Properties

Label 1620.2.d.d.649.4
Level $1620$
Weight $2$
Character 1620.649
Analytic conductor $12.936$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1620,2,Mod(649,1620)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1620, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1620.649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1620 = 2^{2} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1620.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.9357651274\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.301925376.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 14x^{4} + 43x^{2} + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.4
Root \(3.17695i\) of defining polynomial
Character \(\chi\) \(=\) 1620.649
Dual form 1620.2.d.d.649.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.123563 + 2.23265i) q^{5} -1.28835i q^{7} -5.09303 q^{11} -3.56951i q^{13} -0.895796i q^{17} +5.34015 q^{19} -5.06555i q^{23} +(-4.96946 + 0.551747i) q^{25} -3.00000 q^{29} -6.59877 q^{31} +(2.87644 - 0.159193i) q^{35} -7.24970i q^{37} +7.84590 q^{41} -10.9299i q^{43} -2.96925i q^{47} +5.34015 q^{49} +4.78369i q^{53} +(-0.629311 - 11.3710i) q^{55} -5.75287 q^{59} +4.34015 q^{61} +(7.96946 - 0.441060i) q^{65} -8.53805i q^{67} +5.34015 q^{71} +9.34600i q^{73} +6.56160i q^{77} +0.741379 q^{79} +9.21247i q^{83} +(2.00000 - 0.110687i) q^{85} -9.24713 q^{89} -4.59877 q^{91} +(0.659846 + 11.9227i) q^{95} -3.45882i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{5} + 2 q^{11} + 3 q^{25} - 18 q^{29} - 6 q^{31} + 17 q^{35} + 14 q^{41} - 3 q^{55} - 34 q^{59} - 6 q^{61} + 15 q^{65} + 6 q^{79} + 12 q^{85} - 56 q^{89} + 6 q^{91} + 36 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1620\mathbb{Z}\right)^\times\).

\(n\) \(811\) \(1297\) \(1541\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.123563 + 2.23265i 0.0552591 + 0.998472i
\(6\) 0 0
\(7\) 1.28835i 0.486951i −0.969907 0.243475i \(-0.921713\pi\)
0.969907 0.243475i \(-0.0782875\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −5.09303 −1.53561 −0.767803 0.640686i \(-0.778650\pi\)
−0.767803 + 0.640686i \(0.778650\pi\)
\(12\) 0 0
\(13\) 3.56951i 0.990003i −0.868892 0.495002i \(-0.835167\pi\)
0.868892 0.495002i \(-0.164833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.895796i 0.217262i −0.994082 0.108631i \(-0.965353\pi\)
0.994082 0.108631i \(-0.0346468\pi\)
\(18\) 0 0
\(19\) 5.34015 1.22512 0.612558 0.790426i \(-0.290141\pi\)
0.612558 + 0.790426i \(0.290141\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.06555i 1.05624i −0.849169 0.528121i \(-0.822897\pi\)
0.849169 0.528121i \(-0.177103\pi\)
\(24\) 0 0
\(25\) −4.96946 + 0.551747i −0.993893 + 0.110349i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.00000 −0.557086 −0.278543 0.960424i \(-0.589851\pi\)
−0.278543 + 0.960424i \(0.589851\pi\)
\(30\) 0 0
\(31\) −6.59877 −1.18517 −0.592587 0.805506i \(-0.701894\pi\)
−0.592587 + 0.805506i \(0.701894\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.87644 0.159193i 0.486207 0.0269085i
\(36\) 0 0
\(37\) 7.24970i 1.19184i −0.803043 0.595922i \(-0.796787\pi\)
0.803043 0.595922i \(-0.203213\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.84590 1.22532 0.612662 0.790345i \(-0.290099\pi\)
0.612662 + 0.790345i \(0.290099\pi\)
\(42\) 0 0
\(43\) 10.9299i 1.66679i −0.552675 0.833397i \(-0.686393\pi\)
0.552675 0.833397i \(-0.313607\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.96925i 0.433110i −0.976270 0.216555i \(-0.930518\pi\)
0.976270 0.216555i \(-0.0694821\pi\)
\(48\) 0 0
\(49\) 5.34015 0.762879
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.78369i 0.657090i 0.944488 + 0.328545i \(0.106558\pi\)
−0.944488 + 0.328545i \(0.893442\pi\)
\(54\) 0 0
\(55\) −0.629311 11.3710i −0.0848562 1.53326i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −5.75287 −0.748960 −0.374480 0.927235i \(-0.622179\pi\)
−0.374480 + 0.927235i \(0.622179\pi\)
\(60\) 0 0
\(61\) 4.34015 0.555700 0.277850 0.960625i \(-0.410378\pi\)
0.277850 + 0.960625i \(0.410378\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 7.96946 0.441060i 0.988490 0.0547067i
\(66\) 0 0
\(67\) 8.53805i 1.04309i −0.853224 0.521544i \(-0.825356\pi\)
0.853224 0.521544i \(-0.174644\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.34015 0.633760 0.316880 0.948466i \(-0.397365\pi\)
0.316880 + 0.948466i \(0.397365\pi\)
\(72\) 0 0
\(73\) 9.34600i 1.09387i 0.837176 + 0.546933i \(0.184205\pi\)
−0.837176 + 0.546933i \(0.815795\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 6.56160i 0.747764i
\(78\) 0 0
\(79\) 0.741379 0.0834116 0.0417058 0.999130i \(-0.486721\pi\)
0.0417058 + 0.999130i \(0.486721\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 9.21247i 1.01120i 0.862768 + 0.505600i \(0.168729\pi\)
−0.862768 + 0.505600i \(0.831271\pi\)
\(84\) 0 0
\(85\) 2.00000 0.110687i 0.216930 0.0120057i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.24713 −0.980193 −0.490097 0.871668i \(-0.663039\pi\)
−0.490097 + 0.871668i \(0.663039\pi\)
\(90\) 0 0
\(91\) −4.59877 −0.482083
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.659846 + 11.9227i 0.0676988 + 1.22324i
\(96\) 0 0
\(97\) 3.45882i 0.351190i −0.984462 0.175595i \(-0.943815\pi\)
0.984462 0.175595i \(-0.0561849\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 16.4332 1.63516 0.817581 0.575813i \(-0.195314\pi\)
0.817581 + 0.575813i \(0.195314\pi\)
\(102\) 0 0
\(103\) 15.8619i 1.56292i −0.623954 0.781461i \(-0.714475\pi\)
0.623954 0.781461i \(-0.285525\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.53086i 0.921383i −0.887560 0.460691i \(-0.847601\pi\)
0.887560 0.460691i \(-0.152399\pi\)
\(108\) 0 0
\(109\) −16.2791 −1.55925 −0.779627 0.626245i \(-0.784591\pi\)
−0.779627 + 0.626245i \(0.784591\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 18.1796i 1.71019i −0.518469 0.855096i \(-0.673498\pi\)
0.518469 0.855096i \(-0.326502\pi\)
\(114\) 0 0
\(115\) 11.3096 0.625916i 1.05463 0.0583670i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.15410 −0.105796
\(120\) 0 0
\(121\) 14.9389 1.35808
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.84590 11.0269i −0.165102 0.986276i
\(126\) 0 0
\(127\) 11.9969i 1.06455i −0.846571 0.532275i \(-0.821337\pi\)
0.846571 0.532275i \(-0.178663\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −9.93893 −0.868368 −0.434184 0.900824i \(-0.642963\pi\)
−0.434184 + 0.900824i \(0.642963\pi\)
\(132\) 0 0
\(133\) 6.87999i 0.596571i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.66581i 0.484063i −0.970268 0.242031i \(-0.922186\pi\)
0.970268 0.242031i \(-0.0778137\pi\)
\(138\) 0 0
\(139\) −7.93893 −0.673371 −0.336686 0.941617i \(-0.609306\pi\)
−0.336686 + 0.941617i \(0.609306\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 18.1796i 1.52025i
\(144\) 0 0
\(145\) −0.370689 6.69795i −0.0307841 0.556235i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −14.8344 −1.21528 −0.607641 0.794212i \(-0.707884\pi\)
−0.607641 + 0.794212i \(0.707884\pi\)
\(150\) 0 0
\(151\) −0.598775 −0.0487276 −0.0243638 0.999703i \(-0.507756\pi\)
−0.0243638 + 0.999703i \(0.507756\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.815365 14.7328i −0.0654917 1.18336i
\(156\) 0 0
\(157\) 17.9582i 1.43322i 0.697473 + 0.716611i \(0.254308\pi\)
−0.697473 + 0.716611i \(0.745692\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −6.52621 −0.514337
\(162\) 0 0
\(163\) 4.67300i 0.366018i 0.983111 + 0.183009i \(0.0585837\pi\)
−0.983111 + 0.183009i \(0.941416\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 5.96135i 0.461303i −0.973036 0.230652i \(-0.925914\pi\)
0.973036 0.230652i \(-0.0740858\pi\)
\(168\) 0 0
\(169\) 0.258621 0.0198939
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.81272i 0.746048i 0.927822 + 0.373024i \(0.121679\pi\)
−0.927822 + 0.373024i \(0.878321\pi\)
\(174\) 0 0
\(175\) 0.710843 + 6.40241i 0.0537347 + 0.483977i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −16.3516 −1.22218 −0.611090 0.791561i \(-0.709269\pi\)
−0.611090 + 0.791561i \(0.709269\pi\)
\(180\) 0 0
\(181\) 2.93893 0.218449 0.109224 0.994017i \(-0.465163\pi\)
0.109224 + 0.994017i \(0.465163\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 16.1861 0.895796i 1.19002 0.0658602i
\(186\) 0 0
\(187\) 4.56231i 0.333629i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.59877 0.332756 0.166378 0.986062i \(-0.446793\pi\)
0.166378 + 0.986062i \(0.446793\pi\)
\(192\) 0 0
\(193\) 1.58389i 0.114011i 0.998374 + 0.0570056i \(0.0181553\pi\)
−0.998374 + 0.0570056i \(0.981845\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 13.0775i 0.931735i 0.884855 + 0.465867i \(0.154258\pi\)
−0.884855 + 0.465867i \(0.845742\pi\)
\(198\) 0 0
\(199\) 5.34015 0.378553 0.189277 0.981924i \(-0.439386\pi\)
0.189277 + 0.981924i \(0.439386\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3.86505i 0.271273i
\(204\) 0 0
\(205\) 0.969464 + 17.5172i 0.0677103 + 1.22345i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −27.1975 −1.88129
\(210\) 0 0
\(211\) 4.59877 0.316593 0.158296 0.987392i \(-0.449400\pi\)
0.158296 + 0.987392i \(0.449400\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 24.4026 1.35053i 1.66425 0.0921055i
\(216\) 0 0
\(217\) 8.50153i 0.577122i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3.19755 −0.215090
\(222\) 0 0
\(223\) 8.53805i 0.571750i −0.958267 0.285875i \(-0.907716\pi\)
0.958267 0.285875i \(-0.0922842\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 17.2838i 1.14717i 0.819147 + 0.573583i \(0.194447\pi\)
−0.819147 + 0.573583i \(0.805553\pi\)
\(228\) 0 0
\(229\) −15.6803 −1.03618 −0.518092 0.855325i \(-0.673357\pi\)
−0.518092 + 0.855325i \(0.673357\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 15.7649i 1.03279i −0.856349 0.516397i \(-0.827273\pi\)
0.856349 0.516397i \(-0.172727\pi\)
\(234\) 0 0
\(235\) 6.62931 0.366890i 0.432449 0.0239333i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1.56682 −0.101349 −0.0506745 0.998715i \(-0.516137\pi\)
−0.0506745 + 0.998715i \(0.516137\pi\)
\(240\) 0 0
\(241\) −21.0205 −1.35405 −0.677023 0.735961i \(-0.736730\pi\)
−0.677023 + 0.735961i \(0.736730\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0.659846 + 11.9227i 0.0421560 + 0.761713i
\(246\) 0 0
\(247\) 19.0617i 1.21287i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 9.85740 0.622193 0.311097 0.950378i \(-0.399304\pi\)
0.311097 + 0.950378i \(0.399304\pi\)
\(252\) 0 0
\(253\) 25.7990i 1.62197i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 25.9097i 1.61620i 0.589044 + 0.808101i \(0.299505\pi\)
−0.589044 + 0.808101i \(0.700495\pi\)
\(258\) 0 0
\(259\) −9.34015 −0.580369
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 19.6391i 1.21100i −0.795845 0.605500i \(-0.792973\pi\)
0.795845 0.605500i \(-0.207027\pi\)
\(264\) 0 0
\(265\) −10.6803 + 0.591088i −0.656086 + 0.0363102i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0.279082 0.0170160 0.00850798 0.999964i \(-0.497292\pi\)
0.00850798 + 0.999964i \(0.497292\pi\)
\(270\) 0 0
\(271\) 9.34015 0.567374 0.283687 0.958917i \(-0.408442\pi\)
0.283687 + 0.958917i \(0.408442\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 25.3096 2.81006i 1.52623 0.169453i
\(276\) 0 0
\(277\) 18.0689i 1.08566i 0.839844 + 0.542828i \(0.182646\pi\)
−0.839844 + 0.542828i \(0.817354\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −7.02046 −0.418806 −0.209403 0.977829i \(-0.567152\pi\)
−0.209403 + 0.977829i \(0.567152\pi\)
\(282\) 0 0
\(283\) 18.3645i 1.09165i 0.837898 + 0.545827i \(0.183784\pi\)
−0.837898 + 0.545827i \(0.816216\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 10.1083i 0.596672i
\(288\) 0 0
\(289\) 16.1975 0.952797
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 10.7085i 0.625598i −0.949819 0.312799i \(-0.898733\pi\)
0.949819 0.312799i \(-0.101267\pi\)
\(294\) 0 0
\(295\) −0.710843 12.8442i −0.0413869 0.747816i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −18.0815 −1.04568
\(300\) 0 0
\(301\) −14.0815 −0.811646
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.536283 + 9.69005i 0.0307075 + 0.554851i
\(306\) 0 0
\(307\) 14.3145i 0.816974i 0.912764 + 0.408487i \(0.133944\pi\)
−0.912764 + 0.408487i \(0.866056\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 24.4766 1.38794 0.693971 0.720003i \(-0.255859\pi\)
0.693971 + 0.720003i \(0.255859\pi\)
\(312\) 0 0
\(313\) 31.9772i 1.80746i 0.428103 + 0.903730i \(0.359182\pi\)
−0.428103 + 0.903730i \(0.640818\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 26.2144i 1.47235i −0.676792 0.736174i \(-0.736631\pi\)
0.676792 0.736174i \(-0.263369\pi\)
\(318\) 0 0
\(319\) 15.2791 0.855464
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4.78369i 0.266172i
\(324\) 0 0
\(325\) 1.96946 + 17.7385i 0.109246 + 0.983957i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −3.82544 −0.210903
\(330\) 0 0
\(331\) −2.74138 −0.150680 −0.0753399 0.997158i \(-0.524004\pi\)
−0.0753399 + 0.997158i \(0.524004\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 19.0625 1.05499i 1.04150 0.0576402i
\(336\) 0 0
\(337\) 32.6790i 1.78014i 0.455825 + 0.890069i \(0.349344\pi\)
−0.455825 + 0.890069i \(0.650656\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 33.6077 1.81996
\(342\) 0 0
\(343\) 15.8984i 0.858435i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 13.1369i 0.705225i −0.935769 0.352612i \(-0.885293\pi\)
0.935769 0.352612i \(-0.114707\pi\)
\(348\) 0 0
\(349\) 14.1975 0.759977 0.379989 0.924991i \(-0.375928\pi\)
0.379989 + 0.924991i \(0.375928\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 5.10207i 0.271556i 0.990739 + 0.135778i \(0.0433534\pi\)
−0.990739 + 0.135778i \(0.956647\pi\)
\(354\) 0 0
\(355\) 0.659846 + 11.9227i 0.0350210 + 0.632791i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −12.8229 −0.676767 −0.338384 0.941008i \(-0.609880\pi\)
−0.338384 + 0.941008i \(0.609880\pi\)
\(360\) 0 0
\(361\) 9.51724 0.500907
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −20.8664 + 1.15482i −1.09220 + 0.0604461i
\(366\) 0 0
\(367\) 5.77649i 0.301531i −0.988570 0.150765i \(-0.951826\pi\)
0.988570 0.150765i \(-0.0481738\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 6.16307 0.319970
\(372\) 0 0
\(373\) 12.8048i 0.663008i 0.943454 + 0.331504i \(0.107556\pi\)
−0.943454 + 0.331504i \(0.892444\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 10.7085i 0.551517i
\(378\) 0 0
\(379\) 7.19755 0.369713 0.184857 0.982765i \(-0.440818\pi\)
0.184857 + 0.982765i \(0.440818\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2.41469i 0.123385i 0.998095 + 0.0616923i \(0.0196498\pi\)
−0.998095 + 0.0616923i \(0.980350\pi\)
\(384\) 0 0
\(385\) −14.6498 + 0.810772i −0.746622 + 0.0413208i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −10.6484 −0.539893 −0.269946 0.962875i \(-0.587006\pi\)
−0.269946 + 0.962875i \(0.587006\pi\)
\(390\) 0 0
\(391\) −4.53770 −0.229482
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0.0916071 + 1.65524i 0.00460925 + 0.0832842i
\(396\) 0 0
\(397\) 10.3068i 0.517284i 0.965973 + 0.258642i \(0.0832749\pi\)
−0.965973 + 0.258642i \(0.916725\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 17.7529 0.886536 0.443268 0.896389i \(-0.353819\pi\)
0.443268 + 0.896389i \(0.353819\pi\)
\(402\) 0 0
\(403\) 23.5544i 1.17333i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 36.9229i 1.83020i
\(408\) 0 0
\(409\) 23.1365 1.14403 0.572013 0.820245i \(-0.306163\pi\)
0.572013 + 0.820245i \(0.306163\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 7.41172i 0.364707i
\(414\) 0 0
\(415\) −20.5682 + 1.13832i −1.00966 + 0.0558780i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −28.2676 −1.38096 −0.690481 0.723351i \(-0.742601\pi\)
−0.690481 + 0.723351i \(0.742601\pi\)
\(420\) 0 0
\(421\) 35.1365 1.71245 0.856224 0.516605i \(-0.172805\pi\)
0.856224 + 0.516605i \(0.172805\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.494253 + 4.45163i 0.0239748 + 0.215936i
\(426\) 0 0
\(427\) 5.59164i 0.270598i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −36.8894 −1.77690 −0.888449 0.458976i \(-0.848216\pi\)
−0.888449 + 0.458976i \(0.848216\pi\)
\(432\) 0 0
\(433\) 11.8120i 0.567649i −0.958876 0.283825i \(-0.908397\pi\)
0.958876 0.283825i \(-0.0916033\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 27.0508i 1.29402i
\(438\) 0 0
\(439\) 0.741379 0.0353841 0.0176920 0.999843i \(-0.494368\pi\)
0.0176920 + 0.999843i \(0.494368\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 5.37026i 0.255149i −0.991829 0.127574i \(-0.959281\pi\)
0.991829 0.127574i \(-0.0407192\pi\)
\(444\) 0 0
\(445\) −1.14260 20.6456i −0.0541646 0.978696i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −21.1975 −1.00037 −0.500187 0.865917i \(-0.666735\pi\)
−0.500187 + 0.865917i \(0.666735\pi\)
\(450\) 0 0
\(451\) −39.9594 −1.88161
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −0.568239 10.2675i −0.0266395 0.481346i
\(456\) 0 0
\(457\) 0.992806i 0.0464415i −0.999730 0.0232208i \(-0.992608\pi\)
0.999730 0.0232208i \(-0.00739206\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 10.3197 0.480636 0.240318 0.970694i \(-0.422748\pi\)
0.240318 + 0.970694i \(0.422748\pi\)
\(462\) 0 0
\(463\) 13.0638i 0.607128i 0.952811 + 0.303564i \(0.0981767\pi\)
−0.952811 + 0.303564i \(0.901823\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 19.3938i 0.897437i 0.893673 + 0.448718i \(0.148119\pi\)
−0.893673 + 0.448718i \(0.851881\pi\)
\(468\) 0 0
\(469\) −11.0000 −0.507933
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 55.6663i 2.55954i
\(474\) 0 0
\(475\) −26.5377 + 2.94641i −1.21763 + 0.135191i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 11.9159 0.544453 0.272227 0.962233i \(-0.412240\pi\)
0.272227 + 0.962233i \(0.412240\pi\)
\(480\) 0 0
\(481\) −25.8779 −1.17993
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 7.72234 0.427383i 0.350653 0.0194064i
\(486\) 0 0
\(487\) 18.8027i 0.852031i 0.904716 + 0.426016i \(0.140083\pi\)
−0.904716 + 0.426016i \(0.859917\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −9.93893 −0.448538 −0.224269 0.974527i \(-0.571999\pi\)
−0.224269 + 0.974527i \(0.571999\pi\)
\(492\) 0 0
\(493\) 2.68739i 0.121034i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6.87999i 0.308610i
\(498\) 0 0
\(499\) 9.93893 0.444928 0.222464 0.974941i \(-0.428590\pi\)
0.222464 + 0.974941i \(0.428590\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 36.0636i 1.60800i −0.594630 0.803999i \(-0.702702\pi\)
0.594630 0.803999i \(-0.297298\pi\)
\(504\) 0 0
\(505\) 2.03054 + 36.6896i 0.0903577 + 1.63266i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −40.8779 −1.81188 −0.905940 0.423407i \(-0.860834\pi\)
−0.905940 + 0.423407i \(0.860834\pi\)
\(510\) 0 0
\(511\) 12.0409 0.532659
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 35.4141 1.95995i 1.56053 0.0863657i
\(516\) 0 0
\(517\) 15.1225i 0.665087i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 17.9504 0.786422 0.393211 0.919448i \(-0.371364\pi\)
0.393211 + 0.919448i \(0.371364\pi\)
\(522\) 0 0
\(523\) 20.9732i 0.917092i −0.888671 0.458546i \(-0.848370\pi\)
0.888671 0.458546i \(-0.151630\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.91116i 0.257494i
\(528\) 0 0
\(529\) −2.65985 −0.115645
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 28.0060i 1.21307i
\(534\) 0 0
\(535\) 21.2791 1.17766i 0.919975 0.0509148i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −27.1975 −1.17148
\(540\) 0 0
\(541\) −13.6192 −0.585537 −0.292768 0.956183i \(-0.594576\pi\)
−0.292768 + 0.956183i \(0.594576\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −2.01149 36.3455i −0.0861630 1.55687i
\(546\) 0 0
\(547\) 8.79708i 0.376136i 0.982156 + 0.188068i \(0.0602225\pi\)
−0.982156 + 0.188068i \(0.939777\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −16.0205 −0.682495
\(552\) 0 0
\(553\) 0.955156i 0.0406174i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 33.9308i 1.43770i −0.695168 0.718848i \(-0.744670\pi\)
0.695168 0.718848i \(-0.255330\pi\)
\(558\) 0 0
\(559\) −39.0143 −1.65013
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 33.3626i 1.40607i 0.711158 + 0.703033i \(0.248171\pi\)
−0.711158 + 0.703033i \(0.751829\pi\)
\(564\) 0 0
\(565\) 40.5887 2.24633i 1.70758 0.0945037i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 7.63073 0.319897 0.159948 0.987125i \(-0.448867\pi\)
0.159948 + 0.987125i \(0.448867\pi\)
\(570\) 0 0
\(571\) 26.4971 1.10887 0.554434 0.832227i \(-0.312935\pi\)
0.554434 + 0.832227i \(0.312935\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.79490 + 25.1731i 0.116556 + 1.04979i
\(576\) 0 0
\(577\) 9.93709i 0.413686i −0.978374 0.206843i \(-0.933681\pi\)
0.978374 0.206843i \(-0.0663190\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 11.8689 0.492405
\(582\) 0 0
\(583\) 24.3635i 1.00903i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 23.5179i 0.970686i −0.874324 0.485343i \(-0.838695\pi\)
0.874324 0.485343i \(-0.161305\pi\)
\(588\) 0 0
\(589\) −35.2385 −1.45198
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 11.6637i 0.478970i −0.970900 0.239485i \(-0.923021\pi\)
0.970900 0.239485i \(-0.0769786\pi\)
\(594\) 0 0
\(595\) −0.142604 2.57670i −0.00584620 0.105634i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 2.06107 0.0842131 0.0421065 0.999113i \(-0.486593\pi\)
0.0421065 + 0.999113i \(0.486593\pi\)
\(600\) 0 0
\(601\) −13.9389 −0.568581 −0.284290 0.958738i \(-0.591758\pi\)
−0.284290 + 0.958738i \(0.591758\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.84590 + 33.3534i 0.0750466 + 1.35601i
\(606\) 0 0
\(607\) 47.2526i 1.91792i −0.283537 0.958961i \(-0.591508\pi\)
0.283537 0.958961i \(-0.408492\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −10.5988 −0.428781
\(612\) 0 0
\(613\) 31.4648i 1.27085i −0.772162 0.635426i \(-0.780825\pi\)
0.772162 0.635426i \(-0.219175\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 21.0987i 0.849400i −0.905334 0.424700i \(-0.860380\pi\)
0.905334 0.424700i \(-0.139620\pi\)
\(618\) 0 0
\(619\) 3.91847 0.157496 0.0787482 0.996895i \(-0.474908\pi\)
0.0787482 + 0.996895i \(0.474908\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 11.9135i 0.477306i
\(624\) 0 0
\(625\) 24.3912 5.48377i 0.975646 0.219351i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −6.49425 −0.258943
\(630\) 0 0
\(631\) 44.5582 1.77383 0.886916 0.461930i \(-0.152843\pi\)
0.886916 + 0.461930i \(0.152843\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 26.7848 1.48237i 1.06292 0.0588261i
\(636\) 0 0
\(637\) 19.0617i 0.755253i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 15.3287 0.605446 0.302723 0.953079i \(-0.402104\pi\)
0.302723 + 0.953079i \(0.402104\pi\)
\(642\) 0 0
\(643\) 5.37026i 0.211783i 0.994378 + 0.105891i \(0.0337695\pi\)
−0.994378 + 0.105891i \(0.966230\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 2.65087i 0.104216i −0.998641 0.0521082i \(-0.983406\pi\)
0.998641 0.0521082i \(-0.0165941\pi\)
\(648\) 0 0
\(649\) 29.2995 1.15011
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 7.71642i 0.301967i −0.988536 0.150984i \(-0.951756\pi\)
0.988536 0.150984i \(-0.0482440\pi\)
\(654\) 0 0
\(655\) −1.22809 22.1902i −0.0479853 0.867041i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −11.7529 −0.457827 −0.228913 0.973447i \(-0.573517\pi\)
−0.228913 + 0.973447i \(0.573517\pi\)
\(660\) 0 0
\(661\) 10.0611 0.391330 0.195665 0.980671i \(-0.437313\pi\)
0.195665 + 0.980671i \(0.437313\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 15.3606 0.850113i 0.595659 0.0329660i
\(666\) 0 0
\(667\) 15.1967i 0.588417i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −22.1045 −0.853336
\(672\) 0 0
\(673\) 32.1986i 1.24116i 0.784141 + 0.620582i \(0.213104\pi\)
−0.784141 + 0.620582i \(0.786896\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.82360i 0.0700866i 0.999386 + 0.0350433i \(0.0111569\pi\)
−0.999386 + 0.0350433i \(0.988843\pi\)
\(678\) 0 0
\(679\) −4.45617 −0.171012
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 36.5909i 1.40011i 0.714089 + 0.700055i \(0.246841\pi\)
−0.714089 + 0.700055i \(0.753159\pi\)
\(684\) 0 0
\(685\) 12.6498 0.700085i 0.483323 0.0267489i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 17.0754 0.650521
\(690\) 0 0
\(691\) 7.38076 0.280777 0.140389 0.990096i \(-0.455165\pi\)
0.140389 + 0.990096i \(0.455165\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −0.980959 17.7249i −0.0372099 0.672342i
\(696\) 0 0
\(697\) 7.02833i 0.266217i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 31.1045 1.17480 0.587401 0.809296i \(-0.300151\pi\)
0.587401 + 0.809296i \(0.300151\pi\)
\(702\) 0 0
\(703\) 38.7145i 1.46015i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 21.1717i 0.796243i
\(708\) 0 0
\(709\) −26.0754 −0.979282 −0.489641 0.871924i \(-0.662872\pi\)
−0.489641 + 0.871924i \(0.662872\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 33.4265i 1.25183i
\(714\) 0 0
\(715\) −40.5887 + 2.24633i −1.51793 + 0.0840079i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 43.0524 1.60558 0.802792 0.596259i \(-0.203347\pi\)
0.802792 + 0.596259i \(0.203347\pi\)
\(720\) 0 0
\(721\) −20.4357 −0.761066
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 14.9084 1.65524i 0.553684 0.0614741i
\(726\) 0 0
\(727\) 14.2825i 0.529710i −0.964288 0.264855i \(-0.914676\pi\)
0.964288 0.264855i \(-0.0853241\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −9.79096 −0.362132
\(732\) 0 0
\(733\) 3.53186i 0.130452i 0.997871 + 0.0652260i \(0.0207768\pi\)
−0.997871 + 0.0652260i \(0.979223\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 43.4845i 1.60177i
\(738\) 0 0
\(739\) −13.3606 −0.491478 −0.245739 0.969336i \(-0.579031\pi\)
−0.245739 + 0.969336i \(0.579031\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 21.1625i 0.776378i 0.921580 + 0.388189i \(0.126899\pi\)
−0.921580 + 0.388189i \(0.873101\pi\)
\(744\) 0 0
\(745\) −1.83299 33.1201i −0.0671554 1.21343i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −12.2791 −0.448668
\(750\) 0 0
\(751\) 8.08153 0.294899 0.147450 0.989070i \(-0.452894\pi\)
0.147450 + 0.989070i \(0.452894\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −0.0739865 1.33686i −0.00269264 0.0486532i
\(756\) 0 0
\(757\) 26.3114i 0.956305i −0.878277 0.478152i \(-0.841307\pi\)
0.878277 0.478152i \(-0.158693\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 27.1631 0.984660 0.492330 0.870409i \(-0.336145\pi\)
0.492330 + 0.870409i \(0.336145\pi\)
\(762\) 0 0
\(763\) 20.9732i 0.759279i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 20.5349i 0.741473i
\(768\) 0 0
\(769\) −2.83693 −0.102302 −0.0511512 0.998691i \(-0.516289\pi\)
−0.0511512 + 0.998691i \(0.516289\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 32.7924 3.64085i 1.17794 0.130783i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 41.8983 1.50116
\(780\) 0 0
\(781\) −27.1975 −0.973205
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −40.0944 + 2.21897i −1.43103 + 0.0791986i
\(786\) 0 0
\(787\) 3.79088i 0.135130i 0.997715 + 0.0675652i \(0.0215231\pi\)
−0.997715 + 0.0675652i \(0.978477\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −23.4217 −0.832779
\(792\) 0 0
\(793\) 15.4922i 0.550144i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 44.0756i 1.56124i 0.625007 + 0.780619i \(0.285096\pi\)
−0.625007 + 0.780619i \(0.714904\pi\)
\(798\) 0 0
\(799\) −2.65985 −0.0940986
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 47.5994i 1.67975i
\(804\) 0 0
\(805\) −0.806399 14.5707i −0.0284218 0.513551i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1.48276 −0.0521310 −0.0260655 0.999660i \(-0.508298\pi\)
−0.0260655 + 0.999660i \(0.508298\pi\)
\(810\) 0 0
\(811\) 51.2385 1.79923 0.899613 0.436688i \(-0.143849\pi\)
0.899613 + 0.436688i \(0.143849\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −10.4332 + 0.577411i −0.365458 + 0.0202258i
\(816\) 0 0
\(817\) 58.3673i 2.04201i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 22.7123 0.792663 0.396332 0.918107i \(-0.370283\pi\)
0.396332 + 0.918107i \(0.370283\pi\)
\(822\) 0 0
\(823\) 13.1004i 0.456650i −0.973585 0.228325i \(-0.926675\pi\)
0.973585 0.228325i \(-0.0733249\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 34.8631i 1.21231i −0.795346 0.606155i \(-0.792711\pi\)
0.795346 0.606155i \(-0.207289\pi\)
\(828\) 0 0
\(829\) 25.5988 0.889082 0.444541 0.895758i \(-0.353367\pi\)
0.444541 + 0.895758i \(0.353367\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 4.78369i 0.165745i
\(834\) 0 0
\(835\) 13.3096 0.736603i 0.460598 0.0254912i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −40.3315 −1.39240 −0.696199 0.717849i \(-0.745127\pi\)
−0.696199 + 0.717849i \(0.745127\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0.0319560 + 0.577411i 0.00109932 + 0.0198635i
\(846\) 0 0
\(847\) 19.2466i 0.661320i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −36.7238 −1.25887
\(852\) 0 0
\(853\) 40.2984i 1.37979i −0.723909 0.689896i \(-0.757656\pi\)
0.723909 0.689896i \(-0.242344\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 22.0401i 0.752877i −0.926442 0.376438i \(-0.877149\pi\)
0.926442 0.376438i \(-0.122851\pi\)
\(858\) 0 0
\(859\) −29.2791 −0.998989 −0.499495 0.866317i \(-0.666481\pi\)
−0.499495 + 0.866317i \(0.666481\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 46.1491i 1.57093i −0.618904 0.785466i \(-0.712423\pi\)
0.618904 0.785466i \(-0.287577\pi\)
\(864\) 0 0
\(865\) −21.9084 + 1.21249i −0.744908 + 0.0412259i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −3.77586 −0.128087
\(870\) 0 0
\(871\) −30.4766 −1.03266
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −14.2065 + 2.37817i −0.480268 + 0.0803967i
\(876\) 0 0
\(877\) 27.6363i 0.933211i −0.884466 0.466606i \(-0.845477\pi\)
0.884466 0.466606i \(-0.154523\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −4.79632 −0.161592 −0.0807961 0.996731i \(-0.525746\pi\)
−0.0807961 + 0.996731i \(0.525746\pi\)
\(882\) 0 0
\(883\) 21.7126i 0.730687i 0.930873 + 0.365343i \(0.119048\pi\)
−0.930873 + 0.365343i \(0.880952\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 22.0401i 0.740035i −0.929025 0.370018i \(-0.879352\pi\)
0.929025 0.370018i \(-0.120648\pi\)
\(888\) 0 0
\(889\) −15.4562 −0.518383
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 15.8563i 0.530610i
\(894\) 0 0
\(895\) −2.02046 36.5075i −0.0675366 1.22031i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 19.7963 0.660244
\(900\) 0 0
\(901\) 4.28521 0.142761
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0.363143 + 6.56160i 0.0120713 + 0.218115i
\(906\) 0 0
\(907\) 39.3011i 1.30497i 0.757801 + 0.652486i \(0.226274\pi\)
−0.757801 + 0.652486i \(0.773726\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −15.9389 −0.528080 −0.264040 0.964512i \(-0.585055\pi\)
−0.264040 + 0.964512i \(0.585055\pi\)
\(912\) 0 0
\(913\) 46.9194i 1.55280i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 12.8048i 0.422852i
\(918\) 0 0
\(919\) 6.16307 0.203301 0.101650 0.994820i \(-0.467588\pi\)
0.101650 + 0.994820i \(0.467588\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 19.0617i 0.627424i
\(924\) 0 0
\(925\) 4.00000 + 36.0271i 0.131519 + 1.18456i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −10.1020 −0.331436 −0.165718 0.986173i \(-0.552994\pi\)
−0.165718 + 0.986173i \(0.552994\pi\)
\(930\) 0 0
\(931\) 28.5172 0.934615
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −10.1861 + 0.563734i −0.333120 + 0.0184361i
\(936\) 0 0
\(937\) 5.00506i 0.163508i −0.996653 0.0817541i \(-0.973948\pi\)
0.996653 0.0817541i \(-0.0260522\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 9.98851 0.325616 0.162808 0.986658i \(-0.447945\pi\)
0.162808 + 0.986658i \(0.447945\pi\)
\(942\) 0 0
\(943\) 39.7438i 1.29424i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 47.6223i 1.54752i 0.633481 + 0.773758i \(0.281625\pi\)
−0.633481 + 0.773758i \(0.718375\pi\)
\(948\) 0 0
\(949\) 33.3606 1.08293
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 34.2355i 1.10900i −0.832184 0.554499i \(-0.812910\pi\)
0.832184 0.554499i \(-0.187090\pi\)
\(954\) 0 0
\(955\) 0.568239 + 10.2675i 0.0183878 + 0.332247i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −7.29954 −0.235715
\(960\) 0 0
\(961\) 12.5438 0.404640
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −3.53628 + 0.195711i −0.113837 + 0.00630016i
\(966\) 0 0
\(967\) 3.71671i 0.119521i 0.998213 + 0.0597607i \(0.0190338\pi\)
−0.998213 + 0.0597607i \(0.980966\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 45.0959 1.44720 0.723598 0.690222i \(-0.242487\pi\)
0.723598 + 0.690222i \(0.242487\pi\)
\(972\) 0 0
\(973\) 10.2281i 0.327898i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 6.58896i 0.210799i −0.994430 0.105400i \(-0.966388\pi\)
0.994430 0.105400i \(-0.0336122\pi\)
\(978\) 0 0
\(979\) 47.0959 1.50519
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 12.2319i 0.390138i −0.980790 0.195069i \(-0.937507\pi\)
0.980790 0.195069i \(-0.0624930\pi\)
\(984\) 0 0
\(985\) −29.1975 + 1.61590i −0.930311 + 0.0514869i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −55.3660 −1.76054
\(990\) 0 0
\(991\) −32.0000 −1.01651 −0.508257 0.861206i \(-0.669710\pi\)
−0.508257 + 0.861206i \(0.669710\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0.659846 + 11.9227i 0.0209185 + 0.377975i
\(996\) 0 0
\(997\) 3.23744i 0.102531i −0.998685 0.0512655i \(-0.983675\pi\)
0.998685 0.0512655i \(-0.0163255\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1620.2.d.d.649.4 6
3.2 odd 2 1620.2.d.c.649.3 6
5.2 odd 4 8100.2.a.bd.1.4 6
5.3 odd 4 8100.2.a.bd.1.3 6
5.4 even 2 inner 1620.2.d.d.649.3 6
9.2 odd 6 180.2.r.a.49.4 yes 12
9.4 even 3 540.2.r.a.289.5 12
9.5 odd 6 180.2.r.a.169.3 yes 12
9.7 even 3 540.2.r.a.469.1 12
15.2 even 4 8100.2.a.bc.1.4 6
15.8 even 4 8100.2.a.bc.1.3 6
15.14 odd 2 1620.2.d.c.649.4 6
36.7 odd 6 2160.2.by.e.1009.1 12
36.11 even 6 720.2.by.e.49.3 12
36.23 even 6 720.2.by.e.529.4 12
36.31 odd 6 2160.2.by.e.289.5 12
45.2 even 12 900.2.i.f.301.6 12
45.4 even 6 540.2.r.a.289.1 12
45.7 odd 12 2700.2.i.f.901.3 12
45.13 odd 12 2700.2.i.f.1801.4 12
45.14 odd 6 180.2.r.a.169.4 yes 12
45.22 odd 12 2700.2.i.f.1801.3 12
45.23 even 12 900.2.i.f.601.1 12
45.29 odd 6 180.2.r.a.49.3 12
45.32 even 12 900.2.i.f.601.6 12
45.34 even 6 540.2.r.a.469.5 12
45.38 even 12 900.2.i.f.301.1 12
45.43 odd 12 2700.2.i.f.901.4 12
180.59 even 6 720.2.by.e.529.3 12
180.79 odd 6 2160.2.by.e.1009.5 12
180.119 even 6 720.2.by.e.49.4 12
180.139 odd 6 2160.2.by.e.289.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.r.a.49.3 12 45.29 odd 6
180.2.r.a.49.4 yes 12 9.2 odd 6
180.2.r.a.169.3 yes 12 9.5 odd 6
180.2.r.a.169.4 yes 12 45.14 odd 6
540.2.r.a.289.1 12 45.4 even 6
540.2.r.a.289.5 12 9.4 even 3
540.2.r.a.469.1 12 9.7 even 3
540.2.r.a.469.5 12 45.34 even 6
720.2.by.e.49.3 12 36.11 even 6
720.2.by.e.49.4 12 180.119 even 6
720.2.by.e.529.3 12 180.59 even 6
720.2.by.e.529.4 12 36.23 even 6
900.2.i.f.301.1 12 45.38 even 12
900.2.i.f.301.6 12 45.2 even 12
900.2.i.f.601.1 12 45.23 even 12
900.2.i.f.601.6 12 45.32 even 12
1620.2.d.c.649.3 6 3.2 odd 2
1620.2.d.c.649.4 6 15.14 odd 2
1620.2.d.d.649.3 6 5.4 even 2 inner
1620.2.d.d.649.4 6 1.1 even 1 trivial
2160.2.by.e.289.1 12 180.139 odd 6
2160.2.by.e.289.5 12 36.31 odd 6
2160.2.by.e.1009.1 12 36.7 odd 6
2160.2.by.e.1009.5 12 180.79 odd 6
2700.2.i.f.901.3 12 45.7 odd 12
2700.2.i.f.901.4 12 45.43 odd 12
2700.2.i.f.1801.3 12 45.22 odd 12
2700.2.i.f.1801.4 12 45.13 odd 12
8100.2.a.bc.1.3 6 15.8 even 4
8100.2.a.bc.1.4 6 15.2 even 4
8100.2.a.bd.1.3 6 5.3 odd 4
8100.2.a.bd.1.4 6 5.2 odd 4