Properties

Label 168.4.i.c.125.46
Level $168$
Weight $4$
Character 168.125
Analytic conductor $9.912$
Analytic rank $0$
Dimension $80$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [168,4,Mod(125,168)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(168, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("168.125");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 168.i (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.91232088096\)
Analytic rank: \(0\)
Dimension: \(80\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 125.46
Character \(\chi\) \(=\) 168.125
Dual form 168.4.i.c.125.48

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.16707 - 2.57642i) q^{2} +(5.19433 + 0.137767i) q^{3} +(-5.27591 - 6.01371i) q^{4} -6.83655i q^{5} +(6.41707 - 13.2220i) q^{6} +(13.6972 - 12.4654i) q^{7} +(-21.6512 + 6.57457i) q^{8} +(26.9620 + 1.43121i) q^{9} +(-17.6139 - 7.97871i) q^{10} +4.03973 q^{11} +(-26.5763 - 31.9640i) q^{12} +11.6537 q^{13} +(-16.1307 - 49.8377i) q^{14} +(0.941848 - 35.5113i) q^{15} +(-8.32952 + 63.4556i) q^{16} -104.163 q^{17} +(35.1539 - 67.7953i) q^{18} -29.0310 q^{19} +(-41.1131 + 36.0690i) q^{20} +(72.8650 - 62.8625i) q^{21} +(4.71463 - 10.4081i) q^{22} -104.560i q^{23} +(-113.369 + 31.1677i) q^{24} +78.2615 q^{25} +(13.6007 - 30.0250i) q^{26} +(139.852 + 11.1486i) q^{27} +(-147.229 - 16.6045i) q^{28} +131.471 q^{29} +(-90.3929 - 43.8706i) q^{30} -113.891i q^{31} +(153.767 + 95.5173i) q^{32} +(20.9837 + 0.556540i) q^{33} +(-121.565 + 268.368i) q^{34} +(-85.2206 - 93.6416i) q^{35} +(-133.642 - 169.693i) q^{36} +320.606i q^{37} +(-33.8812 + 74.7962i) q^{38} +(60.5334 + 1.60550i) q^{39} +(44.9474 + 148.020i) q^{40} -253.628 q^{41} +(-76.9221 - 261.096i) q^{42} +356.247i q^{43} +(-21.3133 - 24.2938i) q^{44} +(9.78453 - 184.327i) q^{45} +(-269.390 - 122.028i) q^{46} +316.669 q^{47} +(-52.0083 + 328.462i) q^{48} +(32.2261 - 341.483i) q^{49} +(91.3364 - 201.635i) q^{50} +(-541.057 - 14.3502i) q^{51} +(-61.4841 - 70.0823i) q^{52} +470.890 q^{53} +(191.941 - 347.308i) q^{54} -27.6178i q^{55} +(-214.606 + 359.945i) q^{56} +(-150.797 - 3.99951i) q^{57} +(153.435 - 338.724i) q^{58} +722.454i q^{59} +(-218.524 + 181.690i) q^{60} +141.417 q^{61} +(-293.432 - 132.919i) q^{62} +(387.145 - 316.490i) q^{63} +(425.550 - 284.695i) q^{64} -79.6715i q^{65} +(25.9232 - 53.4133i) q^{66} -97.1111i q^{67} +(549.555 + 626.407i) q^{68} +(14.4048 - 543.117i) q^{69} +(-340.718 + 110.278i) q^{70} +900.777i q^{71} +(-593.170 + 146.277i) q^{72} -622.304i q^{73} +(826.017 + 374.169i) q^{74} +(406.516 + 10.7818i) q^{75} +(153.165 + 174.584i) q^{76} +(55.3330 - 50.3570i) q^{77} +(74.7829 - 154.086i) q^{78} +211.405 q^{79} +(433.818 + 56.9452i) q^{80} +(724.903 + 77.1766i) q^{81} +(-296.001 + 653.453i) q^{82} +837.420i q^{83} +(-762.466 - 106.532i) q^{84} +712.116i q^{85} +(917.842 + 415.764i) q^{86} +(682.901 + 18.1123i) q^{87} +(-87.4651 + 26.5595i) q^{88} +857.227 q^{89} +(-463.486 - 240.331i) q^{90} +(159.624 - 145.269i) q^{91} +(-628.791 + 551.647i) q^{92} +(15.6904 - 591.588i) q^{93} +(369.573 - 815.872i) q^{94} +198.472i q^{95} +(785.559 + 517.332i) q^{96} +1135.63i q^{97} +(-842.194 - 481.561i) q^{98} +(108.919 + 5.78170i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 28 q^{4} + 64 q^{7} + 104 q^{9} - 8 q^{15} - 892 q^{16} + 692 q^{18} + 128 q^{22} - 976 q^{25} + 612 q^{28} - 332 q^{30} + 1544 q^{36} + 568 q^{39} + 780 q^{42} + 208 q^{46} - 4048 q^{49} - 1448 q^{57}+ \cdots - 2072 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/168\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(85\) \(113\) \(127\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.16707 2.57642i 0.412620 0.910903i
\(3\) 5.19433 + 0.137767i 0.999648 + 0.0265132i
\(4\) −5.27591 6.01371i −0.659489 0.751714i
\(5\) 6.83655i 0.611480i −0.952115 0.305740i \(-0.901096\pi\)
0.952115 0.305740i \(-0.0989038\pi\)
\(6\) 6.41707 13.2220i 0.436626 0.899643i
\(7\) 13.6972 12.4654i 0.739579 0.673070i
\(8\) −21.6512 + 6.57457i −0.956857 + 0.290558i
\(9\) 26.9620 + 1.43121i 0.998594 + 0.0530077i
\(10\) −17.6139 7.97871i −0.556999 0.252309i
\(11\) 4.03973 0.110729 0.0553647 0.998466i \(-0.482368\pi\)
0.0553647 + 0.998466i \(0.482368\pi\)
\(12\) −26.5763 31.9640i −0.639327 0.768935i
\(13\) 11.6537 0.248628 0.124314 0.992243i \(-0.460327\pi\)
0.124314 + 0.992243i \(0.460327\pi\)
\(14\) −16.1307 49.8377i −0.307936 0.951407i
\(15\) 0.941848 35.5113i 0.0162123 0.611265i
\(16\) −8.32952 + 63.4556i −0.130149 + 0.991494i
\(17\) −104.163 −1.48607 −0.743037 0.669250i \(-0.766615\pi\)
−0.743037 + 0.669250i \(0.766615\pi\)
\(18\) 35.1539 67.7953i 0.460325 0.887750i
\(19\) −29.0310 −0.350536 −0.175268 0.984521i \(-0.556079\pi\)
−0.175268 + 0.984521i \(0.556079\pi\)
\(20\) −41.1131 + 36.0690i −0.459658 + 0.403264i
\(21\) 72.8650 62.8625i 0.757164 0.653225i
\(22\) 4.71463 10.4081i 0.0456892 0.100864i
\(23\) 104.560i 0.947921i −0.880546 0.473960i \(-0.842824\pi\)
0.880546 0.473960i \(-0.157176\pi\)
\(24\) −113.369 + 31.1677i −0.964225 + 0.265086i
\(25\) 78.2615 0.626092
\(26\) 13.6007 30.0250i 0.102589 0.226476i
\(27\) 139.852 + 11.1486i 0.996838 + 0.0794650i
\(28\) −147.229 16.6045i −0.993700 0.112070i
\(29\) 131.471 0.841844 0.420922 0.907097i \(-0.361707\pi\)
0.420922 + 0.907097i \(0.361707\pi\)
\(30\) −90.3929 43.8706i −0.550114 0.266988i
\(31\) 113.891i 0.659854i −0.944006 0.329927i \(-0.892976\pi\)
0.944006 0.329927i \(-0.107024\pi\)
\(32\) 153.767 + 95.5173i 0.849453 + 0.527664i
\(33\) 20.9837 + 0.556540i 0.110691 + 0.00293579i
\(34\) −121.565 + 268.368i −0.613184 + 1.35367i
\(35\) −85.2206 93.6416i −0.411569 0.452238i
\(36\) −133.642 169.693i −0.618715 0.785615i
\(37\) 320.606i 1.42452i 0.701915 + 0.712261i \(0.252329\pi\)
−0.701915 + 0.712261i \(0.747671\pi\)
\(38\) −33.8812 + 74.7962i −0.144638 + 0.319304i
\(39\) 60.5334 + 1.60550i 0.248541 + 0.00659193i
\(40\) 44.9474 + 148.020i 0.177670 + 0.585099i
\(41\) −253.628 −0.966099 −0.483050 0.875593i \(-0.660471\pi\)
−0.483050 + 0.875593i \(0.660471\pi\)
\(42\) −76.9221 261.096i −0.282603 0.959237i
\(43\) 356.247i 1.26342i 0.775204 + 0.631711i \(0.217647\pi\)
−0.775204 + 0.631711i \(0.782353\pi\)
\(44\) −21.3133 24.2938i −0.0730249 0.0832369i
\(45\) 9.78453 184.327i 0.0324132 0.610620i
\(46\) −269.390 122.028i −0.863464 0.391131i
\(47\) 316.669 0.982784 0.491392 0.870938i \(-0.336488\pi\)
0.491392 + 0.870938i \(0.336488\pi\)
\(48\) −52.0083 + 328.462i −0.156391 + 0.987695i
\(49\) 32.2261 341.483i 0.0939537 0.995577i
\(50\) 91.3364 201.635i 0.258338 0.570309i
\(51\) −541.057 14.3502i −1.48555 0.0394005i
\(52\) −61.4841 70.0823i −0.163968 0.186897i
\(53\) 470.890 1.22041 0.610205 0.792244i \(-0.291087\pi\)
0.610205 + 0.792244i \(0.291087\pi\)
\(54\) 191.941 347.308i 0.483700 0.875234i
\(55\) 27.6178i 0.0677089i
\(56\) −214.606 + 359.945i −0.512106 + 0.858922i
\(57\) −150.797 3.99951i −0.350412 0.00929382i
\(58\) 153.435 338.724i 0.347362 0.766839i
\(59\) 722.454i 1.59416i 0.603874 + 0.797080i \(0.293623\pi\)
−0.603874 + 0.797080i \(0.706377\pi\)
\(60\) −218.524 + 181.690i −0.470188 + 0.390935i
\(61\) 141.417 0.296828 0.148414 0.988925i \(-0.452583\pi\)
0.148414 + 0.988925i \(0.452583\pi\)
\(62\) −293.432 132.919i −0.601063 0.272269i
\(63\) 387.145 316.490i 0.774217 0.632920i
\(64\) 425.550 284.695i 0.831152 0.556045i
\(65\) 79.6715i 0.152031i
\(66\) 25.9232 53.4133i 0.0483474 0.0996170i
\(67\) 97.1111i 0.177075i −0.996073 0.0885374i \(-0.971781\pi\)
0.996073 0.0885374i \(-0.0282193\pi\)
\(68\) 549.555 + 626.407i 0.980049 + 1.11710i
\(69\) 14.4048 543.117i 0.0251324 0.947588i
\(70\) −340.718 + 110.278i −0.581766 + 0.188297i
\(71\) 900.777i 1.50567i 0.658209 + 0.752835i \(0.271314\pi\)
−0.658209 + 0.752835i \(0.728686\pi\)
\(72\) −593.170 + 146.277i −0.970914 + 0.239429i
\(73\) 622.304i 0.997742i −0.866676 0.498871i \(-0.833748\pi\)
0.866676 0.498871i \(-0.166252\pi\)
\(74\) 826.017 + 374.169i 1.29760 + 0.587787i
\(75\) 406.516 + 10.7818i 0.625872 + 0.0165997i
\(76\) 153.165 + 174.584i 0.231174 + 0.263503i
\(77\) 55.3330 50.3570i 0.0818932 0.0745287i
\(78\) 74.7829 154.086i 0.108558 0.223677i
\(79\) 211.405 0.301074 0.150537 0.988604i \(-0.451900\pi\)
0.150537 + 0.988604i \(0.451900\pi\)
\(80\) 433.818 + 56.9452i 0.606279 + 0.0795834i
\(81\) 724.903 + 77.1766i 0.994380 + 0.105866i
\(82\) −296.001 + 653.453i −0.398632 + 0.880023i
\(83\) 837.420i 1.10745i 0.832698 + 0.553727i \(0.186795\pi\)
−0.832698 + 0.553727i \(0.813205\pi\)
\(84\) −762.466 106.532i −0.990380 0.138377i
\(85\) 712.116i 0.908704i
\(86\) 917.842 + 415.764i 1.15085 + 0.521313i
\(87\) 682.901 + 18.1123i 0.841548 + 0.0223200i
\(88\) −87.4651 + 26.5595i −0.105952 + 0.0321733i
\(89\) 857.227 1.02096 0.510482 0.859888i \(-0.329467\pi\)
0.510482 + 0.859888i \(0.329467\pi\)
\(90\) −463.486 240.331i −0.542841 0.281480i
\(91\) 159.624 145.269i 0.183880 0.167344i
\(92\) −628.791 + 551.647i −0.712566 + 0.625143i
\(93\) 15.6904 591.588i 0.0174948 0.659622i
\(94\) 369.573 815.872i 0.405517 0.895221i
\(95\) 198.472i 0.214345i
\(96\) 785.559 + 517.332i 0.835165 + 0.550000i
\(97\) 1135.63i 1.18872i 0.804199 + 0.594360i \(0.202595\pi\)
−0.804199 + 0.594360i \(0.797405\pi\)
\(98\) −842.194 481.561i −0.868107 0.496378i
\(99\) 108.919 + 5.78170i 0.110574 + 0.00586952i
\(100\) −412.901 470.643i −0.412901 0.470643i
\(101\) 956.403i 0.942234i −0.882071 0.471117i \(-0.843851\pi\)
0.882071 0.471117i \(-0.156149\pi\)
\(102\) −668.422 + 1377.24i −0.648859 + 1.33694i
\(103\) 474.636i 0.454051i −0.973889 0.227025i \(-0.927100\pi\)
0.973889 0.227025i \(-0.0729000\pi\)
\(104\) −252.318 + 76.6184i −0.237902 + 0.0722409i
\(105\) −429.763 498.145i −0.399434 0.462991i
\(106\) 549.560 1213.21i 0.503566 1.11168i
\(107\) −479.771 −0.433470 −0.216735 0.976231i \(-0.569541\pi\)
−0.216735 + 0.976231i \(0.569541\pi\)
\(108\) −670.804 899.852i −0.597668 0.801743i
\(109\) 1248.35i 1.09697i −0.836159 0.548486i \(-0.815204\pi\)
0.836159 0.548486i \(-0.184796\pi\)
\(110\) −71.1552 32.2318i −0.0616762 0.0279381i
\(111\) −44.1688 + 1665.33i −0.0377686 + 1.42402i
\(112\) 676.911 + 972.995i 0.571090 + 0.820888i
\(113\) 1349.96i 1.12384i −0.827193 0.561918i \(-0.810063\pi\)
0.827193 0.561918i \(-0.189937\pi\)
\(114\) −186.294 + 383.848i −0.153053 + 0.315357i
\(115\) −714.827 −0.579634
\(116\) −693.627 790.627i −0.555187 0.632826i
\(117\) 314.209 + 16.6789i 0.248279 + 0.0131792i
\(118\) 1861.35 + 843.152i 1.45213 + 0.657783i
\(119\) −1426.74 + 1298.44i −1.09907 + 1.00023i
\(120\) 213.079 + 775.055i 0.162095 + 0.589604i
\(121\) −1314.68 −0.987739
\(122\) 165.043 364.349i 0.122477 0.270382i
\(123\) −1317.43 34.9415i −0.965760 0.0256144i
\(124\) −684.910 + 600.880i −0.496022 + 0.435166i
\(125\) 1389.61i 0.994323i
\(126\) −363.588 1366.81i −0.257071 0.966392i
\(127\) −1963.80 −1.37212 −0.686058 0.727547i \(-0.740660\pi\)
−0.686058 + 0.727547i \(0.740660\pi\)
\(128\) −236.850 1428.65i −0.163553 0.986535i
\(129\) −49.0789 + 1850.46i −0.0334973 + 1.26298i
\(130\) −205.267 92.9819i −0.138486 0.0627312i
\(131\) 1775.12i 1.18391i 0.805969 + 0.591957i \(0.201645\pi\)
−0.805969 + 0.591957i \(0.798355\pi\)
\(132\) −107.361 129.126i −0.0707923 0.0851438i
\(133\) −397.644 + 361.884i −0.259249 + 0.235935i
\(134\) −250.199 113.335i −0.161298 0.0730646i
\(135\) 76.2182 956.109i 0.0485913 0.609546i
\(136\) 2255.26 684.828i 1.42196 0.431790i
\(137\) 573.341i 0.357546i −0.983890 0.178773i \(-0.942787\pi\)
0.983890 0.178773i \(-0.0572128\pi\)
\(138\) −1382.49 670.966i −0.852790 0.413887i
\(139\) −1094.52 −0.667883 −0.333942 0.942594i \(-0.608379\pi\)
−0.333942 + 0.942594i \(0.608379\pi\)
\(140\) −113.518 + 1006.54i −0.0685285 + 0.607628i
\(141\) 1644.88 + 43.6263i 0.982439 + 0.0260567i
\(142\) 2320.78 + 1051.27i 1.37152 + 0.621270i
\(143\) 47.0780 0.0275305
\(144\) −315.399 + 1698.97i −0.182523 + 0.983202i
\(145\) 898.806i 0.514771i
\(146\) −1603.32 726.270i −0.908846 0.411689i
\(147\) 214.438 1769.33i 0.120317 0.992736i
\(148\) 1928.03 1691.49i 1.07083 0.939456i
\(149\) 2573.83 1.41514 0.707571 0.706643i \(-0.249791\pi\)
0.707571 + 0.706643i \(0.249791\pi\)
\(150\) 502.210 1034.77i 0.273368 0.563260i
\(151\) −1119.27 −0.603214 −0.301607 0.953432i \(-0.597523\pi\)
−0.301607 + 0.953432i \(0.597523\pi\)
\(152\) 628.557 190.867i 0.335413 0.101851i
\(153\) −2808.45 149.079i −1.48398 0.0787734i
\(154\) −65.1636 201.331i −0.0340976 0.105349i
\(155\) −778.624 −0.403487
\(156\) −309.714 372.501i −0.158955 0.191179i
\(157\) −2769.72 −1.40795 −0.703973 0.710227i \(-0.748592\pi\)
−0.703973 + 0.710227i \(0.748592\pi\)
\(158\) 246.723 544.667i 0.124229 0.274249i
\(159\) 2445.96 + 64.8729i 1.21998 + 0.0323570i
\(160\) 653.009 1051.24i 0.322656 0.519424i
\(161\) −1303.38 1432.17i −0.638017 0.701062i
\(162\) 1044.85 1777.59i 0.506736 0.862102i
\(163\) 1305.78i 0.627464i 0.949511 + 0.313732i \(0.101579\pi\)
−0.949511 + 0.313732i \(0.898421\pi\)
\(164\) 1338.12 + 1525.25i 0.637132 + 0.726231i
\(165\) 3.80481 143.456i 0.00179518 0.0676851i
\(166\) 2157.55 + 977.324i 1.00878 + 0.456958i
\(167\) −1241.39 −0.575218 −0.287609 0.957748i \(-0.592860\pi\)
−0.287609 + 0.957748i \(0.592860\pi\)
\(168\) −1164.32 + 1840.11i −0.534698 + 0.845043i
\(169\) −2061.19 −0.938184
\(170\) 1834.71 + 831.087i 0.827741 + 0.374950i
\(171\) −782.736 41.5495i −0.350043 0.0185811i
\(172\) 2142.37 1879.53i 0.949732 0.833212i
\(173\) 415.397i 0.182555i −0.995825 0.0912775i \(-0.970905\pi\)
0.995825 0.0912775i \(-0.0290950\pi\)
\(174\) 843.656 1738.30i 0.367571 0.757359i
\(175\) 1071.96 975.564i 0.463045 0.421404i
\(176\) −33.6490 + 256.344i −0.0144113 + 0.109788i
\(177\) −99.5300 + 3752.66i −0.0422663 + 1.59360i
\(178\) 1000.44 2208.58i 0.421271 0.930000i
\(179\) 117.160 0.0489215 0.0244608 0.999701i \(-0.492213\pi\)
0.0244608 + 0.999701i \(0.492213\pi\)
\(180\) −1160.11 + 913.654i −0.480388 + 0.378332i
\(181\) −1379.06 −0.566325 −0.283162 0.959072i \(-0.591384\pi\)
−0.283162 + 0.959072i \(0.591384\pi\)
\(182\) −187.983 580.797i −0.0765617 0.236547i
\(183\) 734.564 + 19.4825i 0.296724 + 0.00786987i
\(184\) 687.435 + 2263.84i 0.275426 + 0.907025i
\(185\) 2191.84 0.871066
\(186\) −1505.87 730.848i −0.593633 0.288110i
\(187\) −420.791 −0.164552
\(188\) −1670.72 1904.35i −0.648135 0.738773i
\(189\) 2054.56 1590.62i 0.790726 0.612171i
\(190\) 511.348 + 231.630i 0.195248 + 0.0884433i
\(191\) 2323.47i 0.880211i −0.897946 0.440106i \(-0.854941\pi\)
0.897946 0.440106i \(-0.145059\pi\)
\(192\) 2249.67 1420.17i 0.845603 0.533813i
\(193\) 1284.20 0.478958 0.239479 0.970902i \(-0.423023\pi\)
0.239479 + 0.970902i \(0.423023\pi\)
\(194\) 2925.87 + 1325.36i 1.08281 + 0.490490i
\(195\) 10.9761 413.840i 0.00403083 0.151978i
\(196\) −2223.60 + 1607.83i −0.810351 + 0.585945i
\(197\) −4935.49 −1.78497 −0.892485 0.451076i \(-0.851040\pi\)
−0.892485 + 0.451076i \(0.851040\pi\)
\(198\) 142.012 273.875i 0.0509716 0.0983002i
\(199\) 3824.82i 1.36249i 0.732058 + 0.681243i \(0.238560\pi\)
−0.732058 + 0.681243i \(0.761440\pi\)
\(200\) −1694.46 + 514.536i −0.599081 + 0.181916i
\(201\) 13.3787 504.427i 0.00469482 0.177013i
\(202\) −2464.10 1116.19i −0.858284 0.388785i
\(203\) 1800.78 1638.84i 0.622610 0.566620i
\(204\) 2768.27 + 3329.47i 0.950087 + 1.14269i
\(205\) 1733.94i 0.590750i
\(206\) −1222.86 553.931i −0.413596 0.187351i
\(207\) 149.647 2819.14i 0.0502471 0.946588i
\(208\) −97.0702 + 739.496i −0.0323587 + 0.246514i
\(209\) −117.278 −0.0388146
\(210\) −1784.99 + 525.882i −0.586554 + 0.172806i
\(211\) 1236.70i 0.403496i 0.979437 + 0.201748i \(0.0646623\pi\)
−0.979437 + 0.201748i \(0.935338\pi\)
\(212\) −2484.37 2831.80i −0.804847 0.917400i
\(213\) −124.097 + 4678.93i −0.0399201 + 1.50514i
\(214\) −559.925 + 1236.09i −0.178858 + 0.394849i
\(215\) 2435.50 0.772557
\(216\) −3101.27 + 678.089i −0.976921 + 0.213602i
\(217\) −1419.70 1559.99i −0.444128 0.488014i
\(218\) −3216.27 1456.91i −0.999236 0.452633i
\(219\) 85.7326 3232.45i 0.0264533 0.997391i
\(220\) −166.086 + 145.709i −0.0508977 + 0.0446532i
\(221\) −1213.89 −0.369480
\(222\) 4239.05 + 2057.35i 1.28156 + 0.621983i
\(223\) 2567.59i 0.771026i −0.922702 0.385513i \(-0.874025\pi\)
0.922702 0.385513i \(-0.125975\pi\)
\(224\) 3296.85 608.458i 0.983392 0.181493i
\(225\) 2110.09 + 112.009i 0.625212 + 0.0331877i
\(226\) −3478.07 1575.49i −1.02371 0.463718i
\(227\) 5160.79i 1.50896i −0.656323 0.754480i \(-0.727889\pi\)
0.656323 0.754480i \(-0.272111\pi\)
\(228\) 771.538 + 927.949i 0.224107 + 0.269539i
\(229\) 2221.09 0.640934 0.320467 0.947260i \(-0.396160\pi\)
0.320467 + 0.947260i \(0.396160\pi\)
\(230\) −834.251 + 1841.70i −0.239169 + 0.527991i
\(231\) 294.355 253.947i 0.0838404 0.0723312i
\(232\) −2846.50 + 864.364i −0.805525 + 0.244605i
\(233\) 3711.51i 1.04356i 0.853080 + 0.521779i \(0.174732\pi\)
−0.853080 + 0.521779i \(0.825268\pi\)
\(234\) 409.675 790.069i 0.114450 0.220720i
\(235\) 2164.92i 0.600953i
\(236\) 4344.63 3811.60i 1.19835 1.05133i
\(237\) 1098.10 + 29.1245i 0.300968 + 0.00798244i
\(238\) 1680.22 + 5191.25i 0.457616 + 1.41386i
\(239\) 3198.82i 0.865751i 0.901454 + 0.432876i \(0.142501\pi\)
−0.901454 + 0.432876i \(0.857499\pi\)
\(240\) 2245.55 + 355.558i 0.603956 + 0.0956298i
\(241\) 5785.50i 1.54638i 0.634177 + 0.773188i \(0.281339\pi\)
−0.634177 + 0.773188i \(0.718661\pi\)
\(242\) −1534.32 + 3387.17i −0.407561 + 0.899734i
\(243\) 3754.75 + 500.748i 0.991224 + 0.132193i
\(244\) −746.101 850.439i −0.195755 0.223130i
\(245\) −2334.56 220.316i −0.608775 0.0574508i
\(246\) −1627.55 + 3353.47i −0.421824 + 0.869144i
\(247\) −338.320 −0.0871531
\(248\) 748.787 + 2465.88i 0.191726 + 0.631386i
\(249\) −115.368 + 4349.83i −0.0293622 + 1.10707i
\(250\) −3580.22 1621.77i −0.905732 0.410278i
\(251\) 2096.38i 0.527180i 0.964635 + 0.263590i \(0.0849066\pi\)
−0.964635 + 0.263590i \(0.915093\pi\)
\(252\) −3945.82 658.406i −0.986363 0.164586i
\(253\) 422.392i 0.104963i
\(254\) −2291.88 + 5059.57i −0.566163 + 1.24986i
\(255\) −98.1058 + 3698.96i −0.0240926 + 0.908385i
\(256\) −3957.24 1057.11i −0.966123 0.258084i
\(257\) 5905.29 1.43331 0.716657 0.697426i \(-0.245671\pi\)
0.716657 + 0.697426i \(0.245671\pi\)
\(258\) 4710.29 + 2286.06i 1.13663 + 0.551643i
\(259\) 3996.49 + 4391.40i 0.958803 + 1.05355i
\(260\) −479.121 + 420.340i −0.114284 + 0.100263i
\(261\) 3544.72 + 188.162i 0.840661 + 0.0446243i
\(262\) 4573.46 + 2071.68i 1.07843 + 0.488507i
\(263\) 2143.88i 0.502652i 0.967902 + 0.251326i \(0.0808666\pi\)
−0.967902 + 0.251326i \(0.919133\pi\)
\(264\) −457.981 + 125.909i −0.106768 + 0.0293529i
\(265\) 3219.26i 0.746256i
\(266\) 468.291 + 1446.84i 0.107943 + 0.333502i
\(267\) 4452.72 + 118.097i 1.02061 + 0.0270690i
\(268\) −583.998 + 512.350i −0.133110 + 0.116779i
\(269\) 6249.96i 1.41660i 0.705909 + 0.708302i \(0.250539\pi\)
−0.705909 + 0.708302i \(0.749461\pi\)
\(270\) −2374.39 1312.21i −0.535188 0.295773i
\(271\) 4623.10i 1.03629i −0.855294 0.518143i \(-0.826624\pi\)
0.855294 0.518143i \(-0.173376\pi\)
\(272\) 867.629 6609.73i 0.193411 1.47343i
\(273\) 849.150 732.584i 0.188252 0.162410i
\(274\) −1477.17 669.128i −0.325690 0.147531i
\(275\) 316.156 0.0693269
\(276\) −3342.15 + 2778.81i −0.728890 + 0.606031i
\(277\) 282.839i 0.0613507i −0.999529 0.0306754i \(-0.990234\pi\)
0.999529 0.0306754i \(-0.00976580\pi\)
\(278\) −1277.37 + 2819.94i −0.275582 + 0.608377i
\(279\) 163.002 3070.74i 0.0349774 0.658926i
\(280\) 2460.78 + 1467.16i 0.525214 + 0.313142i
\(281\) 6722.69i 1.42720i −0.700555 0.713598i \(-0.747064\pi\)
0.700555 0.713598i \(-0.252936\pi\)
\(282\) 2032.08 4186.99i 0.429109 0.884155i
\(283\) −7208.18 −1.51407 −0.757035 0.653375i \(-0.773353\pi\)
−0.757035 + 0.653375i \(0.773353\pi\)
\(284\) 5417.02 4752.42i 1.13183 0.992973i
\(285\) −27.3428 + 1030.93i −0.00568298 + 0.214270i
\(286\) 54.9432 121.293i 0.0113596 0.0250776i
\(287\) −3473.99 + 3161.58i −0.714507 + 0.650252i
\(288\) 4009.18 + 2795.42i 0.820289 + 0.571949i
\(289\) 5936.94 1.20842
\(290\) −2315.70 1048.97i −0.468906 0.212405i
\(291\) −156.452 + 5898.84i −0.0315168 + 1.18830i
\(292\) −3742.36 + 3283.22i −0.750017 + 0.658000i
\(293\) 3175.54i 0.633163i −0.948565 0.316582i \(-0.897465\pi\)
0.948565 0.316582i \(-0.102535\pi\)
\(294\) −4308.29 2617.41i −0.854641 0.519220i
\(295\) 4939.09 0.974797
\(296\) −2107.85 6941.51i −0.413906 1.36306i
\(297\) 564.966 + 45.0375i 0.110379 + 0.00879912i
\(298\) 3003.83 6631.26i 0.583916 1.28906i
\(299\) 1218.51i 0.235680i
\(300\) −2079.90 2501.55i −0.400278 0.481424i
\(301\) 4440.77 + 4879.58i 0.850371 + 0.934400i
\(302\) −1306.27 + 2883.72i −0.248898 + 0.549469i
\(303\) 131.760 4967.87i 0.0249816 0.941903i
\(304\) 241.815 1842.18i 0.0456218 0.347554i
\(305\) 966.802i 0.181505i
\(306\) −3661.74 + 7061.77i −0.684077 + 1.31926i
\(307\) 3739.33 0.695163 0.347581 0.937650i \(-0.387003\pi\)
0.347581 + 0.937650i \(0.387003\pi\)
\(308\) −594.764 67.0777i −0.110032 0.0124094i
\(309\) 65.3889 2465.41i 0.0120383 0.453891i
\(310\) −908.706 + 2006.06i −0.166487 + 0.367538i
\(311\) −9117.85 −1.66246 −0.831231 0.555927i \(-0.812363\pi\)
−0.831231 + 0.555927i \(0.812363\pi\)
\(312\) −1321.18 + 363.220i −0.239734 + 0.0659080i
\(313\) 9104.29i 1.64410i −0.569412 0.822052i \(-0.692829\pi\)
0.569412 0.822052i \(-0.307171\pi\)
\(314\) −3232.44 + 7135.96i −0.580947 + 1.28250i
\(315\) −2163.70 2646.74i −0.387018 0.473418i
\(316\) −1115.35 1271.33i −0.198555 0.226322i
\(317\) −9883.17 −1.75109 −0.875543 0.483141i \(-0.839496\pi\)
−0.875543 + 0.483141i \(0.839496\pi\)
\(318\) 3021.73 6226.11i 0.532863 1.09793i
\(319\) 531.106 0.0932170
\(320\) −1946.33 2909.29i −0.340010 0.508233i
\(321\) −2492.09 66.0965i −0.433317 0.0114927i
\(322\) −5211.01 + 1686.62i −0.901859 + 0.291899i
\(323\) 3023.96 0.520922
\(324\) −3360.41 4766.54i −0.576202 0.817308i
\(325\) 912.040 0.155664
\(326\) 3364.25 + 1523.93i 0.571559 + 0.258905i
\(327\) 171.981 6484.33i 0.0290842 1.09659i
\(328\) 5491.36 1667.50i 0.924419 0.280708i
\(329\) 4337.47 3947.41i 0.726846 0.661482i
\(330\) −365.163 177.226i −0.0609138 0.0295635i
\(331\) 452.334i 0.0751134i −0.999294 0.0375567i \(-0.988043\pi\)
0.999294 0.0375567i \(-0.0119575\pi\)
\(332\) 5036.00 4418.15i 0.832490 0.730354i
\(333\) −458.854 + 8644.19i −0.0755107 + 1.42252i
\(334\) −1448.78 + 3198.34i −0.237347 + 0.523968i
\(335\) −663.905 −0.108278
\(336\) 3382.05 + 5147.31i 0.549125 + 0.835740i
\(337\) 4969.87 0.803341 0.401670 0.915784i \(-0.368430\pi\)
0.401670 + 0.915784i \(0.368430\pi\)
\(338\) −2405.55 + 5310.50i −0.387114 + 0.854595i
\(339\) 185.979 7012.13i 0.0297965 1.12344i
\(340\) 4282.46 3757.06i 0.683086 0.599280i
\(341\) 460.090i 0.0730653i
\(342\) −1020.55 + 1968.17i −0.161360 + 0.311188i
\(343\) −3815.32 5079.07i −0.600606 0.799545i
\(344\) −2342.17 7713.17i −0.367097 1.20891i
\(345\) −3713.04 98.4793i −0.579431 0.0153680i
\(346\) −1070.24 484.795i −0.166290 0.0753259i
\(347\) 11013.5 1.70386 0.851928 0.523659i \(-0.175433\pi\)
0.851928 + 0.523659i \(0.175433\pi\)
\(348\) −3494.01 4202.33i −0.538214 0.647324i
\(349\) −4530.91 −0.694940 −0.347470 0.937691i \(-0.612959\pi\)
−0.347470 + 0.937691i \(0.612959\pi\)
\(350\) −1262.41 3900.38i −0.192797 0.595669i
\(351\) 1629.81 + 129.923i 0.247842 + 0.0197573i
\(352\) 621.179 + 385.864i 0.0940595 + 0.0584279i
\(353\) 6152.85 0.927714 0.463857 0.885910i \(-0.346465\pi\)
0.463857 + 0.885910i \(0.346465\pi\)
\(354\) 9552.28 + 4636.03i 1.43418 + 0.696052i
\(355\) 6158.21 0.920687
\(356\) −4522.65 5155.12i −0.673315 0.767474i
\(357\) −7589.84 + 6547.95i −1.12520 + 0.970740i
\(358\) 136.734 301.854i 0.0201860 0.0445628i
\(359\) 2822.93i 0.415010i −0.978234 0.207505i \(-0.933466\pi\)
0.978234 0.207505i \(-0.0665344\pi\)
\(360\) 1000.03 + 4055.24i 0.146406 + 0.593694i
\(361\) −6016.20 −0.877125
\(362\) −1609.46 + 3553.04i −0.233677 + 0.515867i
\(363\) −6828.88 181.119i −0.987392 0.0261881i
\(364\) −1715.77 193.505i −0.247062 0.0278637i
\(365\) −4254.41 −0.610099
\(366\) 907.480 1869.81i 0.129603 0.267040i
\(367\) 6388.51i 0.908658i 0.890834 + 0.454329i \(0.150121\pi\)
−0.890834 + 0.454329i \(0.849879\pi\)
\(368\) 6634.90 + 870.931i 0.939858 + 0.123371i
\(369\) −6838.33 362.995i −0.964741 0.0512107i
\(370\) 2558.02 5647.11i 0.359420 0.793457i
\(371\) 6449.87 5869.85i 0.902589 0.821421i
\(372\) −3640.42 + 3026.81i −0.507385 + 0.421862i
\(373\) 6415.30i 0.890541i −0.895396 0.445270i \(-0.853108\pi\)
0.895396 0.445270i \(-0.146892\pi\)
\(374\) −491.091 + 1084.13i −0.0678976 + 0.149891i
\(375\) 191.442 7218.08i 0.0263627 0.993973i
\(376\) −6856.26 + 2081.96i −0.940384 + 0.285556i
\(377\) 1532.13 0.209306
\(378\) −1700.29 7149.77i −0.231359 0.972868i
\(379\) 10997.5i 1.49051i −0.666782 0.745253i \(-0.732329\pi\)
0.666782 0.745253i \(-0.267671\pi\)
\(380\) 1193.56 1047.12i 0.161127 0.141358i
\(381\) −10200.6 270.545i −1.37163 0.0363792i
\(382\) −5986.24 2711.64i −0.801787 0.363193i
\(383\) −9990.07 −1.33282 −0.666408 0.745587i \(-0.732169\pi\)
−0.666408 + 0.745587i \(0.732169\pi\)
\(384\) −1033.45 7453.53i −0.137339 0.990524i
\(385\) −344.268 378.287i −0.0455728 0.0500760i
\(386\) 1498.75 3308.64i 0.197628 0.436284i
\(387\) −509.864 + 9605.14i −0.0669711 + 1.26165i
\(388\) 6829.36 5991.49i 0.893578 0.783948i
\(389\) 3943.66 0.514014 0.257007 0.966410i \(-0.417264\pi\)
0.257007 + 0.966410i \(0.417264\pi\)
\(390\) −1053.42 511.257i −0.136774 0.0663808i
\(391\) 10891.2i 1.40868i
\(392\) 1547.37 + 7605.39i 0.199372 + 0.979924i
\(393\) −244.552 + 9220.55i −0.0313894 + 1.18350i
\(394\) −5760.05 + 12715.9i −0.736515 + 1.62594i
\(395\) 1445.28i 0.184101i
\(396\) −539.879 685.514i −0.0685100 0.0869908i
\(397\) 14238.3 1.80000 0.900002 0.435885i \(-0.143565\pi\)
0.900002 + 0.435885i \(0.143565\pi\)
\(398\) 9854.36 + 4463.82i 1.24109 + 0.562189i
\(399\) −2115.35 + 1824.96i −0.265413 + 0.228979i
\(400\) −651.881 + 4966.14i −0.0814852 + 0.620767i
\(401\) 876.488i 0.109151i −0.998510 0.0545757i \(-0.982619\pi\)
0.998510 0.0545757i \(-0.0173806\pi\)
\(402\) −1284.00 623.169i −0.159304 0.0773155i
\(403\) 1327.26i 0.164058i
\(404\) −5751.53 + 5045.90i −0.708291 + 0.621393i
\(405\) 527.622 4955.84i 0.0647352 0.608044i
\(406\) −2120.71 6552.20i −0.259234 0.800937i
\(407\) 1295.16i 0.157737i
\(408\) 11808.9 3246.52i 1.43291 0.393938i
\(409\) 11741.1i 1.41947i 0.704471 + 0.709733i \(0.251184\pi\)
−0.704471 + 0.709733i \(0.748816\pi\)
\(410\) 4467.37 + 2023.63i 0.538116 + 0.243756i
\(411\) 78.9873 2978.12i 0.00947969 0.357421i
\(412\) −2854.32 + 2504.13i −0.341316 + 0.299441i
\(413\) 9005.70 + 9895.59i 1.07298 + 1.17901i
\(414\) −7088.65 3675.68i −0.841517 0.436352i
\(415\) 5725.06 0.677186
\(416\) 1791.97 + 1113.14i 0.211198 + 0.131192i
\(417\) −5685.28 150.788i −0.667648 0.0177077i
\(418\) −136.871 + 302.157i −0.0160157 + 0.0353564i
\(419\) 16673.4i 1.94403i 0.234911 + 0.972017i \(0.424520\pi\)
−0.234911 + 0.972017i \(0.575480\pi\)
\(420\) −728.314 + 5212.64i −0.0846145 + 0.605597i
\(421\) 2350.61i 0.272118i −0.990701 0.136059i \(-0.956556\pi\)
0.990701 0.136059i \(-0.0434436\pi\)
\(422\) 3186.26 + 1443.31i 0.367546 + 0.166491i
\(423\) 8538.03 + 453.219i 0.981402 + 0.0520952i
\(424\) −10195.3 + 3095.90i −1.16776 + 0.354600i
\(425\) −8151.96 −0.930419
\(426\) 11910.1 + 5780.35i 1.35457 + 0.657415i
\(427\) 1937.01 1762.82i 0.219528 0.199786i
\(428\) 2531.23 + 2885.21i 0.285868 + 0.325845i
\(429\) 244.538 + 6.48577i 0.0275208 + 0.000729921i
\(430\) 2842.39 6274.88i 0.318773 0.703724i
\(431\) 6140.09i 0.686213i 0.939297 + 0.343106i \(0.111479\pi\)
−0.939297 + 0.343106i \(0.888521\pi\)
\(432\) −1872.35 + 8781.56i −0.208526 + 0.978017i
\(433\) 8753.16i 0.971478i 0.874104 + 0.485739i \(0.161449\pi\)
−0.874104 + 0.485739i \(0.838551\pi\)
\(434\) −5676.08 + 1837.14i −0.627790 + 0.203193i
\(435\) 123.825 4668.69i 0.0136482 0.514590i
\(436\) −7507.21 + 6586.17i −0.824610 + 0.723441i
\(437\) 3035.47i 0.332280i
\(438\) −8228.10 3993.37i −0.897611 0.435640i
\(439\) 4097.50i 0.445474i 0.974879 + 0.222737i \(0.0714992\pi\)
−0.974879 + 0.222737i \(0.928501\pi\)
\(440\) 181.575 + 597.959i 0.0196733 + 0.0647877i
\(441\) 1357.62 9160.95i 0.146595 0.989197i
\(442\) −1416.69 + 3127.49i −0.152455 + 0.336561i
\(443\) −7908.50 −0.848181 −0.424091 0.905620i \(-0.639406\pi\)
−0.424091 + 0.905620i \(0.639406\pi\)
\(444\) 10247.9 8520.52i 1.09536 0.910735i
\(445\) 5860.48i 0.624299i
\(446\) −6615.21 2996.55i −0.702330 0.318141i
\(447\) 13369.3 + 354.587i 1.41464 + 0.0375199i
\(448\) 2279.99 9204.18i 0.240446 0.970663i
\(449\) 2363.47i 0.248417i −0.992256 0.124208i \(-0.960361\pi\)
0.992256 0.124208i \(-0.0396392\pi\)
\(450\) 2751.20 5305.77i 0.288206 0.555814i
\(451\) −1024.59 −0.106976
\(452\) −8118.27 + 7122.27i −0.844804 + 0.741158i
\(453\) −5813.88 154.199i −0.603002 0.0159931i
\(454\) −13296.4 6022.99i −1.37452 0.622627i
\(455\) −993.139 1091.28i −0.102328 0.112439i
\(456\) 3291.23 904.830i 0.337995 0.0929222i
\(457\) 5371.11 0.549781 0.274891 0.961476i \(-0.411358\pi\)
0.274891 + 0.961476i \(0.411358\pi\)
\(458\) 2592.16 5722.48i 0.264463 0.583829i
\(459\) −14567.5 1161.28i −1.48137 0.118091i
\(460\) 3771.36 + 4298.77i 0.382263 + 0.435720i
\(461\) 14246.7i 1.43934i −0.694319 0.719668i \(-0.744294\pi\)
0.694319 0.719668i \(-0.255706\pi\)
\(462\) −310.744 1054.76i −0.0312925 0.106216i
\(463\) −3194.81 −0.320681 −0.160341 0.987062i \(-0.551259\pi\)
−0.160341 + 0.987062i \(0.551259\pi\)
\(464\) −1095.09 + 8342.56i −0.109565 + 0.834684i
\(465\) −4044.43 107.268i −0.403346 0.0106977i
\(466\) 9562.42 + 4331.58i 0.950581 + 0.430594i
\(467\) 3317.47i 0.328724i 0.986400 + 0.164362i \(0.0525565\pi\)
−0.986400 + 0.164362i \(0.947443\pi\)
\(468\) −1557.44 1977.56i −0.153830 0.195326i
\(469\) −1210.53 1330.15i −0.119184 0.130961i
\(470\) −5577.75 2526.61i −0.547410 0.247965i
\(471\) −14386.8 381.574i −1.40745 0.0373291i
\(472\) −4749.82 15642.0i −0.463196 1.52538i
\(473\) 1439.14i 0.139898i
\(474\) 1356.60 2795.19i 0.131457 0.270859i
\(475\) −2272.01 −0.219468
\(476\) 15335.8 + 1729.58i 1.47671 + 0.166544i
\(477\) 12696.2 + 673.942i 1.21869 + 0.0646912i
\(478\) 8241.52 + 3733.24i 0.788616 + 0.357227i
\(479\) 1661.85 0.158522 0.0792608 0.996854i \(-0.474744\pi\)
0.0792608 + 0.996854i \(0.474744\pi\)
\(480\) 3536.77 5370.52i 0.336314 0.510686i
\(481\) 3736.26i 0.354176i
\(482\) 14905.9 + 6752.06i 1.40860 + 0.638066i
\(483\) −6572.88 7618.73i −0.619205 0.717732i
\(484\) 6936.14 + 7906.11i 0.651403 + 0.742498i
\(485\) 7763.80 0.726879
\(486\) 5672.18 9089.42i 0.529415 0.848363i
\(487\) 6158.69 0.573053 0.286527 0.958072i \(-0.407499\pi\)
0.286527 + 0.958072i \(0.407499\pi\)
\(488\) −3061.84 + 929.753i −0.284022 + 0.0862458i
\(489\) −179.893 + 6782.66i −0.0166361 + 0.627244i
\(490\) −3292.22 + 5757.70i −0.303525 + 0.530830i
\(491\) −7846.32 −0.721180 −0.360590 0.932724i \(-0.617425\pi\)
−0.360590 + 0.932724i \(0.617425\pi\)
\(492\) 6740.50 + 8106.98i 0.617653 + 0.742868i
\(493\) −13694.4 −1.25104
\(494\) −394.842 + 871.657i −0.0359611 + 0.0793880i
\(495\) 39.5269 744.633i 0.00358909 0.0676137i
\(496\) 7227.04 + 948.660i 0.654242 + 0.0858792i
\(497\) 11228.6 + 12338.1i 1.01342 + 1.11356i
\(498\) 11072.4 + 5373.78i 0.996314 + 0.483544i
\(499\) 11321.6i 1.01568i −0.861452 0.507839i \(-0.830444\pi\)
0.861452 0.507839i \(-0.169556\pi\)
\(500\) −8356.71 + 7331.45i −0.747447 + 0.655745i
\(501\) −6448.17 171.022i −0.575016 0.0152509i
\(502\) 5401.15 + 2446.61i 0.480210 + 0.217525i
\(503\) 21262.4 1.88478 0.942391 0.334513i \(-0.108572\pi\)
0.942391 + 0.334513i \(0.108572\pi\)
\(504\) −6301.37 + 9397.70i −0.556915 + 0.830569i
\(505\) −6538.50 −0.576157
\(506\) −1088.26 492.960i −0.0956109 0.0433098i
\(507\) −10706.5 283.963i −0.937854 0.0248742i
\(508\) 10360.8 + 11809.7i 0.904895 + 1.03144i
\(509\) 6748.42i 0.587659i −0.955858 0.293829i \(-0.905070\pi\)
0.955858 0.293829i \(-0.0949298\pi\)
\(510\) 9415.60 + 4569.70i 0.817509 + 0.396764i
\(511\) −7757.28 8523.81i −0.671550 0.737909i
\(512\) −7341.92 + 8961.80i −0.633731 + 0.773554i
\(513\) −4060.06 323.656i −0.349427 0.0278553i
\(514\) 6891.87 15214.5i 0.591415 1.30561i
\(515\) −3244.87 −0.277643
\(516\) 11387.1 9467.73i 0.971489 0.807739i
\(517\) 1279.26 0.108823
\(518\) 15978.3 5171.59i 1.35530 0.438662i
\(519\) 57.2278 2157.71i 0.00484011 0.182491i
\(520\) 523.806 + 1724.98i 0.0441739 + 0.145472i
\(521\) −1669.33 −0.140374 −0.0701868 0.997534i \(-0.522360\pi\)
−0.0701868 + 0.997534i \(0.522360\pi\)
\(522\) 4621.71 8913.09i 0.387522 0.747348i
\(523\) −8699.40 −0.727339 −0.363669 0.931528i \(-0.618476\pi\)
−0.363669 + 0.931528i \(0.618476\pi\)
\(524\) 10675.1 9365.37i 0.889966 0.780779i
\(525\) 5702.53 4919.72i 0.474055 0.408979i
\(526\) 5523.55 + 2502.05i 0.457867 + 0.207404i
\(527\) 11863.3i 0.980592i
\(528\) −210.100 + 1326.90i −0.0173171 + 0.109367i
\(529\) 1234.29 0.101446
\(530\) −8294.19 3757.10i −0.679767 0.307920i
\(531\) −1033.98 + 19478.8i −0.0845028 + 1.59192i
\(532\) 4274.20 + 482.046i 0.348327 + 0.0392845i
\(533\) −2955.72 −0.240200
\(534\) 5500.88 11334.3i 0.445780 0.918504i
\(535\) 3279.98i 0.265058i
\(536\) 638.464 + 2102.57i 0.0514505 + 0.169435i
\(537\) 608.568 + 16.1407i 0.0489043 + 0.00129707i
\(538\) 16102.5 + 7294.12i 1.29039 + 0.584520i
\(539\) 130.185 1379.50i 0.0104035 0.110240i
\(540\) −6151.88 + 4585.99i −0.490250 + 0.365462i
\(541\) 6335.93i 0.503517i −0.967790 0.251759i \(-0.918991\pi\)
0.967790 0.251759i \(-0.0810089\pi\)
\(542\) −11911.1 5395.47i −0.943956 0.427592i
\(543\) −7163.29 189.988i −0.566126 0.0150151i
\(544\) −16016.9 9949.38i −1.26235 0.784147i
\(545\) −8534.40 −0.670777
\(546\) −896.430 3042.74i −0.0702631 0.238493i
\(547\) 25466.5i 1.99062i 0.0967351 + 0.995310i \(0.469160\pi\)
−0.0967351 + 0.995310i \(0.530840\pi\)
\(548\) −3447.91 + 3024.90i −0.268773 + 0.235798i
\(549\) 3812.88 + 202.397i 0.296411 + 0.0157342i
\(550\) 368.975 814.550i 0.0286057 0.0631501i
\(551\) −3816.73 −0.295096
\(552\) 3258.88 + 11853.8i 0.251281 + 0.914009i
\(553\) 2895.65 2635.25i 0.222668 0.202644i
\(554\) −728.713 330.092i −0.0558846 0.0253146i
\(555\) 11385.1 + 301.962i 0.870760 + 0.0230947i
\(556\) 5774.58 + 6582.11i 0.440461 + 0.502057i
\(557\) 2282.80 0.173654 0.0868269 0.996223i \(-0.472327\pi\)
0.0868269 + 0.996223i \(0.472327\pi\)
\(558\) −7721.29 4003.72i −0.585786 0.303747i
\(559\) 4151.61i 0.314122i
\(560\) 6651.93 4627.74i 0.501956 0.349210i
\(561\) −2185.72 57.9709i −0.164494 0.00436280i
\(562\) −17320.5 7845.83i −1.30004 0.588890i
\(563\) 5471.40i 0.409577i −0.978806 0.204789i \(-0.934349\pi\)
0.978806 0.204789i \(-0.0656507\pi\)
\(564\) −8415.88 10122.0i −0.628320 0.755697i
\(565\) −9229.07 −0.687204
\(566\) −8412.42 + 18571.3i −0.624736 + 1.37917i
\(567\) 10891.2 7979.13i 0.806678 0.590991i
\(568\) −5922.23 19502.9i −0.437484 1.44071i
\(569\) 10659.3i 0.785342i −0.919679 0.392671i \(-0.871551\pi\)
0.919679 0.392671i \(-0.128449\pi\)
\(570\) 2624.20 + 1273.61i 0.192834 + 0.0935889i
\(571\) 12002.7i 0.879680i −0.898076 0.439840i \(-0.855035\pi\)
0.898076 0.439840i \(-0.144965\pi\)
\(572\) −248.379 283.114i −0.0181561 0.0206951i
\(573\) 320.096 12068.9i 0.0233372 0.879902i
\(574\) 4091.20 + 12640.3i 0.297497 + 0.919154i
\(575\) 8182.99i 0.593486i
\(576\) 11881.2 7066.91i 0.859458 0.511206i
\(577\) 10078.4i 0.727159i −0.931563 0.363579i \(-0.881555\pi\)
0.931563 0.363579i \(-0.118445\pi\)
\(578\) 6928.81 15296.1i 0.498617 1.10075i
\(579\) 6670.56 + 176.920i 0.478789 + 0.0126987i
\(580\) −5405.16 + 4742.02i −0.386961 + 0.339486i
\(581\) 10438.8 + 11470.3i 0.745395 + 0.819050i
\(582\) 15015.3 + 7287.43i 1.06942 + 0.519027i
\(583\) 1902.27 0.135135
\(584\) 4091.38 + 13473.6i 0.289902 + 0.954697i
\(585\) 114.026 2148.11i 0.00805883 0.151817i
\(586\) −8181.52 3706.06i −0.576750 0.261256i
\(587\) 22343.5i 1.57106i 0.618820 + 0.785532i \(0.287611\pi\)
−0.618820 + 0.785532i \(0.712389\pi\)
\(588\) −11771.6 + 8045.28i −0.825601 + 0.564254i
\(589\) 3306.38i 0.231302i
\(590\) 5764.25 12725.2i 0.402221 0.887945i
\(591\) −25636.6 679.946i −1.78434 0.0473253i
\(592\) −20344.3 2670.49i −1.41241 0.185400i
\(593\) −21338.0 −1.47765 −0.738824 0.673898i \(-0.764619\pi\)
−0.738824 + 0.673898i \(0.764619\pi\)
\(594\) 775.389 1403.03i 0.0535599 0.0969142i
\(595\) 8876.84 + 9753.99i 0.611621 + 0.672058i
\(596\) −13579.3 15478.3i −0.933270 1.06378i
\(597\) −526.933 + 19867.4i −0.0361238 + 1.36201i
\(598\) −3139.40 1422.08i −0.214682 0.0972464i
\(599\) 8738.27i 0.596054i 0.954557 + 0.298027i \(0.0963285\pi\)
−0.954557 + 0.298027i \(0.903671\pi\)
\(600\) −8872.45 + 2439.23i −0.603694 + 0.165969i
\(601\) 7481.20i 0.507761i 0.967236 + 0.253881i \(0.0817070\pi\)
−0.967236 + 0.253881i \(0.918293\pi\)
\(602\) 17754.5 5746.50i 1.20203 0.389053i
\(603\) 138.986 2618.31i 0.00938633 0.176826i
\(604\) 5905.19 + 6731.00i 0.397813 + 0.453444i
\(605\) 8987.88i 0.603982i
\(606\) −12645.6 6137.30i −0.847674 0.411404i
\(607\) 473.402i 0.0316554i 0.999875 + 0.0158277i \(0.00503832\pi\)
−0.999875 + 0.0158277i \(0.994962\pi\)
\(608\) −4464.03 2772.97i −0.297764 0.184965i
\(609\) 9579.61 8264.57i 0.637414 0.549914i
\(610\) −2490.89 1128.32i −0.165333 0.0748925i
\(611\) 3690.38 0.244348
\(612\) 13920.6 + 17675.7i 0.919456 + 1.16748i
\(613\) 7125.38i 0.469480i 0.972058 + 0.234740i \(0.0754239\pi\)
−0.972058 + 0.234740i \(0.924576\pi\)
\(614\) 4364.05 9634.11i 0.286838 0.633226i
\(615\) −238.879 + 9006.66i −0.0156627 + 0.590543i
\(616\) −866.950 + 1454.08i −0.0567052 + 0.0951080i
\(617\) 3345.74i 0.218305i 0.994025 + 0.109153i \(0.0348137\pi\)
−0.994025 + 0.109153i \(0.965186\pi\)
\(618\) −6275.63 3045.77i −0.408484 0.198250i
\(619\) −7950.72 −0.516263 −0.258131 0.966110i \(-0.583107\pi\)
−0.258131 + 0.966110i \(0.583107\pi\)
\(620\) 4107.95 + 4682.42i 0.266096 + 0.303307i
\(621\) 1165.70 14622.9i 0.0753265 0.944923i
\(622\) −10641.1 + 23491.4i −0.685966 + 1.51434i
\(623\) 11741.6 10685.7i 0.755084 0.687181i
\(624\) −606.092 + 3827.81i −0.0388832 + 0.245569i
\(625\) 282.564 0.0180841
\(626\) −23456.5 10625.3i −1.49762 0.678391i
\(627\) −609.178 16.1569i −0.0388010 0.00102910i
\(628\) 14612.8 + 16656.3i 0.928525 + 1.05837i
\(629\) 33395.3i 2.11694i
\(630\) −9344.29 + 2485.69i −0.590930 + 0.157194i
\(631\) −9702.61 −0.612131 −0.306066 0.952010i \(-0.599013\pi\)
−0.306066 + 0.952010i \(0.599013\pi\)
\(632\) −4577.16 + 1389.89i −0.288085 + 0.0874795i
\(633\) −170.376 + 6423.81i −0.0106980 + 0.403355i
\(634\) −11534.3 + 25463.2i −0.722533 + 1.59507i
\(635\) 13425.6i 0.839021i
\(636\) −12514.5 15051.5i −0.780241 0.938416i
\(637\) 375.555 3979.55i 0.0233596 0.247529i
\(638\) 619.836 1368.35i 0.0384632 0.0849117i
\(639\) −1289.20 + 24286.8i −0.0798121 + 1.50355i
\(640\) −9767.07 + 1619.23i −0.603246 + 0.100009i
\(641\) 27464.9i 1.69235i −0.532904 0.846176i \(-0.678899\pi\)
0.532904 0.846176i \(-0.321101\pi\)
\(642\) −3078.73 + 6343.54i −0.189264 + 0.389968i
\(643\) 18925.7 1.16074 0.580372 0.814352i \(-0.302907\pi\)
0.580372 + 0.814352i \(0.302907\pi\)
\(644\) −1736.16 + 15394.2i −0.106233 + 0.941949i
\(645\) 12650.8 + 335.530i 0.772285 + 0.0204829i
\(646\) 3529.17 7791.01i 0.214943 0.474509i
\(647\) −6973.22 −0.423718 −0.211859 0.977300i \(-0.567952\pi\)
−0.211859 + 0.977300i \(0.567952\pi\)
\(648\) −16202.4 + 3094.96i −0.982241 + 0.187626i
\(649\) 2918.52i 0.176521i
\(650\) 1064.41 2349.80i 0.0642303 0.141795i
\(651\) −7159.49 8298.69i −0.431033 0.499618i
\(652\) 7852.60 6889.19i 0.471674 0.413806i
\(653\) 5754.57 0.344860 0.172430 0.985022i \(-0.444838\pi\)
0.172430 + 0.985022i \(0.444838\pi\)
\(654\) −16505.7 8010.73i −0.986884 0.478967i
\(655\) 12135.7 0.723940
\(656\) 2112.60 16094.1i 0.125737 0.957882i
\(657\) 890.647 16778.6i 0.0528880 0.996339i
\(658\) −5108.08 15782.0i −0.302635 0.935028i
\(659\) −30735.0 −1.81679 −0.908394 0.418115i \(-0.862691\pi\)
−0.908394 + 0.418115i \(0.862691\pi\)
\(660\) −882.777 + 733.980i −0.0520637 + 0.0432881i
\(661\) 22592.9 1.32944 0.664721 0.747092i \(-0.268550\pi\)
0.664721 + 0.747092i \(0.268550\pi\)
\(662\) −1165.40 527.904i −0.0684210 0.0309933i
\(663\) −6305.34 167.233i −0.369350 0.00979609i
\(664\) −5505.68 18131.2i −0.321780 1.05968i
\(665\) 2474.04 + 2718.51i 0.144270 + 0.158525i
\(666\) 21735.6 + 11270.5i 1.26462 + 0.655743i
\(667\) 13746.5i 0.798002i
\(668\) 6549.45 + 7465.35i 0.379350 + 0.432400i
\(669\) 353.728 13336.9i 0.0204423 0.770755i
\(670\) −774.821 + 1710.50i −0.0446776 + 0.0986304i
\(671\) 571.285 0.0328677
\(672\) 17208.7 2706.34i 0.987859 0.155356i
\(673\) −12930.6 −0.740621 −0.370311 0.928908i \(-0.620749\pi\)
−0.370311 + 0.928908i \(0.620749\pi\)
\(674\) 5800.17 12804.5i 0.331475 0.731766i
\(675\) 10945.1 + 872.509i 0.624112 + 0.0497524i
\(676\) 10874.7 + 12395.4i 0.618722 + 0.705246i
\(677\) 27874.6i 1.58244i −0.611534 0.791218i \(-0.709447\pi\)
0.611534 0.791218i \(-0.290553\pi\)
\(678\) −17849.2 8662.79i −1.01105 0.490697i
\(679\) 14156.1 + 15555.0i 0.800092 + 0.879153i
\(680\) −4681.86 15418.2i −0.264031 0.869500i
\(681\) 710.985 26806.8i 0.0400073 1.50843i
\(682\) −1185.39 536.956i −0.0665554 0.0301482i
\(683\) 374.516 0.0209816 0.0104908 0.999945i \(-0.496661\pi\)
0.0104908 + 0.999945i \(0.496661\pi\)
\(684\) 3879.78 + 4926.36i 0.216882 + 0.275386i
\(685\) −3919.68 −0.218632
\(686\) −17538.6 + 3902.27i −0.976130 + 0.217186i
\(687\) 11537.1 + 305.992i 0.640709 + 0.0169932i
\(688\) −22605.9 2967.37i −1.25268 0.164433i
\(689\) 5487.63 0.303428
\(690\) −4587.09 + 9451.44i −0.253084 + 0.521464i
\(691\) 15693.7 0.863988 0.431994 0.901877i \(-0.357810\pi\)
0.431994 + 0.901877i \(0.357810\pi\)
\(692\) −2498.08 + 2191.60i −0.137229 + 0.120393i
\(693\) 1563.96 1278.53i 0.0857287 0.0700829i
\(694\) 12853.5 28375.6i 0.703046 1.55205i
\(695\) 7482.73i 0.408397i
\(696\) −14904.7 + 4097.63i −0.811727 + 0.223161i
\(697\) 26418.7 1.43569
\(698\) −5287.87 + 11673.5i −0.286746 + 0.633023i
\(699\) −511.322 + 19278.8i −0.0276681 + 1.04319i
\(700\) −11522.3 1299.49i −0.622148 0.0701661i
\(701\) −4484.20 −0.241606 −0.120803 0.992676i \(-0.538547\pi\)
−0.120803 + 0.992676i \(0.538547\pi\)
\(702\) 2236.83 4047.44i 0.120262 0.217608i
\(703\) 9307.52i 0.499346i
\(704\) 1719.11 1150.09i 0.0920331 0.0615706i
\(705\) 298.254 11245.3i 0.0159332 0.600741i
\(706\) 7180.79 15852.3i 0.382794 0.845058i
\(707\) −11922.0 13100.0i −0.634190 0.696856i
\(708\) 23092.5 19200.2i 1.22581 1.01919i
\(709\) 11896.5i 0.630156i −0.949066 0.315078i \(-0.897969\pi\)
0.949066 0.315078i \(-0.102031\pi\)
\(710\) 7187.04 15866.2i 0.379894 0.838656i
\(711\) 5699.90 + 302.564i 0.300651 + 0.0159593i
\(712\) −18560.0 + 5635.90i −0.976918 + 0.296649i
\(713\) −11908.4 −0.625489
\(714\) 8012.44 + 27196.5i 0.419969 + 1.42550i
\(715\) 321.851i 0.0168343i
\(716\) −618.126 704.567i −0.0322632 0.0367750i
\(717\) −440.691 + 16615.7i −0.0229538 + 0.865447i
\(718\) −7273.07 3294.55i −0.378034 0.171242i
\(719\) 13003.8 0.674494 0.337247 0.941416i \(-0.390504\pi\)
0.337247 + 0.941416i \(0.390504\pi\)
\(720\) 11615.1 + 2156.24i 0.601208 + 0.111609i
\(721\) −5916.54 6501.17i −0.305608 0.335806i
\(722\) −7021.30 + 15500.3i −0.361920 + 0.798976i
\(723\) −797.048 + 30051.8i −0.0409994 + 1.54583i
\(724\) 7275.80 + 8293.28i 0.373485 + 0.425715i
\(725\) 10289.1 0.527072
\(726\) −8436.40 + 17382.7i −0.431273 + 0.888612i
\(727\) 38446.5i 1.96135i −0.195639 0.980676i \(-0.562678\pi\)
0.195639 0.980676i \(-0.437322\pi\)
\(728\) −2500.96 + 4194.71i −0.127324 + 0.213552i
\(729\) 19434.4 + 3118.33i 0.987371 + 0.158427i
\(730\) −4965.18 + 10961.2i −0.251739 + 0.555741i
\(731\) 37107.8i 1.87754i
\(732\) −3758.33 4520.24i −0.189770 0.228242i
\(733\) 17763.3 0.895092 0.447546 0.894261i \(-0.352298\pi\)
0.447546 + 0.894261i \(0.352298\pi\)
\(734\) 16459.5 + 7455.81i 0.827699 + 0.374931i
\(735\) −12096.1 1466.02i −0.607038 0.0735712i
\(736\) 9987.25 16077.9i 0.500183 0.805215i
\(737\) 392.303i 0.0196074i
\(738\) −8916.02 + 17194.8i −0.444720 + 0.857655i
\(739\) 28211.2i 1.40428i 0.712037 + 0.702142i \(0.247773\pi\)
−0.712037 + 0.702142i \(0.752227\pi\)
\(740\) −11564.0 13181.1i −0.574458 0.654793i
\(741\) −1757.35 46.6092i −0.0871225 0.00231071i
\(742\) −7595.78 23468.1i −0.375808 1.16111i
\(743\) 17970.1i 0.887294i −0.896202 0.443647i \(-0.853684\pi\)
0.896202 0.443647i \(-0.146316\pi\)
\(744\) 3549.73 + 12911.8i 0.174918 + 0.636248i
\(745\) 17596.1i 0.865330i
\(746\) −16528.5 7487.08i −0.811196 0.367455i
\(747\) −1198.52 + 22578.5i −0.0587037 + 1.10590i
\(748\) 2220.05 + 2530.51i 0.108520 + 0.123696i
\(749\) −6571.52 + 5980.56i −0.320585 + 0.291755i
\(750\) −18373.4 8917.21i −0.894535 0.434147i
\(751\) 28710.6 1.39503 0.697513 0.716572i \(-0.254290\pi\)
0.697513 + 0.716572i \(0.254290\pi\)
\(752\) −2637.70 + 20094.4i −0.127908 + 0.974425i
\(753\) −288.811 + 10889.3i −0.0139772 + 0.526994i
\(754\) 1788.09 3947.40i 0.0863641 0.190658i
\(755\) 7651.98i 0.368853i
\(756\) −20405.2 3963.58i −0.981652 0.190680i
\(757\) 34560.4i 1.65934i 0.558256 + 0.829669i \(0.311471\pi\)
−0.558256 + 0.829669i \(0.688529\pi\)
\(758\) −28334.1 12834.8i −1.35771 0.615013i
\(759\) 58.1916 2194.04i 0.00278290 0.104926i
\(760\) −1304.87 4297.16i −0.0622798 0.205098i
\(761\) 2013.29 0.0959023 0.0479511 0.998850i \(-0.484731\pi\)
0.0479511 + 0.998850i \(0.484731\pi\)
\(762\) −12601.8 + 25965.3i −0.599102 + 1.23441i
\(763\) −15561.2 17098.9i −0.738339 0.811298i
\(764\) −13972.7 + 12258.4i −0.661668 + 0.580490i
\(765\) −1019.19 + 19200.1i −0.0481683 + 0.907427i
\(766\) −11659.1 + 25738.7i −0.549947 + 1.21407i
\(767\) 8419.29i 0.396353i
\(768\) −20409.5 6036.15i −0.958940 0.283608i
\(769\) 7245.88i 0.339783i −0.985463 0.169891i \(-0.945658\pi\)
0.985463 0.169891i \(-0.0543417\pi\)
\(770\) −1376.41 + 445.494i −0.0644187 + 0.0208500i
\(771\) 30674.0 + 813.551i 1.43281 + 0.0380017i
\(772\) −6775.33 7722.82i −0.315867 0.360039i
\(773\) 35166.4i 1.63629i 0.575015 + 0.818143i \(0.304996\pi\)
−0.575015 + 0.818143i \(0.695004\pi\)
\(774\) 24151.9 + 12523.5i 1.12160 + 0.581585i
\(775\) 8913.31i 0.413130i
\(776\) −7466.29 24587.8i −0.345392 1.13744i
\(777\) 20154.1 + 23361.0i 0.930533 + 1.07860i
\(778\) 4602.51 10160.5i 0.212093 0.468217i
\(779\) 7363.09 0.338652
\(780\) −2546.62 + 2117.37i −0.116902 + 0.0971976i
\(781\) 3638.90i 0.166722i
\(782\) 28060.5 + 12710.8i 1.28317 + 0.581250i
\(783\) 18386.5 + 1465.72i 0.839182 + 0.0668972i
\(784\) 21400.6 + 4889.32i 0.974881 + 0.222728i
\(785\) 18935.3i 0.860931i
\(786\) 23470.6 + 11391.1i 1.06510 + 0.516928i
\(787\) 30974.5 1.40295 0.701475 0.712694i \(-0.252525\pi\)
0.701475 + 0.712694i \(0.252525\pi\)
\(788\) 26039.2 + 29680.6i 1.17717 + 1.34179i
\(789\) −295.355 + 11136.0i −0.0133269 + 0.502475i
\(790\) −3723.65 1686.74i −0.167698 0.0759638i
\(791\) −16827.8 18490.7i −0.756421 0.831166i
\(792\) −2396.25 + 590.918i −0.107509 + 0.0265118i
\(793\) 1648.03 0.0737999
\(794\) 16617.1 36684.0i 0.742719 1.63963i
\(795\) 443.507 16721.9i 0.0197856 0.745994i
\(796\) 23001.4 20179.4i 1.02420 0.898544i
\(797\) 8981.62i 0.399178i −0.979880 0.199589i \(-0.936039\pi\)
0.979880 0.199589i \(-0.0639608\pi\)
\(798\) 2233.13 + 7579.88i 0.0990625 + 0.336247i
\(799\) −32985.2 −1.46049
\(800\) 12034.1 + 7475.33i 0.531836 + 0.330366i
\(801\) 23112.6 + 1226.87i 1.01953 + 0.0541190i
\(802\) −2258.20 1022.92i −0.0994264 0.0450381i
\(803\) 2513.94i 0.110479i
\(804\) −3104.06 + 2580.85i −0.136159 + 0.113209i
\(805\) −9791.12 + 8910.63i −0.428685 + 0.390135i
\(806\) −3419.58 1549.00i −0.149441 0.0676938i
\(807\) −861.035 + 32464.3i −0.0375587 + 1.41611i
\(808\) 6287.94 + 20707.3i 0.273774 + 0.901584i
\(809\) 29145.4i 1.26662i 0.773896 + 0.633312i \(0.218305\pi\)
−0.773896 + 0.633312i \(0.781695\pi\)
\(810\) −12152.6 7143.17i −0.527158 0.309859i
\(811\) −35758.2 −1.54826 −0.774132 0.633025i \(-0.781813\pi\)
−0.774132 + 0.633025i \(0.781813\pi\)
\(812\) −19356.3 2183.00i −0.836541 0.0943454i
\(813\) 636.909 24013.9i 0.0274752 1.03592i
\(814\) 3336.88 + 1511.54i 0.143683 + 0.0650853i
\(815\) 8927.04 0.383682
\(816\) 5417.35 34213.6i 0.232408 1.46779i
\(817\) 10342.2i 0.442874i
\(818\) 30250.1 + 13702.7i 1.29300 + 0.585701i
\(819\) 4511.69 3688.29i 0.192492 0.157362i
\(820\) 10427.4 9148.13i 0.444075 0.389593i
\(821\) −29573.6 −1.25716 −0.628578 0.777746i \(-0.716363\pi\)
−0.628578 + 0.777746i \(0.716363\pi\)
\(822\) −7580.72 3679.17i −0.321664 0.156114i
\(823\) −26488.9 −1.12192 −0.560962 0.827841i \(-0.689569\pi\)
−0.560962 + 0.827841i \(0.689569\pi\)
\(824\) 3120.53 + 10276.4i 0.131928 + 0.434462i
\(825\) 1642.21 + 43.5557i 0.0693025 + 0.00183808i
\(826\) 36005.5 11653.7i 1.51670 0.490900i
\(827\) −6964.53 −0.292842 −0.146421 0.989222i \(-0.546775\pi\)
−0.146421 + 0.989222i \(0.546775\pi\)
\(828\) −17743.0 + 13973.6i −0.744701 + 0.586493i
\(829\) −11031.4 −0.462166 −0.231083 0.972934i \(-0.574227\pi\)
−0.231083 + 0.972934i \(0.574227\pi\)
\(830\) 6681.53 14750.2i 0.279421 0.616851i
\(831\) 38.9658 1469.16i 0.00162660 0.0613292i
\(832\) 4959.25 3317.76i 0.206648 0.138249i
\(833\) −3356.77 + 35569.9i −0.139622 + 1.47950i
\(834\) −7023.59 + 14471.7i −0.291615 + 0.600856i
\(835\) 8486.81i 0.351734i
\(836\) 618.746 + 705.274i 0.0255978 + 0.0291775i
\(837\) 1269.73 15928.0i 0.0524353 0.657767i
\(838\) 42957.8 + 19459.0i 1.77083 + 0.802148i
\(839\) 20561.9 0.846099 0.423049 0.906107i \(-0.360960\pi\)
0.423049 + 0.906107i \(0.360960\pi\)
\(840\) 12580.0 + 7959.94i 0.516727 + 0.326957i
\(841\) −7104.47 −0.291298
\(842\) −6056.16 2743.32i −0.247873 0.112281i
\(843\) 926.162 34919.9i 0.0378395 1.42669i
\(844\) 7437.14 6524.71i 0.303314 0.266101i
\(845\) 14091.4i 0.573681i
\(846\) 11132.1 21468.6i 0.452400 0.872467i
\(847\) −18007.4 + 16388.1i −0.730511 + 0.664817i
\(848\) −3922.29 + 29880.6i −0.158835 + 1.21003i
\(849\) −37441.6 993.046i −1.51354 0.0401428i
\(850\) −9513.88 + 21002.9i −0.383910 + 0.847522i
\(851\) 33522.4 1.35033
\(852\) 28792.5 23939.3i 1.15776 0.962615i
\(853\) 9441.72 0.378990 0.189495 0.981882i \(-0.439315\pi\)
0.189495 + 0.981882i \(0.439315\pi\)
\(854\) −2281.15 7047.88i −0.0914042 0.282405i
\(855\) −284.055 + 5351.22i −0.0113620 + 0.214044i
\(856\) 10387.6 3154.29i 0.414769 0.125948i
\(857\) 17877.9 0.712598 0.356299 0.934372i \(-0.384039\pi\)
0.356299 + 0.934372i \(0.384039\pi\)
\(858\) 302.103 622.465i 0.0120205 0.0247676i
\(859\) −43955.9 −1.74593 −0.872966 0.487781i \(-0.837807\pi\)
−0.872966 + 0.487781i \(0.837807\pi\)
\(860\) −12849.5 14646.4i −0.509493 0.580742i
\(861\) −18480.6 + 15943.7i −0.731496 + 0.631080i
\(862\) 15819.5 + 7165.89i 0.625073 + 0.283145i
\(863\) 42634.4i 1.68168i −0.541282 0.840841i \(-0.682061\pi\)
0.541282 0.840841i \(-0.317939\pi\)
\(864\) 20439.9 + 15072.6i 0.804836 + 0.593497i
\(865\) −2839.88 −0.111629
\(866\) 22551.8 + 10215.5i 0.884922 + 0.400851i
\(867\) 30838.4 + 817.912i 1.20799 + 0.0320389i
\(868\) −1891.11 + 16768.1i −0.0739498 + 0.655697i
\(869\) 854.017 0.0333378
\(870\) −11884.0 5767.70i −0.463110 0.224762i
\(871\) 1131.71i 0.0440258i
\(872\) 8207.36 + 27028.2i 0.318734 + 1.04965i
\(873\) −1625.33 + 30618.9i −0.0630114 + 1.18705i
\(874\) 7820.66 + 3542.60i 0.302675 + 0.137106i
\(875\) −17322.1 19033.7i −0.669249 0.735380i
\(876\) −19891.3 + 16538.5i −0.767199 + 0.637883i
\(877\) 22335.1i 0.859980i −0.902834 0.429990i \(-0.858517\pi\)
0.902834 0.429990i \(-0.141483\pi\)
\(878\) 10556.9 + 4782.06i 0.405784 + 0.183812i
\(879\) 437.483 16494.8i 0.0167872 0.632940i
\(880\) 1752.51 + 230.043i 0.0671330 + 0.00881223i
\(881\) −31160.2 −1.19162 −0.595809 0.803126i \(-0.703168\pi\)
−0.595809 + 0.803126i \(0.703168\pi\)
\(882\) −22018.1 14189.2i −0.840574 0.541696i
\(883\) 29300.5i 1.11669i 0.829607 + 0.558347i \(0.188564\pi\)
−0.829607 + 0.558347i \(0.811436\pi\)
\(884\) 6404.38 + 7299.99i 0.243668 + 0.277743i
\(885\) 25655.3 + 680.442i 0.974454 + 0.0258450i
\(886\) −9229.75 + 20375.6i −0.349977 + 0.772611i
\(887\) 28062.3 1.06228 0.531139 0.847285i \(-0.321764\pi\)
0.531139 + 0.847285i \(0.321764\pi\)
\(888\) −9992.54 36346.8i −0.377621 1.37356i
\(889\) −26898.5 + 24479.6i −1.01479 + 0.923530i
\(890\) −15099.1 6839.57i −0.568676 0.257599i
\(891\) 2928.41 + 311.773i 0.110107 + 0.0117225i
\(892\) −15440.8 + 13546.4i −0.579591 + 0.508483i
\(893\) −9193.22 −0.344501
\(894\) 16516.4 34031.1i 0.617888 1.27312i
\(895\) 800.971i 0.0299145i
\(896\) −21053.0 16616.1i −0.784967 0.619538i
\(897\) 167.870 6329.34i 0.00624863 0.235597i
\(898\) −6089.31 2758.33i −0.226284 0.102502i
\(899\) 14973.4i 0.555494i
\(900\) −10459.1 13280.4i −0.387373 0.491868i
\(901\) −49049.3 −1.81362
\(902\) −1195.76 + 2639.78i −0.0441403 + 0.0974445i
\(903\) 22394.6 + 25957.9i 0.825298 + 0.956617i
\(904\) 8875.41 + 29228.3i 0.326540 + 1.07535i
\(905\) 9428.02i 0.346296i
\(906\) −7182.46 + 14799.0i −0.263379 + 0.542677i
\(907\) 10433.3i 0.381953i −0.981595 0.190976i \(-0.938835\pi\)
0.981595 0.190976i \(-0.0611654\pi\)
\(908\) −31035.5 + 27227.9i −1.13431 + 0.995142i
\(909\) 1368.81 25786.6i 0.0499457 0.940910i
\(910\) −3970.65 + 1285.16i −0.144644 + 0.0468159i
\(911\) 12356.5i 0.449384i −0.974430 0.224692i \(-0.927862\pi\)
0.974430 0.224692i \(-0.0721376\pi\)
\(912\) 1509.86 9535.59i 0.0548205 0.346222i
\(913\) 3382.95i 0.122628i
\(914\) 6268.44 13838.3i 0.226851 0.500797i
\(915\) 133.193 5021.88i 0.00481226 0.181441i
\(916\) −11718.3 13357.0i −0.422689 0.481800i
\(917\) 22127.6 + 24314.1i 0.796858 + 0.875598i
\(918\) −19993.1 + 36176.7i −0.718814 + 1.30066i
\(919\) −24591.0 −0.882680 −0.441340 0.897340i \(-0.645497\pi\)
−0.441340 + 0.897340i \(0.645497\pi\)
\(920\) 15476.9 4699.68i 0.554628 0.168417i
\(921\) 19423.3 + 515.155i 0.694919 + 0.0184310i
\(922\) −36705.5 16626.8i −1.31110 0.593899i
\(923\) 10497.4i 0.374352i
\(924\) −3080.16 430.362i −0.109664 0.0153224i
\(925\) 25091.1i 0.891882i
\(926\) −3728.56 + 8231.18i −0.132320 + 0.292110i
\(927\) 679.303 12797.1i 0.0240682 0.453412i
\(928\) 20215.9 + 12557.7i 0.715108 + 0.444211i
\(929\) 15512.5 0.547844 0.273922 0.961752i \(-0.411679\pi\)
0.273922 + 0.961752i \(0.411679\pi\)
\(930\) −4996.48 + 10295.0i −0.176173 + 0.362995i
\(931\) −935.558 + 9913.60i −0.0329341 + 0.348985i
\(932\) 22320.0 19581.6i 0.784458 0.688215i
\(933\) −47361.1 1256.13i −1.66188 0.0440772i
\(934\) 8547.20 + 3871.71i 0.299436 + 0.135638i
\(935\) 2876.76i 0.100620i
\(936\) −6912.66 + 1704.67i −0.241397 + 0.0595287i
\(937\) 31883.8i 1.11163i −0.831306 0.555816i \(-0.812406\pi\)
0.831306 0.555816i \(-0.187594\pi\)
\(938\) −4839.80 + 1566.47i −0.168470 + 0.0545277i
\(939\) 1254.27 47290.6i 0.0435904 1.64353i
\(940\) −13019.2 + 11421.9i −0.451745 + 0.396322i
\(941\) 26463.4i 0.916773i 0.888753 + 0.458386i \(0.151572\pi\)
−0.888753 + 0.458386i \(0.848428\pi\)
\(942\) −17773.5 + 36621.2i −0.614746 + 1.26665i
\(943\) 26519.3i 0.915786i
\(944\) −45843.8 6017.69i −1.58060 0.207478i
\(945\) −10874.3 14046.1i −0.374330 0.483513i
\(946\) 3707.84 + 1679.57i 0.127434 + 0.0577248i
\(947\) −6190.46 −0.212421 −0.106211 0.994344i \(-0.533872\pi\)
−0.106211 + 0.994344i \(0.533872\pi\)
\(948\) −5618.35 6757.34i −0.192485 0.231507i
\(949\) 7252.17i 0.248067i
\(950\) −2651.59 + 5853.67i −0.0905568 + 0.199914i
\(951\) −51336.4 1361.57i −1.75047 0.0464269i
\(952\) 22354.0 37493.0i 0.761027 1.27642i
\(953\) 24095.6i 0.819027i 0.912304 + 0.409513i \(0.134301\pi\)
−0.912304 + 0.409513i \(0.865699\pi\)
\(954\) 16553.6 31924.1i 0.561785 1.08342i
\(955\) −15884.5 −0.538232
\(956\) 19236.8 16876.7i 0.650798 0.570953i
\(957\) 2758.74 + 73.1686i 0.0931842 + 0.00247148i
\(958\) 1939.49 4281.63i 0.0654092 0.144398i
\(959\) −7146.95 7853.17i −0.240654 0.264434i
\(960\) −9709.08 15380.0i −0.326416 0.517069i
\(961\) 16819.8 0.564593
\(962\) 9626.19 + 4360.47i 0.322620 + 0.146140i
\(963\) −12935.6 686.653i −0.432860 0.0229772i
\(964\) 34792.3 30523.8i 1.16243 1.01982i
\(965\) 8779.51i 0.292873i
\(966\) −27300.1 + 8042.94i −0.909281 + 0.267885i
\(967\) 33985.7 1.13020 0.565102 0.825021i \(-0.308837\pi\)
0.565102 + 0.825021i \(0.308837\pi\)
\(968\) 28464.4 8643.46i 0.945125 0.286995i
\(969\) 15707.4 + 416.601i 0.520739 + 0.0138113i
\(970\) 9060.88 20002.8i 0.299925 0.662116i
\(971\) 17226.4i 0.569331i −0.958627 0.284666i \(-0.908117\pi\)
0.958627 0.284666i \(-0.0918826\pi\)
\(972\) −16798.4 25221.9i −0.554330 0.832297i
\(973\) −14991.8 + 13643.6i −0.493952 + 0.449532i
\(974\) 7187.60 15867.4i 0.236453 0.521996i
\(975\) 4737.44 + 125.649i 0.155610 + 0.00412716i
\(976\) −1177.93 + 8973.68i −0.0386319 + 0.294304i
\(977\) 30772.6i 1.00768i −0.863797 0.503840i \(-0.831920\pi\)
0.863797 0.503840i \(-0.168080\pi\)
\(978\) 17265.0 + 8379.29i 0.564494 + 0.273967i
\(979\) 3462.96 0.113051
\(980\) 10992.0 + 15201.8i 0.358294 + 0.495513i
\(981\) 1786.65 33658.0i 0.0581480 1.09543i
\(982\) −9157.18 + 20215.4i −0.297574 + 0.656925i
\(983\) −22275.6 −0.722769 −0.361384 0.932417i \(-0.617696\pi\)
−0.361384 + 0.932417i \(0.617696\pi\)
\(984\) 28753.6 7905.00i 0.931537 0.256100i
\(985\) 33741.7i 1.09147i
\(986\) −15982.3 + 35282.5i −0.516206 + 1.13958i
\(987\) 23074.1 19906.6i 0.744129 0.641979i
\(988\) 1784.95 + 2034.56i 0.0574765 + 0.0655142i
\(989\) 37249.0 1.19762
\(990\) −1872.36 970.874i −0.0601086 0.0311681i
\(991\) 107.013 0.00343025 0.00171513 0.999999i \(-0.499454\pi\)
0.00171513 + 0.999999i \(0.499454\pi\)
\(992\) 10878.6 17512.8i 0.348181 0.560515i
\(993\) 62.3165 2349.57i 0.00199150 0.0750870i
\(994\) 44892.7 14530.1i 1.43250 0.463650i
\(995\) 26148.6 0.833132
\(996\) 26767.3 22255.5i 0.851561 0.708025i
\(997\) 16525.7 0.524950 0.262475 0.964939i \(-0.415461\pi\)
0.262475 + 0.964939i \(0.415461\pi\)
\(998\) −29169.2 13213.0i −0.925185 0.419090i
\(999\) −3574.32 + 44837.5i −0.113200 + 1.42002i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 168.4.i.c.125.46 yes 80
3.2 odd 2 inner 168.4.i.c.125.36 yes 80
4.3 odd 2 672.4.i.c.209.1 80
7.6 odd 2 inner 168.4.i.c.125.45 yes 80
8.3 odd 2 672.4.i.c.209.80 80
8.5 even 2 inner 168.4.i.c.125.33 80
12.11 even 2 672.4.i.c.209.4 80
21.20 even 2 inner 168.4.i.c.125.35 yes 80
24.5 odd 2 inner 168.4.i.c.125.47 yes 80
24.11 even 2 672.4.i.c.209.77 80
28.27 even 2 672.4.i.c.209.79 80
56.13 odd 2 inner 168.4.i.c.125.34 yes 80
56.27 even 2 672.4.i.c.209.2 80
84.83 odd 2 672.4.i.c.209.78 80
168.83 odd 2 672.4.i.c.209.3 80
168.125 even 2 inner 168.4.i.c.125.48 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.i.c.125.33 80 8.5 even 2 inner
168.4.i.c.125.34 yes 80 56.13 odd 2 inner
168.4.i.c.125.35 yes 80 21.20 even 2 inner
168.4.i.c.125.36 yes 80 3.2 odd 2 inner
168.4.i.c.125.45 yes 80 7.6 odd 2 inner
168.4.i.c.125.46 yes 80 1.1 even 1 trivial
168.4.i.c.125.47 yes 80 24.5 odd 2 inner
168.4.i.c.125.48 yes 80 168.125 even 2 inner
672.4.i.c.209.1 80 4.3 odd 2
672.4.i.c.209.2 80 56.27 even 2
672.4.i.c.209.3 80 168.83 odd 2
672.4.i.c.209.4 80 12.11 even 2
672.4.i.c.209.77 80 24.11 even 2
672.4.i.c.209.78 80 84.83 odd 2
672.4.i.c.209.79 80 28.27 even 2
672.4.i.c.209.80 80 8.3 odd 2