Properties

Label 3840.2.d.r.2689.1
Level $3840$
Weight $2$
Character 3840.2689
Analytic conductor $30.663$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3840,2,Mod(2689,3840)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3840, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3840.2689");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3840 = 2^{8} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3840.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.6625543762\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 60)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2689.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 3840.2689
Dual form 3840.2.d.r.2689.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +(-2.00000 - 1.00000i) q^{5} -4.00000i q^{7} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{3} +(-2.00000 - 1.00000i) q^{5} -4.00000i q^{7} +1.00000 q^{9} +4.00000i q^{11} +(-2.00000 - 1.00000i) q^{15} +4.00000i q^{17} -4.00000i q^{21} +4.00000i q^{23} +(3.00000 + 4.00000i) q^{25} +1.00000 q^{27} +6.00000i q^{29} +4.00000 q^{31} +4.00000i q^{33} +(-4.00000 + 8.00000i) q^{35} -8.00000 q^{37} +10.0000 q^{41} -4.00000 q^{43} +(-2.00000 - 1.00000i) q^{45} -4.00000i q^{47} -9.00000 q^{49} +4.00000i q^{51} +12.0000 q^{53} +(4.00000 - 8.00000i) q^{55} +4.00000i q^{59} +2.00000i q^{61} -4.00000i q^{63} +4.00000 q^{67} +4.00000i q^{69} -8.00000i q^{73} +(3.00000 + 4.00000i) q^{75} +16.0000 q^{77} +12.0000 q^{79} +1.00000 q^{81} +4.00000 q^{83} +(4.00000 - 8.00000i) q^{85} +6.00000i q^{87} -10.0000 q^{89} +4.00000 q^{93} +8.00000i q^{97} +4.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} - 4 q^{5} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{3} - 4 q^{5} + 2 q^{9} - 4 q^{15} + 6 q^{25} + 2 q^{27} + 8 q^{31} - 8 q^{35} - 16 q^{37} + 20 q^{41} - 8 q^{43} - 4 q^{45} - 18 q^{49} + 24 q^{53} + 8 q^{55} + 8 q^{67} + 6 q^{75} + 32 q^{77} + 24 q^{79} + 2 q^{81} + 8 q^{83} + 8 q^{85} - 20 q^{89} + 8 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3840\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(1537\) \(2561\) \(2821\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −2.00000 1.00000i −0.894427 0.447214i
\(6\) 0 0
\(7\) 4.00000i 1.51186i −0.654654 0.755929i \(-0.727186\pi\)
0.654654 0.755929i \(-0.272814\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 4.00000i 1.20605i 0.797724 + 0.603023i \(0.206037\pi\)
−0.797724 + 0.603023i \(0.793963\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) −2.00000 1.00000i −0.516398 0.258199i
\(16\) 0 0
\(17\) 4.00000i 0.970143i 0.874475 + 0.485071i \(0.161206\pi\)
−0.874475 + 0.485071i \(0.838794\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 4.00000i 0.872872i
\(22\) 0 0
\(23\) 4.00000i 0.834058i 0.908893 + 0.417029i \(0.136929\pi\)
−0.908893 + 0.417029i \(0.863071\pi\)
\(24\) 0 0
\(25\) 3.00000 + 4.00000i 0.600000 + 0.800000i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 6.00000i 1.11417i 0.830455 + 0.557086i \(0.188081\pi\)
−0.830455 + 0.557086i \(0.811919\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 0 0
\(33\) 4.00000i 0.696311i
\(34\) 0 0
\(35\) −4.00000 + 8.00000i −0.676123 + 1.35225i
\(36\) 0 0
\(37\) −8.00000 −1.31519 −0.657596 0.753371i \(-0.728427\pi\)
−0.657596 + 0.753371i \(0.728427\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 10.0000 1.56174 0.780869 0.624695i \(-0.214777\pi\)
0.780869 + 0.624695i \(0.214777\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) −2.00000 1.00000i −0.298142 0.149071i
\(46\) 0 0
\(47\) 4.00000i 0.583460i −0.956501 0.291730i \(-0.905769\pi\)
0.956501 0.291730i \(-0.0942309\pi\)
\(48\) 0 0
\(49\) −9.00000 −1.28571
\(50\) 0 0
\(51\) 4.00000i 0.560112i
\(52\) 0 0
\(53\) 12.0000 1.64833 0.824163 0.566352i \(-0.191646\pi\)
0.824163 + 0.566352i \(0.191646\pi\)
\(54\) 0 0
\(55\) 4.00000 8.00000i 0.539360 1.07872i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.00000i 0.520756i 0.965507 + 0.260378i \(0.0838471\pi\)
−0.965507 + 0.260378i \(0.916153\pi\)
\(60\) 0 0
\(61\) 2.00000i 0.256074i 0.991769 + 0.128037i \(0.0408676\pi\)
−0.991769 + 0.128037i \(0.959132\pi\)
\(62\) 0 0
\(63\) 4.00000i 0.503953i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 0 0
\(69\) 4.00000i 0.481543i
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 8.00000i 0.936329i −0.883641 0.468165i \(-0.844915\pi\)
0.883641 0.468165i \(-0.155085\pi\)
\(74\) 0 0
\(75\) 3.00000 + 4.00000i 0.346410 + 0.461880i
\(76\) 0 0
\(77\) 16.0000 1.82337
\(78\) 0 0
\(79\) 12.0000 1.35011 0.675053 0.737769i \(-0.264121\pi\)
0.675053 + 0.737769i \(0.264121\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) 4.00000 8.00000i 0.433861 0.867722i
\(86\) 0 0
\(87\) 6.00000i 0.643268i
\(88\) 0 0
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 4.00000 0.414781
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 8.00000i 0.812277i 0.913812 + 0.406138i \(0.133125\pi\)
−0.913812 + 0.406138i \(0.866875\pi\)
\(98\) 0 0
\(99\) 4.00000i 0.402015i
\(100\) 0 0
\(101\) 2.00000i 0.199007i 0.995037 + 0.0995037i \(0.0317255\pi\)
−0.995037 + 0.0995037i \(0.968274\pi\)
\(102\) 0 0
\(103\) 4.00000i 0.394132i −0.980390 0.197066i \(-0.936859\pi\)
0.980390 0.197066i \(-0.0631413\pi\)
\(104\) 0 0
\(105\) −4.00000 + 8.00000i −0.390360 + 0.780720i
\(106\) 0 0
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) 0 0
\(109\) 2.00000i 0.191565i 0.995402 + 0.0957826i \(0.0305354\pi\)
−0.995402 + 0.0957826i \(0.969465\pi\)
\(110\) 0 0
\(111\) −8.00000 −0.759326
\(112\) 0 0
\(113\) 12.0000i 1.12887i −0.825479 0.564433i \(-0.809095\pi\)
0.825479 0.564433i \(-0.190905\pi\)
\(114\) 0 0
\(115\) 4.00000 8.00000i 0.373002 0.746004i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 16.0000 1.46672
\(120\) 0 0
\(121\) −5.00000 −0.454545
\(122\) 0 0
\(123\) 10.0000 0.901670
\(124\) 0 0
\(125\) −2.00000 11.0000i −0.178885 0.983870i
\(126\) 0 0
\(127\) 4.00000i 0.354943i 0.984126 + 0.177471i \(0.0567917\pi\)
−0.984126 + 0.177471i \(0.943208\pi\)
\(128\) 0 0
\(129\) −4.00000 −0.352180
\(130\) 0 0
\(131\) 12.0000i 1.04844i 0.851581 + 0.524222i \(0.175644\pi\)
−0.851581 + 0.524222i \(0.824356\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −2.00000 1.00000i −0.172133 0.0860663i
\(136\) 0 0
\(137\) 12.0000i 1.02523i −0.858619 0.512615i \(-0.828677\pi\)
0.858619 0.512615i \(-0.171323\pi\)
\(138\) 0 0
\(139\) 16.0000i 1.35710i 0.734553 + 0.678551i \(0.237392\pi\)
−0.734553 + 0.678551i \(0.762608\pi\)
\(140\) 0 0
\(141\) 4.00000i 0.336861i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 6.00000 12.0000i 0.498273 0.996546i
\(146\) 0 0
\(147\) −9.00000 −0.742307
\(148\) 0 0
\(149\) 2.00000i 0.163846i −0.996639 0.0819232i \(-0.973894\pi\)
0.996639 0.0819232i \(-0.0261062\pi\)
\(150\) 0 0
\(151\) 20.0000 1.62758 0.813788 0.581161i \(-0.197401\pi\)
0.813788 + 0.581161i \(0.197401\pi\)
\(152\) 0 0
\(153\) 4.00000i 0.323381i
\(154\) 0 0
\(155\) −8.00000 4.00000i −0.642575 0.321288i
\(156\) 0 0
\(157\) −8.00000 −0.638470 −0.319235 0.947676i \(-0.603426\pi\)
−0.319235 + 0.947676i \(0.603426\pi\)
\(158\) 0 0
\(159\) 12.0000 0.951662
\(160\) 0 0
\(161\) 16.0000 1.26098
\(162\) 0 0
\(163\) 20.0000 1.56652 0.783260 0.621694i \(-0.213555\pi\)
0.783260 + 0.621694i \(0.213555\pi\)
\(164\) 0 0
\(165\) 4.00000 8.00000i 0.311400 0.622799i
\(166\) 0 0
\(167\) 12.0000i 0.928588i −0.885681 0.464294i \(-0.846308\pi\)
0.885681 0.464294i \(-0.153692\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −4.00000 −0.304114 −0.152057 0.988372i \(-0.548590\pi\)
−0.152057 + 0.988372i \(0.548590\pi\)
\(174\) 0 0
\(175\) 16.0000 12.0000i 1.20949 0.907115i
\(176\) 0 0
\(177\) 4.00000i 0.300658i
\(178\) 0 0
\(179\) 4.00000i 0.298974i −0.988764 0.149487i \(-0.952238\pi\)
0.988764 0.149487i \(-0.0477622\pi\)
\(180\) 0 0
\(181\) 10.0000i 0.743294i 0.928374 + 0.371647i \(0.121207\pi\)
−0.928374 + 0.371647i \(0.878793\pi\)
\(182\) 0 0
\(183\) 2.00000i 0.147844i
\(184\) 0 0
\(185\) 16.0000 + 8.00000i 1.17634 + 0.588172i
\(186\) 0 0
\(187\) −16.0000 −1.17004
\(188\) 0 0
\(189\) 4.00000i 0.290957i
\(190\) 0 0
\(191\) 24.0000 1.73658 0.868290 0.496058i \(-0.165220\pi\)
0.868290 + 0.496058i \(0.165220\pi\)
\(192\) 0 0
\(193\) 16.0000i 1.15171i −0.817554 0.575853i \(-0.804670\pi\)
0.817554 0.575853i \(-0.195330\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −4.00000 −0.284988 −0.142494 0.989796i \(-0.545512\pi\)
−0.142494 + 0.989796i \(0.545512\pi\)
\(198\) 0 0
\(199\) −12.0000 −0.850657 −0.425329 0.905039i \(-0.639842\pi\)
−0.425329 + 0.905039i \(0.639842\pi\)
\(200\) 0 0
\(201\) 4.00000 0.282138
\(202\) 0 0
\(203\) 24.0000 1.68447
\(204\) 0 0
\(205\) −20.0000 10.0000i −1.39686 0.698430i
\(206\) 0 0
\(207\) 4.00000i 0.278019i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 8.00000 + 4.00000i 0.545595 + 0.272798i
\(216\) 0 0
\(217\) 16.0000i 1.08615i
\(218\) 0 0
\(219\) 8.00000i 0.540590i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 20.0000i 1.33930i 0.742677 + 0.669650i \(0.233556\pi\)
−0.742677 + 0.669650i \(0.766444\pi\)
\(224\) 0 0
\(225\) 3.00000 + 4.00000i 0.200000 + 0.266667i
\(226\) 0 0
\(227\) 20.0000 1.32745 0.663723 0.747978i \(-0.268975\pi\)
0.663723 + 0.747978i \(0.268975\pi\)
\(228\) 0 0
\(229\) 26.0000i 1.71813i 0.511868 + 0.859064i \(0.328954\pi\)
−0.511868 + 0.859064i \(0.671046\pi\)
\(230\) 0 0
\(231\) 16.0000 1.05272
\(232\) 0 0
\(233\) 20.0000i 1.31024i 0.755523 + 0.655122i \(0.227383\pi\)
−0.755523 + 0.655122i \(0.772617\pi\)
\(234\) 0 0
\(235\) −4.00000 + 8.00000i −0.260931 + 0.521862i
\(236\) 0 0
\(237\) 12.0000 0.779484
\(238\) 0 0
\(239\) −8.00000 −0.517477 −0.258738 0.965947i \(-0.583307\pi\)
−0.258738 + 0.965947i \(0.583307\pi\)
\(240\) 0 0
\(241\) −2.00000 −0.128831 −0.0644157 0.997923i \(-0.520518\pi\)
−0.0644157 + 0.997923i \(0.520518\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 18.0000 + 9.00000i 1.14998 + 0.574989i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 4.00000 0.253490
\(250\) 0 0
\(251\) 12.0000i 0.757433i 0.925513 + 0.378717i \(0.123635\pi\)
−0.925513 + 0.378717i \(0.876365\pi\)
\(252\) 0 0
\(253\) −16.0000 −1.00591
\(254\) 0 0
\(255\) 4.00000 8.00000i 0.250490 0.500979i
\(256\) 0 0
\(257\) 12.0000i 0.748539i 0.927320 + 0.374270i \(0.122107\pi\)
−0.927320 + 0.374270i \(0.877893\pi\)
\(258\) 0 0
\(259\) 32.0000i 1.98838i
\(260\) 0 0
\(261\) 6.00000i 0.371391i
\(262\) 0 0
\(263\) 4.00000i 0.246651i 0.992366 + 0.123325i \(0.0393559\pi\)
−0.992366 + 0.123325i \(0.960644\pi\)
\(264\) 0 0
\(265\) −24.0000 12.0000i −1.47431 0.737154i
\(266\) 0 0
\(267\) −10.0000 −0.611990
\(268\) 0 0
\(269\) 6.00000i 0.365826i −0.983129 0.182913i \(-0.941447\pi\)
0.983129 0.182913i \(-0.0585527\pi\)
\(270\) 0 0
\(271\) 4.00000 0.242983 0.121491 0.992592i \(-0.461232\pi\)
0.121491 + 0.992592i \(0.461232\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −16.0000 + 12.0000i −0.964836 + 0.723627i
\(276\) 0 0
\(277\) −32.0000 −1.92269 −0.961347 0.275340i \(-0.911209\pi\)
−0.961347 + 0.275340i \(0.911209\pi\)
\(278\) 0 0
\(279\) 4.00000 0.239474
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) 28.0000 1.66443 0.832214 0.554455i \(-0.187073\pi\)
0.832214 + 0.554455i \(0.187073\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 40.0000i 2.36113i
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 8.00000i 0.468968i
\(292\) 0 0
\(293\) −12.0000 −0.701047 −0.350524 0.936554i \(-0.613996\pi\)
−0.350524 + 0.936554i \(0.613996\pi\)
\(294\) 0 0
\(295\) 4.00000 8.00000i 0.232889 0.465778i
\(296\) 0 0
\(297\) 4.00000i 0.232104i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 16.0000i 0.922225i
\(302\) 0 0
\(303\) 2.00000i 0.114897i
\(304\) 0 0
\(305\) 2.00000 4.00000i 0.114520 0.229039i
\(306\) 0 0
\(307\) −12.0000 −0.684876 −0.342438 0.939540i \(-0.611253\pi\)
−0.342438 + 0.939540i \(0.611253\pi\)
\(308\) 0 0
\(309\) 4.00000i 0.227552i
\(310\) 0 0
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) 0 0
\(313\) 16.0000i 0.904373i 0.891923 + 0.452187i \(0.149356\pi\)
−0.891923 + 0.452187i \(0.850644\pi\)
\(314\) 0 0
\(315\) −4.00000 + 8.00000i −0.225374 + 0.450749i
\(316\) 0 0
\(317\) −4.00000 −0.224662 −0.112331 0.993671i \(-0.535832\pi\)
−0.112331 + 0.993671i \(0.535832\pi\)
\(318\) 0 0
\(319\) −24.0000 −1.34374
\(320\) 0 0
\(321\) 12.0000 0.669775
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 2.00000i 0.110600i
\(328\) 0 0
\(329\) −16.0000 −0.882109
\(330\) 0 0
\(331\) 8.00000i 0.439720i 0.975531 + 0.219860i \(0.0705600\pi\)
−0.975531 + 0.219860i \(0.929440\pi\)
\(332\) 0 0
\(333\) −8.00000 −0.438397
\(334\) 0 0
\(335\) −8.00000 4.00000i −0.437087 0.218543i
\(336\) 0 0
\(337\) 8.00000i 0.435788i −0.975972 0.217894i \(-0.930081\pi\)
0.975972 0.217894i \(-0.0699187\pi\)
\(338\) 0 0
\(339\) 12.0000i 0.651751i
\(340\) 0 0
\(341\) 16.0000i 0.866449i
\(342\) 0 0
\(343\) 8.00000i 0.431959i
\(344\) 0 0
\(345\) 4.00000 8.00000i 0.215353 0.430706i
\(346\) 0 0
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 0 0
\(349\) 14.0000i 0.749403i 0.927146 + 0.374701i \(0.122255\pi\)
−0.927146 + 0.374701i \(0.877745\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 28.0000i 1.49029i 0.666903 + 0.745145i \(0.267620\pi\)
−0.666903 + 0.745145i \(0.732380\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 16.0000 0.846810
\(358\) 0 0
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) −5.00000 −0.262432
\(364\) 0 0
\(365\) −8.00000 + 16.0000i −0.418739 + 0.837478i
\(366\) 0 0
\(367\) 4.00000i 0.208798i 0.994535 + 0.104399i \(0.0332919\pi\)
−0.994535 + 0.104399i \(0.966708\pi\)
\(368\) 0 0
\(369\) 10.0000 0.520579
\(370\) 0 0
\(371\) 48.0000i 2.49204i
\(372\) 0 0
\(373\) −24.0000 −1.24267 −0.621336 0.783544i \(-0.713410\pi\)
−0.621336 + 0.783544i \(0.713410\pi\)
\(374\) 0 0
\(375\) −2.00000 11.0000i −0.103280 0.568038i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 8.00000i 0.410932i 0.978664 + 0.205466i \(0.0658711\pi\)
−0.978664 + 0.205466i \(0.934129\pi\)
\(380\) 0 0
\(381\) 4.00000i 0.204926i
\(382\) 0 0
\(383\) 28.0000i 1.43073i 0.698749 + 0.715367i \(0.253740\pi\)
−0.698749 + 0.715367i \(0.746260\pi\)
\(384\) 0 0
\(385\) −32.0000 16.0000i −1.63087 0.815436i
\(386\) 0 0
\(387\) −4.00000 −0.203331
\(388\) 0 0
\(389\) 34.0000i 1.72387i −0.507020 0.861934i \(-0.669253\pi\)
0.507020 0.861934i \(-0.330747\pi\)
\(390\) 0 0
\(391\) −16.0000 −0.809155
\(392\) 0 0
\(393\) 12.0000i 0.605320i
\(394\) 0 0
\(395\) −24.0000 12.0000i −1.20757 0.603786i
\(396\) 0 0
\(397\) 8.00000 0.401508 0.200754 0.979642i \(-0.435661\pi\)
0.200754 + 0.979642i \(0.435661\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −14.0000 −0.699127 −0.349563 0.936913i \(-0.613670\pi\)
−0.349563 + 0.936913i \(0.613670\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −2.00000 1.00000i −0.0993808 0.0496904i
\(406\) 0 0
\(407\) 32.0000i 1.58618i
\(408\) 0 0
\(409\) 26.0000 1.28562 0.642809 0.766027i \(-0.277769\pi\)
0.642809 + 0.766027i \(0.277769\pi\)
\(410\) 0 0
\(411\) 12.0000i 0.591916i
\(412\) 0 0
\(413\) 16.0000 0.787309
\(414\) 0 0
\(415\) −8.00000 4.00000i −0.392705 0.196352i
\(416\) 0 0
\(417\) 16.0000i 0.783523i
\(418\) 0 0
\(419\) 28.0000i 1.36789i 0.729534 + 0.683945i \(0.239737\pi\)
−0.729534 + 0.683945i \(0.760263\pi\)
\(420\) 0 0
\(421\) 10.0000i 0.487370i −0.969854 0.243685i \(-0.921644\pi\)
0.969854 0.243685i \(-0.0783563\pi\)
\(422\) 0 0
\(423\) 4.00000i 0.194487i
\(424\) 0 0
\(425\) −16.0000 + 12.0000i −0.776114 + 0.582086i
\(426\) 0 0
\(427\) 8.00000 0.387147
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 8.00000 0.385346 0.192673 0.981263i \(-0.438284\pi\)
0.192673 + 0.981263i \(0.438284\pi\)
\(432\) 0 0
\(433\) 16.0000i 0.768911i −0.923144 0.384455i \(-0.874389\pi\)
0.923144 0.384455i \(-0.125611\pi\)
\(434\) 0 0
\(435\) 6.00000 12.0000i 0.287678 0.575356i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −12.0000 −0.572729 −0.286364 0.958121i \(-0.592447\pi\)
−0.286364 + 0.958121i \(0.592447\pi\)
\(440\) 0 0
\(441\) −9.00000 −0.428571
\(442\) 0 0
\(443\) −36.0000 −1.71041 −0.855206 0.518289i \(-0.826569\pi\)
−0.855206 + 0.518289i \(0.826569\pi\)
\(444\) 0 0
\(445\) 20.0000 + 10.0000i 0.948091 + 0.474045i
\(446\) 0 0
\(447\) 2.00000i 0.0945968i
\(448\) 0 0
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) 40.0000i 1.88353i
\(452\) 0 0
\(453\) 20.0000 0.939682
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 40.0000i 1.87112i −0.353166 0.935561i \(-0.614895\pi\)
0.353166 0.935561i \(-0.385105\pi\)
\(458\) 0 0
\(459\) 4.00000i 0.186704i
\(460\) 0 0
\(461\) 6.00000i 0.279448i 0.990190 + 0.139724i \(0.0446215\pi\)
−0.990190 + 0.139724i \(0.955378\pi\)
\(462\) 0 0
\(463\) 12.0000i 0.557687i −0.960337 0.278844i \(-0.910049\pi\)
0.960337 0.278844i \(-0.0899511\pi\)
\(464\) 0 0
\(465\) −8.00000 4.00000i −0.370991 0.185496i
\(466\) 0 0
\(467\) −12.0000 −0.555294 −0.277647 0.960683i \(-0.589555\pi\)
−0.277647 + 0.960683i \(0.589555\pi\)
\(468\) 0 0
\(469\) 16.0000i 0.738811i
\(470\) 0 0
\(471\) −8.00000 −0.368621
\(472\) 0 0
\(473\) 16.0000i 0.735681i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 12.0000 0.549442
\(478\) 0 0
\(479\) 16.0000 0.731059 0.365529 0.930800i \(-0.380888\pi\)
0.365529 + 0.930800i \(0.380888\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 16.0000 0.728025
\(484\) 0 0
\(485\) 8.00000 16.0000i 0.363261 0.726523i
\(486\) 0 0
\(487\) 12.0000i 0.543772i 0.962329 + 0.271886i \(0.0876473\pi\)
−0.962329 + 0.271886i \(0.912353\pi\)
\(488\) 0 0
\(489\) 20.0000 0.904431
\(490\) 0 0
\(491\) 36.0000i 1.62466i 0.583200 + 0.812329i \(0.301800\pi\)
−0.583200 + 0.812329i \(0.698200\pi\)
\(492\) 0 0
\(493\) −24.0000 −1.08091
\(494\) 0 0
\(495\) 4.00000 8.00000i 0.179787 0.359573i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 24.0000i 1.07439i −0.843459 0.537194i \(-0.819484\pi\)
0.843459 0.537194i \(-0.180516\pi\)
\(500\) 0 0
\(501\) 12.0000i 0.536120i
\(502\) 0 0
\(503\) 36.0000i 1.60516i 0.596544 + 0.802580i \(0.296540\pi\)
−0.596544 + 0.802580i \(0.703460\pi\)
\(504\) 0 0
\(505\) 2.00000 4.00000i 0.0889988 0.177998i
\(506\) 0 0
\(507\) −13.0000 −0.577350
\(508\) 0 0
\(509\) 42.0000i 1.86162i −0.365507 0.930809i \(-0.619104\pi\)
0.365507 0.930809i \(-0.380896\pi\)
\(510\) 0 0
\(511\) −32.0000 −1.41560
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −4.00000 + 8.00000i −0.176261 + 0.352522i
\(516\) 0 0
\(517\) 16.0000 0.703679
\(518\) 0 0
\(519\) −4.00000 −0.175581
\(520\) 0 0
\(521\) 38.0000 1.66481 0.832405 0.554168i \(-0.186963\pi\)
0.832405 + 0.554168i \(0.186963\pi\)
\(522\) 0 0
\(523\) 28.0000 1.22435 0.612177 0.790721i \(-0.290294\pi\)
0.612177 + 0.790721i \(0.290294\pi\)
\(524\) 0 0
\(525\) 16.0000 12.0000i 0.698297 0.523723i
\(526\) 0 0
\(527\) 16.0000i 0.696971i
\(528\) 0 0
\(529\) 7.00000 0.304348
\(530\) 0 0
\(531\) 4.00000i 0.173585i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −24.0000 12.0000i −1.03761 0.518805i
\(536\) 0 0
\(537\) 4.00000i 0.172613i
\(538\) 0 0
\(539\) 36.0000i 1.55063i
\(540\) 0 0
\(541\) 2.00000i 0.0859867i −0.999075 0.0429934i \(-0.986311\pi\)
0.999075 0.0429934i \(-0.0136894\pi\)
\(542\) 0 0
\(543\) 10.0000i 0.429141i
\(544\) 0 0
\(545\) 2.00000 4.00000i 0.0856706 0.171341i
\(546\) 0 0
\(547\) −28.0000 −1.19719 −0.598597 0.801050i \(-0.704275\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) 0 0
\(549\) 2.00000i 0.0853579i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 48.0000i 2.04117i
\(554\) 0 0
\(555\) 16.0000 + 8.00000i 0.679162 + 0.339581i
\(556\) 0 0
\(557\) 12.0000 0.508456 0.254228 0.967144i \(-0.418179\pi\)
0.254228 + 0.967144i \(0.418179\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −16.0000 −0.675521
\(562\) 0 0
\(563\) 20.0000 0.842900 0.421450 0.906852i \(-0.361521\pi\)
0.421450 + 0.906852i \(0.361521\pi\)
\(564\) 0 0
\(565\) −12.0000 + 24.0000i −0.504844 + 1.00969i
\(566\) 0 0
\(567\) 4.00000i 0.167984i
\(568\) 0 0
\(569\) 26.0000 1.08998 0.544988 0.838444i \(-0.316534\pi\)
0.544988 + 0.838444i \(0.316534\pi\)
\(570\) 0 0
\(571\) 40.0000i 1.67395i −0.547243 0.836974i \(-0.684323\pi\)
0.547243 0.836974i \(-0.315677\pi\)
\(572\) 0 0
\(573\) 24.0000 1.00261
\(574\) 0 0
\(575\) −16.0000 + 12.0000i −0.667246 + 0.500435i
\(576\) 0 0
\(577\) 32.0000i 1.33218i −0.745873 0.666089i \(-0.767967\pi\)
0.745873 0.666089i \(-0.232033\pi\)
\(578\) 0 0
\(579\) 16.0000i 0.664937i
\(580\) 0 0
\(581\) 16.0000i 0.663792i
\(582\) 0 0
\(583\) 48.0000i 1.98796i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −36.0000 −1.48588 −0.742940 0.669359i \(-0.766569\pi\)
−0.742940 + 0.669359i \(0.766569\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −4.00000 −0.164538
\(592\) 0 0
\(593\) 36.0000i 1.47834i 0.673517 + 0.739171i \(0.264783\pi\)
−0.673517 + 0.739171i \(0.735217\pi\)
\(594\) 0 0
\(595\) −32.0000 16.0000i −1.31187 0.655936i
\(596\) 0 0
\(597\) −12.0000 −0.491127
\(598\) 0 0
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 0 0
\(601\) −38.0000 −1.55005 −0.775026 0.631929i \(-0.782263\pi\)
−0.775026 + 0.631929i \(0.782263\pi\)
\(602\) 0 0
\(603\) 4.00000 0.162893
\(604\) 0 0
\(605\) 10.0000 + 5.00000i 0.406558 + 0.203279i
\(606\) 0 0
\(607\) 28.0000i 1.13648i −0.822861 0.568242i \(-0.807624\pi\)
0.822861 0.568242i \(-0.192376\pi\)
\(608\) 0 0
\(609\) 24.0000 0.972529
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 8.00000 0.323117 0.161558 0.986863i \(-0.448348\pi\)
0.161558 + 0.986863i \(0.448348\pi\)
\(614\) 0 0
\(615\) −20.0000 10.0000i −0.806478 0.403239i
\(616\) 0 0
\(617\) 44.0000i 1.77137i 0.464283 + 0.885687i \(0.346312\pi\)
−0.464283 + 0.885687i \(0.653688\pi\)
\(618\) 0 0
\(619\) 16.0000i 0.643094i −0.946894 0.321547i \(-0.895797\pi\)
0.946894 0.321547i \(-0.104203\pi\)
\(620\) 0 0
\(621\) 4.00000i 0.160514i
\(622\) 0 0
\(623\) 40.0000i 1.60257i
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 32.0000i 1.27592i
\(630\) 0 0
\(631\) 28.0000 1.11466 0.557331 0.830290i \(-0.311825\pi\)
0.557331 + 0.830290i \(0.311825\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 4.00000 8.00000i 0.158735 0.317470i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 14.0000 0.552967 0.276483 0.961019i \(-0.410831\pi\)
0.276483 + 0.961019i \(0.410831\pi\)
\(642\) 0 0
\(643\) 36.0000 1.41970 0.709851 0.704352i \(-0.248762\pi\)
0.709851 + 0.704352i \(0.248762\pi\)
\(644\) 0 0
\(645\) 8.00000 + 4.00000i 0.315000 + 0.157500i
\(646\) 0 0
\(647\) 12.0000i 0.471769i −0.971781 0.235884i \(-0.924201\pi\)
0.971781 0.235884i \(-0.0757987\pi\)
\(648\) 0 0
\(649\) −16.0000 −0.628055
\(650\) 0 0
\(651\) 16.0000i 0.627089i
\(652\) 0 0
\(653\) 4.00000 0.156532 0.0782660 0.996933i \(-0.475062\pi\)
0.0782660 + 0.996933i \(0.475062\pi\)
\(654\) 0 0
\(655\) 12.0000 24.0000i 0.468879 0.937758i
\(656\) 0 0
\(657\) 8.00000i 0.312110i
\(658\) 0 0
\(659\) 28.0000i 1.09073i −0.838200 0.545363i \(-0.816392\pi\)
0.838200 0.545363i \(-0.183608\pi\)
\(660\) 0 0
\(661\) 22.0000i 0.855701i 0.903850 + 0.427850i \(0.140729\pi\)
−0.903850 + 0.427850i \(0.859271\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −24.0000 −0.929284
\(668\) 0 0
\(669\) 20.0000i 0.773245i
\(670\) 0 0
\(671\) −8.00000 −0.308837
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 3.00000 + 4.00000i 0.115470 + 0.153960i
\(676\) 0 0
\(677\) 4.00000 0.153732 0.0768662 0.997041i \(-0.475509\pi\)
0.0768662 + 0.997041i \(0.475509\pi\)
\(678\) 0 0
\(679\) 32.0000 1.22805
\(680\) 0 0
\(681\) 20.0000 0.766402
\(682\) 0 0
\(683\) 44.0000 1.68361 0.841807 0.539779i \(-0.181492\pi\)
0.841807 + 0.539779i \(0.181492\pi\)
\(684\) 0 0
\(685\) −12.0000 + 24.0000i −0.458496 + 0.916993i
\(686\) 0 0
\(687\) 26.0000i 0.991962i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 32.0000i 1.21734i −0.793424 0.608669i \(-0.791704\pi\)
0.793424 0.608669i \(-0.208296\pi\)
\(692\) 0 0
\(693\) 16.0000 0.607790
\(694\) 0 0
\(695\) 16.0000 32.0000i 0.606915 1.21383i
\(696\) 0 0
\(697\) 40.0000i 1.51511i
\(698\) 0 0
\(699\) 20.0000i 0.756469i
\(700\) 0 0
\(701\) 26.0000i 0.982006i 0.871158 + 0.491003i \(0.163370\pi\)
−0.871158 + 0.491003i \(0.836630\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −4.00000 + 8.00000i −0.150649 + 0.301297i
\(706\) 0 0
\(707\) 8.00000 0.300871
\(708\) 0 0
\(709\) 6.00000i 0.225335i −0.993633 0.112667i \(-0.964061\pi\)
0.993633 0.112667i \(-0.0359394\pi\)
\(710\) 0 0
\(711\) 12.0000 0.450035
\(712\) 0 0
\(713\) 16.0000i 0.599205i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −8.00000 −0.298765
\(718\) 0 0
\(719\) −8.00000 −0.298350 −0.149175 0.988811i \(-0.547662\pi\)
−0.149175 + 0.988811i \(0.547662\pi\)
\(720\) 0 0
\(721\) −16.0000 −0.595871
\(722\) 0 0
\(723\) −2.00000 −0.0743808
\(724\) 0 0
\(725\) −24.0000 + 18.0000i −0.891338 + 0.668503i
\(726\) 0 0
\(727\) 12.0000i 0.445055i 0.974926 + 0.222528i \(0.0714308\pi\)
−0.974926 + 0.222528i \(0.928569\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 16.0000i 0.591781i
\(732\) 0 0
\(733\) −16.0000 −0.590973 −0.295487 0.955347i \(-0.595482\pi\)
−0.295487 + 0.955347i \(0.595482\pi\)
\(734\) 0 0
\(735\) 18.0000 + 9.00000i 0.663940 + 0.331970i
\(736\) 0 0
\(737\) 16.0000i 0.589368i
\(738\) 0 0
\(739\) 40.0000i 1.47142i −0.677295 0.735712i \(-0.736848\pi\)
0.677295 0.735712i \(-0.263152\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 36.0000i 1.32071i 0.750953 + 0.660356i \(0.229595\pi\)
−0.750953 + 0.660356i \(0.770405\pi\)
\(744\) 0 0
\(745\) −2.00000 + 4.00000i −0.0732743 + 0.146549i
\(746\) 0 0
\(747\) 4.00000 0.146352
\(748\) 0 0
\(749\) 48.0000i 1.75388i
\(750\) 0 0
\(751\) −28.0000 −1.02173 −0.510867 0.859660i \(-0.670676\pi\)
−0.510867 + 0.859660i \(0.670676\pi\)
\(752\) 0 0
\(753\) 12.0000i 0.437304i
\(754\) 0 0
\(755\) −40.0000 20.0000i −1.45575 0.727875i
\(756\) 0 0
\(757\) 16.0000 0.581530 0.290765 0.956795i \(-0.406090\pi\)
0.290765 + 0.956795i \(0.406090\pi\)
\(758\) 0 0
\(759\) −16.0000 −0.580763
\(760\) 0 0
\(761\) −42.0000 −1.52250 −0.761249 0.648459i \(-0.775414\pi\)
−0.761249 + 0.648459i \(0.775414\pi\)
\(762\) 0 0
\(763\) 8.00000 0.289619
\(764\) 0 0
\(765\) 4.00000 8.00000i 0.144620 0.289241i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 18.0000 0.649097 0.324548 0.945869i \(-0.394788\pi\)
0.324548 + 0.945869i \(0.394788\pi\)
\(770\) 0 0
\(771\) 12.0000i 0.432169i
\(772\) 0 0
\(773\) 12.0000 0.431610 0.215805 0.976436i \(-0.430762\pi\)
0.215805 + 0.976436i \(0.430762\pi\)
\(774\) 0 0
\(775\) 12.0000 + 16.0000i 0.431053 + 0.574737i
\(776\) 0 0
\(777\) 32.0000i 1.14799i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 6.00000i 0.214423i
\(784\) 0 0
\(785\) 16.0000 + 8.00000i 0.571064 + 0.285532i
\(786\) 0 0
\(787\) −28.0000 −0.998092 −0.499046 0.866575i \(-0.666316\pi\)
−0.499046 + 0.866575i \(0.666316\pi\)
\(788\) 0 0
\(789\) 4.00000i 0.142404i
\(790\) 0 0
\(791\) −48.0000 −1.70668
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −24.0000 12.0000i −0.851192 0.425596i
\(796\) 0 0
\(797\) −28.0000 −0.991811 −0.495905 0.868377i \(-0.665164\pi\)
−0.495905 + 0.868377i \(0.665164\pi\)
\(798\) 0 0
\(799\) 16.0000 0.566039
\(800\) 0 0
\(801\) −10.0000 −0.353333
\(802\) 0 0
\(803\) 32.0000 1.12926
\(804\) 0 0
\(805\) −32.0000 16.0000i −1.12785 0.563926i
\(806\) 0 0
\(807\) 6.00000i 0.211210i
\(808\) 0 0
\(809\) 6.00000 0.210949 0.105474 0.994422i \(-0.466364\pi\)
0.105474 + 0.994422i \(0.466364\pi\)
\(810\) 0 0
\(811\) 40.0000i 1.40459i −0.711886 0.702295i \(-0.752159\pi\)
0.711886 0.702295i \(-0.247841\pi\)
\(812\) 0 0
\(813\) 4.00000 0.140286
\(814\) 0 0
\(815\) −40.0000 20.0000i −1.40114 0.700569i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 14.0000i 0.488603i 0.969699 + 0.244302i \(0.0785587\pi\)
−0.969699 + 0.244302i \(0.921441\pi\)
\(822\) 0 0
\(823\) 12.0000i 0.418294i 0.977884 + 0.209147i \(0.0670687\pi\)
−0.977884 + 0.209147i \(0.932931\pi\)
\(824\) 0 0
\(825\) −16.0000 + 12.0000i −0.557048 + 0.417786i
\(826\) 0 0
\(827\) 28.0000 0.973655 0.486828 0.873498i \(-0.338154\pi\)
0.486828 + 0.873498i \(0.338154\pi\)
\(828\) 0 0
\(829\) 18.0000i 0.625166i 0.949890 + 0.312583i \(0.101194\pi\)
−0.949890 + 0.312583i \(0.898806\pi\)
\(830\) 0 0
\(831\) −32.0000 −1.11007
\(832\) 0 0
\(833\) 36.0000i 1.24733i
\(834\) 0 0
\(835\) −12.0000 + 24.0000i −0.415277 + 0.830554i
\(836\) 0 0
\(837\) 4.00000 0.138260
\(838\) 0 0
\(839\) −56.0000 −1.93333 −0.966667 0.256036i \(-0.917584\pi\)
−0.966667 + 0.256036i \(0.917584\pi\)
\(840\) 0 0
\(841\) −7.00000 −0.241379
\(842\) 0 0
\(843\) −6.00000 −0.206651
\(844\) 0 0
\(845\) 26.0000 + 13.0000i 0.894427 + 0.447214i
\(846\) 0 0
\(847\) 20.0000i 0.687208i
\(848\) 0 0
\(849\) 28.0000 0.960958
\(850\) 0 0
\(851\) 32.0000i 1.09695i
\(852\) 0 0
\(853\) −8.00000 −0.273915 −0.136957 0.990577i \(-0.543732\pi\)
−0.136957 + 0.990577i \(0.543732\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 12.0000i 0.409912i 0.978771 + 0.204956i \(0.0657052\pi\)
−0.978771 + 0.204956i \(0.934295\pi\)
\(858\) 0 0
\(859\) 40.0000i 1.36478i −0.730987 0.682391i \(-0.760940\pi\)
0.730987 0.682391i \(-0.239060\pi\)
\(860\) 0 0
\(861\) 40.0000i 1.36320i
\(862\) 0 0
\(863\) 12.0000i 0.408485i 0.978920 + 0.204242i \(0.0654731\pi\)
−0.978920 + 0.204242i \(0.934527\pi\)
\(864\) 0 0
\(865\) 8.00000 + 4.00000i 0.272008 + 0.136004i
\(866\) 0 0
\(867\) 1.00000 0.0339618
\(868\) 0 0
\(869\) 48.0000i 1.62829i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 8.00000i 0.270759i
\(874\) 0 0
\(875\) −44.0000 + 8.00000i −1.48747 + 0.270449i
\(876\) 0 0
\(877\) −56.0000 −1.89099 −0.945493 0.325643i \(-0.894419\pi\)
−0.945493 + 0.325643i \(0.894419\pi\)
\(878\) 0 0
\(879\) −12.0000 −0.404750
\(880\) 0 0
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 0 0
\(883\) −12.0000 −0.403832 −0.201916 0.979403i \(-0.564717\pi\)
−0.201916 + 0.979403i \(0.564717\pi\)
\(884\) 0 0
\(885\) 4.00000 8.00000i 0.134459 0.268917i
\(886\) 0 0
\(887\) 36.0000i 1.20876i 0.796696 + 0.604381i \(0.206579\pi\)
−0.796696 + 0.604381i \(0.793421\pi\)
\(888\) 0 0
\(889\) 16.0000 0.536623
\(890\) 0 0
\(891\) 4.00000i 0.134005i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −4.00000 + 8.00000i −0.133705 + 0.267411i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 24.0000i 0.800445i
\(900\) 0 0
\(901\) 48.0000i 1.59911i
\(902\) 0 0
\(903\) 16.0000i 0.532447i
\(904\) 0 0
\(905\) 10.0000 20.0000i 0.332411 0.664822i
\(906\) 0 0
\(907\) 12.0000 0.398453 0.199227 0.979953i \(-0.436157\pi\)
0.199227 + 0.979953i \(0.436157\pi\)
\(908\) 0 0
\(909\) 2.00000i 0.0663358i
\(910\) 0 0
\(911\) 48.0000 1.59031 0.795155 0.606406i \(-0.207389\pi\)
0.795155 + 0.606406i \(0.207389\pi\)
\(912\) 0 0
\(913\) 16.0000i 0.529523i
\(914\) 0 0
\(915\) 2.00000 4.00000i 0.0661180 0.132236i
\(916\) 0 0
\(917\) 48.0000 1.58510
\(918\) 0 0
\(919\) −12.0000 −0.395843 −0.197922 0.980218i \(-0.563419\pi\)
−0.197922 + 0.980218i \(0.563419\pi\)
\(920\) 0 0
\(921\) −12.0000 −0.395413
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −24.0000 32.0000i −0.789115 1.05215i
\(926\) 0 0
\(927\) 4.00000i 0.131377i
\(928\) 0 0
\(929\) −18.0000 −0.590561 −0.295280 0.955411i \(-0.595413\pi\)
−0.295280 + 0.955411i \(0.595413\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −24.0000 −0.785725
\(934\) 0 0
\(935\) 32.0000 + 16.0000i 1.04651 + 0.523256i
\(936\) 0 0
\(937\) 32.0000i 1.04539i −0.852518 0.522697i \(-0.824926\pi\)
0.852518 0.522697i \(-0.175074\pi\)
\(938\) 0 0
\(939\) 16.0000i 0.522140i
\(940\) 0 0
\(941\) 10.0000i 0.325991i −0.986627 0.162995i \(-0.947884\pi\)
0.986627 0.162995i \(-0.0521156\pi\)
\(942\) 0 0
\(943\) 40.0000i 1.30258i
\(944\) 0 0
\(945\) −4.00000 + 8.00000i −0.130120 + 0.260240i
\(946\) 0 0
\(947\) −12.0000 −0.389948 −0.194974 0.980808i \(-0.562462\pi\)
−0.194974 + 0.980808i \(0.562462\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −4.00000 −0.129709
\(952\) 0 0
\(953\) 4.00000i 0.129573i −0.997899 0.0647864i \(-0.979363\pi\)
0.997899 0.0647864i \(-0.0206366\pi\)
\(954\) 0 0
\(955\) −48.0000 24.0000i −1.55324 0.776622i
\(956\) 0 0
\(957\) −24.0000 −0.775810
\(958\) 0 0
\(959\) −48.0000 −1.55000
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 12.0000 0.386695
\(964\) 0 0
\(965\) −16.0000 + 32.0000i −0.515058 + 1.03012i
\(966\) 0 0
\(967\) 20.0000i 0.643157i −0.946883 0.321578i \(-0.895787\pi\)
0.946883 0.321578i \(-0.104213\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 12.0000i 0.385098i 0.981287 + 0.192549i \(0.0616755\pi\)
−0.981287 + 0.192549i \(0.938325\pi\)
\(972\) 0 0
\(973\) 64.0000 2.05175
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 12.0000i 0.383914i −0.981403 0.191957i \(-0.938517\pi\)
0.981403 0.191957i \(-0.0614834\pi\)
\(978\) 0 0
\(979\) 40.0000i 1.27841i
\(980\) 0 0
\(981\) 2.00000i 0.0638551i
\(982\) 0 0
\(983\) 28.0000i 0.893061i −0.894768 0.446531i \(-0.852659\pi\)
0.894768 0.446531i \(-0.147341\pi\)
\(984\) 0 0
\(985\) 8.00000 + 4.00000i 0.254901 + 0.127451i
\(986\) 0 0
\(987\) −16.0000 −0.509286
\(988\) 0 0
\(989\) 16.0000i 0.508770i
\(990\) 0 0
\(991\) 28.0000 0.889449 0.444725 0.895667i \(-0.353302\pi\)
0.444725 + 0.895667i \(0.353302\pi\)
\(992\) 0 0
\(993\) 8.00000i 0.253872i
\(994\) 0 0
\(995\) 24.0000 + 12.0000i 0.760851 + 0.380426i
\(996\) 0 0
\(997\) −24.0000 −0.760088 −0.380044 0.924968i \(-0.624091\pi\)
−0.380044 + 0.924968i \(0.624091\pi\)
\(998\) 0 0
\(999\) −8.00000 −0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3840.2.d.r.2689.1 2
4.3 odd 2 3840.2.d.b.2689.1 2
5.4 even 2 3840.2.d.o.2689.1 2
8.3 odd 2 3840.2.d.be.2689.2 2
8.5 even 2 3840.2.d.o.2689.2 2
16.3 odd 4 960.2.f.c.769.1 2
16.5 even 4 60.2.d.a.49.1 2
16.11 odd 4 240.2.f.b.49.2 2
16.13 even 4 960.2.f.f.769.2 2
20.19 odd 2 3840.2.d.be.2689.1 2
40.19 odd 2 3840.2.d.b.2689.2 2
40.29 even 2 inner 3840.2.d.r.2689.2 2
48.5 odd 4 180.2.d.a.109.2 2
48.11 even 4 720.2.f.c.289.2 2
48.29 odd 4 2880.2.f.l.1729.1 2
48.35 even 4 2880.2.f.p.1729.1 2
80.3 even 4 4800.2.a.bk.1.1 1
80.13 odd 4 4800.2.a.bj.1.1 1
80.19 odd 4 960.2.f.c.769.2 2
80.27 even 4 1200.2.a.s.1.1 1
80.29 even 4 960.2.f.f.769.1 2
80.37 odd 4 300.2.a.a.1.1 1
80.43 even 4 1200.2.a.a.1.1 1
80.53 odd 4 300.2.a.d.1.1 1
80.59 odd 4 240.2.f.b.49.1 2
80.67 even 4 4800.2.a.bf.1.1 1
80.69 even 4 60.2.d.a.49.2 yes 2
80.77 odd 4 4800.2.a.bn.1.1 1
112.5 odd 12 2940.2.bb.e.949.1 4
112.37 even 12 2940.2.bb.d.949.2 4
112.53 even 12 2940.2.bb.d.1549.1 4
112.69 odd 4 2940.2.k.c.589.2 2
112.101 odd 12 2940.2.bb.e.1549.2 4
144.5 odd 12 1620.2.r.d.1189.2 4
144.85 even 12 1620.2.r.c.1189.1 4
144.101 odd 12 1620.2.r.d.109.1 4
144.133 even 12 1620.2.r.c.109.2 4
240.29 odd 4 2880.2.f.l.1729.2 2
240.53 even 4 900.2.a.h.1.1 1
240.59 even 4 720.2.f.c.289.1 2
240.107 odd 4 3600.2.a.bm.1.1 1
240.149 odd 4 180.2.d.a.109.1 2
240.179 even 4 2880.2.f.p.1729.2 2
240.197 even 4 900.2.a.a.1.1 1
240.203 odd 4 3600.2.a.d.1.1 1
560.69 odd 4 2940.2.k.c.589.1 2
560.149 even 12 2940.2.bb.d.949.1 4
560.229 odd 12 2940.2.bb.e.949.2 4
560.389 even 12 2940.2.bb.d.1549.2 4
560.549 odd 12 2940.2.bb.e.1549.1 4
720.149 odd 12 1620.2.r.d.1189.1 4
720.229 even 12 1620.2.r.c.1189.2 4
720.389 odd 12 1620.2.r.d.109.2 4
720.709 even 12 1620.2.r.c.109.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
60.2.d.a.49.1 2 16.5 even 4
60.2.d.a.49.2 yes 2 80.69 even 4
180.2.d.a.109.1 2 240.149 odd 4
180.2.d.a.109.2 2 48.5 odd 4
240.2.f.b.49.1 2 80.59 odd 4
240.2.f.b.49.2 2 16.11 odd 4
300.2.a.a.1.1 1 80.37 odd 4
300.2.a.d.1.1 1 80.53 odd 4
720.2.f.c.289.1 2 240.59 even 4
720.2.f.c.289.2 2 48.11 even 4
900.2.a.a.1.1 1 240.197 even 4
900.2.a.h.1.1 1 240.53 even 4
960.2.f.c.769.1 2 16.3 odd 4
960.2.f.c.769.2 2 80.19 odd 4
960.2.f.f.769.1 2 80.29 even 4
960.2.f.f.769.2 2 16.13 even 4
1200.2.a.a.1.1 1 80.43 even 4
1200.2.a.s.1.1 1 80.27 even 4
1620.2.r.c.109.1 4 720.709 even 12
1620.2.r.c.109.2 4 144.133 even 12
1620.2.r.c.1189.1 4 144.85 even 12
1620.2.r.c.1189.2 4 720.229 even 12
1620.2.r.d.109.1 4 144.101 odd 12
1620.2.r.d.109.2 4 720.389 odd 12
1620.2.r.d.1189.1 4 720.149 odd 12
1620.2.r.d.1189.2 4 144.5 odd 12
2880.2.f.l.1729.1 2 48.29 odd 4
2880.2.f.l.1729.2 2 240.29 odd 4
2880.2.f.p.1729.1 2 48.35 even 4
2880.2.f.p.1729.2 2 240.179 even 4
2940.2.k.c.589.1 2 560.69 odd 4
2940.2.k.c.589.2 2 112.69 odd 4
2940.2.bb.d.949.1 4 560.149 even 12
2940.2.bb.d.949.2 4 112.37 even 12
2940.2.bb.d.1549.1 4 112.53 even 12
2940.2.bb.d.1549.2 4 560.389 even 12
2940.2.bb.e.949.1 4 112.5 odd 12
2940.2.bb.e.949.2 4 560.229 odd 12
2940.2.bb.e.1549.1 4 560.549 odd 12
2940.2.bb.e.1549.2 4 112.101 odd 12
3600.2.a.d.1.1 1 240.203 odd 4
3600.2.a.bm.1.1 1 240.107 odd 4
3840.2.d.b.2689.1 2 4.3 odd 2
3840.2.d.b.2689.2 2 40.19 odd 2
3840.2.d.o.2689.1 2 5.4 even 2
3840.2.d.o.2689.2 2 8.5 even 2
3840.2.d.r.2689.1 2 1.1 even 1 trivial
3840.2.d.r.2689.2 2 40.29 even 2 inner
3840.2.d.be.2689.1 2 20.19 odd 2
3840.2.d.be.2689.2 2 8.3 odd 2
4800.2.a.bf.1.1 1 80.67 even 4
4800.2.a.bj.1.1 1 80.13 odd 4
4800.2.a.bk.1.1 1 80.3 even 4
4800.2.a.bn.1.1 1 80.77 odd 4