231327 + 0.972876i \(0.425693\pi\)
\(810\) 50258.4 2.18013
\(811\) 10303.3i 0.446114i 0.974805 + 0.223057i \(0.0716036\pi\)
−0.974805 + 0.223057i \(0.928396\pi\)
\(812\) 53488.2 67260.4i 2.31166 2.90687i
\(813\) −3984.60 −0.171889
\(814\) 18952.3 0.816066
\(815\) −10474.4 −0.450188
\(816\) 100399.i 4.30719i
\(817\) 28861.1i 1.23589i
\(818\) 53076.3i 2.26867i
\(819\) −7865.63 6255.07i −0.335589 0.266874i
\(820\) 79034.5i 3.36586i
\(821\) −4318.02 −0.183557 −0.0917784 0.995779i \(-0.529255\pi\)
−0.0917784 + 0.995779i \(0.529255\pi\)
\(822\) 59236.0 2.51349
\(823\) 10086.5 0.427209 0.213604 0.976920i \(-0.431480\pi\)
0.213604 + 0.976920i \(0.431480\pi\)
\(824\) −89130.1 −3.76820
\(825\) −4933.08 −0.208179
\(826\) 33844.3 + 26914.3i 1.42566 + 1.13374i
\(827\) 7232.54i 0.304111i −0.988372 0.152056i \(-0.951411\pi\)
0.988372 0.152056i \(-0.0485893\pi\)
\(828\) 13732.2 23878.7i 0.576363 1.00223i
\(829\) 32215.2i 1.34967i −0.737967 0.674837i \(-0.764214\pi\)
0.737967 0.674837i \(-0.235786\pi\)
\(830\) 59690.5 2.49625
\(831\) 8091.43i 0.337772i
\(832\) 37968.8i 1.58213i
\(833\) 6919.16 + 29937.4i 0.287797 + 1.24522i
\(834\) −25977.4 −1.07857
\(835\) 30009.5i 1.24374i
\(836\) 90993.5i 3.76444i
\(837\) 8390.93 0.346515
\(838\) −12954.9 −0.534035
\(839\) −19927.4 −0.819988 −0.409994 0.912088i \(-0.634469\pi\)
−0.409994 + 0.912088i \(0.634469\pi\)
\(840\) −60709.1 48278.3i −2.49364 1.98305i
\(841\) 29026.1 1.19013
\(842\) 9857.78i 0.403470i
\(843\) −27529.4 −1.12475
\(844\) −99574.0 −4.06099
\(845\) 3062.75 0.124688
\(846\) 5756.02i 0.233920i
\(847\) 11135.5 14002.6i 0.451734 0.568047i
\(848\) 21173.6i 0.857433i
\(849\) 5430.98i 0.219541i
\(850\) −7779.85 −0.313937
\(851\) −7136.02 4103.81i −0.287450 0.165307i
\(852\) 49660.8i 1.99689i
\(853\) 8219.46i 0.329928i −0.986300 0.164964i \(-0.947249\pi\)
0.986300 0.164964i \(-0.0527509\pi\)
\(854\) 28717.6 36111.9i 1.15070 1.44698i
\(855\) 12258.5 0.490331
\(856\) 139593.i 5.57380i
\(857\) 28865.8i 1.15057i −0.817954 0.575284i \(-0.804892\pi\)
0.817954 0.575284i \(-0.195108\pi\)
\(858\) 69574.0i 2.76832i
\(859\) 18669.4i 0.741550i −0.928723 0.370775i \(-0.879092\pi\)
0.928723 0.370775i \(-0.120908\pi\)
\(860\) 63856.8i 2.53197i
\(861\) −27345.0 + 34385.9i −1.08236 + 1.36105i
\(862\) 66373.1i 2.62260i
\(863\) −27583.1 −1.08800 −0.543998 0.839086i \(-0.683090\pi\)
−0.543998 + 0.839086i \(0.683090\pi\)
\(864\) 39660.0i 1.56165i
\(865\) 3735.45i 0.146831i
\(866\) −71390.1 −2.80131
\(867\) 19542.8i 0.765524i
\(868\) −26703.7 21235.8i −1.04422 0.830405i
\(869\) 27541.7 1.07513
\(870\) 80149.6i 3.12336i
\(871\) 9052.08 0.352145
\(872\) 64665.0i 2.51128i
\(873\) 8672.45 0.336218
\(874\) −27554.2 + 47913.5i −1.06640 + 1.85434i
\(875\) 16985.7 21359.3i 0.656255 0.825229i
\(876\) −50095.3 −1.93215
\(877\) −10367.1 −0.399170 −0.199585 0.979881i \(-0.563959\pi\)
−0.199585 + 0.979881i \(0.563959\pi\)
\(878\) 7510.06i 0.288670i
\(879\) 23821.7i 0.914089i
\(880\) 89138.3i 3.41460i
\(881\) −11497.0 −0.439663 −0.219832 0.975538i \(-0.570551\pi\)
−0.219832 + 0.975538i \(0.570551\pi\)
\(882\) −5090.67 22026.0i −0.194344 0.840878i
\(883\) 41511.5 1.58208 0.791038 0.611767i \(-0.209541\pi\)
0.791038 + 0.611767i \(0.209541\pi\)
\(884\) 78459.8i 2.98517i
\(885\) 28838.6 1.09537
\(886\) 17197.3 0.652094
\(887\) 22852.5i 0.865065i 0.901618 + 0.432532i \(0.142380\pi\)
−0.901618 + 0.432532i \(0.857620\pi\)
\(888\) −29991.2 −1.13338
\(889\) −3068.71 + 3858.84i −0.115772 + 0.145581i
\(890\) −30908.2 −1.16410
\(891\) 43619.5i 1.64008i
\(892\) 93042.4i 3.49248i
\(893\) 8258.79i 0.309485i
\(894\) 30392.8 1.13701
\(895\) 17324.5 0.647034
\(896\) 13166.5 16556.6i 0.490916 0.617318i
\(897\) 15065.1 26196.4i 0.560768 0.975107i
\(898\) −74369.9 −2.76365
\(899\) 21206.8i 0.786749i
\(900\) 4092.98 0.151592
\(901\) 10628.3i 0.392987i
\(902\) 95927.1 3.54104
\(903\) 22093.7 27782.5i 0.814212 1.02386i
\(904\) 65279.8i 2.40174i
\(905\) −5276.59 −0.193812
\(906\) 15204.7i 0.557551i
\(907\) 27053.3i 0.990396i 0.868780 + 0.495198i \(0.164905\pi\)
−0.868780 + 0.495198i \(0.835095\pi\)
\(908\) 82903.1 3.03000
\(909\) 21462.2i 0.783121i
\(910\) −34920.0 27769.8i −1.27207 1.01160i
\(911\) 42965.1i 1.56257i −0.624176 0.781284i \(-0.714565\pi\)
0.624176 0.781284i \(-0.285435\pi\)
\(912\) 105985.i 3.84815i
\(913\) 51805.6i 1.87789i
\(914\) 20494.3i 0.741674i
\(915\) 30770.8i 1.11175i
\(916\) −113925. −4.10938
\(917\) −28718.8 22838.3i −1.03422 0.822452i
\(918\) 43407.0i 1.56062i
\(919\) 20887.7i 0.749753i −0.927075 0.374876i \(-0.877685\pi\)
0.927075 0.374876i \(-0.122315\pi\)
\(920\) 36672.4 63768.9i 1.31419 2.28521i
\(921\) 7145.23 0.255639
\(922\) 63771.6i 2.27788i
\(923\) 17182.7i 0.612758i
\(924\) −69657.2 + 87592.7i −2.48004 + 3.11860i
\(925\) 1223.16i 0.0434783i
\(926\) 94962.6 3.37005
\(927\) −17324.8 −0.613829
\(928\) 100235. 3.54566
\(929\) 18239.3i 0.644146i −0.946715 0.322073i \(-0.895620\pi\)
0.946715 0.322073i \(-0.104380\pi\)
\(930\) −31820.9 −1.12199
\(931\) 7304.13 + 31603.1i 0.257125 + 1.11251i
\(932\) 114699. 4.03121
\(933\) −29428.8 −1.03264
\(934\) 56458.3 1.97792
\(935\) 44744.1i 1.56501i
\(936\) 34723.7i 1.21259i
\(937\) 26881.3 0.937218 0.468609 0.883406i \(-0.344755\pi\)
0.468609 + 0.883406i \(0.344755\pi\)
\(938\) 15937.6 + 12674.2i 0.554776 + 0.441180i
\(939\) 31703.0i 1.10180i
\(940\) 18273.0i 0.634043i
\(941\) 55079.6 1.90812 0.954061 0.299611i \(-0.0968569\pi\)
0.954061 + 0.299611i \(0.0968569\pi\)
\(942\) 46975.9i 1.62480i
\(943\) −36119.0 20771.4i −1.24729 0.717296i
\(944\) 78637.2i 2.71125i
\(945\) 13814.5 + 10985.8i 0.475539 + 0.378168i
\(946\) −77505.4 −2.66376
\(947\) 13265.5 0.455195 0.227598 0.973755i \(-0.426913\pi\)
0.227598 + 0.973755i \(0.426913\pi\)
\(948\) −72454.3 −2.48229
\(949\) −17333.1 −0.592892
\(950\) −8212.71 −0.280479
\(951\) 8411.01i 0.286799i
\(952\) −66081.0 + 83095.7i −2.24968 + 2.82893i
\(953\) 13566.7i 0.461143i 0.973055 + 0.230572i \(0.0740596\pi\)
−0.973055 + 0.230572i \(0.925940\pi\)
\(954\) 7819.65i 0.265378i
\(955\) 15812.0i 0.535775i
\(956\) 37738.0 1.27671
\(957\) −69562.1 −2.34966
\(958\) 23267.9 0.784710
\(959\) 25803.8 + 20520.2i 0.868873 + 0.690963i
\(960\) 56962.5i 1.91506i
\(961\) 21371.5 0.717380
\(962\) −17251.0 −0.578165
\(963\) 27133.4i 0.907958i
\(964\) 94063.3 3.14271
\(965\) −22076.5 −0.736444
\(966\) 63203.1 25029.5i 2.10510 0.833654i
\(967\) 3115.45 0.103605 0.0518025 0.998657i \(-0.483503\pi\)
0.0518025 + 0.998657i \(0.483503\pi\)
\(968\) 61816.2 2.05253
\(969\) 53200.5i 1.76372i
\(970\) 38501.9 1.27446
\(971\) −14345.0 −0.474103 −0.237051 0.971497i \(-0.576181\pi\)
−0.237051 + 0.971497i \(0.576181\pi\)
\(972\) 65179.9i 2.15087i
\(973\) −11316.1 8998.98i −0.372843 0.296500i
\(974\) −35991.8 −1.18404
\(975\) 4490.24 0.147490
\(976\) 83905.9 2.75181
\(977\) 34346.8i 1.12472i 0.826893 + 0.562360i \(0.190106\pi\)
−0.826893 + 0.562360i \(0.809894\pi\)
\(978\) 33444.8i 1.09351i
\(979\) 26825.3i 0.875732i
\(980\) −16160.8 69923.5i −0.526773 2.27921i
\(981\) 12569.3i 0.409080i
\(982\) 59496.0 1.93339
\(983\) 30929.3 1.00355 0.501776 0.864998i \(-0.332680\pi\)
0.501776 + 0.864998i \(0.332680\pi\)
\(984\) −151800. −4.91790
\(985\) −25555.0 −0.826649
\(986\) −109705. −3.54332
\(987\) −6322.26 + 7950.12i −0.203890 + 0.256388i
\(988\) 82825.2i 2.66702i
\(989\) 29182.7 + 16782.5i 0.938278 + 0.539588i
\(990\) 32919.8i 1.05683i
\(991\) −1742.50 −0.0558551 −0.0279276 0.999610i \(-0.508891\pi\)
−0.0279276 + 0.999610i \(0.508891\pi\)
\(992\) 39795.2i 1.27369i
\(993\) 63522.7i 2.03004i
\(994\) 24058.3 30252.8i 0.767688 0.965353i
\(995\) −9369.51 −0.298526
\(996\) 136286.i 4.33573i
\(997\) 55769.5i 1.77155i 0.464112 + 0.885777i \(0.346374\pi\)
−0.464112 + 0.885777i \(0.653626\pi\)
\(998\) −90412.6 −2.86770
\(999\) 6824.55 0.216135
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 161.4.c.c.160.2 yes 36
7.6 odd 2 inner 161.4.c.c.160.3 yes 36
23.22 odd 2 inner 161.4.c.c.160.1 36
161.160 even 2 inner 161.4.c.c.160.4 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.4.c.c.160.1 36 23.22 odd 2 inner
161.4.c.c.160.2 yes 36 1.1 even 1 trivial
161.4.c.c.160.3 yes 36 7.6 odd 2 inner
161.4.c.c.160.4 yes 36 161.160 even 2 inner