Properties

Label 8100.2.a.bd.1.4
Level $8100$
Weight $2$
Character 8100.1
Self dual yes
Analytic conductor $64.679$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8100,2,Mod(1,8100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8100.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8100 = 2^{2} \cdot 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8100.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(64.6788256372\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.1207701504.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 14x^{4} + 43x^{2} - 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 180)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(3.17695\) of defining polynomial
Character \(\chi\) \(=\) 8100.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.28835 q^{7} -5.09303 q^{11} -3.56951 q^{13} +0.895796 q^{17} -5.34015 q^{19} -5.06555 q^{23} +3.00000 q^{29} -6.59877 q^{31} +7.24970 q^{37} +7.84590 q^{41} -10.9299 q^{43} +2.96925 q^{47} -5.34015 q^{49} +4.78369 q^{53} +5.75287 q^{59} +4.34015 q^{61} +8.53805 q^{67} +5.34015 q^{71} +9.34600 q^{73} -6.56160 q^{77} -0.741379 q^{79} +9.21247 q^{83} +9.24713 q^{89} -4.59877 q^{91} +3.45882 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{11} + 18 q^{29} - 6 q^{31} + 14 q^{41} + 34 q^{59} - 6 q^{61} - 6 q^{79} + 56 q^{89} + 6 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.28835 0.486951 0.243475 0.969907i \(-0.421713\pi\)
0.243475 + 0.969907i \(0.421713\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −5.09303 −1.53561 −0.767803 0.640686i \(-0.778650\pi\)
−0.767803 + 0.640686i \(0.778650\pi\)
\(12\) 0 0
\(13\) −3.56951 −0.990003 −0.495002 0.868892i \(-0.664833\pi\)
−0.495002 + 0.868892i \(0.664833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.895796 0.217262 0.108631 0.994082i \(-0.465353\pi\)
0.108631 + 0.994082i \(0.465353\pi\)
\(18\) 0 0
\(19\) −5.34015 −1.22512 −0.612558 0.790426i \(-0.709859\pi\)
−0.612558 + 0.790426i \(0.709859\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.06555 −1.05624 −0.528121 0.849169i \(-0.677103\pi\)
−0.528121 + 0.849169i \(0.677103\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.00000 0.557086 0.278543 0.960424i \(-0.410149\pi\)
0.278543 + 0.960424i \(0.410149\pi\)
\(30\) 0 0
\(31\) −6.59877 −1.18517 −0.592587 0.805506i \(-0.701894\pi\)
−0.592587 + 0.805506i \(0.701894\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 7.24970 1.19184 0.595922 0.803043i \(-0.296787\pi\)
0.595922 + 0.803043i \(0.296787\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.84590 1.22532 0.612662 0.790345i \(-0.290099\pi\)
0.612662 + 0.790345i \(0.290099\pi\)
\(42\) 0 0
\(43\) −10.9299 −1.66679 −0.833397 0.552675i \(-0.813607\pi\)
−0.833397 + 0.552675i \(0.813607\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.96925 0.433110 0.216555 0.976270i \(-0.430518\pi\)
0.216555 + 0.976270i \(0.430518\pi\)
\(48\) 0 0
\(49\) −5.34015 −0.762879
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.78369 0.657090 0.328545 0.944488i \(-0.393442\pi\)
0.328545 + 0.944488i \(0.393442\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.75287 0.748960 0.374480 0.927235i \(-0.377821\pi\)
0.374480 + 0.927235i \(0.377821\pi\)
\(60\) 0 0
\(61\) 4.34015 0.555700 0.277850 0.960625i \(-0.410378\pi\)
0.277850 + 0.960625i \(0.410378\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 8.53805 1.04309 0.521544 0.853224i \(-0.325356\pi\)
0.521544 + 0.853224i \(0.325356\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.34015 0.633760 0.316880 0.948466i \(-0.397365\pi\)
0.316880 + 0.948466i \(0.397365\pi\)
\(72\) 0 0
\(73\) 9.34600 1.09387 0.546933 0.837176i \(-0.315795\pi\)
0.546933 + 0.837176i \(0.315795\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −6.56160 −0.747764
\(78\) 0 0
\(79\) −0.741379 −0.0834116 −0.0417058 0.999130i \(-0.513279\pi\)
−0.0417058 + 0.999130i \(0.513279\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 9.21247 1.01120 0.505600 0.862768i \(-0.331271\pi\)
0.505600 + 0.862768i \(0.331271\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 9.24713 0.980193 0.490097 0.871668i \(-0.336961\pi\)
0.490097 + 0.871668i \(0.336961\pi\)
\(90\) 0 0
\(91\) −4.59877 −0.482083
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 3.45882 0.351190 0.175595 0.984462i \(-0.443815\pi\)
0.175595 + 0.984462i \(0.443815\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 16.4332 1.63516 0.817581 0.575813i \(-0.195314\pi\)
0.817581 + 0.575813i \(0.195314\pi\)
\(102\) 0 0
\(103\) −15.8619 −1.56292 −0.781461 0.623954i \(-0.785525\pi\)
−0.781461 + 0.623954i \(0.785525\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.53086 0.921383 0.460691 0.887560i \(-0.347601\pi\)
0.460691 + 0.887560i \(0.347601\pi\)
\(108\) 0 0
\(109\) 16.2791 1.55925 0.779627 0.626245i \(-0.215409\pi\)
0.779627 + 0.626245i \(0.215409\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −18.1796 −1.71019 −0.855096 0.518469i \(-0.826502\pi\)
−0.855096 + 0.518469i \(0.826502\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.15410 0.105796
\(120\) 0 0
\(121\) 14.9389 1.35808
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 11.9969 1.06455 0.532275 0.846571i \(-0.321337\pi\)
0.532275 + 0.846571i \(0.321337\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −9.93893 −0.868368 −0.434184 0.900824i \(-0.642963\pi\)
−0.434184 + 0.900824i \(0.642963\pi\)
\(132\) 0 0
\(133\) −6.87999 −0.596571
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.66581 0.484063 0.242031 0.970268i \(-0.422186\pi\)
0.242031 + 0.970268i \(0.422186\pi\)
\(138\) 0 0
\(139\) 7.93893 0.673371 0.336686 0.941617i \(-0.390694\pi\)
0.336686 + 0.941617i \(0.390694\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 18.1796 1.52025
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 14.8344 1.21528 0.607641 0.794212i \(-0.292116\pi\)
0.607641 + 0.794212i \(0.292116\pi\)
\(150\) 0 0
\(151\) −0.598775 −0.0487276 −0.0243638 0.999703i \(-0.507756\pi\)
−0.0243638 + 0.999703i \(0.507756\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −17.9582 −1.43322 −0.716611 0.697473i \(-0.754308\pi\)
−0.716611 + 0.697473i \(0.754308\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −6.52621 −0.514337
\(162\) 0 0
\(163\) 4.67300 0.366018 0.183009 0.983111i \(-0.441416\pi\)
0.183009 + 0.983111i \(0.441416\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 5.96135 0.461303 0.230652 0.973036i \(-0.425914\pi\)
0.230652 + 0.973036i \(0.425914\pi\)
\(168\) 0 0
\(169\) −0.258621 −0.0198939
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.81272 0.746048 0.373024 0.927822i \(-0.378321\pi\)
0.373024 + 0.927822i \(0.378321\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 16.3516 1.22218 0.611090 0.791561i \(-0.290731\pi\)
0.611090 + 0.791561i \(0.290731\pi\)
\(180\) 0 0
\(181\) 2.93893 0.218449 0.109224 0.994017i \(-0.465163\pi\)
0.109224 + 0.994017i \(0.465163\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −4.56231 −0.333629
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.59877 0.332756 0.166378 0.986062i \(-0.446793\pi\)
0.166378 + 0.986062i \(0.446793\pi\)
\(192\) 0 0
\(193\) 1.58389 0.114011 0.0570056 0.998374i \(-0.481845\pi\)
0.0570056 + 0.998374i \(0.481845\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −13.0775 −0.931735 −0.465867 0.884855i \(-0.654258\pi\)
−0.465867 + 0.884855i \(0.654258\pi\)
\(198\) 0 0
\(199\) −5.34015 −0.378553 −0.189277 0.981924i \(-0.560614\pi\)
−0.189277 + 0.981924i \(0.560614\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3.86505 0.271273
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 27.1975 1.88129
\(210\) 0 0
\(211\) 4.59877 0.316593 0.158296 0.987392i \(-0.449400\pi\)
0.158296 + 0.987392i \(0.449400\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −8.50153 −0.577122
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3.19755 −0.215090
\(222\) 0 0
\(223\) −8.53805 −0.571750 −0.285875 0.958267i \(-0.592284\pi\)
−0.285875 + 0.958267i \(0.592284\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −17.2838 −1.14717 −0.573583 0.819147i \(-0.694447\pi\)
−0.573583 + 0.819147i \(0.694447\pi\)
\(228\) 0 0
\(229\) 15.6803 1.03618 0.518092 0.855325i \(-0.326643\pi\)
0.518092 + 0.855325i \(0.326643\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −15.7649 −1.03279 −0.516397 0.856349i \(-0.672727\pi\)
−0.516397 + 0.856349i \(0.672727\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.56682 0.101349 0.0506745 0.998715i \(-0.483863\pi\)
0.0506745 + 0.998715i \(0.483863\pi\)
\(240\) 0 0
\(241\) −21.0205 −1.35405 −0.677023 0.735961i \(-0.736730\pi\)
−0.677023 + 0.735961i \(0.736730\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 19.0617 1.21287
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 9.85740 0.622193 0.311097 0.950378i \(-0.399304\pi\)
0.311097 + 0.950378i \(0.399304\pi\)
\(252\) 0 0
\(253\) 25.7990 1.62197
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −25.9097 −1.61620 −0.808101 0.589044i \(-0.799505\pi\)
−0.808101 + 0.589044i \(0.799505\pi\)
\(258\) 0 0
\(259\) 9.34015 0.580369
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −19.6391 −1.21100 −0.605500 0.795845i \(-0.707027\pi\)
−0.605500 + 0.795845i \(0.707027\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.279082 −0.0170160 −0.00850798 0.999964i \(-0.502708\pi\)
−0.00850798 + 0.999964i \(0.502708\pi\)
\(270\) 0 0
\(271\) 9.34015 0.567374 0.283687 0.958917i \(-0.408442\pi\)
0.283687 + 0.958917i \(0.408442\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −18.0689 −1.08566 −0.542828 0.839844i \(-0.682646\pi\)
−0.542828 + 0.839844i \(0.682646\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −7.02046 −0.418806 −0.209403 0.977829i \(-0.567152\pi\)
−0.209403 + 0.977829i \(0.567152\pi\)
\(282\) 0 0
\(283\) 18.3645 1.09165 0.545827 0.837898i \(-0.316216\pi\)
0.545827 + 0.837898i \(0.316216\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 10.1083 0.596672
\(288\) 0 0
\(289\) −16.1975 −0.952797
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −10.7085 −0.625598 −0.312799 0.949819i \(-0.601267\pi\)
−0.312799 + 0.949819i \(0.601267\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 18.0815 1.04568
\(300\) 0 0
\(301\) −14.0815 −0.811646
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −14.3145 −0.816974 −0.408487 0.912764i \(-0.633944\pi\)
−0.408487 + 0.912764i \(0.633944\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 24.4766 1.38794 0.693971 0.720003i \(-0.255859\pi\)
0.693971 + 0.720003i \(0.255859\pi\)
\(312\) 0 0
\(313\) 31.9772 1.80746 0.903730 0.428103i \(-0.140818\pi\)
0.903730 + 0.428103i \(0.140818\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 26.2144 1.47235 0.736174 0.676792i \(-0.236631\pi\)
0.736174 + 0.676792i \(0.236631\pi\)
\(318\) 0 0
\(319\) −15.2791 −0.855464
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −4.78369 −0.266172
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.82544 0.210903
\(330\) 0 0
\(331\) −2.74138 −0.150680 −0.0753399 0.997158i \(-0.524004\pi\)
−0.0753399 + 0.997158i \(0.524004\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −32.6790 −1.78014 −0.890069 0.455825i \(-0.849344\pi\)
−0.890069 + 0.455825i \(0.849344\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 33.6077 1.81996
\(342\) 0 0
\(343\) −15.8984 −0.858435
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 13.1369 0.705225 0.352612 0.935769i \(-0.385293\pi\)
0.352612 + 0.935769i \(0.385293\pi\)
\(348\) 0 0
\(349\) −14.1975 −0.759977 −0.379989 0.924991i \(-0.624072\pi\)
−0.379989 + 0.924991i \(0.624072\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 5.10207 0.271556 0.135778 0.990739i \(-0.456647\pi\)
0.135778 + 0.990739i \(0.456647\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12.8229 0.676767 0.338384 0.941008i \(-0.390120\pi\)
0.338384 + 0.941008i \(0.390120\pi\)
\(360\) 0 0
\(361\) 9.51724 0.500907
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 5.77649 0.301531 0.150765 0.988570i \(-0.451826\pi\)
0.150765 + 0.988570i \(0.451826\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 6.16307 0.319970
\(372\) 0 0
\(373\) 12.8048 0.663008 0.331504 0.943454i \(-0.392444\pi\)
0.331504 + 0.943454i \(0.392444\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −10.7085 −0.551517
\(378\) 0 0
\(379\) −7.19755 −0.369713 −0.184857 0.982765i \(-0.559182\pi\)
−0.184857 + 0.982765i \(0.559182\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2.41469 0.123385 0.0616923 0.998095i \(-0.480350\pi\)
0.0616923 + 0.998095i \(0.480350\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 10.6484 0.539893 0.269946 0.962875i \(-0.412994\pi\)
0.269946 + 0.962875i \(0.412994\pi\)
\(390\) 0 0
\(391\) −4.53770 −0.229482
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −10.3068 −0.517284 −0.258642 0.965973i \(-0.583275\pi\)
−0.258642 + 0.965973i \(0.583275\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 17.7529 0.886536 0.443268 0.896389i \(-0.353819\pi\)
0.443268 + 0.896389i \(0.353819\pi\)
\(402\) 0 0
\(403\) 23.5544 1.17333
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −36.9229 −1.83020
\(408\) 0 0
\(409\) −23.1365 −1.14403 −0.572013 0.820245i \(-0.693837\pi\)
−0.572013 + 0.820245i \(0.693837\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 7.41172 0.364707
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 28.2676 1.38096 0.690481 0.723351i \(-0.257399\pi\)
0.690481 + 0.723351i \(0.257399\pi\)
\(420\) 0 0
\(421\) 35.1365 1.71245 0.856224 0.516605i \(-0.172805\pi\)
0.856224 + 0.516605i \(0.172805\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 5.59164 0.270598
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −36.8894 −1.77690 −0.888449 0.458976i \(-0.848216\pi\)
−0.888449 + 0.458976i \(0.848216\pi\)
\(432\) 0 0
\(433\) −11.8120 −0.567649 −0.283825 0.958876i \(-0.591603\pi\)
−0.283825 + 0.958876i \(0.591603\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 27.0508 1.29402
\(438\) 0 0
\(439\) −0.741379 −0.0353841 −0.0176920 0.999843i \(-0.505632\pi\)
−0.0176920 + 0.999843i \(0.505632\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5.37026 −0.255149 −0.127574 0.991829i \(-0.540719\pi\)
−0.127574 + 0.991829i \(0.540719\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 21.1975 1.00037 0.500187 0.865917i \(-0.333265\pi\)
0.500187 + 0.865917i \(0.333265\pi\)
\(450\) 0 0
\(451\) −39.9594 −1.88161
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0.992806 0.0464415 0.0232208 0.999730i \(-0.492608\pi\)
0.0232208 + 0.999730i \(0.492608\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 10.3197 0.480636 0.240318 0.970694i \(-0.422748\pi\)
0.240318 + 0.970694i \(0.422748\pi\)
\(462\) 0 0
\(463\) 13.0638 0.607128 0.303564 0.952811i \(-0.401823\pi\)
0.303564 + 0.952811i \(0.401823\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −19.3938 −0.897437 −0.448718 0.893673i \(-0.648119\pi\)
−0.448718 + 0.893673i \(0.648119\pi\)
\(468\) 0 0
\(469\) 11.0000 0.507933
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 55.6663 2.55954
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −11.9159 −0.544453 −0.272227 0.962233i \(-0.587760\pi\)
−0.272227 + 0.962233i \(0.587760\pi\)
\(480\) 0 0
\(481\) −25.8779 −1.17993
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −18.8027 −0.852031 −0.426016 0.904716i \(-0.640083\pi\)
−0.426016 + 0.904716i \(0.640083\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −9.93893 −0.448538 −0.224269 0.974527i \(-0.571999\pi\)
−0.224269 + 0.974527i \(0.571999\pi\)
\(492\) 0 0
\(493\) 2.68739 0.121034
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6.87999 0.308610
\(498\) 0 0
\(499\) −9.93893 −0.444928 −0.222464 0.974941i \(-0.571410\pi\)
−0.222464 + 0.974941i \(0.571410\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −36.0636 −1.60800 −0.803999 0.594630i \(-0.797298\pi\)
−0.803999 + 0.594630i \(0.797298\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 40.8779 1.81188 0.905940 0.423407i \(-0.139166\pi\)
0.905940 + 0.423407i \(0.139166\pi\)
\(510\) 0 0
\(511\) 12.0409 0.532659
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −15.1225 −0.665087
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 17.9504 0.786422 0.393211 0.919448i \(-0.371364\pi\)
0.393211 + 0.919448i \(0.371364\pi\)
\(522\) 0 0
\(523\) −20.9732 −0.917092 −0.458546 0.888671i \(-0.651630\pi\)
−0.458546 + 0.888671i \(0.651630\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −5.91116 −0.257494
\(528\) 0 0
\(529\) 2.65985 0.115645
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −28.0060 −1.21307
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 27.1975 1.17148
\(540\) 0 0
\(541\) −13.6192 −0.585537 −0.292768 0.956183i \(-0.594576\pi\)
−0.292768 + 0.956183i \(0.594576\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −8.79708 −0.376136 −0.188068 0.982156i \(-0.560223\pi\)
−0.188068 + 0.982156i \(0.560223\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −16.0205 −0.682495
\(552\) 0 0
\(553\) −0.955156 −0.0406174
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 33.9308 1.43770 0.718848 0.695168i \(-0.244670\pi\)
0.718848 + 0.695168i \(0.244670\pi\)
\(558\) 0 0
\(559\) 39.0143 1.65013
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 33.3626 1.40607 0.703033 0.711158i \(-0.251829\pi\)
0.703033 + 0.711158i \(0.251829\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7.63073 −0.319897 −0.159948 0.987125i \(-0.551133\pi\)
−0.159948 + 0.987125i \(0.551133\pi\)
\(570\) 0 0
\(571\) 26.4971 1.10887 0.554434 0.832227i \(-0.312935\pi\)
0.554434 + 0.832227i \(0.312935\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 9.93709 0.413686 0.206843 0.978374i \(-0.433681\pi\)
0.206843 + 0.978374i \(0.433681\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 11.8689 0.492405
\(582\) 0 0
\(583\) −24.3635 −1.00903
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 23.5179 0.970686 0.485343 0.874324i \(-0.338695\pi\)
0.485343 + 0.874324i \(0.338695\pi\)
\(588\) 0 0
\(589\) 35.2385 1.45198
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −11.6637 −0.478970 −0.239485 0.970900i \(-0.576979\pi\)
−0.239485 + 0.970900i \(0.576979\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −2.06107 −0.0842131 −0.0421065 0.999113i \(-0.513407\pi\)
−0.0421065 + 0.999113i \(0.513407\pi\)
\(600\) 0 0
\(601\) −13.9389 −0.568581 −0.284290 0.958738i \(-0.591758\pi\)
−0.284290 + 0.958738i \(0.591758\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 47.2526 1.91792 0.958961 0.283537i \(-0.0915079\pi\)
0.958961 + 0.283537i \(0.0915079\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −10.5988 −0.428781
\(612\) 0 0
\(613\) −31.4648 −1.27085 −0.635426 0.772162i \(-0.719175\pi\)
−0.635426 + 0.772162i \(0.719175\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 21.0987 0.849400 0.424700 0.905334i \(-0.360380\pi\)
0.424700 + 0.905334i \(0.360380\pi\)
\(618\) 0 0
\(619\) −3.91847 −0.157496 −0.0787482 0.996895i \(-0.525092\pi\)
−0.0787482 + 0.996895i \(0.525092\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 11.9135 0.477306
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 6.49425 0.258943
\(630\) 0 0
\(631\) 44.5582 1.77383 0.886916 0.461930i \(-0.152843\pi\)
0.886916 + 0.461930i \(0.152843\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 19.0617 0.755253
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 15.3287 0.605446 0.302723 0.953079i \(-0.402104\pi\)
0.302723 + 0.953079i \(0.402104\pi\)
\(642\) 0 0
\(643\) 5.37026 0.211783 0.105891 0.994378i \(-0.466230\pi\)
0.105891 + 0.994378i \(0.466230\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 2.65087 0.104216 0.0521082 0.998641i \(-0.483406\pi\)
0.0521082 + 0.998641i \(0.483406\pi\)
\(648\) 0 0
\(649\) −29.2995 −1.15011
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −7.71642 −0.301967 −0.150984 0.988536i \(-0.548244\pi\)
−0.150984 + 0.988536i \(0.548244\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 11.7529 0.457827 0.228913 0.973447i \(-0.426483\pi\)
0.228913 + 0.973447i \(0.426483\pi\)
\(660\) 0 0
\(661\) 10.0611 0.391330 0.195665 0.980671i \(-0.437313\pi\)
0.195665 + 0.980671i \(0.437313\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −15.1967 −0.588417
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −22.1045 −0.853336
\(672\) 0 0
\(673\) 32.1986 1.24116 0.620582 0.784141i \(-0.286896\pi\)
0.620582 + 0.784141i \(0.286896\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −1.82360 −0.0700866 −0.0350433 0.999386i \(-0.511157\pi\)
−0.0350433 + 0.999386i \(0.511157\pi\)
\(678\) 0 0
\(679\) 4.45617 0.171012
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 36.5909 1.40011 0.700055 0.714089i \(-0.253159\pi\)
0.700055 + 0.714089i \(0.253159\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −17.0754 −0.650521
\(690\) 0 0
\(691\) 7.38076 0.280777 0.140389 0.990096i \(-0.455165\pi\)
0.140389 + 0.990096i \(0.455165\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 7.02833 0.266217
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 31.1045 1.17480 0.587401 0.809296i \(-0.300151\pi\)
0.587401 + 0.809296i \(0.300151\pi\)
\(702\) 0 0
\(703\) −38.7145 −1.46015
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 21.1717 0.796243
\(708\) 0 0
\(709\) 26.0754 0.979282 0.489641 0.871924i \(-0.337128\pi\)
0.489641 + 0.871924i \(0.337128\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 33.4265 1.25183
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −43.0524 −1.60558 −0.802792 0.596259i \(-0.796653\pi\)
−0.802792 + 0.596259i \(0.796653\pi\)
\(720\) 0 0
\(721\) −20.4357 −0.761066
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 14.2825 0.529710 0.264855 0.964288i \(-0.414676\pi\)
0.264855 + 0.964288i \(0.414676\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −9.79096 −0.362132
\(732\) 0 0
\(733\) 3.53186 0.130452 0.0652260 0.997871i \(-0.479223\pi\)
0.0652260 + 0.997871i \(0.479223\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −43.4845 −1.60177
\(738\) 0 0
\(739\) 13.3606 0.491478 0.245739 0.969336i \(-0.420969\pi\)
0.245739 + 0.969336i \(0.420969\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 21.1625 0.776378 0.388189 0.921580i \(-0.373101\pi\)
0.388189 + 0.921580i \(0.373101\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 12.2791 0.448668
\(750\) 0 0
\(751\) 8.08153 0.294899 0.147450 0.989070i \(-0.452894\pi\)
0.147450 + 0.989070i \(0.452894\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 26.3114 0.956305 0.478152 0.878277i \(-0.341307\pi\)
0.478152 + 0.878277i \(0.341307\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 27.1631 0.984660 0.492330 0.870409i \(-0.336145\pi\)
0.492330 + 0.870409i \(0.336145\pi\)
\(762\) 0 0
\(763\) 20.9732 0.759279
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −20.5349 −0.741473
\(768\) 0 0
\(769\) 2.83693 0.102302 0.0511512 0.998691i \(-0.483711\pi\)
0.0511512 + 0.998691i \(0.483711\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −41.8983 −1.50116
\(780\) 0 0
\(781\) −27.1975 −0.973205
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −3.79088 −0.135130 −0.0675652 0.997715i \(-0.521523\pi\)
−0.0675652 + 0.997715i \(0.521523\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −23.4217 −0.832779
\(792\) 0 0
\(793\) −15.4922 −0.550144
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −44.0756 −1.56124 −0.780619 0.625007i \(-0.785096\pi\)
−0.780619 + 0.625007i \(0.785096\pi\)
\(798\) 0 0
\(799\) 2.65985 0.0940986
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −47.5994 −1.67975
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.48276 0.0521310 0.0260655 0.999660i \(-0.491702\pi\)
0.0260655 + 0.999660i \(0.491702\pi\)
\(810\) 0 0
\(811\) 51.2385 1.79923 0.899613 0.436688i \(-0.143849\pi\)
0.899613 + 0.436688i \(0.143849\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 58.3673 2.04201
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 22.7123 0.792663 0.396332 0.918107i \(-0.370283\pi\)
0.396332 + 0.918107i \(0.370283\pi\)
\(822\) 0 0
\(823\) −13.1004 −0.456650 −0.228325 0.973585i \(-0.573325\pi\)
−0.228325 + 0.973585i \(0.573325\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 34.8631 1.21231 0.606155 0.795346i \(-0.292711\pi\)
0.606155 + 0.795346i \(0.292711\pi\)
\(828\) 0 0
\(829\) −25.5988 −0.889082 −0.444541 0.895758i \(-0.646633\pi\)
−0.444541 + 0.895758i \(0.646633\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −4.78369 −0.165745
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 40.3315 1.39240 0.696199 0.717849i \(-0.254873\pi\)
0.696199 + 0.717849i \(0.254873\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 19.2466 0.661320
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −36.7238 −1.25887
\(852\) 0 0
\(853\) −40.2984 −1.37979 −0.689896 0.723909i \(-0.742344\pi\)
−0.689896 + 0.723909i \(0.742344\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 22.0401 0.752877 0.376438 0.926442i \(-0.377149\pi\)
0.376438 + 0.926442i \(0.377149\pi\)
\(858\) 0 0
\(859\) 29.2791 0.998989 0.499495 0.866317i \(-0.333519\pi\)
0.499495 + 0.866317i \(0.333519\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −46.1491 −1.57093 −0.785466 0.618904i \(-0.787577\pi\)
−0.785466 + 0.618904i \(0.787577\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3.77586 0.128087
\(870\) 0 0
\(871\) −30.4766 −1.03266
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 27.6363 0.933211 0.466606 0.884466i \(-0.345477\pi\)
0.466606 + 0.884466i \(0.345477\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −4.79632 −0.161592 −0.0807961 0.996731i \(-0.525746\pi\)
−0.0807961 + 0.996731i \(0.525746\pi\)
\(882\) 0 0
\(883\) 21.7126 0.730687 0.365343 0.930873i \(-0.380952\pi\)
0.365343 + 0.930873i \(0.380952\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 22.0401 0.740035 0.370018 0.929025i \(-0.379352\pi\)
0.370018 + 0.929025i \(0.379352\pi\)
\(888\) 0 0
\(889\) 15.4562 0.518383
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −15.8563 −0.530610
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −19.7963 −0.660244
\(900\) 0 0
\(901\) 4.28521 0.142761
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −39.3011 −1.30497 −0.652486 0.757801i \(-0.726274\pi\)
−0.652486 + 0.757801i \(0.726274\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −15.9389 −0.528080 −0.264040 0.964512i \(-0.585055\pi\)
−0.264040 + 0.964512i \(0.585055\pi\)
\(912\) 0 0
\(913\) −46.9194 −1.55280
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −12.8048 −0.422852
\(918\) 0 0
\(919\) −6.16307 −0.203301 −0.101650 0.994820i \(-0.532412\pi\)
−0.101650 + 0.994820i \(0.532412\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −19.0617 −0.627424
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 10.1020 0.331436 0.165718 0.986173i \(-0.447006\pi\)
0.165718 + 0.986173i \(0.447006\pi\)
\(930\) 0 0
\(931\) 28.5172 0.934615
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 5.00506 0.163508 0.0817541 0.996653i \(-0.473948\pi\)
0.0817541 + 0.996653i \(0.473948\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 9.98851 0.325616 0.162808 0.986658i \(-0.447945\pi\)
0.162808 + 0.986658i \(0.447945\pi\)
\(942\) 0 0
\(943\) −39.7438 −1.29424
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −47.6223 −1.54752 −0.773758 0.633481i \(-0.781625\pi\)
−0.773758 + 0.633481i \(0.781625\pi\)
\(948\) 0 0
\(949\) −33.3606 −1.08293
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −34.2355 −1.10900 −0.554499 0.832184i \(-0.687090\pi\)
−0.554499 + 0.832184i \(0.687090\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 7.29954 0.235715
\(960\) 0 0
\(961\) 12.5438 0.404640
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −3.71671 −0.119521 −0.0597607 0.998213i \(-0.519034\pi\)
−0.0597607 + 0.998213i \(0.519034\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 45.0959 1.44720 0.723598 0.690222i \(-0.242487\pi\)
0.723598 + 0.690222i \(0.242487\pi\)
\(972\) 0 0
\(973\) 10.2281 0.327898
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 6.58896 0.210799 0.105400 0.994430i \(-0.466388\pi\)
0.105400 + 0.994430i \(0.466388\pi\)
\(978\) 0 0
\(979\) −47.0959 −1.50519
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −12.2319 −0.390138 −0.195069 0.980790i \(-0.562493\pi\)
−0.195069 + 0.980790i \(0.562493\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 55.3660 1.76054
\(990\) 0 0
\(991\) −32.0000 −1.01651 −0.508257 0.861206i \(-0.669710\pi\)
−0.508257 + 0.861206i \(0.669710\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 3.23744 0.102531 0.0512655 0.998685i \(-0.483675\pi\)
0.0512655 + 0.998685i \(0.483675\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8100.2.a.bd.1.4 6
3.2 odd 2 8100.2.a.bc.1.4 6
5.2 odd 4 1620.2.d.d.649.3 6
5.3 odd 4 1620.2.d.d.649.4 6
5.4 even 2 inner 8100.2.a.bd.1.3 6
9.2 odd 6 900.2.i.f.301.6 12
9.4 even 3 2700.2.i.f.1801.3 12
9.5 odd 6 900.2.i.f.601.6 12
9.7 even 3 2700.2.i.f.901.3 12
15.2 even 4 1620.2.d.c.649.4 6
15.8 even 4 1620.2.d.c.649.3 6
15.14 odd 2 8100.2.a.bc.1.3 6
45.2 even 12 180.2.r.a.49.3 12
45.4 even 6 2700.2.i.f.1801.4 12
45.7 odd 12 540.2.r.a.469.5 12
45.13 odd 12 540.2.r.a.289.5 12
45.14 odd 6 900.2.i.f.601.1 12
45.22 odd 12 540.2.r.a.289.1 12
45.23 even 12 180.2.r.a.169.3 yes 12
45.29 odd 6 900.2.i.f.301.1 12
45.32 even 12 180.2.r.a.169.4 yes 12
45.34 even 6 2700.2.i.f.901.4 12
45.38 even 12 180.2.r.a.49.4 yes 12
45.43 odd 12 540.2.r.a.469.1 12
180.7 even 12 2160.2.by.e.1009.5 12
180.23 odd 12 720.2.by.e.529.4 12
180.43 even 12 2160.2.by.e.1009.1 12
180.47 odd 12 720.2.by.e.49.4 12
180.67 even 12 2160.2.by.e.289.1 12
180.83 odd 12 720.2.by.e.49.3 12
180.103 even 12 2160.2.by.e.289.5 12
180.167 odd 12 720.2.by.e.529.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.r.a.49.3 12 45.2 even 12
180.2.r.a.49.4 yes 12 45.38 even 12
180.2.r.a.169.3 yes 12 45.23 even 12
180.2.r.a.169.4 yes 12 45.32 even 12
540.2.r.a.289.1 12 45.22 odd 12
540.2.r.a.289.5 12 45.13 odd 12
540.2.r.a.469.1 12 45.43 odd 12
540.2.r.a.469.5 12 45.7 odd 12
720.2.by.e.49.3 12 180.83 odd 12
720.2.by.e.49.4 12 180.47 odd 12
720.2.by.e.529.3 12 180.167 odd 12
720.2.by.e.529.4 12 180.23 odd 12
900.2.i.f.301.1 12 45.29 odd 6
900.2.i.f.301.6 12 9.2 odd 6
900.2.i.f.601.1 12 45.14 odd 6
900.2.i.f.601.6 12 9.5 odd 6
1620.2.d.c.649.3 6 15.8 even 4
1620.2.d.c.649.4 6 15.2 even 4
1620.2.d.d.649.3 6 5.2 odd 4
1620.2.d.d.649.4 6 5.3 odd 4
2160.2.by.e.289.1 12 180.67 even 12
2160.2.by.e.289.5 12 180.103 even 12
2160.2.by.e.1009.1 12 180.43 even 12
2160.2.by.e.1009.5 12 180.7 even 12
2700.2.i.f.901.3 12 9.7 even 3
2700.2.i.f.901.4 12 45.34 even 6
2700.2.i.f.1801.3 12 9.4 even 3
2700.2.i.f.1801.4 12 45.4 even 6
8100.2.a.bc.1.3 6 15.14 odd 2
8100.2.a.bc.1.4 6 3.2 odd 2
8100.2.a.bd.1.3 6 5.4 even 2 inner
8100.2.a.bd.1.4 6 1.1 even 1 trivial