Properties

Label 1620.2.r.c.109.1
Level $1620$
Weight $2$
Character 1620.109
Analytic conductor $12.936$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1620,2,Mod(109,1620)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1620, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1620.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1620 = 2^{2} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1620.r (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.9357651274\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 60)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 109.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1620.109
Dual form 1620.2.r.c.1189.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.23205 - 0.133975i) q^{5} +(-3.46410 + 2.00000i) q^{7} +O(q^{10})\) \(q+(-2.23205 - 0.133975i) q^{5} +(-3.46410 + 2.00000i) q^{7} +(2.00000 + 3.46410i) q^{11} -4.00000i q^{17} +(-3.46410 - 2.00000i) q^{23} +(4.96410 + 0.598076i) q^{25} +(-3.00000 - 5.19615i) q^{29} +(-2.00000 + 3.46410i) q^{31} +(8.00000 - 4.00000i) q^{35} +8.00000i q^{37} +(5.00000 - 8.66025i) q^{41} +(3.46410 - 2.00000i) q^{43} +(3.46410 - 2.00000i) q^{47} +(4.50000 - 7.79423i) q^{49} -12.0000i q^{53} +(-4.00000 - 8.00000i) q^{55} +(2.00000 - 3.46410i) q^{59} +(-1.00000 - 1.73205i) q^{61} +(-3.46410 - 2.00000i) q^{67} -8.00000i q^{73} +(-13.8564 - 8.00000i) q^{77} +(-6.00000 - 10.3923i) q^{79} +(3.46410 - 2.00000i) q^{83} +(-0.535898 + 8.92820i) q^{85} +10.0000 q^{89} +(-6.92820 + 4.00000i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{5} + 8 q^{11} + 6 q^{25} - 12 q^{29} - 8 q^{31} + 32 q^{35} + 20 q^{41} + 18 q^{49} - 16 q^{55} + 8 q^{59} - 4 q^{61} - 24 q^{79} - 16 q^{85} + 40 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1620\mathbb{Z}\right)^\times\).

\(n\) \(811\) \(1297\) \(1541\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.23205 0.133975i −0.998203 0.0599153i
\(6\) 0 0
\(7\) −3.46410 + 2.00000i −1.30931 + 0.755929i −0.981981 0.188982i \(-0.939481\pi\)
−0.327327 + 0.944911i \(0.606148\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.00000 + 3.46410i 0.603023 + 1.04447i 0.992361 + 0.123371i \(0.0393705\pi\)
−0.389338 + 0.921095i \(0.627296\pi\)
\(12\) 0 0
\(13\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.00000i 0.970143i −0.874475 0.485071i \(-0.838794\pi\)
0.874475 0.485071i \(-0.161206\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.46410 2.00000i −0.722315 0.417029i 0.0932891 0.995639i \(-0.470262\pi\)
−0.815604 + 0.578610i \(0.803595\pi\)
\(24\) 0 0
\(25\) 4.96410 + 0.598076i 0.992820 + 0.119615i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.00000 5.19615i −0.557086 0.964901i −0.997738 0.0672232i \(-0.978586\pi\)
0.440652 0.897678i \(-0.354747\pi\)
\(30\) 0 0
\(31\) −2.00000 + 3.46410i −0.359211 + 0.622171i −0.987829 0.155543i \(-0.950287\pi\)
0.628619 + 0.777714i \(0.283621\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 8.00000 4.00000i 1.35225 0.676123i
\(36\) 0 0
\(37\) 8.00000i 1.31519i 0.753371 + 0.657596i \(0.228427\pi\)
−0.753371 + 0.657596i \(0.771573\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.00000 8.66025i 0.780869 1.35250i −0.150567 0.988600i \(-0.548110\pi\)
0.931436 0.363905i \(-0.118557\pi\)
\(42\) 0 0
\(43\) 3.46410 2.00000i 0.528271 0.304997i −0.212041 0.977261i \(-0.568011\pi\)
0.740312 + 0.672264i \(0.234678\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.46410 2.00000i 0.505291 0.291730i −0.225605 0.974219i \(-0.572436\pi\)
0.730896 + 0.682489i \(0.239102\pi\)
\(48\) 0 0
\(49\) 4.50000 7.79423i 0.642857 1.11346i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 12.0000i 1.64833i −0.566352 0.824163i \(-0.691646\pi\)
0.566352 0.824163i \(-0.308354\pi\)
\(54\) 0 0
\(55\) −4.00000 8.00000i −0.539360 1.07872i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.00000 3.46410i 0.260378 0.450988i −0.705965 0.708247i \(-0.749486\pi\)
0.966342 + 0.257260i \(0.0828195\pi\)
\(60\) 0 0
\(61\) −1.00000 1.73205i −0.128037 0.221766i 0.794879 0.606768i \(-0.207534\pi\)
−0.922916 + 0.385002i \(0.874201\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −3.46410 2.00000i −0.423207 0.244339i 0.273241 0.961946i \(-0.411904\pi\)
−0.696449 + 0.717607i \(0.745238\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 8.00000i 0.936329i −0.883641 0.468165i \(-0.844915\pi\)
0.883641 0.468165i \(-0.155085\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −13.8564 8.00000i −1.57908 0.911685i
\(78\) 0 0
\(79\) −6.00000 10.3923i −0.675053 1.16923i −0.976453 0.215728i \(-0.930788\pi\)
0.301401 0.953498i \(-0.402546\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.46410 2.00000i 0.380235 0.219529i −0.297686 0.954664i \(-0.596215\pi\)
0.677920 + 0.735135i \(0.262881\pi\)
\(84\) 0 0
\(85\) −0.535898 + 8.92820i −0.0581263 + 0.968400i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −6.92820 + 4.00000i −0.703452 + 0.406138i −0.808632 0.588315i \(-0.799792\pi\)
0.105180 + 0.994453i \(0.466458\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.00000 + 1.73205i 0.0995037 + 0.172345i 0.911479 0.411346i \(-0.134941\pi\)
−0.811976 + 0.583691i \(0.801608\pi\)
\(102\) 0 0
\(103\) 3.46410 + 2.00000i 0.341328 + 0.197066i 0.660859 0.750510i \(-0.270192\pi\)
−0.319531 + 0.947576i \(0.603525\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 12.0000i 1.16008i −0.814587 0.580042i \(-0.803036\pi\)
0.814587 0.580042i \(-0.196964\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −10.3923 6.00000i −0.977626 0.564433i −0.0760733 0.997102i \(-0.524238\pi\)
−0.901553 + 0.432670i \(0.857572\pi\)
\(114\) 0 0
\(115\) 7.46410 + 4.92820i 0.696031 + 0.459557i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 8.00000 + 13.8564i 0.733359 + 1.27021i
\(120\) 0 0
\(121\) −2.50000 + 4.33013i −0.227273 + 0.393648i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.0000 2.00000i −0.983870 0.178885i
\(126\) 0 0
\(127\) 4.00000i 0.354943i −0.984126 0.177471i \(-0.943208\pi\)
0.984126 0.177471i \(-0.0567917\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −6.00000 + 10.3923i −0.524222 + 0.907980i 0.475380 + 0.879781i \(0.342311\pi\)
−0.999602 + 0.0281993i \(0.991023\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −10.3923 + 6.00000i −0.887875 + 0.512615i −0.873247 0.487278i \(-0.837990\pi\)
−0.0146279 + 0.999893i \(0.504656\pi\)
\(138\) 0 0
\(139\) 8.00000 13.8564i 0.678551 1.17529i −0.296866 0.954919i \(-0.595942\pi\)
0.975417 0.220366i \(-0.0707252\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 6.00000 + 12.0000i 0.498273 + 0.996546i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.00000 + 1.73205i −0.0819232 + 0.141895i −0.904076 0.427372i \(-0.859440\pi\)
0.822153 + 0.569267i \(0.192773\pi\)
\(150\) 0 0
\(151\) 10.0000 + 17.3205i 0.813788 + 1.40952i 0.910195 + 0.414181i \(0.135932\pi\)
−0.0964061 + 0.995342i \(0.530735\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.92820 7.46410i 0.395843 0.599531i
\(156\) 0 0
\(157\) 6.92820 + 4.00000i 0.552931 + 0.319235i 0.750303 0.661094i \(-0.229907\pi\)
−0.197372 + 0.980329i \(0.563241\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 16.0000 1.26098
\(162\) 0 0
\(163\) 20.0000i 1.56652i 0.621694 + 0.783260i \(0.286445\pi\)
−0.621694 + 0.783260i \(0.713555\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.3923 + 6.00000i 0.804181 + 0.464294i 0.844931 0.534875i \(-0.179641\pi\)
−0.0407502 + 0.999169i \(0.512975\pi\)
\(168\) 0 0
\(169\) −6.50000 11.2583i −0.500000 0.866025i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3.46410 + 2.00000i −0.263371 + 0.152057i −0.625871 0.779926i \(-0.715256\pi\)
0.362500 + 0.931984i \(0.381923\pi\)
\(174\) 0 0
\(175\) −18.3923 + 7.85641i −1.39033 + 0.593889i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.00000 −0.298974 −0.149487 0.988764i \(-0.547762\pi\)
−0.149487 + 0.988764i \(0.547762\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.07180 17.8564i 0.0788001 1.31283i
\(186\) 0 0
\(187\) 13.8564 8.00000i 1.01328 0.585018i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −12.0000 20.7846i −0.868290 1.50392i −0.863743 0.503932i \(-0.831886\pi\)
−0.00454614 0.999990i \(-0.501447\pi\)
\(192\) 0 0
\(193\) −13.8564 8.00000i −0.997406 0.575853i −0.0899262 0.995948i \(-0.528663\pi\)
−0.907480 + 0.420096i \(0.861996\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.00000i 0.284988i 0.989796 + 0.142494i \(0.0455122\pi\)
−0.989796 + 0.142494i \(0.954488\pi\)
\(198\) 0 0
\(199\) 12.0000 0.850657 0.425329 0.905039i \(-0.360158\pi\)
0.425329 + 0.905039i \(0.360158\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 20.7846 + 12.0000i 1.45879 + 0.842235i
\(204\) 0 0
\(205\) −12.3205 + 18.6603i −0.860502 + 1.30329i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −8.00000 + 4.00000i −0.545595 + 0.272798i
\(216\) 0 0
\(217\) 16.0000i 1.08615i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −17.3205 + 10.0000i −1.15987 + 0.669650i −0.951272 0.308353i \(-0.900222\pi\)
−0.208595 + 0.978002i \(0.566889\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 17.3205 10.0000i 1.14960 0.663723i 0.200812 0.979630i \(-0.435642\pi\)
0.948790 + 0.315906i \(0.102309\pi\)
\(228\) 0 0
\(229\) 13.0000 22.5167i 0.859064 1.48794i −0.0137585 0.999905i \(-0.504380\pi\)
0.872823 0.488037i \(-0.162287\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 20.0000i 1.31024i 0.755523 + 0.655122i \(0.227383\pi\)
−0.755523 + 0.655122i \(0.772617\pi\)
\(234\) 0 0
\(235\) −8.00000 + 4.00000i −0.521862 + 0.260931i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4.00000 6.92820i 0.258738 0.448148i −0.707166 0.707048i \(-0.750027\pi\)
0.965904 + 0.258900i \(0.0833599\pi\)
\(240\) 0 0
\(241\) 1.00000 + 1.73205i 0.0644157 + 0.111571i 0.896435 0.443176i \(-0.146148\pi\)
−0.832019 + 0.554747i \(0.812815\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −11.0885 + 16.7942i −0.708416 + 1.07294i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) 16.0000i 1.00591i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 10.3923 + 6.00000i 0.648254 + 0.374270i 0.787787 0.615948i \(-0.211227\pi\)
−0.139533 + 0.990217i \(0.544560\pi\)
\(258\) 0 0
\(259\) −16.0000 27.7128i −0.994192 1.72199i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3.46410 2.00000i 0.213606 0.123325i −0.389380 0.921077i \(-0.627311\pi\)
0.602986 + 0.797752i \(0.293977\pi\)
\(264\) 0 0
\(265\) −1.60770 + 26.7846i −0.0987599 + 1.64537i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −6.00000 −0.365826 −0.182913 0.983129i \(-0.558553\pi\)
−0.182913 + 0.983129i \(0.558553\pi\)
\(270\) 0 0
\(271\) 4.00000 0.242983 0.121491 0.992592i \(-0.461232\pi\)
0.121491 + 0.992592i \(0.461232\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 7.85641 + 18.3923i 0.473759 + 1.10910i
\(276\) 0 0
\(277\) 27.7128 16.0000i 1.66510 0.961347i 0.694881 0.719125i \(-0.255457\pi\)
0.970221 0.242222i \(-0.0778761\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −3.00000 5.19615i −0.178965 0.309976i 0.762561 0.646916i \(-0.223942\pi\)
−0.941526 + 0.336939i \(0.890608\pi\)
\(282\) 0 0
\(283\) 24.2487 + 14.0000i 1.44144 + 0.832214i 0.997946 0.0640654i \(-0.0204066\pi\)
0.443491 + 0.896279i \(0.353740\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 40.0000i 2.36113i
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −10.3923 6.00000i −0.607125 0.350524i 0.164714 0.986341i \(-0.447330\pi\)
−0.771839 + 0.635818i \(0.780663\pi\)
\(294\) 0 0
\(295\) −4.92820 + 7.46410i −0.286931 + 0.434577i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −8.00000 + 13.8564i −0.461112 + 0.798670i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.00000 + 4.00000i 0.114520 + 0.229039i
\(306\) 0 0
\(307\) 12.0000i 0.684876i −0.939540 0.342438i \(-0.888747\pi\)
0.939540 0.342438i \(-0.111253\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −12.0000 + 20.7846i −0.680458 + 1.17859i 0.294384 + 0.955687i \(0.404886\pi\)
−0.974841 + 0.222900i \(0.928448\pi\)
\(312\) 0 0
\(313\) 13.8564 8.00000i 0.783210 0.452187i −0.0543564 0.998522i \(-0.517311\pi\)
0.837567 + 0.546335i \(0.183977\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.46410 + 2.00000i −0.194563 + 0.112331i −0.594117 0.804379i \(-0.702498\pi\)
0.399554 + 0.916710i \(0.369165\pi\)
\(318\) 0 0
\(319\) 12.0000 20.7846i 0.671871 1.16371i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −8.00000 + 13.8564i −0.441054 + 0.763928i
\(330\) 0 0
\(331\) 4.00000 + 6.92820i 0.219860 + 0.380808i 0.954765 0.297361i \(-0.0961066\pi\)
−0.734905 + 0.678170i \(0.762773\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7.46410 + 4.92820i 0.407807 + 0.269257i
\(336\) 0 0
\(337\) −6.92820 4.00000i −0.377403 0.217894i 0.299285 0.954164i \(-0.403252\pi\)
−0.676688 + 0.736270i \(0.736585\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −16.0000 −0.866449
\(342\) 0 0
\(343\) 8.00000i 0.431959i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10.3923 + 6.00000i 0.557888 + 0.322097i 0.752297 0.658824i \(-0.228946\pi\)
−0.194409 + 0.980921i \(0.562279\pi\)
\(348\) 0 0
\(349\) −7.00000 12.1244i −0.374701 0.649002i 0.615581 0.788074i \(-0.288921\pi\)
−0.990282 + 0.139072i \(0.955588\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −24.2487 + 14.0000i −1.29063 + 0.745145i −0.978766 0.204982i \(-0.934286\pi\)
−0.311863 + 0.950127i \(0.600953\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −1.07180 + 17.8564i −0.0561004 + 0.934647i
\(366\) 0 0
\(367\) −3.46410 + 2.00000i −0.180825 + 0.104399i −0.587680 0.809093i \(-0.699959\pi\)
0.406855 + 0.913493i \(0.366625\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 24.0000 + 41.5692i 1.24602 + 2.15817i
\(372\) 0 0
\(373\) −20.7846 12.0000i −1.07619 0.621336i −0.146321 0.989237i \(-0.546743\pi\)
−0.929865 + 0.367901i \(0.880077\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −8.00000 −0.410932 −0.205466 0.978664i \(-0.565871\pi\)
−0.205466 + 0.978664i \(0.565871\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 24.2487 + 14.0000i 1.23905 + 0.715367i 0.968900 0.247451i \(-0.0795931\pi\)
0.270151 + 0.962818i \(0.412926\pi\)
\(384\) 0 0
\(385\) 29.8564 + 19.7128i 1.52162 + 1.00466i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −17.0000 29.4449i −0.861934 1.49291i −0.870059 0.492947i \(-0.835920\pi\)
0.00812520 0.999967i \(-0.497414\pi\)
\(390\) 0 0
\(391\) −8.00000 + 13.8564i −0.404577 + 0.700749i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 12.0000 + 24.0000i 0.603786 + 1.20757i
\(396\) 0 0
\(397\) 8.00000i 0.401508i 0.979642 + 0.200754i \(0.0643393\pi\)
−0.979642 + 0.200754i \(0.935661\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7.00000 12.1244i 0.349563 0.605461i −0.636609 0.771187i \(-0.719663\pi\)
0.986172 + 0.165726i \(0.0529966\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −27.7128 + 16.0000i −1.37367 + 0.793091i
\(408\) 0 0
\(409\) 13.0000 22.5167i 0.642809 1.11338i −0.341994 0.939702i \(-0.611102\pi\)
0.984803 0.173675i \(-0.0555643\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 16.0000i 0.787309i
\(414\) 0 0
\(415\) −8.00000 + 4.00000i −0.392705 + 0.196352i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −14.0000 + 24.2487i −0.683945 + 1.18463i 0.289822 + 0.957080i \(0.406404\pi\)
−0.973767 + 0.227547i \(0.926930\pi\)
\(420\) 0 0
\(421\) −5.00000 8.66025i −0.243685 0.422075i 0.718076 0.695965i \(-0.245023\pi\)
−0.961761 + 0.273890i \(0.911690\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.39230 19.8564i 0.116044 0.963177i
\(426\) 0 0
\(427\) 6.92820 + 4.00000i 0.335279 + 0.193574i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 8.00000 0.385346 0.192673 0.981263i \(-0.438284\pi\)
0.192673 + 0.981263i \(0.438284\pi\)
\(432\) 0 0
\(433\) 16.0000i 0.768911i 0.923144 + 0.384455i \(0.125611\pi\)
−0.923144 + 0.384455i \(0.874389\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −6.00000 10.3923i −0.286364 0.495998i 0.686575 0.727059i \(-0.259113\pi\)
−0.972939 + 0.231062i \(0.925780\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 31.1769 18.0000i 1.48126 0.855206i 0.481486 0.876454i \(-0.340097\pi\)
0.999774 + 0.0212481i \(0.00676401\pi\)
\(444\) 0 0
\(445\) −22.3205 1.33975i −1.05809 0.0635100i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) 40.0000 1.88353
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −34.6410 + 20.0000i −1.62044 + 0.935561i −0.633636 + 0.773631i \(0.718438\pi\)
−0.986802 + 0.161929i \(0.948228\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −3.00000 5.19615i −0.139724 0.242009i 0.787668 0.616100i \(-0.211288\pi\)
−0.927392 + 0.374091i \(0.877955\pi\)
\(462\) 0 0
\(463\) −10.3923 6.00000i −0.482971 0.278844i 0.238683 0.971098i \(-0.423284\pi\)
−0.721654 + 0.692254i \(0.756618\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.0000i 0.555294i −0.960683 0.277647i \(-0.910445\pi\)
0.960683 0.277647i \(-0.0895545\pi\)
\(468\) 0 0
\(469\) 16.0000 0.738811
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 13.8564 + 8.00000i 0.637118 + 0.367840i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −8.00000 13.8564i −0.365529 0.633115i 0.623332 0.781958i \(-0.285779\pi\)
−0.988861 + 0.148842i \(0.952445\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 16.0000 8.00000i 0.726523 0.363261i
\(486\) 0 0
\(487\) 12.0000i 0.543772i 0.962329 + 0.271886i \(0.0876473\pi\)
−0.962329 + 0.271886i \(0.912353\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 18.0000 31.1769i 0.812329 1.40699i −0.0989017 0.995097i \(-0.531533\pi\)
0.911230 0.411897i \(-0.135134\pi\)
\(492\) 0 0
\(493\) −20.7846 + 12.0000i −0.936092 + 0.540453i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 12.0000 20.7846i 0.537194 0.930447i −0.461860 0.886953i \(-0.652818\pi\)
0.999054 0.0434940i \(-0.0138489\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 36.0000i 1.60516i 0.596544 + 0.802580i \(0.296540\pi\)
−0.596544 + 0.802580i \(0.703460\pi\)
\(504\) 0 0
\(505\) −2.00000 4.00000i −0.0889988 0.177998i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 21.0000 36.3731i 0.930809 1.61221i 0.148866 0.988857i \(-0.452438\pi\)
0.781943 0.623350i \(-0.214229\pi\)
\(510\) 0 0
\(511\) 16.0000 + 27.7128i 0.707798 + 1.22594i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −7.46410 4.92820i −0.328908 0.217163i
\(516\) 0 0
\(517\) 13.8564 + 8.00000i 0.609404 + 0.351840i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −38.0000 −1.66481 −0.832405 0.554168i \(-0.813037\pi\)
−0.832405 + 0.554168i \(0.813037\pi\)
\(522\) 0 0
\(523\) 28.0000i 1.22435i −0.790721 0.612177i \(-0.790294\pi\)
0.790721 0.612177i \(-0.209706\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 13.8564 + 8.00000i 0.603595 + 0.348485i
\(528\) 0 0
\(529\) −3.50000 6.06218i −0.152174 0.263573i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −1.60770 + 26.7846i −0.0695067 + 1.15800i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 36.0000 1.55063
\(540\) 0 0
\(541\) −2.00000 −0.0859867 −0.0429934 0.999075i \(-0.513689\pi\)
−0.0429934 + 0.999075i \(0.513689\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −4.46410 0.267949i −0.191221 0.0114777i
\(546\) 0 0
\(547\) −24.2487 + 14.0000i −1.03680 + 0.598597i −0.918925 0.394432i \(-0.870941\pi\)
−0.117875 + 0.993028i \(0.537608\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 41.5692 + 24.0000i 1.76770 + 1.02058i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 12.0000i 0.508456i 0.967144 + 0.254228i \(0.0818214\pi\)
−0.967144 + 0.254228i \(0.918179\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −17.3205 10.0000i −0.729972 0.421450i 0.0884397 0.996082i \(-0.471812\pi\)
−0.818412 + 0.574632i \(0.805145\pi\)
\(564\) 0 0
\(565\) 22.3923 + 14.7846i 0.942051 + 0.621993i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 13.0000 + 22.5167i 0.544988 + 0.943948i 0.998608 + 0.0527519i \(0.0167993\pi\)
−0.453619 + 0.891196i \(0.649867\pi\)
\(570\) 0 0
\(571\) −20.0000 + 34.6410i −0.836974 + 1.44968i 0.0554391 + 0.998462i \(0.482344\pi\)
−0.892413 + 0.451219i \(0.850989\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −16.0000 12.0000i −0.667246 0.500435i
\(576\) 0 0
\(577\) 32.0000i 1.33218i 0.745873 + 0.666089i \(0.232033\pi\)
−0.745873 + 0.666089i \(0.767967\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −8.00000 + 13.8564i −0.331896 + 0.574861i
\(582\) 0 0
\(583\) 41.5692 24.0000i 1.72162 0.993978i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 31.1769 18.0000i 1.28681 0.742940i 0.308725 0.951151i \(-0.400098\pi\)
0.978084 + 0.208212i \(0.0667643\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 36.0000i 1.47834i −0.673517 0.739171i \(-0.735217\pi\)
0.673517 0.739171i \(-0.264783\pi\)
\(594\) 0 0
\(595\) −16.0000 32.0000i −0.655936 1.31187i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −12.0000 + 20.7846i −0.490307 + 0.849236i −0.999938 0.0111569i \(-0.996449\pi\)
0.509631 + 0.860393i \(0.329782\pi\)
\(600\) 0 0
\(601\) −19.0000 32.9090i −0.775026 1.34238i −0.934780 0.355228i \(-0.884403\pi\)
0.159754 0.987157i \(-0.448930\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 6.16025 9.33013i 0.250450 0.379324i
\(606\) 0 0
\(607\) −24.2487 14.0000i −0.984225 0.568242i −0.0806818 0.996740i \(-0.525710\pi\)
−0.903543 + 0.428497i \(0.859043\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 8.00000i 0.323117i −0.986863 0.161558i \(-0.948348\pi\)
0.986863 0.161558i \(-0.0516520\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −38.1051 22.0000i −1.53405 0.885687i −0.999169 0.0407620i \(-0.987021\pi\)
−0.534885 0.844925i \(-0.679645\pi\)
\(618\) 0 0
\(619\) −8.00000 13.8564i −0.321547 0.556936i 0.659260 0.751915i \(-0.270870\pi\)
−0.980807 + 0.194979i \(0.937536\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −34.6410 + 20.0000i −1.38786 + 0.801283i
\(624\) 0 0
\(625\) 24.2846 + 5.93782i 0.971384 + 0.237513i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 32.0000 1.27592
\(630\) 0 0
\(631\) −28.0000 −1.11466 −0.557331 0.830290i \(-0.688175\pi\)
−0.557331 + 0.830290i \(0.688175\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −0.535898 + 8.92820i −0.0212665 + 0.354305i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −7.00000 12.1244i −0.276483 0.478883i 0.694025 0.719951i \(-0.255836\pi\)
−0.970508 + 0.241068i \(0.922502\pi\)
\(642\) 0 0
\(643\) −31.1769 18.0000i −1.22950 0.709851i −0.262573 0.964912i \(-0.584571\pi\)
−0.966925 + 0.255062i \(0.917904\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12.0000i 0.471769i −0.971781 0.235884i \(-0.924201\pi\)
0.971781 0.235884i \(-0.0757987\pi\)
\(648\) 0 0
\(649\) 16.0000 0.628055
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −3.46410 2.00000i −0.135561 0.0782660i 0.430686 0.902502i \(-0.358272\pi\)
−0.566247 + 0.824236i \(0.691605\pi\)
\(654\) 0 0
\(655\) 14.7846 22.3923i 0.577683 0.874940i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 14.0000 + 24.2487i 0.545363 + 0.944596i 0.998584 + 0.0531977i \(0.0169414\pi\)
−0.453221 + 0.891398i \(0.649725\pi\)
\(660\) 0 0
\(661\) 11.0000 19.0526i 0.427850 0.741059i −0.568831 0.822454i \(-0.692604\pi\)
0.996682 + 0.0813955i \(0.0259377\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 24.0000i 0.929284i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 4.00000 6.92820i 0.154418 0.267460i
\(672\) 0 0
\(673\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −3.46410 + 2.00000i −0.133136 + 0.0768662i −0.565089 0.825030i \(-0.691158\pi\)
0.431953 + 0.901896i \(0.357825\pi\)
\(678\) 0 0
\(679\) 16.0000 27.7128i 0.614024 1.06352i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 44.0000i 1.68361i −0.539779 0.841807i \(-0.681492\pi\)
0.539779 0.841807i \(-0.318508\pi\)
\(684\) 0 0
\(685\) 24.0000 12.0000i 0.916993 0.458496i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 16.0000 + 27.7128i 0.608669 + 1.05425i 0.991460 + 0.130410i \(0.0416295\pi\)
−0.382791 + 0.923835i \(0.625037\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −19.7128 + 29.8564i −0.747750 + 1.13252i
\(696\) 0 0
\(697\) −34.6410 20.0000i −1.31212 0.757554i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 26.0000 0.982006 0.491003 0.871158i \(-0.336630\pi\)
0.491003 + 0.871158i \(0.336630\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −6.92820 4.00000i −0.260562 0.150435i
\(708\) 0 0
\(709\) −3.00000 5.19615i −0.112667 0.195146i 0.804178 0.594389i \(-0.202606\pi\)
−0.916845 + 0.399244i \(0.869273\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 13.8564 8.00000i 0.518927 0.299602i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −8.00000 −0.298350 −0.149175 0.988811i \(-0.547662\pi\)
−0.149175 + 0.988811i \(0.547662\pi\)
\(720\) 0 0
\(721\) −16.0000 −0.595871
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −11.7846 27.5885i −0.437669 1.02461i
\(726\) 0 0
\(727\) 10.3923 6.00000i 0.385429 0.222528i −0.294749 0.955575i \(-0.595236\pi\)
0.680178 + 0.733047i \(0.261903\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −8.00000 13.8564i −0.295891 0.512498i
\(732\) 0 0
\(733\) 13.8564 + 8.00000i 0.511798 + 0.295487i 0.733572 0.679611i \(-0.237852\pi\)
−0.221774 + 0.975098i \(0.571185\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 16.0000i 0.589368i
\(738\) 0 0
\(739\) −40.0000 −1.47142 −0.735712 0.677295i \(-0.763152\pi\)
−0.735712 + 0.677295i \(0.763152\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −31.1769 18.0000i −1.14377 0.660356i −0.196409 0.980522i \(-0.562928\pi\)
−0.947361 + 0.320166i \(0.896261\pi\)
\(744\) 0 0
\(745\) 2.46410 3.73205i 0.0902777 0.136732i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 24.0000 + 41.5692i 0.876941 + 1.51891i
\(750\) 0 0
\(751\) 14.0000 24.2487i 0.510867 0.884848i −0.489053 0.872254i \(-0.662658\pi\)
0.999921 0.0125942i \(-0.00400897\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −20.0000 40.0000i −0.727875 1.45575i
\(756\) 0 0
\(757\) 16.0000i 0.581530i −0.956795 0.290765i \(-0.906090\pi\)
0.956795 0.290765i \(-0.0939098\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −21.0000 + 36.3731i −0.761249 + 1.31852i 0.180957 + 0.983491i \(0.442080\pi\)
−0.942207 + 0.335032i \(0.891253\pi\)
\(762\) 0 0
\(763\) −6.92820 + 4.00000i −0.250818 + 0.144810i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −9.00000 + 15.5885i −0.324548 + 0.562134i −0.981421 0.191867i \(-0.938546\pi\)
0.656873 + 0.754002i \(0.271879\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 12.0000i 0.431610i −0.976436 0.215805i \(-0.930762\pi\)
0.976436 0.215805i \(-0.0692376\pi\)
\(774\) 0 0
\(775\) −12.0000 + 16.0000i −0.431053 + 0.574737i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −14.9282 9.85641i −0.532810 0.351790i
\(786\) 0 0
\(787\) 24.2487 + 14.0000i 0.864373 + 0.499046i 0.865474 0.500953i \(-0.167017\pi\)
−0.00110111 + 0.999999i \(0.500350\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 48.0000 1.70668
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 24.2487 + 14.0000i 0.858933 + 0.495905i 0.863655 0.504083i \(-0.168170\pi\)
−0.00472155 + 0.999989i \(0.501503\pi\)
\(798\) 0 0
\(799\) −8.00000 13.8564i −0.283020 0.490204i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 27.7128 16.0000i 0.977964 0.564628i
\(804\) 0 0
\(805\) −35.7128 2.14359i −1.25871 0.0755517i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −6.00000 −0.210949 −0.105474 0.994422i \(-0.533636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 0 0
\(811\) 40.0000 1.40459 0.702295 0.711886i \(-0.252159\pi\)
0.702295 + 0.711886i \(0.252159\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 2.67949 44.6410i 0.0938585 1.56371i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 7.00000 + 12.1244i 0.244302 + 0.423143i 0.961935 0.273278i \(-0.0881079\pi\)
−0.717633 + 0.696421i \(0.754775\pi\)
\(822\) 0 0
\(823\) −10.3923 6.00000i −0.362253 0.209147i 0.307816 0.951446i \(-0.400402\pi\)
−0.670069 + 0.742299i \(0.733735\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 28.0000i 0.973655i −0.873498 0.486828i \(-0.838154\pi\)
0.873498 0.486828i \(-0.161846\pi\)
\(828\) 0 0
\(829\) 18.0000 0.625166 0.312583 0.949890i \(-0.398806\pi\)
0.312583 + 0.949890i \(0.398806\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −31.1769 18.0000i −1.08022 0.623663i
\(834\) 0 0
\(835\) −22.3923 14.7846i −0.774918 0.511643i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −28.0000 48.4974i −0.966667 1.67432i −0.705067 0.709141i \(-0.749083\pi\)
−0.261600 0.965176i \(-0.584250\pi\)
\(840\) 0 0
\(841\) −3.50000 + 6.06218i −0.120690 + 0.209041i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 13.0000 + 26.0000i 0.447214 + 0.894427i
\(846\) 0 0
\(847\) 20.0000i 0.687208i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 16.0000 27.7128i 0.548473 0.949983i
\(852\) 0 0
\(853\) 6.92820 4.00000i 0.237217 0.136957i −0.376680 0.926343i \(-0.622934\pi\)
0.613897 + 0.789386i \(0.289601\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 10.3923 6.00000i 0.354994 0.204956i −0.311888 0.950119i \(-0.600962\pi\)
0.666883 + 0.745163i \(0.267628\pi\)
\(858\) 0 0
\(859\) −20.0000 + 34.6410i −0.682391 + 1.18194i 0.291858 + 0.956462i \(0.405727\pi\)
−0.974249 + 0.225475i \(0.927607\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 12.0000i 0.408485i −0.978920 0.204242i \(-0.934527\pi\)
0.978920 0.204242i \(-0.0654731\pi\)
\(864\) 0 0
\(865\) 8.00000 4.00000i 0.272008 0.136004i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 24.0000 41.5692i 0.814144 1.41014i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 42.1051 15.0718i 1.42341 0.509520i
\(876\) 0 0
\(877\) 48.4974 + 28.0000i 1.63764 + 0.945493i 0.981642 + 0.190731i \(0.0610859\pi\)
0.655999 + 0.754761i \(0.272247\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 0 0
\(883\) 12.0000i 0.403832i −0.979403 0.201916i \(-0.935283\pi\)
0.979403 0.201916i \(-0.0647168\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −31.1769 18.0000i −1.04682 0.604381i −0.125061 0.992149i \(-0.539913\pi\)
−0.921757 + 0.387768i \(0.873246\pi\)
\(888\) 0 0
\(889\) 8.00000 + 13.8564i 0.268311 + 0.464729i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 8.92820 + 0.535898i 0.298437 + 0.0179131i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 24.0000 0.800445
\(900\) 0 0
\(901\) −48.0000 −1.59911
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 22.3205 + 1.33975i 0.741959 + 0.0445347i
\(906\) 0 0
\(907\) −10.3923 + 6.00000i −0.345071 + 0.199227i −0.662512 0.749051i \(-0.730510\pi\)
0.317441 + 0.948278i \(0.397176\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −24.0000 41.5692i −0.795155 1.37725i −0.922740 0.385422i \(-0.874056\pi\)
0.127585 0.991828i \(-0.459277\pi\)
\(912\) 0 0
\(913\) 13.8564 + 8.00000i 0.458580 + 0.264761i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 48.0000i 1.58510i
\(918\) 0 0
\(919\) 12.0000 0.395843 0.197922 0.980218i \(-0.436581\pi\)
0.197922 + 0.980218i \(0.436581\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −4.78461 + 39.7128i −0.157317 + 1.30575i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 9.00000 + 15.5885i 0.295280 + 0.511441i 0.975050 0.221985i \(-0.0712536\pi\)
−0.679770 + 0.733426i \(0.737920\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −32.0000 + 16.0000i −1.04651 + 0.523256i
\(936\) 0 0
\(937\) 32.0000i 1.04539i −0.852518 0.522697i \(-0.824926\pi\)
0.852518 0.522697i \(-0.175074\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 5.00000 8.66025i 0.162995 0.282316i −0.772946 0.634472i \(-0.781218\pi\)
0.935942 + 0.352155i \(0.114551\pi\)
\(942\) 0 0
\(943\) −34.6410 + 20.0000i −1.12807 + 0.651290i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −10.3923 + 6.00000i −0.337705 + 0.194974i −0.659256 0.751918i \(-0.729129\pi\)
0.321552 + 0.946892i \(0.395796\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 4.00000i 0.129573i −0.997899 0.0647864i \(-0.979363\pi\)
0.997899 0.0647864i \(-0.0206366\pi\)
\(954\) 0 0
\(955\) 24.0000 + 48.0000i 0.776622 + 1.55324i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 24.0000 41.5692i 0.775000 1.34234i
\(960\) 0 0
\(961\) 7.50000 + 12.9904i 0.241935 + 0.419045i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 29.8564 + 19.7128i 0.961112 + 0.634578i
\(966\) 0 0
\(967\) 17.3205 + 10.0000i 0.556990 + 0.321578i 0.751936 0.659236i \(-0.229120\pi\)
−0.194946 + 0.980814i \(0.562453\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −12.0000 −0.385098 −0.192549 0.981287i \(-0.561675\pi\)
−0.192549 + 0.981287i \(0.561675\pi\)
\(972\) 0 0
\(973\) 64.0000i 2.05175i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −10.3923 6.00000i −0.332479 0.191957i 0.324462 0.945899i \(-0.394817\pi\)
−0.656941 + 0.753942i \(0.728150\pi\)
\(978\) 0 0
\(979\) 20.0000 + 34.6410i 0.639203 + 1.10713i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −24.2487 + 14.0000i −0.773414 + 0.446531i −0.834091 0.551627i \(-0.814007\pi\)
0.0606773 + 0.998157i \(0.480674\pi\)
\(984\) 0 0
\(985\) 0.535898 8.92820i 0.0170751 0.284476i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −16.0000 −0.508770
\(990\) 0 0
\(991\) 28.0000 0.889449 0.444725 0.895667i \(-0.353302\pi\)
0.444725 + 0.895667i \(0.353302\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −26.7846 1.60770i −0.849129 0.0509674i
\(996\) 0 0
\(997\) 20.7846 12.0000i 0.658255 0.380044i −0.133357 0.991068i \(-0.542576\pi\)
0.791612 + 0.611024i \(0.209242\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1620.2.r.c.109.1 4
3.2 odd 2 1620.2.r.d.109.2 4
5.4 even 2 inner 1620.2.r.c.109.2 4
9.2 odd 6 1620.2.r.d.1189.1 4
9.4 even 3 60.2.d.a.49.2 yes 2
9.5 odd 6 180.2.d.a.109.1 2
9.7 even 3 inner 1620.2.r.c.1189.2 4
15.14 odd 2 1620.2.r.d.109.1 4
36.23 even 6 720.2.f.c.289.1 2
36.31 odd 6 240.2.f.b.49.1 2
45.4 even 6 60.2.d.a.49.1 2
45.13 odd 12 300.2.a.a.1.1 1
45.14 odd 6 180.2.d.a.109.2 2
45.22 odd 12 300.2.a.d.1.1 1
45.23 even 12 900.2.a.a.1.1 1
45.29 odd 6 1620.2.r.d.1189.2 4
45.32 even 12 900.2.a.h.1.1 1
45.34 even 6 inner 1620.2.r.c.1189.1 4
63.4 even 3 2940.2.bb.d.1549.2 4
63.13 odd 6 2940.2.k.c.589.1 2
63.31 odd 6 2940.2.bb.e.1549.1 4
63.40 odd 6 2940.2.bb.e.949.2 4
63.58 even 3 2940.2.bb.d.949.1 4
72.5 odd 6 2880.2.f.l.1729.2 2
72.13 even 6 960.2.f.f.769.1 2
72.59 even 6 2880.2.f.p.1729.2 2
72.67 odd 6 960.2.f.c.769.2 2
144.13 even 12 3840.2.d.o.2689.1 2
144.67 odd 12 3840.2.d.be.2689.1 2
144.85 even 12 3840.2.d.r.2689.2 2
144.139 odd 12 3840.2.d.b.2689.2 2
180.23 odd 12 3600.2.a.bm.1.1 1
180.59 even 6 720.2.f.c.289.2 2
180.67 even 12 1200.2.a.a.1.1 1
180.103 even 12 1200.2.a.s.1.1 1
180.139 odd 6 240.2.f.b.49.2 2
180.167 odd 12 3600.2.a.d.1.1 1
315.4 even 6 2940.2.bb.d.1549.1 4
315.94 odd 6 2940.2.bb.e.1549.2 4
315.139 odd 6 2940.2.k.c.589.2 2
315.184 even 6 2940.2.bb.d.949.2 4
315.229 odd 6 2940.2.bb.e.949.1 4
360.13 odd 12 4800.2.a.bn.1.1 1
360.59 even 6 2880.2.f.p.1729.1 2
360.67 even 12 4800.2.a.bk.1.1 1
360.139 odd 6 960.2.f.c.769.1 2
360.149 odd 6 2880.2.f.l.1729.1 2
360.157 odd 12 4800.2.a.bj.1.1 1
360.229 even 6 960.2.f.f.769.2 2
360.283 even 12 4800.2.a.bf.1.1 1
720.139 odd 12 3840.2.d.be.2689.2 2
720.229 even 12 3840.2.d.o.2689.2 2
720.499 odd 12 3840.2.d.b.2689.1 2
720.589 even 12 3840.2.d.r.2689.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
60.2.d.a.49.1 2 45.4 even 6
60.2.d.a.49.2 yes 2 9.4 even 3
180.2.d.a.109.1 2 9.5 odd 6
180.2.d.a.109.2 2 45.14 odd 6
240.2.f.b.49.1 2 36.31 odd 6
240.2.f.b.49.2 2 180.139 odd 6
300.2.a.a.1.1 1 45.13 odd 12
300.2.a.d.1.1 1 45.22 odd 12
720.2.f.c.289.1 2 36.23 even 6
720.2.f.c.289.2 2 180.59 even 6
900.2.a.a.1.1 1 45.23 even 12
900.2.a.h.1.1 1 45.32 even 12
960.2.f.c.769.1 2 360.139 odd 6
960.2.f.c.769.2 2 72.67 odd 6
960.2.f.f.769.1 2 72.13 even 6
960.2.f.f.769.2 2 360.229 even 6
1200.2.a.a.1.1 1 180.67 even 12
1200.2.a.s.1.1 1 180.103 even 12
1620.2.r.c.109.1 4 1.1 even 1 trivial
1620.2.r.c.109.2 4 5.4 even 2 inner
1620.2.r.c.1189.1 4 45.34 even 6 inner
1620.2.r.c.1189.2 4 9.7 even 3 inner
1620.2.r.d.109.1 4 15.14 odd 2
1620.2.r.d.109.2 4 3.2 odd 2
1620.2.r.d.1189.1 4 9.2 odd 6
1620.2.r.d.1189.2 4 45.29 odd 6
2880.2.f.l.1729.1 2 360.149 odd 6
2880.2.f.l.1729.2 2 72.5 odd 6
2880.2.f.p.1729.1 2 360.59 even 6
2880.2.f.p.1729.2 2 72.59 even 6
2940.2.k.c.589.1 2 63.13 odd 6
2940.2.k.c.589.2 2 315.139 odd 6
2940.2.bb.d.949.1 4 63.58 even 3
2940.2.bb.d.949.2 4 315.184 even 6
2940.2.bb.d.1549.1 4 315.4 even 6
2940.2.bb.d.1549.2 4 63.4 even 3
2940.2.bb.e.949.1 4 315.229 odd 6
2940.2.bb.e.949.2 4 63.40 odd 6
2940.2.bb.e.1549.1 4 63.31 odd 6
2940.2.bb.e.1549.2 4 315.94 odd 6
3600.2.a.d.1.1 1 180.167 odd 12
3600.2.a.bm.1.1 1 180.23 odd 12
3840.2.d.b.2689.1 2 720.499 odd 12
3840.2.d.b.2689.2 2 144.139 odd 12
3840.2.d.o.2689.1 2 144.13 even 12
3840.2.d.o.2689.2 2 720.229 even 12
3840.2.d.r.2689.1 2 720.589 even 12
3840.2.d.r.2689.2 2 144.85 even 12
3840.2.d.be.2689.1 2 144.67 odd 12
3840.2.d.be.2689.2 2 720.139 odd 12
4800.2.a.bf.1.1 1 360.283 even 12
4800.2.a.bj.1.1 1 360.157 odd 12
4800.2.a.bk.1.1 1 360.67 even 12
4800.2.a.bn.1.1 1 360.13 odd 12