Properties

Label 180.2.r.a.169.4
Level $180$
Weight $2$
Character 180.169
Analytic conductor $1.437$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [180,2,Mod(49,180)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(180, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("180.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 180.r (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.43730723638\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{10} + 10x^{8} - 6x^{6} + 90x^{4} - 324x^{2} + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 169.4
Root \(0.690466 - 1.58848i\) of defining polynomial
Character \(\chi\) \(=\) 180.169
Dual form 180.2.r.a.49.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.690466 - 1.58848i) q^{3} +(1.99531 - 1.00932i) q^{5} +(-1.11574 - 0.644175i) q^{7} +(-2.04651 - 2.19358i) q^{9} +(-2.54651 + 4.41069i) q^{11} +(3.09128 - 1.78475i) q^{13} +(-0.225579 - 3.86641i) q^{15} -0.895796i q^{17} +5.34015 q^{19} +(-1.79364 + 1.32755i) q^{21} +(-4.38690 + 2.53278i) q^{23} +(2.96256 - 4.02781i) q^{25} +(-4.89749 + 1.73625i) q^{27} +(-1.50000 + 2.59808i) q^{29} +(3.29939 + 5.71471i) q^{31} +(5.24800 + 7.09051i) q^{33} +(-2.87644 - 0.159193i) q^{35} +7.24970i q^{37} +(-0.700613 - 6.14274i) q^{39} +(3.92295 + 6.79475i) q^{41} +(-9.46557 - 5.46495i) q^{43} +(-6.29745 - 2.31130i) q^{45} +(2.57145 + 1.48463i) q^{47} +(-2.67008 - 4.62471i) q^{49} +(-1.42295 - 0.618517i) q^{51} +4.78369i q^{53} +(-0.629311 + 11.3710i) q^{55} +(3.68719 - 8.48271i) q^{57} +(-2.87644 - 4.98213i) q^{59} +(-2.17008 + 3.75868i) q^{61} +(0.870338 + 3.76578i) q^{63} +(4.36670 - 6.68123i) q^{65} +(7.39417 - 4.26903i) q^{67} +(0.994253 + 8.71728i) q^{69} -5.34015 q^{71} -9.34600i q^{73} +(-4.35253 - 7.48702i) q^{75} +(5.68251 - 3.28080i) q^{77} +(-0.370689 + 0.642053i) q^{79} +(-0.623563 + 8.97837i) q^{81} +(-7.97824 - 4.60624i) q^{83} +(-0.904142 - 1.78739i) q^{85} +(3.09128 + 4.17660i) q^{87} +9.24713 q^{89} -4.59877 q^{91} +(11.3558 - 1.29519i) q^{93} +(10.6553 - 5.38991i) q^{95} +(-2.99543 - 1.72941i) q^{97} +(14.8867 - 3.44057i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + q^{5} + 8 q^{9} + 2 q^{11} - 5 q^{15} + 10 q^{21} - 3 q^{25} - 18 q^{29} + 6 q^{31} - 34 q^{35} - 42 q^{39} + 14 q^{41} - 31 q^{45} + 16 q^{51} - 6 q^{55} - 34 q^{59} + 6 q^{61} + 15 q^{65} + 14 q^{69}+ \cdots + 82 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/180\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(91\) \(101\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.690466 1.58848i 0.398641 0.917107i
\(4\) 0 0
\(5\) 1.99531 1.00932i 0.892332 0.451380i
\(6\) 0 0
\(7\) −1.11574 0.644175i −0.421712 0.243475i 0.274098 0.961702i \(-0.411621\pi\)
−0.695809 + 0.718227i \(0.744954\pi\)
\(8\) 0 0
\(9\) −2.04651 2.19358i −0.682171 0.731192i
\(10\) 0 0
\(11\) −2.54651 + 4.41069i −0.767803 + 1.32987i 0.170949 + 0.985280i \(0.445317\pi\)
−0.938752 + 0.344594i \(0.888017\pi\)
\(12\) 0 0
\(13\) 3.09128 1.78475i 0.857368 0.495002i −0.00576215 0.999983i \(-0.501834\pi\)
0.863130 + 0.504982i \(0.168501\pi\)
\(14\) 0 0
\(15\) −0.225579 3.86641i −0.0582443 0.998302i
\(16\) 0 0
\(17\) 0.895796i 0.217262i −0.994082 0.108631i \(-0.965353\pi\)
0.994082 0.108631i \(-0.0346468\pi\)
\(18\) 0 0
\(19\) 5.34015 1.22512 0.612558 0.790426i \(-0.290141\pi\)
0.612558 + 0.790426i \(0.290141\pi\)
\(20\) 0 0
\(21\) −1.79364 + 1.32755i −0.391404 + 0.289696i
\(22\) 0 0
\(23\) −4.38690 + 2.53278i −0.914732 + 0.528121i −0.881951 0.471342i \(-0.843770\pi\)
−0.0327812 + 0.999463i \(0.510436\pi\)
\(24\) 0 0
\(25\) 2.96256 4.02781i 0.592512 0.805562i
\(26\) 0 0
\(27\) −4.89749 + 1.73625i −0.942523 + 0.334141i
\(28\) 0 0
\(29\) −1.50000 + 2.59808i −0.278543 + 0.482451i −0.971023 0.238987i \(-0.923185\pi\)
0.692480 + 0.721437i \(0.256518\pi\)
\(30\) 0 0
\(31\) 3.29939 + 5.71471i 0.592587 + 1.02639i 0.993882 + 0.110443i \(0.0352269\pi\)
−0.401295 + 0.915949i \(0.631440\pi\)
\(32\) 0 0
\(33\) 5.24800 + 7.09051i 0.913559 + 1.23430i
\(34\) 0 0
\(35\) −2.87644 0.159193i −0.486207 0.0269085i
\(36\) 0 0
\(37\) 7.24970i 1.19184i 0.803043 + 0.595922i \(0.203213\pi\)
−0.803043 + 0.595922i \(0.796787\pi\)
\(38\) 0 0
\(39\) −0.700613 6.14274i −0.112188 0.983626i
\(40\) 0 0
\(41\) 3.92295 + 6.79475i 0.612662 + 1.06116i 0.990790 + 0.135408i \(0.0432346\pi\)
−0.378128 + 0.925753i \(0.623432\pi\)
\(42\) 0 0
\(43\) −9.46557 5.46495i −1.44349 0.833397i −0.445405 0.895329i \(-0.646940\pi\)
−0.998080 + 0.0619325i \(0.980274\pi\)
\(44\) 0 0
\(45\) −6.29745 2.31130i −0.938769 0.344548i
\(46\) 0 0
\(47\) 2.57145 + 1.48463i 0.375085 + 0.216555i 0.675677 0.737197i \(-0.263851\pi\)
−0.300593 + 0.953753i \(0.597185\pi\)
\(48\) 0 0
\(49\) −2.67008 4.62471i −0.381440 0.660673i
\(50\) 0 0
\(51\) −1.42295 0.618517i −0.199253 0.0866096i
\(52\) 0 0
\(53\) 4.78369i 0.657090i 0.944488 + 0.328545i \(0.106558\pi\)
−0.944488 + 0.328545i \(0.893442\pi\)
\(54\) 0 0
\(55\) −0.629311 + 11.3710i −0.0848562 + 1.53326i
\(56\) 0 0
\(57\) 3.68719 8.48271i 0.488381 1.12356i
\(58\) 0 0
\(59\) −2.87644 4.98213i −0.374480 0.648619i 0.615769 0.787927i \(-0.288845\pi\)
−0.990249 + 0.139308i \(0.955512\pi\)
\(60\) 0 0
\(61\) −2.17008 + 3.75868i −0.277850 + 0.481250i −0.970850 0.239687i \(-0.922955\pi\)
0.693000 + 0.720937i \(0.256288\pi\)
\(62\) 0 0
\(63\) 0.870338 + 3.76578i 0.109652 + 0.474444i
\(64\) 0 0
\(65\) 4.36670 6.68123i 0.541623 0.828704i
\(66\) 0 0
\(67\) 7.39417 4.26903i 0.903342 0.521544i 0.0250587 0.999686i \(-0.492023\pi\)
0.878283 + 0.478141i \(0.158689\pi\)
\(68\) 0 0
\(69\) 0.994253 + 8.71728i 0.119694 + 1.04944i
\(70\) 0 0
\(71\) −5.34015 −0.633760 −0.316880 0.948466i \(-0.602635\pi\)
−0.316880 + 0.948466i \(0.602635\pi\)
\(72\) 0 0
\(73\) 9.34600i 1.09387i −0.837176 0.546933i \(-0.815795\pi\)
0.837176 0.546933i \(-0.184205\pi\)
\(74\) 0 0
\(75\) −4.35253 7.48702i −0.502587 0.864527i
\(76\) 0 0
\(77\) 5.68251 3.28080i 0.647583 0.373882i
\(78\) 0 0
\(79\) −0.370689 + 0.642053i −0.0417058 + 0.0722366i −0.886125 0.463447i \(-0.846613\pi\)
0.844419 + 0.535683i \(0.179946\pi\)
\(80\) 0 0
\(81\) −0.623563 + 8.97837i −0.0692848 + 0.997597i
\(82\) 0 0
\(83\) −7.97824 4.60624i −0.875725 0.505600i −0.00647856 0.999979i \(-0.502062\pi\)
−0.869247 + 0.494379i \(0.835396\pi\)
\(84\) 0 0
\(85\) −0.904142 1.78739i −0.0980680 0.193870i
\(86\) 0 0
\(87\) 3.09128 + 4.17660i 0.331420 + 0.447778i
\(88\) 0 0
\(89\) 9.24713 0.980193 0.490097 0.871668i \(-0.336961\pi\)
0.490097 + 0.871668i \(0.336961\pi\)
\(90\) 0 0
\(91\) −4.59877 −0.482083
\(92\) 0 0
\(93\) 11.3558 1.29519i 1.17754 0.134305i
\(94\) 0 0
\(95\) 10.6553 5.38991i 1.09321 0.552993i
\(96\) 0 0
\(97\) −2.99543 1.72941i −0.304139 0.175595i 0.340162 0.940367i \(-0.389518\pi\)
−0.644301 + 0.764772i \(0.722852\pi\)
\(98\) 0 0
\(99\) 14.8867 3.44057i 1.49617 0.345790i
\(100\) 0 0
\(101\) 8.21659 14.2316i 0.817581 1.41609i −0.0898782 0.995953i \(-0.528648\pi\)
0.907459 0.420140i \(-0.138019\pi\)
\(102\) 0 0
\(103\) 13.7368 7.93096i 1.35353 0.781461i 0.364788 0.931091i \(-0.381142\pi\)
0.988742 + 0.149630i \(0.0478082\pi\)
\(104\) 0 0
\(105\) −2.23896 + 4.45923i −0.218500 + 0.435177i
\(106\) 0 0
\(107\) 9.53086i 0.921383i −0.887560 0.460691i \(-0.847601\pi\)
0.887560 0.460691i \(-0.152399\pi\)
\(108\) 0 0
\(109\) −16.2791 −1.55925 −0.779627 0.626245i \(-0.784591\pi\)
−0.779627 + 0.626245i \(0.784591\pi\)
\(110\) 0 0
\(111\) 11.5160 + 5.00567i 1.09305 + 0.475117i
\(112\) 0 0
\(113\) −15.7440 + 9.08980i −1.48107 + 0.855096i −0.999770 0.0214594i \(-0.993169\pi\)
−0.481300 + 0.876556i \(0.659835\pi\)
\(114\) 0 0
\(115\) −6.19687 + 9.48146i −0.577861 + 0.884151i
\(116\) 0 0
\(117\) −10.2413 3.12845i −0.946813 0.289225i
\(118\) 0 0
\(119\) −0.577049 + 0.999479i −0.0528980 + 0.0916221i
\(120\) 0 0
\(121\) −7.46946 12.9375i −0.679042 1.17614i
\(122\) 0 0
\(123\) 13.5020 1.53997i 1.21743 0.138855i
\(124\) 0 0
\(125\) 1.84590 11.0269i 0.165102 0.986276i
\(126\) 0 0
\(127\) 11.9969i 1.06455i 0.846571 + 0.532275i \(0.178663\pi\)
−0.846571 + 0.532275i \(0.821337\pi\)
\(128\) 0 0
\(129\) −15.2166 + 11.2625i −1.33975 + 0.991605i
\(130\) 0 0
\(131\) −4.96946 8.60736i −0.434184 0.752029i 0.563045 0.826427i \(-0.309630\pi\)
−0.997229 + 0.0743976i \(0.976297\pi\)
\(132\) 0 0
\(133\) −5.95824 3.43999i −0.516645 0.298285i
\(134\) 0 0
\(135\) −8.01961 + 8.40748i −0.690219 + 0.723601i
\(136\) 0 0
\(137\) 4.90673 + 2.83290i 0.419210 + 0.242031i 0.694739 0.719261i \(-0.255520\pi\)
−0.275529 + 0.961293i \(0.588853\pi\)
\(138\) 0 0
\(139\) 3.96946 + 6.87531i 0.336686 + 0.583157i 0.983807 0.179230i \(-0.0573607\pi\)
−0.647122 + 0.762387i \(0.724027\pi\)
\(140\) 0 0
\(141\) 4.13379 3.05960i 0.348128 0.257665i
\(142\) 0 0
\(143\) 18.1796i 1.52025i
\(144\) 0 0
\(145\) −0.370689 + 6.69795i −0.0307841 + 0.556235i
\(146\) 0 0
\(147\) −9.18984 + 1.04815i −0.757965 + 0.0864500i
\(148\) 0 0
\(149\) −7.41720 12.8470i −0.607641 1.05247i −0.991628 0.129127i \(-0.958783\pi\)
0.383987 0.923338i \(-0.374551\pi\)
\(150\) 0 0
\(151\) 0.299387 0.518554i 0.0243638 0.0421993i −0.853586 0.520951i \(-0.825577\pi\)
0.877950 + 0.478752i \(0.158911\pi\)
\(152\) 0 0
\(153\) −1.96500 + 1.83326i −0.158861 + 0.148210i
\(154\) 0 0
\(155\) 12.3513 + 8.07251i 0.992077 + 0.648400i
\(156\) 0 0
\(157\) −15.5523 + 8.97911i −1.24121 + 0.716611i −0.969340 0.245724i \(-0.920974\pi\)
−0.271867 + 0.962335i \(0.587641\pi\)
\(158\) 0 0
\(159\) 7.59877 + 3.30297i 0.602622 + 0.261943i
\(160\) 0 0
\(161\) 6.52621 0.514337
\(162\) 0 0
\(163\) 4.67300i 0.366018i −0.983111 0.183009i \(-0.941416\pi\)
0.983111 0.183009i \(-0.0585837\pi\)
\(164\) 0 0
\(165\) 17.6280 + 8.85090i 1.37234 + 0.689042i
\(166\) 0 0
\(167\) −5.16268 + 2.98068i −0.399500 + 0.230652i −0.686268 0.727348i \(-0.740752\pi\)
0.286768 + 0.958000i \(0.407419\pi\)
\(168\) 0 0
\(169\) −0.129311 + 0.223972i −0.00994696 + 0.0172286i
\(170\) 0 0
\(171\) −10.9287 11.7140i −0.835738 0.895795i
\(172\) 0 0
\(173\) −8.49807 4.90636i −0.646096 0.373024i 0.140863 0.990029i \(-0.455012\pi\)
−0.786959 + 0.617005i \(0.788346\pi\)
\(174\) 0 0
\(175\) −5.90007 + 2.58560i −0.446003 + 0.195453i
\(176\) 0 0
\(177\) −9.90008 + 1.12916i −0.744136 + 0.0848727i
\(178\) 0 0
\(179\) 16.3516 1.22218 0.611090 0.791561i \(-0.290731\pi\)
0.611090 + 0.791561i \(0.290731\pi\)
\(180\) 0 0
\(181\) 2.93893 0.218449 0.109224 0.994017i \(-0.465163\pi\)
0.109224 + 0.994017i \(0.465163\pi\)
\(182\) 0 0
\(183\) 4.47222 + 6.04236i 0.330596 + 0.446664i
\(184\) 0 0
\(185\) 7.31725 + 14.4654i 0.537975 + 1.06352i
\(186\) 0 0
\(187\) 3.95108 + 2.28116i 0.288932 + 0.166815i
\(188\) 0 0
\(189\) 6.58280 + 1.21763i 0.478828 + 0.0885699i
\(190\) 0 0
\(191\) 2.29939 3.98266i 0.166378 0.288175i −0.770766 0.637118i \(-0.780126\pi\)
0.937144 + 0.348944i \(0.113460\pi\)
\(192\) 0 0
\(193\) −1.37169 + 0.791947i −0.0987366 + 0.0570056i −0.548555 0.836114i \(-0.684822\pi\)
0.449819 + 0.893120i \(0.351489\pi\)
\(194\) 0 0
\(195\) −7.59792 11.5496i −0.544098 0.827081i
\(196\) 0 0
\(197\) 13.0775i 0.931735i 0.884855 + 0.465867i \(0.154258\pi\)
−0.884855 + 0.465867i \(0.845742\pi\)
\(198\) 0 0
\(199\) 5.34015 0.378553 0.189277 0.981924i \(-0.439386\pi\)
0.189277 + 0.981924i \(0.439386\pi\)
\(200\) 0 0
\(201\) −1.67582 14.6931i −0.118204 1.03637i
\(202\) 0 0
\(203\) 3.34723 1.93253i 0.234930 0.135637i
\(204\) 0 0
\(205\) 14.6856 + 9.59816i 1.02569 + 0.670365i
\(206\) 0 0
\(207\) 14.5337 + 4.43964i 1.01016 + 0.308576i
\(208\) 0 0
\(209\) −13.5988 + 23.5538i −0.940647 + 1.62925i
\(210\) 0 0
\(211\) −2.29939 3.98266i −0.158296 0.274177i 0.775958 0.630784i \(-0.217267\pi\)
−0.934254 + 0.356607i \(0.883933\pi\)
\(212\) 0 0
\(213\) −3.68719 + 8.48271i −0.252642 + 0.581226i
\(214\) 0 0
\(215\) −24.4026 1.35053i −1.66425 0.0921055i
\(216\) 0 0
\(217\) 8.50153i 0.577122i
\(218\) 0 0
\(219\) −14.8459 6.45309i −1.00319 0.436060i
\(220\) 0 0
\(221\) −1.59877 2.76916i −0.107545 0.186274i
\(222\) 0 0
\(223\) −7.39417 4.26903i −0.495150 0.285875i 0.231558 0.972821i \(-0.425618\pi\)
−0.726709 + 0.686946i \(0.758951\pi\)
\(224\) 0 0
\(225\) −14.8982 + 1.74436i −0.993215 + 0.116291i
\(226\) 0 0
\(227\) −14.9682 8.64190i −0.993475 0.573583i −0.0871638 0.996194i \(-0.527780\pi\)
−0.906311 + 0.422611i \(0.861114\pi\)
\(228\) 0 0
\(229\) 7.84015 + 13.5795i 0.518092 + 0.897362i 0.999779 + 0.0210183i \(0.00669083\pi\)
−0.481687 + 0.876343i \(0.659976\pi\)
\(230\) 0 0
\(231\) −1.28789 11.2918i −0.0847371 0.742947i
\(232\) 0 0
\(233\) 15.7649i 1.03279i −0.856349 0.516397i \(-0.827273\pi\)
0.856349 0.516397i \(-0.172727\pi\)
\(234\) 0 0
\(235\) 6.62931 + 0.366890i 0.432449 + 0.0239333i
\(236\) 0 0
\(237\) 0.763938 + 1.03215i 0.0496231 + 0.0670452i
\(238\) 0 0
\(239\) −0.783409 1.35690i −0.0506745 0.0877709i 0.839575 0.543243i \(-0.182804\pi\)
−0.890250 + 0.455472i \(0.849470\pi\)
\(240\) 0 0
\(241\) 10.5102 18.2043i 0.677023 1.17264i −0.298850 0.954300i \(-0.596603\pi\)
0.975873 0.218339i \(-0.0700638\pi\)
\(242\) 0 0
\(243\) 13.8314 + 7.18978i 0.887284 + 0.461224i
\(244\) 0 0
\(245\) −9.99544 6.53279i −0.638585 0.417365i
\(246\) 0 0
\(247\) 16.5079 9.53086i 1.05037 0.606434i
\(248\) 0 0
\(249\) −12.8256 + 9.49279i −0.812789 + 0.601581i
\(250\) 0 0
\(251\) −9.85740 −0.622193 −0.311097 0.950378i \(-0.600696\pi\)
−0.311097 + 0.950378i \(0.600696\pi\)
\(252\) 0 0
\(253\) 25.7990i 1.62197i
\(254\) 0 0
\(255\) −3.46351 + 0.202073i −0.216894 + 0.0126543i
\(256\) 0 0
\(257\) 22.4385 12.9548i 1.39967 0.808101i 0.405314 0.914177i \(-0.367162\pi\)
0.994358 + 0.106076i \(0.0338287\pi\)
\(258\) 0 0
\(259\) 4.67008 8.08881i 0.290184 0.502614i
\(260\) 0 0
\(261\) 8.76885 2.02663i 0.542778 0.125445i
\(262\) 0 0
\(263\) 17.0080 + 9.81956i 1.04876 + 0.605500i 0.922301 0.386472i \(-0.126306\pi\)
0.126456 + 0.991972i \(0.459640\pi\)
\(264\) 0 0
\(265\) 4.82826 + 9.54496i 0.296597 + 0.586342i
\(266\) 0 0
\(267\) 6.38483 14.6888i 0.390745 0.898942i
\(268\) 0 0
\(269\) −0.279082 −0.0170160 −0.00850798 0.999964i \(-0.502708\pi\)
−0.00850798 + 0.999964i \(0.502708\pi\)
\(270\) 0 0
\(271\) 9.34015 0.567374 0.283687 0.958917i \(-0.408442\pi\)
0.283687 + 0.958917i \(0.408442\pi\)
\(272\) 0 0
\(273\) −3.17530 + 7.30504i −0.192178 + 0.442121i
\(274\) 0 0
\(275\) 10.2212 + 23.3238i 0.616363 + 1.40648i
\(276\) 0 0
\(277\) 15.6481 + 9.03445i 0.940205 + 0.542828i 0.890025 0.455912i \(-0.150687\pi\)
0.0501806 + 0.998740i \(0.484020\pi\)
\(278\) 0 0
\(279\) 5.78341 18.9327i 0.346244 1.13347i
\(280\) 0 0
\(281\) −3.51023 + 6.07990i −0.209403 + 0.362696i −0.951527 0.307567i \(-0.900485\pi\)
0.742124 + 0.670263i \(0.233819\pi\)
\(282\) 0 0
\(283\) −15.9041 + 9.18223i −0.945400 + 0.545827i −0.891649 0.452728i \(-0.850451\pi\)
−0.0537507 + 0.998554i \(0.517118\pi\)
\(284\) 0 0
\(285\) −1.20463 20.6472i −0.0713560 1.22304i
\(286\) 0 0
\(287\) 10.1083i 0.596672i
\(288\) 0 0
\(289\) 16.1975 0.952797
\(290\) 0 0
\(291\) −4.81537 + 3.56406i −0.282282 + 0.208929i
\(292\) 0 0
\(293\) −9.27385 + 5.35426i −0.541784 + 0.312799i −0.745802 0.666168i \(-0.767933\pi\)
0.204018 + 0.978967i \(0.434600\pi\)
\(294\) 0 0
\(295\) −10.7679 7.03769i −0.626934 0.409750i
\(296\) 0 0
\(297\) 4.81348 26.0227i 0.279306 1.50999i
\(298\) 0 0
\(299\) −9.04077 + 15.6591i −0.522841 + 0.905587i
\(300\) 0 0
\(301\) 7.04077 + 12.1950i 0.405823 + 0.702906i
\(302\) 0 0
\(303\) −16.9332 22.8783i −0.972787 1.31432i
\(304\) 0 0
\(305\) −0.536283 + 9.69005i −0.0307075 + 0.554851i
\(306\) 0 0
\(307\) 14.3145i 0.816974i −0.912764 0.408487i \(-0.866056\pi\)
0.912764 0.408487i \(-0.133944\pi\)
\(308\) 0 0
\(309\) −3.11333 27.2967i −0.177111 1.55285i
\(310\) 0 0
\(311\) 12.2383 + 21.1974i 0.693971 + 1.20199i 0.970526 + 0.240995i \(0.0774739\pi\)
−0.276555 + 0.960998i \(0.589193\pi\)
\(312\) 0 0
\(313\) 27.6931 + 15.9886i 1.56531 + 0.903730i 0.996705 + 0.0811165i \(0.0258486\pi\)
0.568601 + 0.822613i \(0.307485\pi\)
\(314\) 0 0
\(315\) 5.53747 + 6.63548i 0.312001 + 0.373867i
\(316\) 0 0
\(317\) 22.7023 + 13.1072i 1.27509 + 0.736174i 0.975941 0.218033i \(-0.0699639\pi\)
0.299149 + 0.954206i \(0.403297\pi\)
\(318\) 0 0
\(319\) −7.63954 13.2321i −0.427732 0.740854i
\(320\) 0 0
\(321\) −15.1395 6.58073i −0.845007 0.367301i
\(322\) 0 0
\(323\) 4.78369i 0.266172i
\(324\) 0 0
\(325\) 1.96946 17.7385i 0.109246 0.983957i
\(326\) 0 0
\(327\) −11.2402 + 25.8589i −0.621582 + 1.43000i
\(328\) 0 0
\(329\) −1.91272 3.31293i −0.105452 0.182648i
\(330\) 0 0
\(331\) 1.37069 2.37410i 0.0753399 0.130493i −0.825894 0.563825i \(-0.809329\pi\)
0.901234 + 0.433333i \(0.142662\pi\)
\(332\) 0 0
\(333\) 15.9028 14.8366i 0.871467 0.813041i
\(334\) 0 0
\(335\) 10.4449 15.9811i 0.570665 0.873141i
\(336\) 0 0
\(337\) −28.3008 + 16.3395i −1.54165 + 0.890069i −0.542910 + 0.839791i \(0.682677\pi\)
−0.998735 + 0.0502783i \(0.983989\pi\)
\(338\) 0 0
\(339\) 3.56824 + 31.2852i 0.193800 + 1.69918i
\(340\) 0 0
\(341\) −33.6077 −1.81996
\(342\) 0 0
\(343\) 15.8984i 0.858435i
\(344\) 0 0
\(345\) 10.7823 + 16.3902i 0.580502 + 0.882419i
\(346\) 0 0
\(347\) −11.3769 + 6.56844i −0.610743 + 0.352612i −0.773256 0.634094i \(-0.781373\pi\)
0.162513 + 0.986706i \(0.448040\pi\)
\(348\) 0 0
\(349\) −7.09877 + 12.2954i −0.379989 + 0.658160i −0.991060 0.133416i \(-0.957405\pi\)
0.611071 + 0.791575i \(0.290739\pi\)
\(350\) 0 0
\(351\) −12.0408 + 14.1081i −0.642689 + 0.753032i
\(352\) 0 0
\(353\) −4.41853 2.55104i −0.235174 0.135778i 0.377782 0.925894i \(-0.376687\pi\)
−0.612957 + 0.790116i \(0.710020\pi\)
\(354\) 0 0
\(355\) −10.6553 + 5.38991i −0.565524 + 0.286067i
\(356\) 0 0
\(357\) 1.18922 + 1.60674i 0.0629400 + 0.0850375i
\(358\) 0 0
\(359\) 12.8229 0.676767 0.338384 0.941008i \(-0.390120\pi\)
0.338384 + 0.941008i \(0.390120\pi\)
\(360\) 0 0
\(361\) 9.51724 0.500907
\(362\) 0 0
\(363\) −25.7083 + 2.93217i −1.34934 + 0.153899i
\(364\) 0 0
\(365\) −9.43308 18.6482i −0.493750 0.976092i
\(366\) 0 0
\(367\) −5.00259 2.88825i −0.261133 0.150765i 0.363718 0.931509i \(-0.381507\pi\)
−0.624851 + 0.780744i \(0.714840\pi\)
\(368\) 0 0
\(369\) 6.87644 22.5108i 0.357973 1.17187i
\(370\) 0 0
\(371\) 3.08153 5.33737i 0.159985 0.277103i
\(372\) 0 0
\(373\) −11.0893 + 6.40241i −0.574182 + 0.331504i −0.758818 0.651303i \(-0.774223\pi\)
0.184636 + 0.982807i \(0.440889\pi\)
\(374\) 0 0
\(375\) −16.2414 10.5459i −0.838705 0.544587i
\(376\) 0 0
\(377\) 10.7085i 0.551517i
\(378\) 0 0
\(379\) 7.19755 0.369713 0.184857 0.982765i \(-0.440818\pi\)
0.184857 + 0.982765i \(0.440818\pi\)
\(380\) 0 0
\(381\) 19.0567 + 8.28343i 0.976307 + 0.424373i
\(382\) 0 0
\(383\) 2.09118 1.20734i 0.106854 0.0616923i −0.445620 0.895222i \(-0.647017\pi\)
0.552475 + 0.833530i \(0.313684\pi\)
\(384\) 0 0
\(385\) 8.02704 12.2817i 0.409096 0.625933i
\(386\) 0 0
\(387\) 7.38363 + 31.9475i 0.375331 + 1.62398i
\(388\) 0 0
\(389\) −5.32418 + 9.22174i −0.269946 + 0.467561i −0.968848 0.247657i \(-0.920339\pi\)
0.698901 + 0.715218i \(0.253673\pi\)
\(390\) 0 0
\(391\) 2.26885 + 3.92977i 0.114741 + 0.198737i
\(392\) 0 0
\(393\) −17.1038 + 1.95078i −0.862775 + 0.0984041i
\(394\) 0 0
\(395\) −0.0916071 + 1.65524i −0.00460925 + 0.0832842i
\(396\) 0 0
\(397\) 10.3068i 0.517284i −0.965973 0.258642i \(-0.916725\pi\)
0.965973 0.258642i \(-0.0832749\pi\)
\(398\) 0 0
\(399\) −9.57831 + 7.08933i −0.479515 + 0.354910i
\(400\) 0 0
\(401\) 8.87644 + 15.3744i 0.443268 + 0.767763i 0.997930 0.0643131i \(-0.0204856\pi\)
−0.554662 + 0.832076i \(0.687152\pi\)
\(402\) 0 0
\(403\) 20.3987 + 11.7772i 1.01613 + 0.586663i
\(404\) 0 0
\(405\) 7.81782 + 18.5440i 0.388470 + 0.921461i
\(406\) 0 0
\(407\) −31.9762 18.4615i −1.58500 0.915101i
\(408\) 0 0
\(409\) −11.5682 20.0368i −0.572013 0.990755i −0.996359 0.0852550i \(-0.972829\pi\)
0.424347 0.905500i \(-0.360504\pi\)
\(410\) 0 0
\(411\) 7.88793 5.83821i 0.389083 0.287977i
\(412\) 0 0
\(413\) 7.41172i 0.364707i
\(414\) 0 0
\(415\) −20.5682 1.13832i −1.00966 0.0558780i
\(416\) 0 0
\(417\) 13.6621 1.55823i 0.669034 0.0763069i
\(418\) 0 0
\(419\) −14.1338 24.4804i −0.690481 1.19595i −0.971680 0.236299i \(-0.924066\pi\)
0.281199 0.959649i \(-0.409268\pi\)
\(420\) 0 0
\(421\) −17.5682 + 30.4291i −0.856224 + 1.48302i 0.0192816 + 0.999814i \(0.493862\pi\)
−0.875505 + 0.483209i \(0.839471\pi\)
\(422\) 0 0
\(423\) −2.00586 8.67898i −0.0975284 0.421987i
\(424\) 0 0
\(425\) −3.60809 2.65385i −0.175018 0.128731i
\(426\) 0 0
\(427\) 4.84250 2.79582i 0.234345 0.135299i
\(428\) 0 0
\(429\) 28.8779 + 12.5524i 1.39424 + 0.606035i
\(430\) 0 0
\(431\) 36.8894 1.77690 0.888449 0.458976i \(-0.151784\pi\)
0.888449 + 0.458976i \(0.151784\pi\)
\(432\) 0 0
\(433\) 11.8120i 0.567649i 0.958876 + 0.283825i \(0.0916033\pi\)
−0.958876 + 0.283825i \(0.908397\pi\)
\(434\) 0 0
\(435\) 10.3836 + 5.21354i 0.497855 + 0.249970i
\(436\) 0 0
\(437\) −23.4267 + 13.5254i −1.12065 + 0.647009i
\(438\) 0 0
\(439\) −0.370689 + 0.642053i −0.0176920 + 0.0306435i −0.874736 0.484600i \(-0.838965\pi\)
0.857044 + 0.515244i \(0.172299\pi\)
\(440\) 0 0
\(441\) −4.68031 + 15.3216i −0.222872 + 0.729598i
\(442\) 0 0
\(443\) 4.65078 + 2.68513i 0.220965 + 0.127574i 0.606397 0.795162i \(-0.292614\pi\)
−0.385432 + 0.922736i \(0.625947\pi\)
\(444\) 0 0
\(445\) 18.4509 9.33328i 0.874658 0.442440i
\(446\) 0 0
\(447\) −25.5284 + 2.91165i −1.20745 + 0.137717i
\(448\) 0 0
\(449\) 21.1975 1.00037 0.500187 0.865917i \(-0.333265\pi\)
0.500187 + 0.865917i \(0.333265\pi\)
\(450\) 0 0
\(451\) −39.9594 −1.88161
\(452\) 0 0
\(453\) −0.616994 0.833614i −0.0289889 0.0391666i
\(454\) 0 0
\(455\) −9.17600 + 4.64162i −0.430178 + 0.217603i
\(456\) 0 0
\(457\) −0.859796 0.496403i −0.0402195 0.0232208i 0.479755 0.877402i \(-0.340725\pi\)
−0.519975 + 0.854182i \(0.674059\pi\)
\(458\) 0 0
\(459\) 1.55532 + 4.38715i 0.0725963 + 0.204775i
\(460\) 0 0
\(461\) 5.15985 8.93712i 0.240318 0.416243i −0.720487 0.693469i \(-0.756082\pi\)
0.960805 + 0.277226i \(0.0894149\pi\)
\(462\) 0 0
\(463\) −11.3136 + 6.53192i −0.525789 + 0.303564i −0.739300 0.673376i \(-0.764843\pi\)
0.213511 + 0.976941i \(0.431510\pi\)
\(464\) 0 0
\(465\) 21.3511 14.0459i 0.990134 0.651363i
\(466\) 0 0
\(467\) 19.3938i 0.897437i 0.893673 + 0.448718i \(0.148119\pi\)
−0.893673 + 0.448718i \(0.851881\pi\)
\(468\) 0 0
\(469\) −11.0000 −0.507933
\(470\) 0 0
\(471\) 3.52479 + 30.9042i 0.162414 + 1.42399i
\(472\) 0 0
\(473\) 48.2084 27.8331i 2.21662 1.27977i
\(474\) 0 0
\(475\) 15.8205 21.5091i 0.725895 0.986906i
\(476\) 0 0
\(477\) 10.4934 9.78988i 0.480459 0.448248i
\(478\) 0 0
\(479\) 5.95797 10.3195i 0.272227 0.471510i −0.697205 0.716872i \(-0.745573\pi\)
0.969432 + 0.245361i \(0.0789066\pi\)
\(480\) 0 0
\(481\) 12.9389 + 22.4109i 0.589964 + 1.02185i
\(482\) 0 0
\(483\) 4.50612 10.3667i 0.205036 0.471702i
\(484\) 0 0
\(485\) −7.72234 0.427383i −0.350653 0.0194064i
\(486\) 0 0
\(487\) 18.8027i 0.852031i −0.904716 0.426016i \(-0.859917\pi\)
0.904716 0.426016i \(-0.140083\pi\)
\(488\) 0 0
\(489\) −7.42295 3.22655i −0.335677 0.145910i
\(490\) 0 0
\(491\) −4.96946 8.60736i −0.224269 0.388445i 0.731831 0.681486i \(-0.238666\pi\)
−0.956100 + 0.293041i \(0.905333\pi\)
\(492\) 0 0
\(493\) 2.32735 + 1.34369i 0.104818 + 0.0605169i
\(494\) 0 0
\(495\) 26.2310 21.8904i 1.17899 0.983899i
\(496\) 0 0
\(497\) 5.95824 + 3.43999i 0.267264 + 0.154305i
\(498\) 0 0
\(499\) −4.96946 8.60736i −0.222464 0.385319i 0.733092 0.680130i \(-0.238077\pi\)
−0.955556 + 0.294811i \(0.904743\pi\)
\(500\) 0 0
\(501\) 1.17008 + 10.2589i 0.0522752 + 0.458332i
\(502\) 0 0
\(503\) 36.0636i 1.60800i −0.594630 0.803999i \(-0.702702\pi\)
0.594630 0.803999i \(-0.297298\pi\)
\(504\) 0 0
\(505\) 2.03054 36.6896i 0.0903577 1.63266i
\(506\) 0 0
\(507\) 0.266490 + 0.360052i 0.0118353 + 0.0159905i
\(508\) 0 0
\(509\) −20.4389 35.4013i −0.905940 1.56913i −0.819651 0.572863i \(-0.805833\pi\)
−0.0862886 0.996270i \(-0.527501\pi\)
\(510\) 0 0
\(511\) −6.02046 + 10.4277i −0.266330 + 0.461296i
\(512\) 0 0
\(513\) −26.1534 + 9.27183i −1.15470 + 0.409361i
\(514\) 0 0
\(515\) 19.4044 29.6896i 0.855062 1.30828i
\(516\) 0 0
\(517\) −13.0965 + 7.56125i −0.575982 + 0.332543i
\(518\) 0 0
\(519\) −13.6613 + 10.1113i −0.599663 + 0.443837i
\(520\) 0 0
\(521\) −17.9504 −0.786422 −0.393211 0.919448i \(-0.628636\pi\)
−0.393211 + 0.919448i \(0.628636\pi\)
\(522\) 0 0
\(523\) 20.9732i 0.917092i 0.888671 + 0.458546i \(0.151630\pi\)
−0.888671 + 0.458546i \(0.848370\pi\)
\(524\) 0 0
\(525\) 0.0333611 + 11.1574i 0.00145600 + 0.486948i
\(526\) 0 0
\(527\) 5.11921 2.95558i 0.222996 0.128747i
\(528\) 0 0
\(529\) 1.32992 2.30349i 0.0578227 0.100152i
\(530\) 0 0
\(531\) −5.04203 + 16.5057i −0.218805 + 0.716286i
\(532\) 0 0
\(533\) 24.2539 + 14.0030i 1.05055 + 0.606537i
\(534\) 0 0
\(535\) −9.61966 19.0171i −0.415894 0.822179i
\(536\) 0 0
\(537\) 11.2903 25.9742i 0.487210 1.12087i
\(538\) 0 0
\(539\) 27.1975 1.17148
\(540\) 0 0
\(541\) −13.6192 −0.585537 −0.292768 0.956183i \(-0.594576\pi\)
−0.292768 + 0.956183i \(0.594576\pi\)
\(542\) 0 0
\(543\) 2.02923 4.66842i 0.0870826 0.200341i
\(544\) 0 0
\(545\) −32.4819 + 16.4308i −1.39137 + 0.703816i
\(546\) 0 0
\(547\) 7.61849 + 4.39854i 0.325743 + 0.188068i 0.653950 0.756538i \(-0.273111\pi\)
−0.328206 + 0.944606i \(0.606444\pi\)
\(548\) 0 0
\(549\) 12.6861 2.93197i 0.541428 0.125133i
\(550\) 0 0
\(551\) −8.01023 + 13.8741i −0.341247 + 0.591058i
\(552\) 0 0
\(553\) 0.827189 0.477578i 0.0351757 0.0203087i
\(554\) 0 0
\(555\) 28.0303 1.63538i 1.18982 0.0694181i
\(556\) 0 0
\(557\) 33.9308i 1.43770i −0.695168 0.718848i \(-0.744670\pi\)
0.695168 0.718848i \(-0.255330\pi\)
\(558\) 0 0
\(559\) −39.0143 −1.65013
\(560\) 0 0
\(561\) 6.35165 4.70113i 0.268167 0.198482i
\(562\) 0 0
\(563\) 28.8928 16.6813i 1.21769 0.703033i 0.253265 0.967397i \(-0.418495\pi\)
0.964423 + 0.264364i \(0.0851621\pi\)
\(564\) 0 0
\(565\) −22.2397 + 34.0277i −0.935632 + 1.43156i
\(566\) 0 0
\(567\) 6.47938 9.61588i 0.272108 0.403829i
\(568\) 0 0
\(569\) 3.81537 6.60841i 0.159948 0.277039i −0.774901 0.632082i \(-0.782201\pi\)
0.934850 + 0.355043i \(0.115534\pi\)
\(570\) 0 0
\(571\) −13.2485 22.9472i −0.554434 0.960309i −0.997947 0.0640406i \(-0.979601\pi\)
0.443513 0.896268i \(-0.353732\pi\)
\(572\) 0 0
\(573\) −4.73871 6.40241i −0.197962 0.267465i
\(574\) 0 0
\(575\) −2.79490 + 25.1731i −0.116556 + 1.04979i
\(576\) 0 0
\(577\) 9.93709i 0.413686i 0.978374 + 0.206843i \(0.0663190\pi\)
−0.978374 + 0.206843i \(0.933681\pi\)
\(578\) 0 0
\(579\) 0.310882 + 2.72571i 0.0129198 + 0.113277i
\(580\) 0 0
\(581\) 5.93445 + 10.2788i 0.246202 + 0.426435i
\(582\) 0 0
\(583\) −21.0994 12.1817i −0.873847 0.504516i
\(584\) 0 0
\(585\) −23.5923 + 4.09453i −0.975422 + 0.169288i
\(586\) 0 0
\(587\) 20.3671 + 11.7589i 0.840638 + 0.485343i 0.857481 0.514515i \(-0.172028\pi\)
−0.0168427 + 0.999858i \(0.505361\pi\)
\(588\) 0 0
\(589\) 17.6192 + 30.5174i 0.725988 + 1.25745i
\(590\) 0 0
\(591\) 20.7733 + 9.02958i 0.854501 + 0.371427i
\(592\) 0 0
\(593\) 11.6637i 0.478970i −0.970900 0.239485i \(-0.923021\pi\)
0.970900 0.239485i \(-0.0769786\pi\)
\(594\) 0 0
\(595\) −0.142604 + 2.57670i −0.00584620 + 0.105634i
\(596\) 0 0
\(597\) 3.68719 8.48271i 0.150907 0.347174i
\(598\) 0 0
\(599\) 1.03054 + 1.78494i 0.0421065 + 0.0729307i 0.886311 0.463091i \(-0.153260\pi\)
−0.844204 + 0.536022i \(0.819926\pi\)
\(600\) 0 0
\(601\) 6.96946 12.0715i 0.284290 0.492405i −0.688146 0.725572i \(-0.741575\pi\)
0.972437 + 0.233166i \(0.0749087\pi\)
\(602\) 0 0
\(603\) −24.4967 7.48306i −0.997583 0.304734i
\(604\) 0 0
\(605\) −27.9620 18.2753i −1.13682 0.742997i
\(606\) 0 0
\(607\) 40.9219 23.6263i 1.66097 0.958961i 0.688716 0.725031i \(-0.258175\pi\)
0.972253 0.233930i \(-0.0751588\pi\)
\(608\) 0 0
\(609\) −0.758621 6.65134i −0.0307409 0.269526i
\(610\) 0 0
\(611\) 10.5988 0.428781
\(612\) 0 0
\(613\) 31.4648i 1.27085i 0.772162 + 0.635426i \(0.219175\pi\)
−0.772162 + 0.635426i \(0.780825\pi\)
\(614\) 0 0
\(615\) 25.3863 16.7005i 1.02368 0.673429i
\(616\) 0 0
\(617\) −18.2720 + 10.5493i −0.735602 + 0.424700i −0.820468 0.571692i \(-0.806287\pi\)
0.0848661 + 0.996392i \(0.472954\pi\)
\(618\) 0 0
\(619\) −1.95923 + 3.39349i −0.0787482 + 0.136396i −0.902710 0.430249i \(-0.858426\pi\)
0.823962 + 0.566645i \(0.191759\pi\)
\(620\) 0 0
\(621\) 17.0873 20.0210i 0.685689 0.803415i
\(622\) 0 0
\(623\) −10.3174 5.95677i −0.413359 0.238653i
\(624\) 0 0
\(625\) −7.44649 23.8652i −0.297860 0.954610i
\(626\) 0 0
\(627\) 28.0251 + 37.8644i 1.11922 + 1.51216i
\(628\) 0 0
\(629\) 6.49425 0.258943
\(630\) 0 0
\(631\) 44.5582 1.77383 0.886916 0.461930i \(-0.152843\pi\)
0.886916 + 0.461930i \(0.152843\pi\)
\(632\) 0 0
\(633\) −7.91400 + 0.902634i −0.314553 + 0.0358765i
\(634\) 0 0
\(635\) 12.1086 + 23.9375i 0.480517 + 0.949932i
\(636\) 0 0
\(637\) −16.5079 9.53086i −0.654068 0.377626i
\(638\) 0 0
\(639\) 10.9287 + 11.7140i 0.432333 + 0.463400i
\(640\) 0 0
\(641\) 7.66433 13.2750i 0.302723 0.524331i −0.674029 0.738705i \(-0.735438\pi\)
0.976752 + 0.214374i \(0.0687710\pi\)
\(642\) 0 0
\(643\) −4.65078 + 2.68513i −0.183409 + 0.105891i −0.588893 0.808211i \(-0.700436\pi\)
0.405484 + 0.914102i \(0.367103\pi\)
\(644\) 0 0
\(645\) −18.9945 + 37.8305i −0.747907 + 1.48958i
\(646\) 0 0
\(647\) 2.65087i 0.104216i −0.998641 0.0521082i \(-0.983406\pi\)
0.998641 0.0521082i \(-0.0165941\pi\)
\(648\) 0 0
\(649\) 29.2995 1.15011
\(650\) 0 0
\(651\) −13.5045 5.87002i −0.529282 0.230064i
\(652\) 0 0
\(653\) −6.68262 + 3.85821i −0.261511 + 0.150984i −0.625024 0.780606i \(-0.714911\pi\)
0.363513 + 0.931589i \(0.381577\pi\)
\(654\) 0 0
\(655\) −18.6032 12.1586i −0.726887 0.475077i
\(656\) 0 0
\(657\) −20.5012 + 19.1267i −0.799827 + 0.746204i
\(658\) 0 0
\(659\) −5.87644 + 10.1783i −0.228913 + 0.396490i −0.957486 0.288478i \(-0.906851\pi\)
0.728573 + 0.684968i \(0.240184\pi\)
\(660\) 0 0
\(661\) −5.03054 8.71314i −0.195665 0.338902i 0.751453 0.659786i \(-0.229353\pi\)
−0.947118 + 0.320884i \(0.896020\pi\)
\(662\) 0 0
\(663\) −5.50264 + 0.627606i −0.213705 + 0.0243742i
\(664\) 0 0
\(665\) −15.3606 0.850113i −0.595659 0.0329660i
\(666\) 0 0
\(667\) 15.1967i 0.588417i
\(668\) 0 0
\(669\) −11.8867 + 8.79785i −0.459565 + 0.340144i
\(670\) 0 0
\(671\) −11.0523 19.1431i −0.426668 0.739010i
\(672\) 0 0
\(673\) 27.8848 + 16.0993i 1.07488 + 0.620582i 0.929511 0.368795i \(-0.120230\pi\)
0.145369 + 0.989377i \(0.453563\pi\)
\(674\) 0 0
\(675\) −7.51584 + 24.8699i −0.289285 + 0.957243i
\(676\) 0 0
\(677\) −1.57928 0.911799i −0.0606967 0.0350433i 0.469345 0.883015i \(-0.344490\pi\)
−0.530041 + 0.847972i \(0.677824\pi\)
\(678\) 0 0
\(679\) 2.22809 + 3.85916i 0.0855061 + 0.148101i
\(680\) 0 0
\(681\) −24.0625 + 17.8097i −0.922077 + 0.682470i
\(682\) 0 0
\(683\) 36.5909i 1.40011i 0.714089 + 0.700055i \(0.246841\pi\)
−0.714089 + 0.700055i \(0.753159\pi\)
\(684\) 0 0
\(685\) 12.6498 + 0.700085i 0.483323 + 0.0267489i
\(686\) 0 0
\(687\) 26.9841 3.07769i 1.02951 0.117421i
\(688\) 0 0
\(689\) 8.53770 + 14.7877i 0.325261 + 0.563368i
\(690\) 0 0
\(691\) −3.69038 + 6.39193i −0.140389 + 0.243160i −0.927643 0.373468i \(-0.878169\pi\)
0.787254 + 0.616628i \(0.211502\pi\)
\(692\) 0 0
\(693\) −18.8260 5.75083i −0.715142 0.218456i
\(694\) 0 0
\(695\) 14.8597 + 9.71197i 0.563661 + 0.368396i
\(696\) 0 0
\(697\) 6.08671 3.51416i 0.230551 0.133108i
\(698\) 0 0
\(699\) −25.0422 10.8851i −0.947182 0.411714i
\(700\) 0 0
\(701\) −31.1045 −1.17480 −0.587401 0.809296i \(-0.699849\pi\)
−0.587401 + 0.809296i \(0.699849\pi\)
\(702\) 0 0
\(703\) 38.7145i 1.46015i
\(704\) 0 0
\(705\) 5.16011 10.2772i 0.194341 0.387061i
\(706\) 0 0
\(707\) −18.3352 + 10.5858i −0.689567 + 0.398122i
\(708\) 0 0
\(709\) 13.0377 22.5820i 0.489641 0.848083i −0.510288 0.860004i \(-0.670461\pi\)
0.999929 + 0.0119203i \(0.00379443\pi\)
\(710\) 0 0
\(711\) 2.16701 0.500834i 0.0812694 0.0187828i
\(712\) 0 0
\(713\) −28.9482 16.7132i −1.08412 0.625915i
\(714\) 0 0
\(715\) 18.3490 + 36.2740i 0.686213 + 1.35657i
\(716\) 0 0
\(717\) −2.69633 + 0.307531i −0.100696 + 0.0114849i
\(718\) 0 0
\(719\) −43.0524 −1.60558 −0.802792 0.596259i \(-0.796653\pi\)
−0.802792 + 0.596259i \(0.796653\pi\)
\(720\) 0 0
\(721\) −20.4357 −0.761066
\(722\) 0 0
\(723\) −21.6601 29.2647i −0.805547 1.08836i
\(724\) 0 0
\(725\) 6.02072 + 13.7387i 0.223604 + 0.510241i
\(726\) 0 0
\(727\) −12.3690 7.14127i −0.458742 0.264855i 0.252773 0.967526i \(-0.418657\pi\)
−0.711515 + 0.702671i \(0.751991\pi\)
\(728\) 0 0
\(729\) 20.9709 17.0065i 0.776699 0.629871i
\(730\) 0 0
\(731\) −4.89548 + 8.47922i −0.181066 + 0.313615i
\(732\) 0 0
\(733\) −3.05868 + 1.76593i −0.112975 + 0.0652260i −0.555423 0.831568i \(-0.687444\pi\)
0.442448 + 0.896794i \(0.354110\pi\)
\(734\) 0 0
\(735\) −17.2787 + 11.3668i −0.637334 + 0.419272i
\(736\) 0 0
\(737\) 43.4845i 1.60177i
\(738\) 0 0
\(739\) −13.3606 −0.491478 −0.245739 0.969336i \(-0.579031\pi\)
−0.245739 + 0.969336i \(0.579031\pi\)
\(740\) 0 0
\(741\) −3.74138 32.8032i −0.137443 1.20506i
\(742\) 0 0
\(743\) 18.3273 10.5813i 0.672363 0.388189i −0.124608 0.992206i \(-0.539767\pi\)
0.796971 + 0.604017i \(0.206434\pi\)
\(744\) 0 0
\(745\) −27.7663 18.1474i −1.01728 0.664871i
\(746\) 0 0
\(747\) 6.22343 + 26.9276i 0.227703 + 0.985229i
\(748\) 0 0
\(749\) −6.13954 + 10.6340i −0.224334 + 0.388558i
\(750\) 0 0
\(751\) −4.04077 6.99881i −0.147450 0.255390i 0.782835 0.622230i \(-0.213773\pi\)
−0.930284 + 0.366840i \(0.880440\pi\)
\(752\) 0 0
\(753\) −6.80620 + 15.6582i −0.248032 + 0.570618i
\(754\) 0 0
\(755\) 0.0739865 1.33686i 0.00269264 0.0486532i
\(756\) 0 0
\(757\) 26.3114i 0.956305i 0.878277 + 0.478152i \(0.158693\pi\)
−0.878277 + 0.478152i \(0.841307\pi\)
\(758\) 0 0
\(759\) −40.9811 17.8133i −1.48752 0.646583i
\(760\) 0 0
\(761\) 13.5815 + 23.5239i 0.492330 + 0.852741i 0.999961 0.00883382i \(-0.00281193\pi\)
−0.507631 + 0.861575i \(0.669479\pi\)
\(762\) 0 0
\(763\) 18.1633 + 10.4866i 0.657555 + 0.379640i
\(764\) 0 0
\(765\) −2.07045 + 5.64123i −0.0748572 + 0.203959i
\(766\) 0 0
\(767\) −17.7838 10.2675i −0.642135 0.370737i
\(768\) 0 0
\(769\) 1.41847 + 2.45686i 0.0511512 + 0.0885965i 0.890467 0.455047i \(-0.150378\pi\)
−0.839316 + 0.543644i \(0.817044\pi\)
\(770\) 0 0
\(771\) −5.08548 44.5878i −0.183149 1.60579i
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 32.7924 + 3.64085i 1.17794 + 0.130783i
\(776\) 0 0
\(777\) −9.62435 13.0034i −0.345272 0.466493i
\(778\) 0 0
\(779\) 20.9492 + 36.2850i 0.750582 + 1.30005i
\(780\) 0 0
\(781\) 13.5988 23.5538i 0.486602 0.842820i
\(782\) 0 0
\(783\) 2.83534 15.3284i 0.101327 0.547794i
\(784\) 0 0
\(785\) −21.9689 + 33.6133i −0.784104 + 1.19971i
\(786\) 0 0
\(787\) −3.28300 + 1.89544i −0.117026 + 0.0675652i −0.557371 0.830264i \(-0.688190\pi\)
0.440344 + 0.897829i \(0.354856\pi\)
\(788\) 0 0
\(789\) 27.3416 20.2367i 0.973386 0.720446i
\(790\) 0 0
\(791\) 23.4217 0.832779
\(792\) 0 0
\(793\) 15.4922i 0.550144i
\(794\) 0 0
\(795\) 18.4957 1.07910i 0.655975 0.0382718i
\(796\) 0 0
\(797\) 38.1706 22.0378i 1.35207 0.780619i 0.363533 0.931581i \(-0.381571\pi\)
0.988540 + 0.150962i \(0.0482372\pi\)
\(798\) 0 0
\(799\) 1.32992 2.30349i 0.0470493 0.0814918i
\(800\) 0 0
\(801\) −18.9244 20.2843i −0.668660 0.716710i
\(802\) 0 0
\(803\) 41.2223 + 23.7997i 1.45470 + 0.839874i
\(804\) 0 0
\(805\) 13.0218 6.58701i 0.458959 0.232162i
\(806\) 0 0
\(807\) −0.192697 + 0.443316i −0.00678325 + 0.0156055i
\(808\) 0 0
\(809\) 1.48276 0.0521310 0.0260655 0.999660i \(-0.491702\pi\)
0.0260655 + 0.999660i \(0.491702\pi\)
\(810\) 0 0
\(811\) 51.2385 1.79923 0.899613 0.436688i \(-0.143849\pi\)
0.899613 + 0.436688i \(0.143849\pi\)
\(812\) 0 0
\(813\) 6.44906 14.8366i 0.226178 0.520343i
\(814\) 0 0
\(815\) −4.71654 9.32411i −0.165213 0.326609i
\(816\) 0 0
\(817\) −50.5476 29.1837i −1.76844 1.02101i
\(818\) 0 0
\(819\) 9.41146 + 10.0878i 0.328863 + 0.352495i
\(820\) 0 0
\(821\) 11.3561 19.6694i 0.396332 0.686467i −0.596938 0.802287i \(-0.703616\pi\)
0.993270 + 0.115820i \(0.0369497\pi\)
\(822\) 0 0
\(823\) 11.3452 6.55018i 0.395470 0.228325i −0.289057 0.957312i \(-0.593342\pi\)
0.684528 + 0.728987i \(0.260008\pi\)
\(824\) 0 0
\(825\) 44.1067 0.131881i 1.53560 0.00459151i
\(826\) 0 0
\(827\) 34.8631i 1.21231i −0.795346 0.606155i \(-0.792711\pi\)
0.795346 0.606155i \(-0.207289\pi\)
\(828\) 0 0
\(829\) 25.5988 0.889082 0.444541 0.895758i \(-0.353367\pi\)
0.444541 + 0.895758i \(0.353367\pi\)
\(830\) 0 0
\(831\) 25.1555 18.6187i 0.872635 0.645876i
\(832\) 0 0
\(833\) −4.14280 + 2.39184i −0.143539 + 0.0828725i
\(834\) 0 0
\(835\) −7.29273 + 11.1582i −0.252375 + 0.386144i
\(836\) 0 0
\(837\) −26.0809 22.2592i −0.901487 0.769390i
\(838\) 0 0
\(839\) −20.1657 + 34.9281i −0.696199 + 1.20585i 0.273576 + 0.961850i \(0.411794\pi\)
−0.969775 + 0.244002i \(0.921540\pi\)
\(840\) 0 0
\(841\) 10.0000 + 17.3205i 0.344828 + 0.597259i
\(842\) 0 0
\(843\) 7.23408 + 9.77388i 0.249155 + 0.336630i
\(844\) 0 0
\(845\) −0.0319560 + 0.577411i −0.00109932 + 0.0198635i
\(846\) 0 0
\(847\) 19.2466i 0.661320i
\(848\) 0 0
\(849\) 3.60452 + 31.6033i 0.123707 + 1.08462i
\(850\) 0 0
\(851\) −18.3619 31.8037i −0.629437 1.09022i
\(852\) 0 0
\(853\) −34.8994 20.1492i −1.19493 0.689896i −0.235513 0.971871i \(-0.575677\pi\)
−0.959422 + 0.281976i \(0.909010\pi\)
\(854\) 0 0
\(855\) −33.6294 12.3427i −1.15010 0.422111i
\(856\) 0 0
\(857\) 19.0873 + 11.0201i 0.652010 + 0.376438i 0.789226 0.614103i \(-0.210482\pi\)
−0.137216 + 0.990541i \(0.543815\pi\)
\(858\) 0 0
\(859\) 14.6395 + 25.3564i 0.499495 + 0.865150i 1.00000 0.000583373i \(-0.000185693\pi\)
−0.500505 + 0.865734i \(0.666852\pi\)
\(860\) 0 0
\(861\) −16.0567 6.97941i −0.547212 0.237858i
\(862\) 0 0
\(863\) 46.1491i 1.57093i −0.618904 0.785466i \(-0.712423\pi\)
0.618904 0.785466i \(-0.287577\pi\)
\(864\) 0 0
\(865\) −21.9084 1.21249i −0.744908 0.0412259i
\(866\) 0 0
\(867\) 11.1839 25.7294i 0.379824 0.873817i
\(868\) 0 0
\(869\) −1.88793 3.26999i −0.0640437 0.110927i
\(870\) 0 0
\(871\) 15.2383 26.3935i 0.516331 0.894311i
\(872\) 0 0
\(873\) 2.33659 + 10.1100i 0.0790814 + 0.342170i
\(874\) 0 0
\(875\) −9.16281 + 11.1141i −0.309760 + 0.375726i
\(876\) 0 0
\(877\) 23.9337 13.8181i 0.808184 0.466606i −0.0381405 0.999272i \(-0.512143\pi\)
0.846325 + 0.532667i \(0.178810\pi\)
\(878\) 0 0
\(879\) 2.10184 + 18.4282i 0.0708932 + 0.621569i
\(880\) 0 0
\(881\) 4.79632 0.161592 0.0807961 0.996731i \(-0.474254\pi\)
0.0807961 + 0.996731i \(0.474254\pi\)
\(882\) 0 0
\(883\) 21.7126i 0.730687i −0.930873 0.365343i \(-0.880952\pi\)
0.930873 0.365343i \(-0.119048\pi\)
\(884\) 0 0
\(885\) −18.6141 + 12.2453i −0.625706 + 0.411623i
\(886\) 0 0
\(887\) −19.0873 + 11.0201i −0.640889 + 0.370018i −0.784957 0.619550i \(-0.787315\pi\)
0.144068 + 0.989568i \(0.453982\pi\)
\(888\) 0 0
\(889\) 7.72809 13.3854i 0.259192 0.448933i
\(890\) 0 0
\(891\) −38.0129 25.6139i −1.27348 0.858098i
\(892\) 0 0
\(893\) 13.7319 + 7.92814i 0.459522 + 0.265305i
\(894\) 0 0
\(895\) 32.6267 16.5040i 1.09059 0.551668i
\(896\) 0 0
\(897\) 18.6317 + 25.1731i 0.622095 + 0.840505i
\(898\) 0 0
\(899\) −19.7963 −0.660244
\(900\) 0 0
\(901\) 4.28521 0.142761
\(902\) 0 0
\(903\) 24.2328 2.76388i 0.806418 0.0919763i
\(904\) 0 0
\(905\) 5.86409 2.96631i 0.194929 0.0986035i
\(906\) 0 0
\(907\) 34.0357 + 19.6505i 1.13014 + 0.652486i 0.943970 0.330032i \(-0.107060\pi\)
0.186169 + 0.982518i \(0.440393\pi\)
\(908\) 0 0
\(909\) −48.0334 + 11.1013i −1.59317 + 0.368208i
\(910\) 0 0
\(911\) −7.96946 + 13.8035i −0.264040 + 0.457331i −0.967312 0.253590i \(-0.918388\pi\)
0.703272 + 0.710921i \(0.251722\pi\)
\(912\) 0 0
\(913\) 40.6334 23.4597i 1.34477 0.776402i
\(914\) 0 0
\(915\) 15.0221 + 7.54252i 0.496616 + 0.249348i
\(916\) 0 0
\(917\) 12.8048i 0.422852i
\(918\) 0 0
\(919\) 6.16307 0.203301 0.101650 0.994820i \(-0.467588\pi\)
0.101650 + 0.994820i \(0.467588\pi\)
\(920\) 0 0
\(921\) −22.7383 9.88371i −0.749253 0.325679i
\(922\) 0 0
\(923\) −16.5079 + 9.53086i −0.543365 + 0.313712i
\(924\) 0 0
\(925\) 29.2004 + 21.4777i 0.960104 + 0.706181i
\(926\) 0 0
\(927\) −45.5098 13.9020i −1.49474 0.456601i
\(928\) 0 0
\(929\) −5.05100 + 8.74858i −0.165718 + 0.287032i −0.936910 0.349571i \(-0.886327\pi\)
0.771192 + 0.636602i \(0.219661\pi\)
\(930\) 0 0
\(931\) −14.2586 24.6967i −0.467307 0.809400i
\(932\) 0 0
\(933\) 42.1217 4.80420i 1.37900 0.157283i
\(934\) 0 0
\(935\) 10.1861 + 0.563734i 0.333120 + 0.0184361i
\(936\) 0 0
\(937\) 5.00506i 0.163508i 0.996653 + 0.0817541i \(0.0260522\pi\)
−0.996653 + 0.0817541i \(0.973948\pi\)
\(938\) 0 0
\(939\) 44.5187 32.9502i 1.45281 1.07529i
\(940\) 0 0
\(941\) 4.99425 + 8.65030i 0.162808 + 0.281992i 0.935875 0.352333i \(-0.114612\pi\)
−0.773067 + 0.634325i \(0.781278\pi\)
\(942\) 0 0
\(943\) −34.4192 19.8719i −1.12084 0.647119i
\(944\) 0 0
\(945\) 14.3637 4.21456i 0.467252 0.137100i
\(946\) 0 0
\(947\) −41.2421 23.8111i −1.34019 0.773758i −0.353354 0.935490i \(-0.614959\pi\)
−0.986835 + 0.161732i \(0.948292\pi\)
\(948\) 0 0
\(949\) −16.6803 28.8911i −0.541466 0.937846i
\(950\) 0 0
\(951\) 36.4957 27.0121i 1.18345 0.875926i
\(952\) 0 0
\(953\) 34.2355i 1.10900i −0.832184 0.554499i \(-0.812910\pi\)
0.832184 0.554499i \(-0.187090\pi\)
\(954\) 0 0
\(955\) 0.568239 10.2675i 0.0183878 0.332247i
\(956\) 0 0
\(957\) −26.2937 + 2.99893i −0.849954 + 0.0969418i
\(958\) 0 0
\(959\) −3.64977 6.32159i −0.117857 0.204135i
\(960\) 0 0
\(961\) −6.27191 + 10.8633i −0.202320 + 0.350428i
\(962\) 0 0
\(963\) −20.9067 + 19.5050i −0.673708 + 0.628541i
\(964\) 0 0
\(965\) −1.93763 + 2.96466i −0.0623746 + 0.0954356i
\(966\) 0 0
\(967\) −3.21877 + 1.85836i −0.103509 + 0.0597607i −0.550861 0.834597i \(-0.685700\pi\)
0.447352 + 0.894358i \(0.352367\pi\)
\(968\) 0 0
\(969\) −7.59877 3.30297i −0.244108 0.106107i
\(970\) 0 0
\(971\) −45.0959 −1.44720 −0.723598 0.690222i \(-0.757513\pi\)
−0.723598 + 0.690222i \(0.757513\pi\)
\(972\) 0 0
\(973\) 10.2281i 0.327898i
\(974\) 0 0
\(975\) −26.8174 15.3763i −0.858844 0.492436i
\(976\) 0 0
\(977\) −5.70620 + 3.29448i −0.182558 + 0.105400i −0.588494 0.808502i \(-0.700279\pi\)
0.405936 + 0.913901i \(0.366946\pi\)
\(978\) 0 0
\(979\) −23.5479 + 40.7862i −0.752595 + 1.30353i
\(980\) 0 0
\(981\) 33.3154 + 35.7094i 1.06368 + 1.14011i
\(982\) 0 0
\(983\) 10.5932 + 6.11596i 0.337869 + 0.195069i 0.659329 0.751854i \(-0.270840\pi\)
−0.321460 + 0.946923i \(0.604174\pi\)
\(984\) 0 0
\(985\) 13.1994 + 26.0938i 0.420567 + 0.831417i
\(986\) 0 0
\(987\) −6.58318 + 0.750846i −0.209545 + 0.0238997i
\(988\) 0 0
\(989\) 55.3660 1.76054
\(990\) 0 0
\(991\) −32.0000 −1.01651 −0.508257 0.861206i \(-0.669710\pi\)
−0.508257 + 0.861206i \(0.669710\pi\)
\(992\) 0 0
\(993\) −2.82479 3.81655i −0.0896421 0.121114i
\(994\) 0 0
\(995\) 10.6553 5.38991i 0.337795 0.170872i
\(996\) 0 0
\(997\) −2.80371 1.61872i −0.0887944 0.0512655i 0.454945 0.890519i \(-0.349659\pi\)
−0.543740 + 0.839254i \(0.682992\pi\)
\(998\) 0 0
\(999\) −12.5873 35.5054i −0.398244 1.12334i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 180.2.r.a.169.4 yes 12
3.2 odd 2 540.2.r.a.289.1 12
4.3 odd 2 720.2.by.e.529.3 12
5.2 odd 4 900.2.i.f.601.1 12
5.3 odd 4 900.2.i.f.601.6 12
5.4 even 2 inner 180.2.r.a.169.3 yes 12
9.2 odd 6 1620.2.d.d.649.3 6
9.4 even 3 inner 180.2.r.a.49.3 12
9.5 odd 6 540.2.r.a.469.5 12
9.7 even 3 1620.2.d.c.649.4 6
12.11 even 2 2160.2.by.e.289.1 12
15.2 even 4 2700.2.i.f.1801.4 12
15.8 even 4 2700.2.i.f.1801.3 12
15.14 odd 2 540.2.r.a.289.5 12
20.19 odd 2 720.2.by.e.529.4 12
36.23 even 6 2160.2.by.e.1009.5 12
36.31 odd 6 720.2.by.e.49.4 12
45.2 even 12 8100.2.a.bd.1.3 6
45.4 even 6 inner 180.2.r.a.49.4 yes 12
45.7 odd 12 8100.2.a.bc.1.3 6
45.13 odd 12 900.2.i.f.301.6 12
45.14 odd 6 540.2.r.a.469.1 12
45.22 odd 12 900.2.i.f.301.1 12
45.23 even 12 2700.2.i.f.901.3 12
45.29 odd 6 1620.2.d.d.649.4 6
45.32 even 12 2700.2.i.f.901.4 12
45.34 even 6 1620.2.d.c.649.3 6
45.38 even 12 8100.2.a.bd.1.4 6
45.43 odd 12 8100.2.a.bc.1.4 6
60.59 even 2 2160.2.by.e.289.5 12
180.59 even 6 2160.2.by.e.1009.1 12
180.139 odd 6 720.2.by.e.49.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.r.a.49.3 12 9.4 even 3 inner
180.2.r.a.49.4 yes 12 45.4 even 6 inner
180.2.r.a.169.3 yes 12 5.4 even 2 inner
180.2.r.a.169.4 yes 12 1.1 even 1 trivial
540.2.r.a.289.1 12 3.2 odd 2
540.2.r.a.289.5 12 15.14 odd 2
540.2.r.a.469.1 12 45.14 odd 6
540.2.r.a.469.5 12 9.5 odd 6
720.2.by.e.49.3 12 180.139 odd 6
720.2.by.e.49.4 12 36.31 odd 6
720.2.by.e.529.3 12 4.3 odd 2
720.2.by.e.529.4 12 20.19 odd 2
900.2.i.f.301.1 12 45.22 odd 12
900.2.i.f.301.6 12 45.13 odd 12
900.2.i.f.601.1 12 5.2 odd 4
900.2.i.f.601.6 12 5.3 odd 4
1620.2.d.c.649.3 6 45.34 even 6
1620.2.d.c.649.4 6 9.7 even 3
1620.2.d.d.649.3 6 9.2 odd 6
1620.2.d.d.649.4 6 45.29 odd 6
2160.2.by.e.289.1 12 12.11 even 2
2160.2.by.e.289.5 12 60.59 even 2
2160.2.by.e.1009.1 12 180.59 even 6
2160.2.by.e.1009.5 12 36.23 even 6
2700.2.i.f.901.3 12 45.23 even 12
2700.2.i.f.901.4 12 45.32 even 12
2700.2.i.f.1801.3 12 15.8 even 4
2700.2.i.f.1801.4 12 15.2 even 4
8100.2.a.bc.1.3 6 45.7 odd 12
8100.2.a.bc.1.4 6 45.43 odd 12
8100.2.a.bd.1.3 6 45.2 even 12
8100.2.a.bd.1.4 6 45.38 even 12