Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [168,2,Mod(19,168)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(168, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 3, 0, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("168.19");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 168 = 2^{3} \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 168.t (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.34148675396\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(16\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19.1 | −1.41257 | + | 0.0681843i | 0.866025 | − | 0.500000i | 1.99070 | − | 0.192630i | 2.08776 | − | 3.61611i | −1.18923 | + | 0.765334i | −2.39694 | + | 1.12013i | −2.79887 | + | 0.407838i | 0.500000 | − | 0.866025i | −2.70255 | + | 5.25036i |
19.2 | −1.40727 | + | 0.139971i | −0.866025 | + | 0.500000i | 1.96082 | − | 0.393955i | 0.128707 | − | 0.222928i | 1.14875 | − | 0.824854i | 0.623918 | − | 2.57113i | −2.70425 | + | 0.828860i | 0.500000 | − | 0.866025i | −0.149923 | + | 0.331735i |
19.3 | −1.04777 | − | 0.949827i | 0.866025 | − | 0.500000i | 0.195657 | + | 1.99041i | 0.155280 | − | 0.268953i | −1.38231 | − | 0.298688i | 2.58581 | + | 0.560001i | 1.68554 | − | 2.27133i | 0.500000 | − | 0.866025i | −0.418156 | + | 0.134312i |
19.4 | −1.03162 | + | 0.967346i | 0.866025 | − | 0.500000i | 0.128485 | − | 1.99587i | −1.25150 | + | 2.16767i | −0.409738 | + | 1.35356i | −1.36321 | + | 2.26752i | 1.79815 | + | 2.18327i | 0.500000 | − | 0.866025i | −0.805806 | − | 3.44685i |
19.5 | −0.765161 | + | 1.18934i | −0.866025 | + | 0.500000i | −0.829058 | − | 1.82007i | 1.61398 | − | 2.79550i | 0.0679787 | − | 1.41258i | 1.82725 | + | 1.91341i | 2.79905 | + | 0.406616i | 0.500000 | − | 0.866025i | 2.08984 | + | 4.05858i |
19.6 | −0.725478 | − | 1.21395i | −0.866025 | + | 0.500000i | −0.947364 | + | 1.76139i | 1.14053 | − | 1.97545i | 1.23526 | + | 0.688575i | −1.95181 | − | 1.78618i | 2.82554 | − | 0.127796i | 0.500000 | − | 0.866025i | −3.22553 | + | 0.0485996i |
19.7 | −0.647418 | + | 1.25732i | −0.866025 | + | 0.500000i | −1.16170 | − | 1.62802i | −1.61398 | + | 2.79550i | −0.0679787 | − | 1.41258i | −1.82725 | − | 1.91341i | 2.79905 | − | 0.406616i | 0.500000 | − | 0.866025i | −2.46991 | − | 3.83914i |
19.8 | −0.321935 | + | 1.37708i | 0.866025 | − | 0.500000i | −1.79272 | − | 0.886663i | 1.25150 | − | 2.16767i | 0.409738 | + | 1.35356i | 1.36321 | − | 2.26752i | 1.79815 | − | 2.18327i | 0.500000 | − | 0.866025i | 2.58215 | + | 2.42127i |
19.9 | −0.297109 | − | 1.38265i | −0.866025 | + | 0.500000i | −1.82345 | + | 0.821596i | −1.44142 | + | 2.49662i | 0.948630 | + | 1.04886i | 2.63862 | − | 0.194181i | 1.67775 | + | 2.27710i | 0.500000 | − | 0.866025i | 3.88021 | + | 1.25122i |
19.10 | 0.221012 | − | 1.39684i | 0.866025 | − | 0.500000i | −1.90231 | − | 0.617436i | 0.225540 | − | 0.390646i | −0.507016 | − | 1.32020i | −0.458196 | − | 2.60577i | −1.28289 | + | 2.52075i | 0.500000 | − | 0.866025i | −0.495822 | − | 0.401380i |
19.11 | 0.582416 | + | 1.28872i | −0.866025 | + | 0.500000i | −1.32158 | + | 1.50114i | −0.128707 | + | 0.222928i | −1.14875 | − | 0.824854i | −0.623918 | + | 2.57113i | −2.70425 | − | 0.828860i | 0.500000 | − | 0.866025i | −0.362252 | − | 0.0360307i |
19.12 | 0.647235 | + | 1.25741i | 0.866025 | − | 0.500000i | −1.16217 | + | 1.62768i | −2.08776 | + | 3.61611i | 1.18923 | + | 0.765334i | 2.39694 | − | 1.12013i | −2.79887 | − | 0.407838i | 0.500000 | − | 0.866025i | −5.89822 | − | 0.284706i |
19.13 | 1.09919 | − | 0.889821i | 0.866025 | − | 0.500000i | 0.416438 | − | 1.95616i | −0.225540 | + | 0.390646i | 0.507016 | − | 1.32020i | 0.458196 | + | 2.60577i | −1.28289 | − | 2.52075i | 0.500000 | − | 0.866025i | 0.0996941 | + | 0.630084i |
19.14 | 1.34597 | − | 0.434022i | −0.866025 | + | 0.500000i | 1.62325 | − | 1.16836i | 1.44142 | − | 2.49662i | −0.948630 | + | 1.04886i | −2.63862 | + | 0.194181i | 1.67775 | − | 2.27710i | 0.500000 | − | 0.866025i | 0.856518 | − | 3.98597i |
19.15 | 1.34646 | + | 0.432485i | 0.866025 | − | 0.500000i | 1.62591 | + | 1.16465i | −0.155280 | + | 0.268953i | 1.38231 | − | 0.298688i | −2.58581 | − | 0.560001i | 1.68554 | + | 2.27133i | 0.500000 | − | 0.866025i | −0.325396 | + | 0.294978i |
19.16 | 1.41405 | + | 0.0213058i | −0.866025 | + | 0.500000i | 1.99909 | + | 0.0602550i | −1.14053 | + | 1.97545i | −1.23526 | + | 0.688575i | 1.95181 | + | 1.78618i | 2.82554 | + | 0.127796i | 0.500000 | − | 0.866025i | −1.65485 | + | 2.76909i |
115.1 | −1.41257 | − | 0.0681843i | 0.866025 | + | 0.500000i | 1.99070 | + | 0.192630i | 2.08776 | + | 3.61611i | −1.18923 | − | 0.765334i | −2.39694 | − | 1.12013i | −2.79887 | − | 0.407838i | 0.500000 | + | 0.866025i | −2.70255 | − | 5.25036i |
115.2 | −1.40727 | − | 0.139971i | −0.866025 | − | 0.500000i | 1.96082 | + | 0.393955i | 0.128707 | + | 0.222928i | 1.14875 | + | 0.824854i | 0.623918 | + | 2.57113i | −2.70425 | − | 0.828860i | 0.500000 | + | 0.866025i | −0.149923 | − | 0.331735i |
115.3 | −1.04777 | + | 0.949827i | 0.866025 | + | 0.500000i | 0.195657 | − | 1.99041i | 0.155280 | + | 0.268953i | −1.38231 | + | 0.298688i | 2.58581 | − | 0.560001i | 1.68554 | + | 2.27133i | 0.500000 | + | 0.866025i | −0.418156 | − | 0.134312i |
115.4 | −1.03162 | − | 0.967346i | 0.866025 | + | 0.500000i | 0.128485 | + | 1.99587i | −1.25150 | − | 2.16767i | −0.409738 | − | 1.35356i | −1.36321 | − | 2.26752i | 1.79815 | − | 2.18327i | 0.500000 | + | 0.866025i | −0.805806 | + | 3.44685i |
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.d | odd | 6 | 1 | inner |
8.d | odd | 2 | 1 | inner |
56.m | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 168.2.t.a | ✓ | 32 |
3.b | odd | 2 | 1 | 504.2.bk.c | 32 | ||
4.b | odd | 2 | 1 | 672.2.bb.a | 32 | ||
7.c | even | 3 | 1 | 1176.2.p.a | 32 | ||
7.d | odd | 6 | 1 | inner | 168.2.t.a | ✓ | 32 |
7.d | odd | 6 | 1 | 1176.2.p.a | 32 | ||
8.b | even | 2 | 1 | 672.2.bb.a | 32 | ||
8.d | odd | 2 | 1 | inner | 168.2.t.a | ✓ | 32 |
12.b | even | 2 | 1 | 2016.2.bs.c | 32 | ||
21.g | even | 6 | 1 | 504.2.bk.c | 32 | ||
24.f | even | 2 | 1 | 504.2.bk.c | 32 | ||
24.h | odd | 2 | 1 | 2016.2.bs.c | 32 | ||
28.f | even | 6 | 1 | 672.2.bb.a | 32 | ||
28.f | even | 6 | 1 | 4704.2.p.a | 32 | ||
28.g | odd | 6 | 1 | 4704.2.p.a | 32 | ||
56.j | odd | 6 | 1 | 672.2.bb.a | 32 | ||
56.j | odd | 6 | 1 | 4704.2.p.a | 32 | ||
56.k | odd | 6 | 1 | 1176.2.p.a | 32 | ||
56.m | even | 6 | 1 | inner | 168.2.t.a | ✓ | 32 |
56.m | even | 6 | 1 | 1176.2.p.a | 32 | ||
56.p | even | 6 | 1 | 4704.2.p.a | 32 | ||
84.j | odd | 6 | 1 | 2016.2.bs.c | 32 | ||
168.ba | even | 6 | 1 | 2016.2.bs.c | 32 | ||
168.be | odd | 6 | 1 | 504.2.bk.c | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
168.2.t.a | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
168.2.t.a | ✓ | 32 | 7.d | odd | 6 | 1 | inner |
168.2.t.a | ✓ | 32 | 8.d | odd | 2 | 1 | inner |
168.2.t.a | ✓ | 32 | 56.m | even | 6 | 1 | inner |
504.2.bk.c | 32 | 3.b | odd | 2 | 1 | ||
504.2.bk.c | 32 | 21.g | even | 6 | 1 | ||
504.2.bk.c | 32 | 24.f | even | 2 | 1 | ||
504.2.bk.c | 32 | 168.be | odd | 6 | 1 | ||
672.2.bb.a | 32 | 4.b | odd | 2 | 1 | ||
672.2.bb.a | 32 | 8.b | even | 2 | 1 | ||
672.2.bb.a | 32 | 28.f | even | 6 | 1 | ||
672.2.bb.a | 32 | 56.j | odd | 6 | 1 | ||
1176.2.p.a | 32 | 7.c | even | 3 | 1 | ||
1176.2.p.a | 32 | 7.d | odd | 6 | 1 | ||
1176.2.p.a | 32 | 56.k | odd | 6 | 1 | ||
1176.2.p.a | 32 | 56.m | even | 6 | 1 | ||
2016.2.bs.c | 32 | 12.b | even | 2 | 1 | ||
2016.2.bs.c | 32 | 24.h | odd | 2 | 1 | ||
2016.2.bs.c | 32 | 84.j | odd | 6 | 1 | ||
2016.2.bs.c | 32 | 168.ba | even | 6 | 1 | ||
4704.2.p.a | 32 | 28.f | even | 6 | 1 | ||
4704.2.p.a | 32 | 28.g | odd | 6 | 1 | ||
4704.2.p.a | 32 | 56.j | odd | 6 | 1 | ||
4704.2.p.a | 32 | 56.p | even | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(168, [\chi])\).