Properties

Label 672.4.i.c.209.2
Level $672$
Weight $4$
Character 672.209
Analytic conductor $39.649$
Analytic rank $0$
Dimension $80$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [672,4,Mod(209,672)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(672, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("672.209");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 672.i (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.6492835239\)
Analytic rank: \(0\)
Dimension: \(80\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 209.2
Character \(\chi\) \(=\) 672.209
Dual form 672.4.i.c.209.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-5.19433 - 0.137767i) q^{3} -6.83655i q^{5} +(-13.6972 - 12.4654i) q^{7} +(26.9620 + 1.43121i) q^{9} +4.03973 q^{11} +11.6537 q^{13} +(-0.941848 + 35.5113i) q^{15} +104.163 q^{17} +29.0310 q^{19} +(69.4304 + 66.6365i) q^{21} +104.560i q^{23} +78.2615 q^{25} +(-139.852 - 11.1486i) q^{27} -131.471 q^{29} -113.891i q^{31} +(-20.9837 - 0.556540i) q^{33} +(-85.2206 + 93.6416i) q^{35} -320.606i q^{37} +(-60.5334 - 1.60550i) q^{39} +253.628 q^{41} +356.247i q^{43} +(9.78453 - 184.327i) q^{45} +316.669 q^{47} +(32.2261 + 341.483i) q^{49} +(-541.057 - 14.3502i) q^{51} -470.890 q^{53} -27.6178i q^{55} +(-150.797 - 3.99951i) q^{57} -722.454i q^{59} +141.417 q^{61} +(-351.464 - 355.697i) q^{63} -79.6715i q^{65} -97.1111i q^{67} +(14.4048 - 543.117i) q^{69} -900.777i q^{71} +622.304i q^{73} +(-406.516 - 10.7818i) q^{75} +(-55.3330 - 50.3570i) q^{77} -211.405 q^{79} +(724.903 + 77.1766i) q^{81} -837.420i q^{83} -712.116i q^{85} +(682.901 + 18.1123i) q^{87} -857.227 q^{89} +(-159.624 - 145.269i) q^{91} +(-15.6904 + 591.588i) q^{93} -198.472i q^{95} -1135.63i q^{97} +(108.919 + 5.78170i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q - 64 q^{7} + 104 q^{9} + 8 q^{15} - 976 q^{25} - 568 q^{39} - 4048 q^{49} - 1448 q^{57} + 2152 q^{63} - 4992 q^{79} + 1568 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −5.19433 0.137767i −0.999648 0.0265132i
\(4\) 0 0
\(5\) 6.83655i 0.611480i −0.952115 0.305740i \(-0.901096\pi\)
0.952115 0.305740i \(-0.0989038\pi\)
\(6\) 0 0
\(7\) −13.6972 12.4654i −0.739579 0.673070i
\(8\) 0 0
\(9\) 26.9620 + 1.43121i 0.998594 + 0.0530077i
\(10\) 0 0
\(11\) 4.03973 0.110729 0.0553647 0.998466i \(-0.482368\pi\)
0.0553647 + 0.998466i \(0.482368\pi\)
\(12\) 0 0
\(13\) 11.6537 0.248628 0.124314 0.992243i \(-0.460327\pi\)
0.124314 + 0.992243i \(0.460327\pi\)
\(14\) 0 0
\(15\) −0.941848 + 35.5113i −0.0162123 + 0.611265i
\(16\) 0 0
\(17\) 104.163 1.48607 0.743037 0.669250i \(-0.233385\pi\)
0.743037 + 0.669250i \(0.233385\pi\)
\(18\) 0 0
\(19\) 29.0310 0.350536 0.175268 0.984521i \(-0.443921\pi\)
0.175268 + 0.984521i \(0.443921\pi\)
\(20\) 0 0
\(21\) 69.4304 + 66.6365i 0.721474 + 0.692442i
\(22\) 0 0
\(23\) 104.560i 0.947921i 0.880546 + 0.473960i \(0.157176\pi\)
−0.880546 + 0.473960i \(0.842824\pi\)
\(24\) 0 0
\(25\) 78.2615 0.626092
\(26\) 0 0
\(27\) −139.852 11.1486i −0.996838 0.0794650i
\(28\) 0 0
\(29\) −131.471 −0.841844 −0.420922 0.907097i \(-0.638293\pi\)
−0.420922 + 0.907097i \(0.638293\pi\)
\(30\) 0 0
\(31\) 113.891i 0.659854i −0.944006 0.329927i \(-0.892976\pi\)
0.944006 0.329927i \(-0.107024\pi\)
\(32\) 0 0
\(33\) −20.9837 0.556540i −0.110691 0.00293579i
\(34\) 0 0
\(35\) −85.2206 + 93.6416i −0.411569 + 0.452238i
\(36\) 0 0
\(37\) 320.606i 1.42452i −0.701915 0.712261i \(-0.747671\pi\)
0.701915 0.712261i \(-0.252329\pi\)
\(38\) 0 0
\(39\) −60.5334 1.60550i −0.248541 0.00659193i
\(40\) 0 0
\(41\) 253.628 0.966099 0.483050 0.875593i \(-0.339529\pi\)
0.483050 + 0.875593i \(0.339529\pi\)
\(42\) 0 0
\(43\) 356.247i 1.26342i 0.775204 + 0.631711i \(0.217647\pi\)
−0.775204 + 0.631711i \(0.782353\pi\)
\(44\) 0 0
\(45\) 9.78453 184.327i 0.0324132 0.610620i
\(46\) 0 0
\(47\) 316.669 0.982784 0.491392 0.870938i \(-0.336488\pi\)
0.491392 + 0.870938i \(0.336488\pi\)
\(48\) 0 0
\(49\) 32.2261 + 341.483i 0.0939537 + 0.995577i
\(50\) 0 0
\(51\) −541.057 14.3502i −1.48555 0.0394005i
\(52\) 0 0
\(53\) −470.890 −1.22041 −0.610205 0.792244i \(-0.708913\pi\)
−0.610205 + 0.792244i \(0.708913\pi\)
\(54\) 0 0
\(55\) 27.6178i 0.0677089i
\(56\) 0 0
\(57\) −150.797 3.99951i −0.350412 0.00929382i
\(58\) 0 0
\(59\) 722.454i 1.59416i −0.603874 0.797080i \(-0.706377\pi\)
0.603874 0.797080i \(-0.293623\pi\)
\(60\) 0 0
\(61\) 141.417 0.296828 0.148414 0.988925i \(-0.452583\pi\)
0.148414 + 0.988925i \(0.452583\pi\)
\(62\) 0 0
\(63\) −351.464 355.697i −0.702861 0.711327i
\(64\) 0 0
\(65\) 79.6715i 0.152031i
\(66\) 0 0
\(67\) 97.1111i 0.177075i −0.996073 0.0885374i \(-0.971781\pi\)
0.996073 0.0885374i \(-0.0282193\pi\)
\(68\) 0 0
\(69\) 14.4048 543.117i 0.0251324 0.947588i
\(70\) 0 0
\(71\) 900.777i 1.50567i −0.658209 0.752835i \(-0.728686\pi\)
0.658209 0.752835i \(-0.271314\pi\)
\(72\) 0 0
\(73\) 622.304i 0.997742i 0.866676 + 0.498871i \(0.166252\pi\)
−0.866676 + 0.498871i \(0.833748\pi\)
\(74\) 0 0
\(75\) −406.516 10.7818i −0.625872 0.0165997i
\(76\) 0 0
\(77\) −55.3330 50.3570i −0.0818932 0.0745287i
\(78\) 0 0
\(79\) −211.405 −0.301074 −0.150537 0.988604i \(-0.548100\pi\)
−0.150537 + 0.988604i \(0.548100\pi\)
\(80\) 0 0
\(81\) 724.903 + 77.1766i 0.994380 + 0.105866i
\(82\) 0 0
\(83\) 837.420i 1.10745i −0.832698 0.553727i \(-0.813205\pi\)
0.832698 0.553727i \(-0.186795\pi\)
\(84\) 0 0
\(85\) 712.116i 0.908704i
\(86\) 0 0
\(87\) 682.901 + 18.1123i 0.841548 + 0.0223200i
\(88\) 0 0
\(89\) −857.227 −1.02096 −0.510482 0.859888i \(-0.670533\pi\)
−0.510482 + 0.859888i \(0.670533\pi\)
\(90\) 0 0
\(91\) −159.624 145.269i −0.183880 0.167344i
\(92\) 0 0
\(93\) −15.6904 + 591.588i −0.0174948 + 0.659622i
\(94\) 0 0
\(95\) 198.472i 0.214345i
\(96\) 0 0
\(97\) 1135.63i 1.18872i −0.804199 0.594360i \(-0.797405\pi\)
0.804199 0.594360i \(-0.202595\pi\)
\(98\) 0 0
\(99\) 108.919 + 5.78170i 0.110574 + 0.00586952i
\(100\) 0 0
\(101\) 956.403i 0.942234i −0.882071 0.471117i \(-0.843851\pi\)
0.882071 0.471117i \(-0.156149\pi\)
\(102\) 0 0
\(103\) 474.636i 0.454051i −0.973889 0.227025i \(-0.927100\pi\)
0.973889 0.227025i \(-0.0729000\pi\)
\(104\) 0 0
\(105\) 455.564 474.664i 0.423414 0.441167i
\(106\) 0 0
\(107\) −479.771 −0.433470 −0.216735 0.976231i \(-0.569541\pi\)
−0.216735 + 0.976231i \(0.569541\pi\)
\(108\) 0 0
\(109\) 1248.35i 1.09697i 0.836159 + 0.548486i \(0.184796\pi\)
−0.836159 + 0.548486i \(0.815204\pi\)
\(110\) 0 0
\(111\) −44.1688 + 1665.33i −0.0377686 + 1.42402i
\(112\) 0 0
\(113\) 1349.96i 1.12384i −0.827193 0.561918i \(-0.810063\pi\)
0.827193 0.561918i \(-0.189937\pi\)
\(114\) 0 0
\(115\) 714.827 0.579634
\(116\) 0 0
\(117\) 314.209 + 16.6789i 0.248279 + 0.0131792i
\(118\) 0 0
\(119\) −1426.74 1298.44i −1.09907 1.00023i
\(120\) 0 0
\(121\) −1314.68 −0.987739
\(122\) 0 0
\(123\) −1317.43 34.9415i −0.965760 0.0256144i
\(124\) 0 0
\(125\) 1389.61i 0.994323i
\(126\) 0 0
\(127\) 1963.80 1.37212 0.686058 0.727547i \(-0.259340\pi\)
0.686058 + 0.727547i \(0.259340\pi\)
\(128\) 0 0
\(129\) 49.0789 1850.46i 0.0334973 1.26298i
\(130\) 0 0
\(131\) 1775.12i 1.18391i −0.805969 0.591957i \(-0.798355\pi\)
0.805969 0.591957i \(-0.201645\pi\)
\(132\) 0 0
\(133\) −397.644 361.884i −0.259249 0.235935i
\(134\) 0 0
\(135\) −76.2182 + 956.109i −0.0485913 + 0.609546i
\(136\) 0 0
\(137\) 573.341i 0.357546i −0.983890 0.178773i \(-0.942787\pi\)
0.983890 0.178773i \(-0.0572128\pi\)
\(138\) 0 0
\(139\) 1094.52 0.667883 0.333942 0.942594i \(-0.391621\pi\)
0.333942 + 0.942594i \(0.391621\pi\)
\(140\) 0 0
\(141\) −1644.88 43.6263i −0.982439 0.0260567i
\(142\) 0 0
\(143\) 47.0780 0.0275305
\(144\) 0 0
\(145\) 898.806i 0.514771i
\(146\) 0 0
\(147\) −120.348 1778.21i −0.0675248 0.997718i
\(148\) 0 0
\(149\) −2573.83 −1.41514 −0.707571 0.706643i \(-0.750209\pi\)
−0.707571 + 0.706643i \(0.750209\pi\)
\(150\) 0 0
\(151\) 1119.27 0.603214 0.301607 0.953432i \(-0.402477\pi\)
0.301607 + 0.953432i \(0.402477\pi\)
\(152\) 0 0
\(153\) 2808.45 + 149.079i 1.48398 + 0.0787734i
\(154\) 0 0
\(155\) −778.624 −0.403487
\(156\) 0 0
\(157\) −2769.72 −1.40795 −0.703973 0.710227i \(-0.748592\pi\)
−0.703973 + 0.710227i \(0.748592\pi\)
\(158\) 0 0
\(159\) 2445.96 + 64.8729i 1.21998 + 0.0323570i
\(160\) 0 0
\(161\) 1303.38 1432.17i 0.638017 0.701062i
\(162\) 0 0
\(163\) 1305.78i 0.627464i 0.949511 + 0.313732i \(0.101579\pi\)
−0.949511 + 0.313732i \(0.898421\pi\)
\(164\) 0 0
\(165\) −3.80481 + 143.456i −0.00179518 + 0.0676851i
\(166\) 0 0
\(167\) −1241.39 −0.575218 −0.287609 0.957748i \(-0.592860\pi\)
−0.287609 + 0.957748i \(0.592860\pi\)
\(168\) 0 0
\(169\) −2061.19 −0.938184
\(170\) 0 0
\(171\) 782.736 + 41.5495i 0.350043 + 0.0185811i
\(172\) 0 0
\(173\) 415.397i 0.182555i −0.995825 0.0912775i \(-0.970905\pi\)
0.995825 0.0912775i \(-0.0290950\pi\)
\(174\) 0 0
\(175\) −1071.96 975.564i −0.463045 0.421404i
\(176\) 0 0
\(177\) −99.5300 + 3752.66i −0.0422663 + 1.59360i
\(178\) 0 0
\(179\) 117.160 0.0489215 0.0244608 0.999701i \(-0.492213\pi\)
0.0244608 + 0.999701i \(0.492213\pi\)
\(180\) 0 0
\(181\) −1379.06 −0.566325 −0.283162 0.959072i \(-0.591384\pi\)
−0.283162 + 0.959072i \(0.591384\pi\)
\(182\) 0 0
\(183\) −734.564 19.4825i −0.296724 0.00786987i
\(184\) 0 0
\(185\) −2191.84 −0.871066
\(186\) 0 0
\(187\) 420.791 0.164552
\(188\) 0 0
\(189\) 1776.61 + 1896.03i 0.683755 + 0.729712i
\(190\) 0 0
\(191\) 2323.47i 0.880211i 0.897946 + 0.440106i \(0.145059\pi\)
−0.897946 + 0.440106i \(0.854941\pi\)
\(192\) 0 0
\(193\) 1284.20 0.478958 0.239479 0.970902i \(-0.423023\pi\)
0.239479 + 0.970902i \(0.423023\pi\)
\(194\) 0 0
\(195\) −10.9761 + 413.840i −0.00403083 + 0.151978i
\(196\) 0 0
\(197\) 4935.49 1.78497 0.892485 0.451076i \(-0.148960\pi\)
0.892485 + 0.451076i \(0.148960\pi\)
\(198\) 0 0
\(199\) 3824.82i 1.36249i 0.732058 + 0.681243i \(0.238560\pi\)
−0.732058 + 0.681243i \(0.761440\pi\)
\(200\) 0 0
\(201\) −13.3787 + 504.427i −0.00469482 + 0.177013i
\(202\) 0 0
\(203\) 1800.78 + 1638.84i 0.622610 + 0.566620i
\(204\) 0 0
\(205\) 1733.94i 0.590750i
\(206\) 0 0
\(207\) −149.647 + 2819.14i −0.0502471 + 0.946588i
\(208\) 0 0
\(209\) 117.278 0.0388146
\(210\) 0 0
\(211\) 1236.70i 0.403496i 0.979437 + 0.201748i \(0.0646623\pi\)
−0.979437 + 0.201748i \(0.935338\pi\)
\(212\) 0 0
\(213\) −124.097 + 4678.93i −0.0399201 + 1.50514i
\(214\) 0 0
\(215\) 2435.50 0.772557
\(216\) 0 0
\(217\) −1419.70 + 1559.99i −0.444128 + 0.488014i
\(218\) 0 0
\(219\) 85.7326 3232.45i 0.0264533 0.997391i
\(220\) 0 0
\(221\) 1213.89 0.369480
\(222\) 0 0
\(223\) 2567.59i 0.771026i −0.922702 0.385513i \(-0.874025\pi\)
0.922702 0.385513i \(-0.125975\pi\)
\(224\) 0 0
\(225\) 2110.09 + 112.009i 0.625212 + 0.0331877i
\(226\) 0 0
\(227\) 5160.79i 1.50896i 0.656323 + 0.754480i \(0.272111\pi\)
−0.656323 + 0.754480i \(0.727889\pi\)
\(228\) 0 0
\(229\) 2221.09 0.640934 0.320467 0.947260i \(-0.396160\pi\)
0.320467 + 0.947260i \(0.396160\pi\)
\(230\) 0 0
\(231\) 280.480 + 269.194i 0.0798884 + 0.0766737i
\(232\) 0 0
\(233\) 3711.51i 1.04356i 0.853080 + 0.521779i \(0.174732\pi\)
−0.853080 + 0.521779i \(0.825268\pi\)
\(234\) 0 0
\(235\) 2164.92i 0.600953i
\(236\) 0 0
\(237\) 1098.10 + 29.1245i 0.300968 + 0.00798244i
\(238\) 0 0
\(239\) 3198.82i 0.865751i −0.901454 0.432876i \(-0.857499\pi\)
0.901454 0.432876i \(-0.142501\pi\)
\(240\) 0 0
\(241\) 5785.50i 1.54638i −0.634177 0.773188i \(-0.718661\pi\)
0.634177 0.773188i \(-0.281339\pi\)
\(242\) 0 0
\(243\) −3754.75 500.748i −0.991224 0.132193i
\(244\) 0 0
\(245\) 2334.56 220.316i 0.608775 0.0574508i
\(246\) 0 0
\(247\) 338.320 0.0871531
\(248\) 0 0
\(249\) −115.368 + 4349.83i −0.0293622 + 1.10707i
\(250\) 0 0
\(251\) 2096.38i 0.527180i −0.964635 0.263590i \(-0.915093\pi\)
0.964635 0.263590i \(-0.0849066\pi\)
\(252\) 0 0
\(253\) 422.392i 0.104963i
\(254\) 0 0
\(255\) −98.1058 + 3698.96i −0.0240926 + 0.908385i
\(256\) 0 0
\(257\) −5905.29 −1.43331 −0.716657 0.697426i \(-0.754329\pi\)
−0.716657 + 0.697426i \(0.754329\pi\)
\(258\) 0 0
\(259\) −3996.49 + 4391.40i −0.958803 + 1.05355i
\(260\) 0 0
\(261\) −3544.72 188.162i −0.840661 0.0446243i
\(262\) 0 0
\(263\) 2143.88i 0.502652i −0.967902 0.251326i \(-0.919133\pi\)
0.967902 0.251326i \(-0.0808666\pi\)
\(264\) 0 0
\(265\) 3219.26i 0.746256i
\(266\) 0 0
\(267\) 4452.72 + 118.097i 1.02061 + 0.0270690i
\(268\) 0 0
\(269\) 6249.96i 1.41660i 0.705909 + 0.708302i \(0.250539\pi\)
−0.705909 + 0.708302i \(0.749461\pi\)
\(270\) 0 0
\(271\) 4623.10i 1.03629i −0.855294 0.518143i \(-0.826624\pi\)
0.855294 0.518143i \(-0.173376\pi\)
\(272\) 0 0
\(273\) 809.124 + 776.565i 0.179379 + 0.172161i
\(274\) 0 0
\(275\) 316.156 0.0693269
\(276\) 0 0
\(277\) 282.839i 0.0613507i 0.999529 + 0.0306754i \(0.00976580\pi\)
−0.999529 + 0.0306754i \(0.990234\pi\)
\(278\) 0 0
\(279\) 163.002 3070.74i 0.0349774 0.658926i
\(280\) 0 0
\(281\) 6722.69i 1.42720i −0.700555 0.713598i \(-0.747064\pi\)
0.700555 0.713598i \(-0.252936\pi\)
\(282\) 0 0
\(283\) 7208.18 1.51407 0.757035 0.653375i \(-0.226647\pi\)
0.757035 + 0.653375i \(0.226647\pi\)
\(284\) 0 0
\(285\) −27.3428 + 1030.93i −0.00568298 + 0.214270i
\(286\) 0 0
\(287\) −3473.99 3161.58i −0.714507 0.650252i
\(288\) 0 0
\(289\) 5936.94 1.20842
\(290\) 0 0
\(291\) −156.452 + 5898.84i −0.0315168 + 1.18830i
\(292\) 0 0
\(293\) 3175.54i 0.633163i −0.948565 0.316582i \(-0.897465\pi\)
0.948565 0.316582i \(-0.102535\pi\)
\(294\) 0 0
\(295\) −4939.09 −0.974797
\(296\) 0 0
\(297\) −564.966 45.0375i −0.110379 0.00879912i
\(298\) 0 0
\(299\) 1218.51i 0.235680i
\(300\) 0 0
\(301\) 4440.77 4879.58i 0.850371 0.934400i
\(302\) 0 0
\(303\) −131.760 + 4967.87i −0.0249816 + 0.941903i
\(304\) 0 0
\(305\) 966.802i 0.181505i
\(306\) 0 0
\(307\) −3739.33 −0.695163 −0.347581 0.937650i \(-0.612997\pi\)
−0.347581 + 0.937650i \(0.612997\pi\)
\(308\) 0 0
\(309\) −65.3889 + 2465.41i −0.0120383 + 0.453891i
\(310\) 0 0
\(311\) −9117.85 −1.66246 −0.831231 0.555927i \(-0.812363\pi\)
−0.831231 + 0.555927i \(0.812363\pi\)
\(312\) 0 0
\(313\) 9104.29i 1.64410i 0.569412 + 0.822052i \(0.307171\pi\)
−0.569412 + 0.822052i \(0.692829\pi\)
\(314\) 0 0
\(315\) −2431.74 + 2402.80i −0.434962 + 0.429785i
\(316\) 0 0
\(317\) 9883.17 1.75109 0.875543 0.483141i \(-0.160504\pi\)
0.875543 + 0.483141i \(0.160504\pi\)
\(318\) 0 0
\(319\) −531.106 −0.0932170
\(320\) 0 0
\(321\) 2492.09 + 66.0965i 0.433317 + 0.0114927i
\(322\) 0 0
\(323\) 3023.96 0.520922
\(324\) 0 0
\(325\) 912.040 0.155664
\(326\) 0 0
\(327\) 171.981 6484.33i 0.0290842 1.09659i
\(328\) 0 0
\(329\) −4337.47 3947.41i −0.726846 0.661482i
\(330\) 0 0
\(331\) 452.334i 0.0751134i −0.999294 0.0375567i \(-0.988043\pi\)
0.999294 0.0375567i \(-0.0119575\pi\)
\(332\) 0 0
\(333\) 458.854 8644.19i 0.0755107 1.42252i
\(334\) 0 0
\(335\) −663.905 −0.108278
\(336\) 0 0
\(337\) 4969.87 0.803341 0.401670 0.915784i \(-0.368430\pi\)
0.401670 + 0.915784i \(0.368430\pi\)
\(338\) 0 0
\(339\) −185.979 + 7012.13i −0.0297965 + 1.12344i
\(340\) 0 0
\(341\) 460.090i 0.0730653i
\(342\) 0 0
\(343\) 3815.32 5079.07i 0.600606 0.799545i
\(344\) 0 0
\(345\) −3713.04 98.4793i −0.579431 0.0153680i
\(346\) 0 0
\(347\) 11013.5 1.70386 0.851928 0.523659i \(-0.175433\pi\)
0.851928 + 0.523659i \(0.175433\pi\)
\(348\) 0 0
\(349\) −4530.91 −0.694940 −0.347470 0.937691i \(-0.612959\pi\)
−0.347470 + 0.937691i \(0.612959\pi\)
\(350\) 0 0
\(351\) −1629.81 129.923i −0.247842 0.0197573i
\(352\) 0 0
\(353\) −6152.85 −0.927714 −0.463857 0.885910i \(-0.653535\pi\)
−0.463857 + 0.885910i \(0.653535\pi\)
\(354\) 0 0
\(355\) −6158.21 −0.920687
\(356\) 0 0
\(357\) 7232.08 + 6941.06i 1.07216 + 1.02902i
\(358\) 0 0
\(359\) 2822.93i 0.415010i 0.978234 + 0.207505i \(0.0665344\pi\)
−0.978234 + 0.207505i \(0.933466\pi\)
\(360\) 0 0
\(361\) −6016.20 −0.877125
\(362\) 0 0
\(363\) 6828.88 + 181.119i 0.987392 + 0.0261881i
\(364\) 0 0
\(365\) 4254.41 0.610099
\(366\) 0 0
\(367\) 6388.51i 0.908658i 0.890834 + 0.454329i \(0.150121\pi\)
−0.890834 + 0.454329i \(0.849879\pi\)
\(368\) 0 0
\(369\) 6838.33 + 362.995i 0.964741 + 0.0512107i
\(370\) 0 0
\(371\) 6449.87 + 5869.85i 0.902589 + 0.821421i
\(372\) 0 0
\(373\) 6415.30i 0.890541i 0.895396 + 0.445270i \(0.146892\pi\)
−0.895396 + 0.445270i \(0.853108\pi\)
\(374\) 0 0
\(375\) −191.442 + 7218.08i −0.0263627 + 0.993973i
\(376\) 0 0
\(377\) −1532.13 −0.209306
\(378\) 0 0
\(379\) 10997.5i 1.49051i −0.666782 0.745253i \(-0.732329\pi\)
0.666782 0.745253i \(-0.267671\pi\)
\(380\) 0 0
\(381\) −10200.6 270.545i −1.37163 0.0363792i
\(382\) 0 0
\(383\) −9990.07 −1.33282 −0.666408 0.745587i \(-0.732169\pi\)
−0.666408 + 0.745587i \(0.732169\pi\)
\(384\) 0 0
\(385\) −344.268 + 378.287i −0.0455728 + 0.0500760i
\(386\) 0 0
\(387\) −509.864 + 9605.14i −0.0669711 + 1.26165i
\(388\) 0 0
\(389\) −3943.66 −0.514014 −0.257007 0.966410i \(-0.582736\pi\)
−0.257007 + 0.966410i \(0.582736\pi\)
\(390\) 0 0
\(391\) 10891.2i 1.40868i
\(392\) 0 0
\(393\) −244.552 + 9220.55i −0.0313894 + 1.18350i
\(394\) 0 0
\(395\) 1445.28i 0.184101i
\(396\) 0 0
\(397\) 14238.3 1.80000 0.900002 0.435885i \(-0.143565\pi\)
0.900002 + 0.435885i \(0.143565\pi\)
\(398\) 0 0
\(399\) 2015.64 + 1934.53i 0.252902 + 0.242726i
\(400\) 0 0
\(401\) 876.488i 0.109151i −0.998510 0.0545757i \(-0.982619\pi\)
0.998510 0.0545757i \(-0.0173806\pi\)
\(402\) 0 0
\(403\) 1327.26i 0.164058i
\(404\) 0 0
\(405\) 527.622 4955.84i 0.0647352 0.608044i
\(406\) 0 0
\(407\) 1295.16i 0.157737i
\(408\) 0 0
\(409\) 11741.1i 1.41947i −0.704471 0.709733i \(-0.748816\pi\)
0.704471 0.709733i \(-0.251184\pi\)
\(410\) 0 0
\(411\) −78.9873 + 2978.12i −0.00947969 + 0.357421i
\(412\) 0 0
\(413\) −9005.70 + 9895.59i −1.07298 + 1.17901i
\(414\) 0 0
\(415\) −5725.06 −0.677186
\(416\) 0 0
\(417\) −5685.28 150.788i −0.667648 0.0177077i
\(418\) 0 0
\(419\) 16673.4i 1.94403i −0.234911 0.972017i \(-0.575480\pi\)
0.234911 0.972017i \(-0.424520\pi\)
\(420\) 0 0
\(421\) 2350.61i 0.272118i 0.990701 + 0.136059i \(0.0434436\pi\)
−0.990701 + 0.136059i \(0.956556\pi\)
\(422\) 0 0
\(423\) 8538.03 + 453.219i 0.981402 + 0.0520952i
\(424\) 0 0
\(425\) 8151.96 0.930419
\(426\) 0 0
\(427\) −1937.01 1762.82i −0.219528 0.199786i
\(428\) 0 0
\(429\) −244.538 6.48577i −0.0275208 0.000729921i
\(430\) 0 0
\(431\) 6140.09i 0.686213i −0.939297 0.343106i \(-0.888521\pi\)
0.939297 0.343106i \(-0.111479\pi\)
\(432\) 0 0
\(433\) 8753.16i 0.971478i −0.874104 0.485739i \(-0.838551\pi\)
0.874104 0.485739i \(-0.161449\pi\)
\(434\) 0 0
\(435\) 123.825 4668.69i 0.0136482 0.514590i
\(436\) 0 0
\(437\) 3035.47i 0.332280i
\(438\) 0 0
\(439\) 4097.50i 0.445474i 0.974879 + 0.222737i \(0.0714992\pi\)
−0.974879 + 0.222737i \(0.928501\pi\)
\(440\) 0 0
\(441\) 380.149 + 9253.19i 0.0410484 + 0.999157i
\(442\) 0 0
\(443\) −7908.50 −0.848181 −0.424091 0.905620i \(-0.639406\pi\)
−0.424091 + 0.905620i \(0.639406\pi\)
\(444\) 0 0
\(445\) 5860.48i 0.624299i
\(446\) 0 0
\(447\) 13369.3 + 354.587i 1.41464 + 0.0375199i
\(448\) 0 0
\(449\) 2363.47i 0.248417i −0.992256 0.124208i \(-0.960361\pi\)
0.992256 0.124208i \(-0.0396392\pi\)
\(450\) 0 0
\(451\) 1024.59 0.106976
\(452\) 0 0
\(453\) −5813.88 154.199i −0.603002 0.0159931i
\(454\) 0 0
\(455\) −993.139 + 1091.28i −0.102328 + 0.112439i
\(456\) 0 0
\(457\) 5371.11 0.549781 0.274891 0.961476i \(-0.411358\pi\)
0.274891 + 0.961476i \(0.411358\pi\)
\(458\) 0 0
\(459\) −14567.5 1161.28i −1.48137 0.118091i
\(460\) 0 0
\(461\) 14246.7i 1.43934i −0.694319 0.719668i \(-0.744294\pi\)
0.694319 0.719668i \(-0.255706\pi\)
\(462\) 0 0
\(463\) 3194.81 0.320681 0.160341 0.987062i \(-0.448741\pi\)
0.160341 + 0.987062i \(0.448741\pi\)
\(464\) 0 0
\(465\) 4044.43 + 107.268i 0.403346 + 0.0106977i
\(466\) 0 0
\(467\) 3317.47i 0.328724i −0.986400 0.164362i \(-0.947443\pi\)
0.986400 0.164362i \(-0.0525565\pi\)
\(468\) 0 0
\(469\) −1210.53 + 1330.15i −0.119184 + 0.130961i
\(470\) 0 0
\(471\) 14386.8 + 381.574i 1.40745 + 0.0373291i
\(472\) 0 0
\(473\) 1439.14i 0.139898i
\(474\) 0 0
\(475\) 2272.01 0.219468
\(476\) 0 0
\(477\) −12696.2 673.942i −1.21869 0.0646912i
\(478\) 0 0
\(479\) 1661.85 0.158522 0.0792608 0.996854i \(-0.474744\pi\)
0.0792608 + 0.996854i \(0.474744\pi\)
\(480\) 0 0
\(481\) 3736.26i 0.354176i
\(482\) 0 0
\(483\) −6967.49 + 7259.61i −0.656380 + 0.683900i
\(484\) 0 0
\(485\) −7763.80 −0.726879
\(486\) 0 0
\(487\) −6158.69 −0.573053 −0.286527 0.958072i \(-0.592501\pi\)
−0.286527 + 0.958072i \(0.592501\pi\)
\(488\) 0 0
\(489\) 179.893 6782.66i 0.0166361 0.627244i
\(490\) 0 0
\(491\) −7846.32 −0.721180 −0.360590 0.932724i \(-0.617425\pi\)
−0.360590 + 0.932724i \(0.617425\pi\)
\(492\) 0 0
\(493\) −13694.4 −1.25104
\(494\) 0 0
\(495\) 39.5269 744.633i 0.00358909 0.0676137i
\(496\) 0 0
\(497\) −11228.6 + 12338.1i −1.01342 + 1.11356i
\(498\) 0 0
\(499\) 11321.6i 1.01568i −0.861452 0.507839i \(-0.830444\pi\)
0.861452 0.507839i \(-0.169556\pi\)
\(500\) 0 0
\(501\) 6448.17 + 171.022i 0.575016 + 0.0152509i
\(502\) 0 0
\(503\) 21262.4 1.88478 0.942391 0.334513i \(-0.108572\pi\)
0.942391 + 0.334513i \(0.108572\pi\)
\(504\) 0 0
\(505\) −6538.50 −0.576157
\(506\) 0 0
\(507\) 10706.5 + 283.963i 0.937854 + 0.0248742i
\(508\) 0 0
\(509\) 6748.42i 0.587659i −0.955858 0.293829i \(-0.905070\pi\)
0.955858 0.293829i \(-0.0949298\pi\)
\(510\) 0 0
\(511\) 7757.28 8523.81i 0.671550 0.737909i
\(512\) 0 0
\(513\) −4060.06 323.656i −0.349427 0.0278553i
\(514\) 0 0
\(515\) −3244.87 −0.277643
\(516\) 0 0
\(517\) 1279.26 0.108823
\(518\) 0 0
\(519\) −57.2278 + 2157.71i −0.00484011 + 0.182491i
\(520\) 0 0
\(521\) 1669.33 0.140374 0.0701868 0.997534i \(-0.477640\pi\)
0.0701868 + 0.997534i \(0.477640\pi\)
\(522\) 0 0
\(523\) 8699.40 0.727339 0.363669 0.931528i \(-0.381524\pi\)
0.363669 + 0.931528i \(0.381524\pi\)
\(524\) 0 0
\(525\) 5433.73 + 5215.08i 0.451709 + 0.433533i
\(526\) 0 0
\(527\) 11863.3i 0.980592i
\(528\) 0 0
\(529\) 1234.29 0.101446
\(530\) 0 0
\(531\) 1033.98 19478.8i 0.0845028 1.59192i
\(532\) 0 0
\(533\) 2955.72 0.240200
\(534\) 0 0
\(535\) 3279.98i 0.265058i
\(536\) 0 0
\(537\) −608.568 16.1407i −0.0489043 0.00129707i
\(538\) 0 0
\(539\) 130.185 + 1379.50i 0.0104035 + 0.110240i
\(540\) 0 0
\(541\) 6335.93i 0.503517i 0.967790 + 0.251759i \(0.0810089\pi\)
−0.967790 + 0.251759i \(0.918991\pi\)
\(542\) 0 0
\(543\) 7163.29 + 189.988i 0.566126 + 0.0150151i
\(544\) 0 0
\(545\) 8534.40 0.670777
\(546\) 0 0
\(547\) 25466.5i 1.99062i 0.0967351 + 0.995310i \(0.469160\pi\)
−0.0967351 + 0.995310i \(0.530840\pi\)
\(548\) 0 0
\(549\) 3812.88 + 202.397i 0.296411 + 0.0157342i
\(550\) 0 0
\(551\) −3816.73 −0.295096
\(552\) 0 0
\(553\) 2895.65 + 2635.25i 0.222668 + 0.202644i
\(554\) 0 0
\(555\) 11385.1 + 301.962i 0.870760 + 0.0230947i
\(556\) 0 0
\(557\) −2282.80 −0.173654 −0.0868269 0.996223i \(-0.527673\pi\)
−0.0868269 + 0.996223i \(0.527673\pi\)
\(558\) 0 0
\(559\) 4151.61i 0.314122i
\(560\) 0 0
\(561\) −2185.72 57.9709i −0.164494 0.00436280i
\(562\) 0 0
\(563\) 5471.40i 0.409577i 0.978806 + 0.204789i \(0.0656507\pi\)
−0.978806 + 0.204789i \(0.934349\pi\)
\(564\) 0 0
\(565\) −9229.07 −0.687204
\(566\) 0 0
\(567\) −8967.10 10093.3i −0.664167 0.747584i
\(568\) 0 0
\(569\) 10659.3i 0.785342i −0.919679 0.392671i \(-0.871551\pi\)
0.919679 0.392671i \(-0.128449\pi\)
\(570\) 0 0
\(571\) 12002.7i 0.879680i −0.898076 0.439840i \(-0.855035\pi\)
0.898076 0.439840i \(-0.144965\pi\)
\(572\) 0 0
\(573\) 320.096 12068.9i 0.0233372 0.879902i
\(574\) 0 0
\(575\) 8182.99i 0.593486i
\(576\) 0 0
\(577\) 10078.4i 0.727159i 0.931563 + 0.363579i \(0.118445\pi\)
−0.931563 + 0.363579i \(0.881555\pi\)
\(578\) 0 0
\(579\) −6670.56 176.920i −0.478789 0.0126987i
\(580\) 0 0
\(581\) −10438.8 + 11470.3i −0.745395 + 0.819050i
\(582\) 0 0
\(583\) −1902.27 −0.135135
\(584\) 0 0
\(585\) 114.026 2148.11i 0.00805883 0.151817i
\(586\) 0 0
\(587\) 22343.5i 1.57106i −0.618820 0.785532i \(-0.712389\pi\)
0.618820 0.785532i \(-0.287611\pi\)
\(588\) 0 0
\(589\) 3306.38i 0.231302i
\(590\) 0 0
\(591\) −25636.6 679.946i −1.78434 0.0473253i
\(592\) 0 0
\(593\) 21338.0 1.47765 0.738824 0.673898i \(-0.235381\pi\)
0.738824 + 0.673898i \(0.235381\pi\)
\(594\) 0 0
\(595\) −8876.84 + 9753.99i −0.611621 + 0.672058i
\(596\) 0 0
\(597\) 526.933 19867.4i 0.0361238 1.36201i
\(598\) 0 0
\(599\) 8738.27i 0.596054i −0.954557 0.298027i \(-0.903671\pi\)
0.954557 0.298027i \(-0.0963285\pi\)
\(600\) 0 0
\(601\) 7481.20i 0.507761i −0.967236 0.253881i \(-0.918293\pi\)
0.967236 0.253881i \(-0.0817070\pi\)
\(602\) 0 0
\(603\) 138.986 2618.31i 0.00938633 0.176826i
\(604\) 0 0
\(605\) 8987.88i 0.603982i
\(606\) 0 0
\(607\) 473.402i 0.0316554i 0.999875 + 0.0158277i \(0.00503832\pi\)
−0.999875 + 0.0158277i \(0.994962\pi\)
\(608\) 0 0
\(609\) −9128.05 8760.75i −0.607369 0.582928i
\(610\) 0 0
\(611\) 3690.38 0.244348
\(612\) 0 0
\(613\) 7125.38i 0.469480i −0.972058 0.234740i \(-0.924576\pi\)
0.972058 0.234740i \(-0.0754239\pi\)
\(614\) 0 0
\(615\) −238.879 + 9006.66i −0.0156627 + 0.590543i
\(616\) 0 0
\(617\) 3345.74i 0.218305i 0.994025 + 0.109153i \(0.0348137\pi\)
−0.994025 + 0.109153i \(0.965186\pi\)
\(618\) 0 0
\(619\) 7950.72 0.516263 0.258131 0.966110i \(-0.416893\pi\)
0.258131 + 0.966110i \(0.416893\pi\)
\(620\) 0 0
\(621\) 1165.70 14622.9i 0.0753265 0.944923i
\(622\) 0 0
\(623\) 11741.6 + 10685.7i 0.755084 + 0.687181i
\(624\) 0 0
\(625\) 282.564 0.0180841
\(626\) 0 0
\(627\) −609.178 16.1569i −0.0388010 0.00102910i
\(628\) 0 0
\(629\) 33395.3i 2.11694i
\(630\) 0 0
\(631\) 9702.61 0.612131 0.306066 0.952010i \(-0.400987\pi\)
0.306066 + 0.952010i \(0.400987\pi\)
\(632\) 0 0
\(633\) 170.376 6423.81i 0.0106980 0.403355i
\(634\) 0 0
\(635\) 13425.6i 0.839021i
\(636\) 0 0
\(637\) 375.555 + 3979.55i 0.0233596 + 0.247529i
\(638\) 0 0
\(639\) 1289.20 24286.8i 0.0798121 1.50355i
\(640\) 0 0
\(641\) 27464.9i 1.69235i −0.532904 0.846176i \(-0.678899\pi\)
0.532904 0.846176i \(-0.321101\pi\)
\(642\) 0 0
\(643\) −18925.7 −1.16074 −0.580372 0.814352i \(-0.697093\pi\)
−0.580372 + 0.814352i \(0.697093\pi\)
\(644\) 0 0
\(645\) −12650.8 335.530i −0.772285 0.0204829i
\(646\) 0 0
\(647\) −6973.22 −0.423718 −0.211859 0.977300i \(-0.567952\pi\)
−0.211859 + 0.977300i \(0.567952\pi\)
\(648\) 0 0
\(649\) 2918.52i 0.176521i
\(650\) 0 0
\(651\) 7589.32 7907.51i 0.456911 0.476067i
\(652\) 0 0
\(653\) −5754.57 −0.344860 −0.172430 0.985022i \(-0.555162\pi\)
−0.172430 + 0.985022i \(0.555162\pi\)
\(654\) 0 0
\(655\) −12135.7 −0.723940
\(656\) 0 0
\(657\) −890.647 + 16778.6i −0.0528880 + 0.996339i
\(658\) 0 0
\(659\) −30735.0 −1.81679 −0.908394 0.418115i \(-0.862691\pi\)
−0.908394 + 0.418115i \(0.862691\pi\)
\(660\) 0 0
\(661\) 22592.9 1.32944 0.664721 0.747092i \(-0.268550\pi\)
0.664721 + 0.747092i \(0.268550\pi\)
\(662\) 0 0
\(663\) −6305.34 167.233i −0.369350 0.00979609i
\(664\) 0 0
\(665\) −2474.04 + 2718.51i −0.144270 + 0.158525i
\(666\) 0 0
\(667\) 13746.5i 0.798002i
\(668\) 0 0
\(669\) −353.728 + 13336.9i −0.0204423 + 0.770755i
\(670\) 0 0
\(671\) 571.285 0.0328677
\(672\) 0 0
\(673\) −12930.6 −0.740621 −0.370311 0.928908i \(-0.620749\pi\)
−0.370311 + 0.928908i \(0.620749\pi\)
\(674\) 0 0
\(675\) −10945.1 872.509i −0.624112 0.0497524i
\(676\) 0 0
\(677\) 27874.6i 1.58244i −0.611534 0.791218i \(-0.709447\pi\)
0.611534 0.791218i \(-0.290553\pi\)
\(678\) 0 0
\(679\) −14156.1 + 15555.0i −0.800092 + 0.879153i
\(680\) 0 0
\(681\) 710.985 26806.8i 0.0400073 1.50843i
\(682\) 0 0
\(683\) 374.516 0.0209816 0.0104908 0.999945i \(-0.496661\pi\)
0.0104908 + 0.999945i \(0.496661\pi\)
\(684\) 0 0
\(685\) −3919.68 −0.218632
\(686\) 0 0
\(687\) −11537.1 305.992i −0.640709 0.0169932i
\(688\) 0 0
\(689\) −5487.63 −0.303428
\(690\) 0 0
\(691\) −15693.7 −0.863988 −0.431994 0.901877i \(-0.642190\pi\)
−0.431994 + 0.901877i \(0.642190\pi\)
\(692\) 0 0
\(693\) −1419.82 1436.92i −0.0778275 0.0787649i
\(694\) 0 0
\(695\) 7482.73i 0.408397i
\(696\) 0 0
\(697\) 26418.7 1.43569
\(698\) 0 0
\(699\) 511.322 19278.8i 0.0276681 1.04319i
\(700\) 0 0
\(701\) 4484.20 0.241606 0.120803 0.992676i \(-0.461453\pi\)
0.120803 + 0.992676i \(0.461453\pi\)
\(702\) 0 0
\(703\) 9307.52i 0.499346i
\(704\) 0 0
\(705\) −298.254 + 11245.3i −0.0159332 + 0.600741i
\(706\) 0 0
\(707\) −11922.0 + 13100.0i −0.634190 + 0.696856i
\(708\) 0 0
\(709\) 11896.5i 0.630156i 0.949066 + 0.315078i \(0.102031\pi\)
−0.949066 + 0.315078i \(0.897969\pi\)
\(710\) 0 0
\(711\) −5699.90 302.564i −0.300651 0.0159593i
\(712\) 0 0
\(713\) 11908.4 0.625489
\(714\) 0 0
\(715\) 321.851i 0.0168343i
\(716\) 0 0
\(717\) −440.691 + 16615.7i −0.0229538 + 0.865447i
\(718\) 0 0
\(719\) 13003.8 0.674494 0.337247 0.941416i \(-0.390504\pi\)
0.337247 + 0.941416i \(0.390504\pi\)
\(720\) 0 0
\(721\) −5916.54 + 6501.17i −0.305608 + 0.335806i
\(722\) 0 0
\(723\) −797.048 + 30051.8i −0.0409994 + 1.54583i
\(724\) 0 0
\(725\) −10289.1 −0.527072
\(726\) 0 0
\(727\) 38446.5i 1.96135i −0.195639 0.980676i \(-0.562678\pi\)
0.195639 0.980676i \(-0.437322\pi\)
\(728\) 0 0
\(729\) 19434.4 + 3118.33i 0.987371 + 0.158427i
\(730\) 0 0
\(731\) 37107.8i 1.87754i
\(732\) 0 0
\(733\) 17763.3 0.895092 0.447546 0.894261i \(-0.352298\pi\)
0.447546 + 0.894261i \(0.352298\pi\)
\(734\) 0 0
\(735\) −12156.8 + 822.766i −0.610084 + 0.0412901i
\(736\) 0 0
\(737\) 392.303i 0.0196074i
\(738\) 0 0
\(739\) 28211.2i 1.40428i 0.712037 + 0.702142i \(0.247773\pi\)
−0.712037 + 0.702142i \(0.752227\pi\)
\(740\) 0 0
\(741\) −1757.35 46.6092i −0.0871225 0.00231071i
\(742\) 0 0
\(743\) 17970.1i 0.887294i 0.896202 + 0.443647i \(0.146316\pi\)
−0.896202 + 0.443647i \(0.853684\pi\)
\(744\) 0 0
\(745\) 17596.1i 0.865330i
\(746\) 0 0
\(747\) 1198.52 22578.5i 0.0587037 1.10590i
\(748\) 0 0
\(749\) 6571.52 + 5980.56i 0.320585 + 0.291755i
\(750\) 0 0
\(751\) −28710.6 −1.39503 −0.697513 0.716572i \(-0.745710\pi\)
−0.697513 + 0.716572i \(0.745710\pi\)
\(752\) 0 0
\(753\) −288.811 + 10889.3i −0.0139772 + 0.526994i
\(754\) 0 0
\(755\) 7651.98i 0.368853i
\(756\) 0 0
\(757\) 34560.4i 1.65934i −0.558256 0.829669i \(-0.688529\pi\)
0.558256 0.829669i \(-0.311471\pi\)
\(758\) 0 0
\(759\) 58.1916 2194.04i 0.00278290 0.104926i
\(760\) 0 0
\(761\) −2013.29 −0.0959023 −0.0479511 0.998850i \(-0.515269\pi\)
−0.0479511 + 0.998850i \(0.515269\pi\)
\(762\) 0 0
\(763\) 15561.2 17098.9i 0.738339 0.811298i
\(764\) 0 0
\(765\) 1019.19 19200.1i 0.0481683 0.907427i
\(766\) 0 0
\(767\) 8419.29i 0.396353i
\(768\) 0 0
\(769\) 7245.88i 0.339783i 0.985463 + 0.169891i \(0.0543417\pi\)
−0.985463 + 0.169891i \(0.945658\pi\)
\(770\) 0 0
\(771\) 30674.0 + 813.551i 1.43281 + 0.0380017i
\(772\) 0 0
\(773\) 35166.4i 1.63629i 0.575015 + 0.818143i \(0.304996\pi\)
−0.575015 + 0.818143i \(0.695004\pi\)
\(774\) 0 0
\(775\) 8913.31i 0.413130i
\(776\) 0 0
\(777\) 21364.1 22259.8i 0.986398 1.02775i
\(778\) 0 0
\(779\) 7363.09 0.338652
\(780\) 0 0
\(781\) 3638.90i 0.166722i
\(782\) 0 0
\(783\) 18386.5 + 1465.72i 0.839182 + 0.0668972i
\(784\) 0 0
\(785\) 18935.3i 0.860931i
\(786\) 0 0
\(787\) −30974.5 −1.40295 −0.701475 0.712694i \(-0.747475\pi\)
−0.701475 + 0.712694i \(0.747475\pi\)
\(788\) 0 0
\(789\) −295.355 + 11136.0i −0.0133269 + 0.502475i
\(790\) 0 0
\(791\) −16827.8 + 18490.7i −0.756421 + 0.831166i
\(792\) 0 0
\(793\) 1648.03 0.0737999
\(794\) 0 0
\(795\) 443.507 16721.9i 0.0197856 0.745994i
\(796\) 0 0
\(797\) 8981.62i 0.399178i −0.979880 0.199589i \(-0.936039\pi\)
0.979880 0.199589i \(-0.0639608\pi\)
\(798\) 0 0
\(799\) 32985.2 1.46049
\(800\) 0 0
\(801\) −23112.6 1226.87i −1.01953 0.0541190i
\(802\) 0 0
\(803\) 2513.94i 0.110479i
\(804\) 0 0
\(805\) −9791.12 8910.63i −0.428685 0.390135i
\(806\) 0 0
\(807\) 861.035 32464.3i 0.0375587 1.41611i
\(808\) 0 0
\(809\) 29145.4i 1.26662i 0.773896 + 0.633312i \(0.218305\pi\)
−0.773896 + 0.633312i \(0.781695\pi\)
\(810\) 0 0
\(811\) 35758.2 1.54826 0.774132 0.633025i \(-0.218187\pi\)
0.774132 + 0.633025i \(0.218187\pi\)
\(812\) 0 0
\(813\) −636.909 + 24013.9i −0.0274752 + 1.03592i
\(814\) 0 0
\(815\) 8927.04 0.383682
\(816\) 0 0
\(817\) 10342.2i 0.442874i
\(818\) 0 0
\(819\) −4095.87 4145.20i −0.174751 0.176856i
\(820\) 0 0
\(821\) 29573.6 1.25716 0.628578 0.777746i \(-0.283637\pi\)
0.628578 + 0.777746i \(0.283637\pi\)
\(822\) 0 0
\(823\) 26488.9 1.12192 0.560962 0.827841i \(-0.310431\pi\)
0.560962 + 0.827841i \(0.310431\pi\)
\(824\) 0 0
\(825\) −1642.21 43.5557i −0.0693025 0.00183808i
\(826\) 0 0
\(827\) −6964.53 −0.292842 −0.146421 0.989222i \(-0.546775\pi\)
−0.146421 + 0.989222i \(0.546775\pi\)
\(828\) 0 0
\(829\) −11031.4 −0.462166 −0.231083 0.972934i \(-0.574227\pi\)
−0.231083 + 0.972934i \(0.574227\pi\)
\(830\) 0 0
\(831\) 38.9658 1469.16i 0.00162660 0.0613292i
\(832\) 0 0
\(833\) 3356.77 + 35569.9i 0.139622 + 1.47950i
\(834\) 0 0
\(835\) 8486.81i 0.351734i
\(836\) 0 0
\(837\) −1269.73 + 15928.0i −0.0524353 + 0.657767i
\(838\) 0 0
\(839\) 20561.9 0.846099 0.423049 0.906107i \(-0.360960\pi\)
0.423049 + 0.906107i \(0.360960\pi\)
\(840\) 0 0
\(841\) −7104.47 −0.291298
\(842\) 0 0
\(843\) −926.162 + 34919.9i −0.0378395 + 1.42669i
\(844\) 0 0
\(845\) 14091.4i 0.573681i
\(846\) 0 0
\(847\) 18007.4 + 16388.1i 0.730511 + 0.664817i
\(848\) 0 0
\(849\) −37441.6 993.046i −1.51354 0.0401428i
\(850\) 0 0
\(851\) 33522.4 1.35033
\(852\) 0 0
\(853\) 9441.72 0.378990 0.189495 0.981882i \(-0.439315\pi\)
0.189495 + 0.981882i \(0.439315\pi\)
\(854\) 0 0
\(855\) 284.055 5351.22i 0.0113620 0.214044i
\(856\) 0 0
\(857\) −17877.9 −0.712598 −0.356299 0.934372i \(-0.615961\pi\)
−0.356299 + 0.934372i \(0.615961\pi\)
\(858\) 0 0
\(859\) 43955.9 1.74593 0.872966 0.487781i \(-0.162193\pi\)
0.872966 + 0.487781i \(0.162193\pi\)
\(860\) 0 0
\(861\) 17609.5 + 16900.9i 0.697015 + 0.668968i
\(862\) 0 0
\(863\) 42634.4i 1.68168i 0.541282 + 0.840841i \(0.317939\pi\)
−0.541282 + 0.840841i \(0.682061\pi\)
\(864\) 0 0
\(865\) −2839.88 −0.111629
\(866\) 0 0
\(867\) −30838.4 817.912i −1.20799 0.0320389i
\(868\) 0 0
\(869\) −854.017 −0.0333378
\(870\) 0 0
\(871\) 1131.71i 0.0440258i
\(872\) 0 0
\(873\) 1625.33 30618.9i 0.0630114 1.18705i
\(874\) 0 0
\(875\) −17322.1 + 19033.7i −0.669249 + 0.735380i
\(876\) 0 0
\(877\) 22335.1i 0.859980i 0.902834 + 0.429990i \(0.141483\pi\)
−0.902834 + 0.429990i \(0.858517\pi\)
\(878\) 0 0
\(879\) −437.483 + 16494.8i −0.0167872 + 0.632940i
\(880\) 0 0
\(881\) 31160.2 1.19162 0.595809 0.803126i \(-0.296832\pi\)
0.595809 + 0.803126i \(0.296832\pi\)
\(882\) 0 0
\(883\) 29300.5i 1.11669i 0.829607 + 0.558347i \(0.188564\pi\)
−0.829607 + 0.558347i \(0.811436\pi\)
\(884\) 0 0
\(885\) 25655.3 + 680.442i 0.974454 + 0.0258450i
\(886\) 0 0
\(887\) 28062.3 1.06228 0.531139 0.847285i \(-0.321764\pi\)
0.531139 + 0.847285i \(0.321764\pi\)
\(888\) 0 0
\(889\) −26898.5 24479.6i −1.01479 0.923530i
\(890\) 0 0
\(891\) 2928.41 + 311.773i 0.110107 + 0.0117225i
\(892\) 0 0
\(893\) 9193.22 0.344501
\(894\) 0 0
\(895\) 800.971i 0.0299145i
\(896\) 0 0
\(897\) 167.870 6329.34i 0.00624863 0.235597i
\(898\) 0 0
\(899\) 14973.4i 0.555494i
\(900\) 0 0
\(901\) −49049.3 −1.81362
\(902\) 0 0
\(903\) −23739.0 + 24734.3i −0.874846 + 0.911525i
\(904\) 0 0
\(905\) 9428.02i 0.346296i
\(906\) 0 0
\(907\) 10433.3i 0.381953i −0.981595 0.190976i \(-0.938835\pi\)
0.981595 0.190976i \(-0.0611654\pi\)
\(908\) 0 0
\(909\) 1368.81 25786.6i 0.0499457 0.940910i
\(910\) 0 0
\(911\) 12356.5i 0.449384i 0.974430 + 0.224692i \(0.0721376\pi\)
−0.974430 + 0.224692i \(0.927862\pi\)
\(912\) 0 0
\(913\) 3382.95i 0.122628i
\(914\) 0 0
\(915\) −133.193 + 5021.88i −0.00481226 + 0.181441i
\(916\) 0 0
\(917\) −22127.6 + 24314.1i −0.796858 + 0.875598i
\(918\) 0 0
\(919\) 24591.0 0.882680 0.441340 0.897340i \(-0.354503\pi\)
0.441340 + 0.897340i \(0.354503\pi\)
\(920\) 0 0
\(921\) 19423.3 + 515.155i 0.694919 + 0.0184310i
\(922\) 0 0
\(923\) 10497.4i 0.374352i
\(924\) 0 0
\(925\) 25091.1i 0.891882i
\(926\) 0 0
\(927\) 679.303 12797.1i 0.0240682 0.453412i
\(928\) 0 0
\(929\) −15512.5 −0.547844 −0.273922 0.961752i \(-0.588321\pi\)
−0.273922 + 0.961752i \(0.588321\pi\)
\(930\) 0 0
\(931\) 935.558 + 9913.60i 0.0329341 + 0.348985i
\(932\) 0 0
\(933\) 47361.1 + 1256.13i 1.66188 + 0.0440772i
\(934\) 0 0
\(935\) 2876.76i 0.100620i
\(936\) 0 0
\(937\) 31883.8i 1.11163i 0.831306 + 0.555816i \(0.187594\pi\)
−0.831306 + 0.555816i \(0.812406\pi\)
\(938\) 0 0
\(939\) 1254.27 47290.6i 0.0435904 1.64353i
\(940\) 0 0
\(941\) 26463.4i 0.916773i 0.888753 + 0.458386i \(0.151572\pi\)
−0.888753 + 0.458386i \(0.848428\pi\)
\(942\) 0 0
\(943\) 26519.3i 0.915786i
\(944\) 0 0
\(945\) 12962.3 12145.9i 0.446204 0.418102i
\(946\) 0 0
\(947\) −6190.46 −0.212421 −0.106211 0.994344i \(-0.533872\pi\)
−0.106211 + 0.994344i \(0.533872\pi\)
\(948\) 0 0
\(949\) 7252.17i 0.248067i
\(950\) 0 0
\(951\) −51336.4 1361.57i −1.75047 0.0464269i
\(952\) 0 0
\(953\) 24095.6i 0.819027i 0.912304 + 0.409513i \(0.134301\pi\)
−0.912304 + 0.409513i \(0.865699\pi\)
\(954\) 0 0
\(955\) 15884.5 0.538232
\(956\) 0 0
\(957\) 2758.74 + 73.1686i 0.0931842 + 0.00247148i
\(958\) 0 0
\(959\) −7146.95 + 7853.17i −0.240654 + 0.264434i
\(960\) 0 0
\(961\) 16819.8 0.564593
\(962\) 0 0
\(963\) −12935.6 686.653i −0.432860 0.0229772i
\(964\) 0 0
\(965\) 8779.51i 0.292873i
\(966\) 0 0
\(967\) −33985.7 −1.13020 −0.565102 0.825021i \(-0.691163\pi\)
−0.565102 + 0.825021i \(0.691163\pi\)
\(968\) 0 0
\(969\) −15707.4 416.601i −0.520739 0.0138113i
\(970\) 0 0
\(971\) 17226.4i 0.569331i 0.958627 + 0.284666i \(0.0918826\pi\)
−0.958627 + 0.284666i \(0.908117\pi\)
\(972\) 0 0
\(973\) −14991.8 13643.6i −0.493952 0.449532i
\(974\) 0 0
\(975\) −4737.44 125.649i −0.155610 0.00412716i
\(976\) 0 0
\(977\) 30772.6i 1.00768i −0.863797 0.503840i \(-0.831920\pi\)
0.863797 0.503840i \(-0.168080\pi\)
\(978\) 0 0
\(979\) −3462.96 −0.113051
\(980\) 0 0
\(981\) −1786.65 + 33658.0i −0.0581480 + 1.09543i
\(982\) 0 0
\(983\) −22275.6 −0.722769 −0.361384 0.932417i \(-0.617696\pi\)
−0.361384 + 0.932417i \(0.617696\pi\)
\(984\) 0 0
\(985\) 33741.7i 1.09147i
\(986\) 0 0
\(987\) 21986.4 + 21101.7i 0.709053 + 0.680521i
\(988\) 0 0
\(989\) −37249.0 −1.19762
\(990\) 0 0
\(991\) −107.013 −0.00343025 −0.00171513 0.999999i \(-0.500546\pi\)
−0.00171513 + 0.999999i \(0.500546\pi\)
\(992\) 0 0
\(993\) −62.3165 + 2349.57i −0.00199150 + 0.0750870i
\(994\) 0 0
\(995\) 26148.6 0.833132
\(996\) 0 0
\(997\) 16525.7 0.524950 0.262475 0.964939i \(-0.415461\pi\)
0.262475 + 0.964939i \(0.415461\pi\)
\(998\) 0 0
\(999\) −3574.32 + 44837.5i −0.113200 + 1.42002i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.4.i.c.209.2 80
3.2 odd 2 inner 672.4.i.c.209.3 80
4.3 odd 2 168.4.i.c.125.34 yes 80
7.6 odd 2 inner 672.4.i.c.209.80 80
8.3 odd 2 168.4.i.c.125.45 yes 80
8.5 even 2 inner 672.4.i.c.209.79 80
12.11 even 2 168.4.i.c.125.48 yes 80
21.20 even 2 inner 672.4.i.c.209.77 80
24.5 odd 2 inner 672.4.i.c.209.78 80
24.11 even 2 168.4.i.c.125.35 yes 80
28.27 even 2 168.4.i.c.125.33 80
56.13 odd 2 inner 672.4.i.c.209.1 80
56.27 even 2 168.4.i.c.125.46 yes 80
84.83 odd 2 168.4.i.c.125.47 yes 80
168.83 odd 2 168.4.i.c.125.36 yes 80
168.125 even 2 inner 672.4.i.c.209.4 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.i.c.125.33 80 28.27 even 2
168.4.i.c.125.34 yes 80 4.3 odd 2
168.4.i.c.125.35 yes 80 24.11 even 2
168.4.i.c.125.36 yes 80 168.83 odd 2
168.4.i.c.125.45 yes 80 8.3 odd 2
168.4.i.c.125.46 yes 80 56.27 even 2
168.4.i.c.125.47 yes 80 84.83 odd 2
168.4.i.c.125.48 yes 80 12.11 even 2
672.4.i.c.209.1 80 56.13 odd 2 inner
672.4.i.c.209.2 80 1.1 even 1 trivial
672.4.i.c.209.3 80 3.2 odd 2 inner
672.4.i.c.209.4 80 168.125 even 2 inner
672.4.i.c.209.77 80 21.20 even 2 inner
672.4.i.c.209.78 80 24.5 odd 2 inner
672.4.i.c.209.79 80 8.5 even 2 inner
672.4.i.c.209.80 80 7.6 odd 2 inner