Properties

Label 168.4.i.c.125.48
Level $168$
Weight $4$
Character 168.125
Analytic conductor $9.912$
Analytic rank $0$
Dimension $80$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [168,4,Mod(125,168)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(168, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("168.125");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 168.i (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.91232088096\)
Analytic rank: \(0\)
Dimension: \(80\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 125.48
Character \(\chi\) \(=\) 168.125
Dual form 168.4.i.c.125.46

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.16707 + 2.57642i) q^{2} +(5.19433 - 0.137767i) q^{3} +(-5.27591 + 6.01371i) q^{4} +6.83655i q^{5} +(6.41707 + 13.2220i) q^{6} +(13.6972 + 12.4654i) q^{7} +(-21.6512 - 6.57457i) q^{8} +(26.9620 - 1.43121i) q^{9} +(-17.6139 + 7.97871i) q^{10} +4.03973 q^{11} +(-26.5763 + 31.9640i) q^{12} +11.6537 q^{13} +(-16.1307 + 49.8377i) q^{14} +(0.941848 + 35.5113i) q^{15} +(-8.32952 - 63.4556i) q^{16} -104.163 q^{17} +(35.1539 + 67.7953i) q^{18} -29.0310 q^{19} +(-41.1131 - 36.0690i) q^{20} +(72.8650 + 62.8625i) q^{21} +(4.71463 + 10.4081i) q^{22} +104.560i q^{23} +(-113.369 - 31.1677i) q^{24} +78.2615 q^{25} +(13.6007 + 30.0250i) q^{26} +(139.852 - 11.1486i) q^{27} +(-147.229 + 16.6045i) q^{28} +131.471 q^{29} +(-90.3929 + 43.8706i) q^{30} +113.891i q^{31} +(153.767 - 95.5173i) q^{32} +(20.9837 - 0.556540i) q^{33} +(-121.565 - 268.368i) q^{34} +(-85.2206 + 93.6416i) q^{35} +(-133.642 + 169.693i) q^{36} -320.606i q^{37} +(-33.8812 - 74.7962i) q^{38} +(60.5334 - 1.60550i) q^{39} +(44.9474 - 148.020i) q^{40} -253.628 q^{41} +(-76.9221 + 261.096i) q^{42} -356.247i q^{43} +(-21.3133 + 24.2938i) q^{44} +(9.78453 + 184.327i) q^{45} +(-269.390 + 122.028i) q^{46} +316.669 q^{47} +(-52.0083 - 328.462i) q^{48} +(32.2261 + 341.483i) q^{49} +(91.3364 + 201.635i) q^{50} +(-541.057 + 14.3502i) q^{51} +(-61.4841 + 70.0823i) q^{52} +470.890 q^{53} +(191.941 + 347.308i) q^{54} +27.6178i q^{55} +(-214.606 - 359.945i) q^{56} +(-150.797 + 3.99951i) q^{57} +(153.435 + 338.724i) q^{58} -722.454i q^{59} +(-218.524 - 181.690i) q^{60} +141.417 q^{61} +(-293.432 + 132.919i) q^{62} +(387.145 + 316.490i) q^{63} +(425.550 + 284.695i) q^{64} +79.6715i q^{65} +(25.9232 + 53.4133i) q^{66} +97.1111i q^{67} +(549.555 - 626.407i) q^{68} +(14.4048 + 543.117i) q^{69} +(-340.718 - 110.278i) q^{70} -900.777i q^{71} +(-593.170 - 146.277i) q^{72} +622.304i q^{73} +(826.017 - 374.169i) q^{74} +(406.516 - 10.7818i) q^{75} +(153.165 - 174.584i) q^{76} +(55.3330 + 50.3570i) q^{77} +(74.7829 + 154.086i) q^{78} +211.405 q^{79} +(433.818 - 56.9452i) q^{80} +(724.903 - 77.1766i) q^{81} +(-296.001 - 653.453i) q^{82} -837.420i q^{83} +(-762.466 + 106.532i) q^{84} -712.116i q^{85} +(917.842 - 415.764i) q^{86} +(682.901 - 18.1123i) q^{87} +(-87.4651 - 26.5595i) q^{88} +857.227 q^{89} +(-463.486 + 240.331i) q^{90} +(159.624 + 145.269i) q^{91} +(-628.791 - 551.647i) q^{92} +(15.6904 + 591.588i) q^{93} +(369.573 + 815.872i) q^{94} -198.472i q^{95} +(785.559 - 517.332i) q^{96} -1135.63i q^{97} +(-842.194 + 481.561i) q^{98} +(108.919 - 5.78170i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 28 q^{4} + 64 q^{7} + 104 q^{9} - 8 q^{15} - 892 q^{16} + 692 q^{18} + 128 q^{22} - 976 q^{25} + 612 q^{28} - 332 q^{30} + 1544 q^{36} + 568 q^{39} + 780 q^{42} + 208 q^{46} - 4048 q^{49} - 1448 q^{57}+ \cdots - 2072 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/168\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(85\) \(113\) \(127\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.16707 + 2.57642i 0.412620 + 0.910903i
\(3\) 5.19433 0.137767i 0.999648 0.0265132i
\(4\) −5.27591 + 6.01371i −0.659489 + 0.751714i
\(5\) 6.83655i 0.611480i 0.952115 + 0.305740i \(0.0989038\pi\)
−0.952115 + 0.305740i \(0.901096\pi\)
\(6\) 6.41707 + 13.2220i 0.436626 + 0.899643i
\(7\) 13.6972 + 12.4654i 0.739579 + 0.673070i
\(8\) −21.6512 6.57457i −0.956857 0.290558i
\(9\) 26.9620 1.43121i 0.998594 0.0530077i
\(10\) −17.6139 + 7.97871i −0.556999 + 0.252309i
\(11\) 4.03973 0.110729 0.0553647 0.998466i \(-0.482368\pi\)
0.0553647 + 0.998466i \(0.482368\pi\)
\(12\) −26.5763 + 31.9640i −0.639327 + 0.768935i
\(13\) 11.6537 0.248628 0.124314 0.992243i \(-0.460327\pi\)
0.124314 + 0.992243i \(0.460327\pi\)
\(14\) −16.1307 + 49.8377i −0.307936 + 0.951407i
\(15\) 0.941848 + 35.5113i 0.0162123 + 0.611265i
\(16\) −8.32952 63.4556i −0.130149 0.991494i
\(17\) −104.163 −1.48607 −0.743037 0.669250i \(-0.766615\pi\)
−0.743037 + 0.669250i \(0.766615\pi\)
\(18\) 35.1539 + 67.7953i 0.460325 + 0.887750i
\(19\) −29.0310 −0.350536 −0.175268 0.984521i \(-0.556079\pi\)
−0.175268 + 0.984521i \(0.556079\pi\)
\(20\) −41.1131 36.0690i −0.459658 0.403264i
\(21\) 72.8650 + 62.8625i 0.757164 + 0.653225i
\(22\) 4.71463 + 10.4081i 0.0456892 + 0.100864i
\(23\) 104.560i 0.947921i 0.880546 + 0.473960i \(0.157176\pi\)
−0.880546 + 0.473960i \(0.842824\pi\)
\(24\) −113.369 31.1677i −0.964225 0.265086i
\(25\) 78.2615 0.626092
\(26\) 13.6007 + 30.0250i 0.102589 + 0.226476i
\(27\) 139.852 11.1486i 0.996838 0.0794650i
\(28\) −147.229 + 16.6045i −0.993700 + 0.112070i
\(29\) 131.471 0.841844 0.420922 0.907097i \(-0.361707\pi\)
0.420922 + 0.907097i \(0.361707\pi\)
\(30\) −90.3929 + 43.8706i −0.550114 + 0.266988i
\(31\) 113.891i 0.659854i 0.944006 + 0.329927i \(0.107024\pi\)
−0.944006 + 0.329927i \(0.892976\pi\)
\(32\) 153.767 95.5173i 0.849453 0.527664i
\(33\) 20.9837 0.556540i 0.110691 0.00293579i
\(34\) −121.565 268.368i −0.613184 1.35367i
\(35\) −85.2206 + 93.6416i −0.411569 + 0.452238i
\(36\) −133.642 + 169.693i −0.618715 + 0.785615i
\(37\) 320.606i 1.42452i −0.701915 0.712261i \(-0.747671\pi\)
0.701915 0.712261i \(-0.252329\pi\)
\(38\) −33.8812 74.7962i −0.144638 0.319304i
\(39\) 60.5334 1.60550i 0.248541 0.00659193i
\(40\) 44.9474 148.020i 0.177670 0.585099i
\(41\) −253.628 −0.966099 −0.483050 0.875593i \(-0.660471\pi\)
−0.483050 + 0.875593i \(0.660471\pi\)
\(42\) −76.9221 + 261.096i −0.282603 + 0.959237i
\(43\) 356.247i 1.26342i −0.775204 0.631711i \(-0.782353\pi\)
0.775204 0.631711i \(-0.217647\pi\)
\(44\) −21.3133 + 24.2938i −0.0730249 + 0.0832369i
\(45\) 9.78453 + 184.327i 0.0324132 + 0.610620i
\(46\) −269.390 + 122.028i −0.863464 + 0.391131i
\(47\) 316.669 0.982784 0.491392 0.870938i \(-0.336488\pi\)
0.491392 + 0.870938i \(0.336488\pi\)
\(48\) −52.0083 328.462i −0.156391 0.987695i
\(49\) 32.2261 + 341.483i 0.0939537 + 0.995577i
\(50\) 91.3364 + 201.635i 0.258338 + 0.570309i
\(51\) −541.057 + 14.3502i −1.48555 + 0.0394005i
\(52\) −61.4841 + 70.0823i −0.163968 + 0.186897i
\(53\) 470.890 1.22041 0.610205 0.792244i \(-0.291087\pi\)
0.610205 + 0.792244i \(0.291087\pi\)
\(54\) 191.941 + 347.308i 0.483700 + 0.875234i
\(55\) 27.6178i 0.0677089i
\(56\) −214.606 359.945i −0.512106 0.858922i
\(57\) −150.797 + 3.99951i −0.350412 + 0.00929382i
\(58\) 153.435 + 338.724i 0.347362 + 0.766839i
\(59\) 722.454i 1.59416i −0.603874 0.797080i \(-0.706377\pi\)
0.603874 0.797080i \(-0.293623\pi\)
\(60\) −218.524 181.690i −0.470188 0.390935i
\(61\) 141.417 0.296828 0.148414 0.988925i \(-0.452583\pi\)
0.148414 + 0.988925i \(0.452583\pi\)
\(62\) −293.432 + 132.919i −0.601063 + 0.272269i
\(63\) 387.145 + 316.490i 0.774217 + 0.632920i
\(64\) 425.550 + 284.695i 0.831152 + 0.556045i
\(65\) 79.6715i 0.152031i
\(66\) 25.9232 + 53.4133i 0.0483474 + 0.0996170i
\(67\) 97.1111i 0.177075i 0.996073 + 0.0885374i \(0.0282193\pi\)
−0.996073 + 0.0885374i \(0.971781\pi\)
\(68\) 549.555 626.407i 0.980049 1.11710i
\(69\) 14.4048 + 543.117i 0.0251324 + 0.947588i
\(70\) −340.718 110.278i −0.581766 0.188297i
\(71\) 900.777i 1.50567i −0.658209 0.752835i \(-0.728686\pi\)
0.658209 0.752835i \(-0.271314\pi\)
\(72\) −593.170 146.277i −0.970914 0.239429i
\(73\) 622.304i 0.997742i 0.866676 + 0.498871i \(0.166252\pi\)
−0.866676 + 0.498871i \(0.833748\pi\)
\(74\) 826.017 374.169i 1.29760 0.587787i
\(75\) 406.516 10.7818i 0.625872 0.0165997i
\(76\) 153.165 174.584i 0.231174 0.263503i
\(77\) 55.3330 + 50.3570i 0.0818932 + 0.0745287i
\(78\) 74.7829 + 154.086i 0.108558 + 0.223677i
\(79\) 211.405 0.301074 0.150537 0.988604i \(-0.451900\pi\)
0.150537 + 0.988604i \(0.451900\pi\)
\(80\) 433.818 56.9452i 0.606279 0.0795834i
\(81\) 724.903 77.1766i 0.994380 0.105866i
\(82\) −296.001 653.453i −0.398632 0.880023i
\(83\) 837.420i 1.10745i −0.832698 0.553727i \(-0.813205\pi\)
0.832698 0.553727i \(-0.186795\pi\)
\(84\) −762.466 + 106.532i −0.990380 + 0.138377i
\(85\) 712.116i 0.908704i
\(86\) 917.842 415.764i 1.15085 0.521313i
\(87\) 682.901 18.1123i 0.841548 0.0223200i
\(88\) −87.4651 26.5595i −0.105952 0.0321733i
\(89\) 857.227 1.02096 0.510482 0.859888i \(-0.329467\pi\)
0.510482 + 0.859888i \(0.329467\pi\)
\(90\) −463.486 + 240.331i −0.542841 + 0.281480i
\(91\) 159.624 + 145.269i 0.183880 + 0.167344i
\(92\) −628.791 551.647i −0.712566 0.625143i
\(93\) 15.6904 + 591.588i 0.0174948 + 0.659622i
\(94\) 369.573 + 815.872i 0.405517 + 0.895221i
\(95\) 198.472i 0.214345i
\(96\) 785.559 517.332i 0.835165 0.550000i
\(97\) 1135.63i 1.18872i −0.804199 0.594360i \(-0.797405\pi\)
0.804199 0.594360i \(-0.202595\pi\)
\(98\) −842.194 + 481.561i −0.868107 + 0.496378i
\(99\) 108.919 5.78170i 0.110574 0.00586952i
\(100\) −412.901 + 470.643i −0.412901 + 0.470643i
\(101\) 956.403i 0.942234i 0.882071 + 0.471117i \(0.156149\pi\)
−0.882071 + 0.471117i \(0.843851\pi\)
\(102\) −668.422 1377.24i −0.648859 1.33694i
\(103\) 474.636i 0.454051i 0.973889 + 0.227025i \(0.0729000\pi\)
−0.973889 + 0.227025i \(0.927100\pi\)
\(104\) −252.318 76.6184i −0.237902 0.0722409i
\(105\) −429.763 + 498.145i −0.399434 + 0.462991i
\(106\) 549.560 + 1213.21i 0.503566 + 1.11168i
\(107\) −479.771 −0.433470 −0.216735 0.976231i \(-0.569541\pi\)
−0.216735 + 0.976231i \(0.569541\pi\)
\(108\) −670.804 + 899.852i −0.597668 + 0.801743i
\(109\) 1248.35i 1.09697i 0.836159 + 0.548486i \(0.184796\pi\)
−0.836159 + 0.548486i \(0.815204\pi\)
\(110\) −71.1552 + 32.2318i −0.0616762 + 0.0279381i
\(111\) −44.1688 1665.33i −0.0377686 1.42402i
\(112\) 676.911 972.995i 0.571090 0.820888i
\(113\) 1349.96i 1.12384i 0.827193 + 0.561918i \(0.189937\pi\)
−0.827193 + 0.561918i \(0.810063\pi\)
\(114\) −186.294 383.848i −0.153053 0.315357i
\(115\) −714.827 −0.579634
\(116\) −693.627 + 790.627i −0.555187 + 0.632826i
\(117\) 314.209 16.6789i 0.248279 0.0131792i
\(118\) 1861.35 843.152i 1.45213 0.657783i
\(119\) −1426.74 1298.44i −1.09907 1.00023i
\(120\) 213.079 775.055i 0.162095 0.589604i
\(121\) −1314.68 −0.987739
\(122\) 165.043 + 364.349i 0.122477 + 0.270382i
\(123\) −1317.43 + 34.9415i −0.965760 + 0.0256144i
\(124\) −684.910 600.880i −0.496022 0.435166i
\(125\) 1389.61i 0.994323i
\(126\) −363.588 + 1366.81i −0.257071 + 0.966392i
\(127\) −1963.80 −1.37212 −0.686058 0.727547i \(-0.740660\pi\)
−0.686058 + 0.727547i \(0.740660\pi\)
\(128\) −236.850 + 1428.65i −0.163553 + 0.986535i
\(129\) −49.0789 1850.46i −0.0334973 1.26298i
\(130\) −205.267 + 92.9819i −0.138486 + 0.0627312i
\(131\) 1775.12i 1.18391i −0.805969 0.591957i \(-0.798355\pi\)
0.805969 0.591957i \(-0.201645\pi\)
\(132\) −107.361 + 129.126i −0.0707923 + 0.0851438i
\(133\) −397.644 361.884i −0.259249 0.235935i
\(134\) −250.199 + 113.335i −0.161298 + 0.0730646i
\(135\) 76.2182 + 956.109i 0.0485913 + 0.609546i
\(136\) 2255.26 + 684.828i 1.42196 + 0.431790i
\(137\) 573.341i 0.357546i 0.983890 + 0.178773i \(0.0572128\pi\)
−0.983890 + 0.178773i \(0.942787\pi\)
\(138\) −1382.49 + 670.966i −0.852790 + 0.413887i
\(139\) −1094.52 −0.667883 −0.333942 0.942594i \(-0.608379\pi\)
−0.333942 + 0.942594i \(0.608379\pi\)
\(140\) −113.518 1006.54i −0.0685285 0.607628i
\(141\) 1644.88 43.6263i 0.982439 0.0260567i
\(142\) 2320.78 1051.27i 1.37152 0.621270i
\(143\) 47.0780 0.0275305
\(144\) −315.399 1698.97i −0.182523 0.983202i
\(145\) 898.806i 0.514771i
\(146\) −1603.32 + 726.270i −0.908846 + 0.411689i
\(147\) 214.438 + 1769.33i 0.120317 + 0.992736i
\(148\) 1928.03 + 1691.49i 1.07083 + 0.939456i
\(149\) 2573.83 1.41514 0.707571 0.706643i \(-0.249791\pi\)
0.707571 + 0.706643i \(0.249791\pi\)
\(150\) 502.210 + 1034.77i 0.273368 + 0.563260i
\(151\) −1119.27 −0.603214 −0.301607 0.953432i \(-0.597523\pi\)
−0.301607 + 0.953432i \(0.597523\pi\)
\(152\) 628.557 + 190.867i 0.335413 + 0.101851i
\(153\) −2808.45 + 149.079i −1.48398 + 0.0787734i
\(154\) −65.1636 + 201.331i −0.0340976 + 0.105349i
\(155\) −778.624 −0.403487
\(156\) −309.714 + 372.501i −0.158955 + 0.191179i
\(157\) −2769.72 −1.40795 −0.703973 0.710227i \(-0.748592\pi\)
−0.703973 + 0.710227i \(0.748592\pi\)
\(158\) 246.723 + 544.667i 0.124229 + 0.274249i
\(159\) 2445.96 64.8729i 1.21998 0.0323570i
\(160\) 653.009 + 1051.24i 0.322656 + 0.519424i
\(161\) −1303.38 + 1432.17i −0.638017 + 0.701062i
\(162\) 1044.85 + 1777.59i 0.506736 + 0.862102i
\(163\) 1305.78i 0.627464i −0.949511 0.313732i \(-0.898421\pi\)
0.949511 0.313732i \(-0.101579\pi\)
\(164\) 1338.12 1525.25i 0.637132 0.726231i
\(165\) 3.80481 + 143.456i 0.00179518 + 0.0676851i
\(166\) 2157.55 977.324i 1.00878 0.456958i
\(167\) −1241.39 −0.575218 −0.287609 0.957748i \(-0.592860\pi\)
−0.287609 + 0.957748i \(0.592860\pi\)
\(168\) −1164.32 1840.11i −0.534698 0.845043i
\(169\) −2061.19 −0.938184
\(170\) 1834.71 831.087i 0.827741 0.374950i
\(171\) −782.736 + 41.5495i −0.350043 + 0.0185811i
\(172\) 2142.37 + 1879.53i 0.949732 + 0.833212i
\(173\) 415.397i 0.182555i 0.995825 + 0.0912775i \(0.0290950\pi\)
−0.995825 + 0.0912775i \(0.970905\pi\)
\(174\) 843.656 + 1738.30i 0.367571 + 0.757359i
\(175\) 1071.96 + 975.564i 0.463045 + 0.421404i
\(176\) −33.6490 256.344i −0.0144113 0.109788i
\(177\) −99.5300 3752.66i −0.0422663 1.59360i
\(178\) 1000.44 + 2208.58i 0.421271 + 0.930000i
\(179\) 117.160 0.0489215 0.0244608 0.999701i \(-0.492213\pi\)
0.0244608 + 0.999701i \(0.492213\pi\)
\(180\) −1160.11 913.654i −0.480388 0.378332i
\(181\) −1379.06 −0.566325 −0.283162 0.959072i \(-0.591384\pi\)
−0.283162 + 0.959072i \(0.591384\pi\)
\(182\) −187.983 + 580.797i −0.0765617 + 0.236547i
\(183\) 734.564 19.4825i 0.296724 0.00786987i
\(184\) 687.435 2263.84i 0.275426 0.907025i
\(185\) 2191.84 0.871066
\(186\) −1505.87 + 730.848i −0.593633 + 0.288110i
\(187\) −420.791 −0.164552
\(188\) −1670.72 + 1904.35i −0.648135 + 0.738773i
\(189\) 2054.56 + 1590.62i 0.790726 + 0.612171i
\(190\) 511.348 231.630i 0.195248 0.0884433i
\(191\) 2323.47i 0.880211i 0.897946 + 0.440106i \(0.145059\pi\)
−0.897946 + 0.440106i \(0.854941\pi\)
\(192\) 2249.67 + 1420.17i 0.845603 + 0.533813i
\(193\) 1284.20 0.478958 0.239479 0.970902i \(-0.423023\pi\)
0.239479 + 0.970902i \(0.423023\pi\)
\(194\) 2925.87 1325.36i 1.08281 0.490490i
\(195\) 10.9761 + 413.840i 0.00403083 + 0.151978i
\(196\) −2223.60 1607.83i −0.810351 0.585945i
\(197\) −4935.49 −1.78497 −0.892485 0.451076i \(-0.851040\pi\)
−0.892485 + 0.451076i \(0.851040\pi\)
\(198\) 142.012 + 273.875i 0.0509716 + 0.0983002i
\(199\) 3824.82i 1.36249i −0.732058 0.681243i \(-0.761440\pi\)
0.732058 0.681243i \(-0.238560\pi\)
\(200\) −1694.46 514.536i −0.599081 0.181916i
\(201\) 13.3787 + 504.427i 0.00469482 + 0.177013i
\(202\) −2464.10 + 1116.19i −0.858284 + 0.388785i
\(203\) 1800.78 + 1638.84i 0.622610 + 0.566620i
\(204\) 2768.27 3329.47i 0.950087 1.14269i
\(205\) 1733.94i 0.590750i
\(206\) −1222.86 + 553.931i −0.413596 + 0.187351i
\(207\) 149.647 + 2819.14i 0.0502471 + 0.946588i
\(208\) −97.0702 739.496i −0.0323587 0.246514i
\(209\) −117.278 −0.0388146
\(210\) −1784.99 525.882i −0.586554 0.172806i
\(211\) 1236.70i 0.403496i −0.979437 0.201748i \(-0.935338\pi\)
0.979437 0.201748i \(-0.0646623\pi\)
\(212\) −2484.37 + 2831.80i −0.804847 + 0.917400i
\(213\) −124.097 4678.93i −0.0399201 1.50514i
\(214\) −559.925 1236.09i −0.178858 0.394849i
\(215\) 2435.50 0.772557
\(216\) −3101.27 678.089i −0.976921 0.213602i
\(217\) −1419.70 + 1559.99i −0.444128 + 0.488014i
\(218\) −3216.27 + 1456.91i −0.999236 + 0.452633i
\(219\) 85.7326 + 3232.45i 0.0264533 + 0.997391i
\(220\) −166.086 145.709i −0.0508977 0.0446532i
\(221\) −1213.89 −0.369480
\(222\) 4239.05 2057.35i 1.28156 0.621983i
\(223\) 2567.59i 0.771026i 0.922702 + 0.385513i \(0.125975\pi\)
−0.922702 + 0.385513i \(0.874025\pi\)
\(224\) 3296.85 + 608.458i 0.983392 + 0.181493i
\(225\) 2110.09 112.009i 0.625212 0.0331877i
\(226\) −3478.07 + 1575.49i −1.02371 + 0.463718i
\(227\) 5160.79i 1.50896i 0.656323 + 0.754480i \(0.272111\pi\)
−0.656323 + 0.754480i \(0.727889\pi\)
\(228\) 771.538 927.949i 0.224107 0.269539i
\(229\) 2221.09 0.640934 0.320467 0.947260i \(-0.396160\pi\)
0.320467 + 0.947260i \(0.396160\pi\)
\(230\) −834.251 1841.70i −0.239169 0.527991i
\(231\) 294.355 + 253.947i 0.0838404 + 0.0723312i
\(232\) −2846.50 864.364i −0.805525 0.244605i
\(233\) 3711.51i 1.04356i −0.853080 0.521779i \(-0.825268\pi\)
0.853080 0.521779i \(-0.174732\pi\)
\(234\) 409.675 + 790.069i 0.114450 + 0.220720i
\(235\) 2164.92i 0.600953i
\(236\) 4344.63 + 3811.60i 1.19835 + 1.05133i
\(237\) 1098.10 29.1245i 0.300968 0.00798244i
\(238\) 1680.22 5191.25i 0.457616 1.41386i
\(239\) 3198.82i 0.865751i −0.901454 0.432876i \(-0.857499\pi\)
0.901454 0.432876i \(-0.142501\pi\)
\(240\) 2245.55 355.558i 0.603956 0.0956298i
\(241\) 5785.50i 1.54638i −0.634177 0.773188i \(-0.718661\pi\)
0.634177 0.773188i \(-0.281339\pi\)
\(242\) −1534.32 3387.17i −0.407561 0.899734i
\(243\) 3754.75 500.748i 0.991224 0.132193i
\(244\) −746.101 + 850.439i −0.195755 + 0.223130i
\(245\) −2334.56 + 220.316i −0.608775 + 0.0574508i
\(246\) −1627.55 3353.47i −0.421824 0.869144i
\(247\) −338.320 −0.0871531
\(248\) 748.787 2465.88i 0.191726 0.631386i
\(249\) −115.368 4349.83i −0.0293622 1.10707i
\(250\) −3580.22 + 1621.77i −0.905732 + 0.410278i
\(251\) 2096.38i 0.527180i −0.964635 0.263590i \(-0.915093\pi\)
0.964635 0.263590i \(-0.0849066\pi\)
\(252\) −3945.82 + 658.406i −0.986363 + 0.164586i
\(253\) 422.392i 0.104963i
\(254\) −2291.88 5059.57i −0.566163 1.24986i
\(255\) −98.1058 3698.96i −0.0240926 0.908385i
\(256\) −3957.24 + 1057.11i −0.966123 + 0.258084i
\(257\) 5905.29 1.43331 0.716657 0.697426i \(-0.245671\pi\)
0.716657 + 0.697426i \(0.245671\pi\)
\(258\) 4710.29 2286.06i 1.13663 0.551643i
\(259\) 3996.49 4391.40i 0.958803 1.05355i
\(260\) −479.121 420.340i −0.114284 0.100263i
\(261\) 3544.72 188.162i 0.840661 0.0446243i
\(262\) 4573.46 2071.68i 1.07843 0.488507i
\(263\) 2143.88i 0.502652i −0.967902 0.251326i \(-0.919133\pi\)
0.967902 0.251326i \(-0.0808666\pi\)
\(264\) −457.981 125.909i −0.106768 0.0293529i
\(265\) 3219.26i 0.746256i
\(266\) 468.291 1446.84i 0.107943 0.333502i
\(267\) 4452.72 118.097i 1.02061 0.0270690i
\(268\) −583.998 512.350i −0.133110 0.116779i
\(269\) 6249.96i 1.41660i −0.705909 0.708302i \(-0.749461\pi\)
0.705909 0.708302i \(-0.250539\pi\)
\(270\) −2374.39 + 1312.21i −0.535188 + 0.295773i
\(271\) 4623.10i 1.03629i 0.855294 + 0.518143i \(0.173376\pi\)
−0.855294 + 0.518143i \(0.826624\pi\)
\(272\) 867.629 + 6609.73i 0.193411 + 1.47343i
\(273\) 849.150 + 732.584i 0.188252 + 0.162410i
\(274\) −1477.17 + 669.128i −0.325690 + 0.147531i
\(275\) 316.156 0.0693269
\(276\) −3342.15 2778.81i −0.728890 0.606031i
\(277\) 282.839i 0.0613507i 0.999529 + 0.0306754i \(0.00976580\pi\)
−0.999529 + 0.0306754i \(0.990234\pi\)
\(278\) −1277.37 2819.94i −0.275582 0.608377i
\(279\) 163.002 + 3070.74i 0.0349774 + 0.658926i
\(280\) 2460.78 1467.16i 0.525214 0.313142i
\(281\) 6722.69i 1.42720i 0.700555 + 0.713598i \(0.252936\pi\)
−0.700555 + 0.713598i \(0.747064\pi\)
\(282\) 2032.08 + 4186.99i 0.429109 + 0.884155i
\(283\) −7208.18 −1.51407 −0.757035 0.653375i \(-0.773353\pi\)
−0.757035 + 0.653375i \(0.773353\pi\)
\(284\) 5417.02 + 4752.42i 1.13183 + 0.992973i
\(285\) −27.3428 1030.93i −0.00568298 0.214270i
\(286\) 54.9432 + 121.293i 0.0113596 + 0.0250776i
\(287\) −3473.99 3161.58i −0.714507 0.650252i
\(288\) 4009.18 2795.42i 0.820289 0.571949i
\(289\) 5936.94 1.20842
\(290\) −2315.70 + 1048.97i −0.468906 + 0.212405i
\(291\) −156.452 5898.84i −0.0315168 1.18830i
\(292\) −3742.36 3283.22i −0.750017 0.658000i
\(293\) 3175.54i 0.633163i 0.948565 + 0.316582i \(0.102535\pi\)
−0.948565 + 0.316582i \(0.897465\pi\)
\(294\) −4308.29 + 2617.41i −0.854641 + 0.519220i
\(295\) 4939.09 0.974797
\(296\) −2107.85 + 6941.51i −0.413906 + 1.36306i
\(297\) 564.966 45.0375i 0.110379 0.00879912i
\(298\) 3003.83 + 6631.26i 0.583916 + 1.28906i
\(299\) 1218.51i 0.235680i
\(300\) −2079.90 + 2501.55i −0.400278 + 0.481424i
\(301\) 4440.77 4879.58i 0.850371 0.934400i
\(302\) −1306.27 2883.72i −0.248898 0.549469i
\(303\) 131.760 + 4967.87i 0.0249816 + 0.941903i
\(304\) 241.815 + 1842.18i 0.0456218 + 0.347554i
\(305\) 966.802i 0.181505i
\(306\) −3661.74 7061.77i −0.684077 1.31926i
\(307\) 3739.33 0.695163 0.347581 0.937650i \(-0.387003\pi\)
0.347581 + 0.937650i \(0.387003\pi\)
\(308\) −594.764 + 67.0777i −0.110032 + 0.0124094i
\(309\) 65.3889 + 2465.41i 0.0120383 + 0.453891i
\(310\) −908.706 2006.06i −0.166487 0.367538i
\(311\) −9117.85 −1.66246 −0.831231 0.555927i \(-0.812363\pi\)
−0.831231 + 0.555927i \(0.812363\pi\)
\(312\) −1321.18 363.220i −0.239734 0.0659080i
\(313\) 9104.29i 1.64410i 0.569412 + 0.822052i \(0.307171\pi\)
−0.569412 + 0.822052i \(0.692829\pi\)
\(314\) −3232.44 7135.96i −0.580947 1.28250i
\(315\) −2163.70 + 2646.74i −0.387018 + 0.473418i
\(316\) −1115.35 + 1271.33i −0.198555 + 0.226322i
\(317\) −9883.17 −1.75109 −0.875543 0.483141i \(-0.839496\pi\)
−0.875543 + 0.483141i \(0.839496\pi\)
\(318\) 3021.73 + 6226.11i 0.532863 + 1.09793i
\(319\) 531.106 0.0932170
\(320\) −1946.33 + 2909.29i −0.340010 + 0.508233i
\(321\) −2492.09 + 66.0965i −0.433317 + 0.0114927i
\(322\) −5211.01 1686.62i −0.901859 0.291899i
\(323\) 3023.96 0.520922
\(324\) −3360.41 + 4766.54i −0.576202 + 0.817308i
\(325\) 912.040 0.155664
\(326\) 3364.25 1523.93i 0.571559 0.258905i
\(327\) 171.981 + 6484.33i 0.0290842 + 1.09659i
\(328\) 5491.36 + 1667.50i 0.924419 + 0.280708i
\(329\) 4337.47 + 3947.41i 0.726846 + 0.661482i
\(330\) −365.163 + 177.226i −0.0609138 + 0.0295635i
\(331\) 452.334i 0.0751134i 0.999294 + 0.0375567i \(0.0119575\pi\)
−0.999294 + 0.0375567i \(0.988043\pi\)
\(332\) 5036.00 + 4418.15i 0.832490 + 0.730354i
\(333\) −458.854 8644.19i −0.0755107 1.42252i
\(334\) −1448.78 3198.34i −0.237347 0.523968i
\(335\) −663.905 −0.108278
\(336\) 3382.05 5147.31i 0.549125 0.835740i
\(337\) 4969.87 0.803341 0.401670 0.915784i \(-0.368430\pi\)
0.401670 + 0.915784i \(0.368430\pi\)
\(338\) −2405.55 5310.50i −0.387114 0.854595i
\(339\) 185.979 + 7012.13i 0.0297965 + 1.12344i
\(340\) 4282.46 + 3757.06i 0.683086 + 0.599280i
\(341\) 460.090i 0.0730653i
\(342\) −1020.55 1968.17i −0.161360 0.311188i
\(343\) −3815.32 + 5079.07i −0.600606 + 0.799545i
\(344\) −2342.17 + 7713.17i −0.367097 + 1.20891i
\(345\) −3713.04 + 98.4793i −0.579431 + 0.0153680i
\(346\) −1070.24 + 484.795i −0.166290 + 0.0753259i
\(347\) 11013.5 1.70386 0.851928 0.523659i \(-0.175433\pi\)
0.851928 + 0.523659i \(0.175433\pi\)
\(348\) −3494.01 + 4202.33i −0.538214 + 0.647324i
\(349\) −4530.91 −0.694940 −0.347470 0.937691i \(-0.612959\pi\)
−0.347470 + 0.937691i \(0.612959\pi\)
\(350\) −1262.41 + 3900.38i −0.192797 + 0.595669i
\(351\) 1629.81 129.923i 0.247842 0.0197573i
\(352\) 621.179 385.864i 0.0940595 0.0584279i
\(353\) 6152.85 0.927714 0.463857 0.885910i \(-0.346465\pi\)
0.463857 + 0.885910i \(0.346465\pi\)
\(354\) 9552.28 4636.03i 1.43418 0.696052i
\(355\) 6158.21 0.920687
\(356\) −4522.65 + 5155.12i −0.673315 + 0.767474i
\(357\) −7589.84 6547.95i −1.12520 0.970740i
\(358\) 136.734 + 301.854i 0.0201860 + 0.0445628i
\(359\) 2822.93i 0.415010i 0.978234 + 0.207505i \(0.0665344\pi\)
−0.978234 + 0.207505i \(0.933466\pi\)
\(360\) 1000.03 4055.24i 0.146406 0.593694i
\(361\) −6016.20 −0.877125
\(362\) −1609.46 3553.04i −0.233677 0.515867i
\(363\) −6828.88 + 181.119i −0.987392 + 0.0261881i
\(364\) −1715.77 + 193.505i −0.247062 + 0.0278637i
\(365\) −4254.41 −0.610099
\(366\) 907.480 + 1869.81i 0.129603 + 0.267040i
\(367\) 6388.51i 0.908658i −0.890834 0.454329i \(-0.849879\pi\)
0.890834 0.454329i \(-0.150121\pi\)
\(368\) 6634.90 870.931i 0.939858 0.123371i
\(369\) −6838.33 + 362.995i −0.964741 + 0.0512107i
\(370\) 2558.02 + 5647.11i 0.359420 + 0.793457i
\(371\) 6449.87 + 5869.85i 0.902589 + 0.821421i
\(372\) −3640.42 3026.81i −0.507385 0.421862i
\(373\) 6415.30i 0.890541i 0.895396 + 0.445270i \(0.146892\pi\)
−0.895396 + 0.445270i \(0.853108\pi\)
\(374\) −491.091 1084.13i −0.0678976 0.149891i
\(375\) 191.442 + 7218.08i 0.0263627 + 0.993973i
\(376\) −6856.26 2081.96i −0.940384 0.285556i
\(377\) 1532.13 0.209306
\(378\) −1700.29 + 7149.77i −0.231359 + 0.972868i
\(379\) 10997.5i 1.49051i 0.666782 + 0.745253i \(0.267671\pi\)
−0.666782 + 0.745253i \(0.732329\pi\)
\(380\) 1193.56 + 1047.12i 0.161127 + 0.141358i
\(381\) −10200.6 + 270.545i −1.37163 + 0.0363792i
\(382\) −5986.24 + 2711.64i −0.801787 + 0.363193i
\(383\) −9990.07 −1.33282 −0.666408 0.745587i \(-0.732169\pi\)
−0.666408 + 0.745587i \(0.732169\pi\)
\(384\) −1033.45 + 7453.53i −0.137339 + 0.990524i
\(385\) −344.268 + 378.287i −0.0455728 + 0.0500760i
\(386\) 1498.75 + 3308.64i 0.197628 + 0.436284i
\(387\) −509.864 9605.14i −0.0669711 1.26165i
\(388\) 6829.36 + 5991.49i 0.893578 + 0.783948i
\(389\) 3943.66 0.514014 0.257007 0.966410i \(-0.417264\pi\)
0.257007 + 0.966410i \(0.417264\pi\)
\(390\) −1053.42 + 511.257i −0.136774 + 0.0663808i
\(391\) 10891.2i 1.40868i
\(392\) 1547.37 7605.39i 0.199372 0.979924i
\(393\) −244.552 9220.55i −0.0313894 1.18350i
\(394\) −5760.05 12715.9i −0.736515 1.62594i
\(395\) 1445.28i 0.184101i
\(396\) −539.879 + 685.514i −0.0685100 + 0.0869908i
\(397\) 14238.3 1.80000 0.900002 0.435885i \(-0.143565\pi\)
0.900002 + 0.435885i \(0.143565\pi\)
\(398\) 9854.36 4463.82i 1.24109 0.562189i
\(399\) −2115.35 1824.96i −0.265413 0.228979i
\(400\) −651.881 4966.14i −0.0814852 0.620767i
\(401\) 876.488i 0.109151i 0.998510 + 0.0545757i \(0.0173806\pi\)
−0.998510 + 0.0545757i \(0.982619\pi\)
\(402\) −1284.00 + 623.169i −0.159304 + 0.0773155i
\(403\) 1327.26i 0.164058i
\(404\) −5751.53 5045.90i −0.708291 0.621393i
\(405\) 527.622 + 4955.84i 0.0647352 + 0.608044i
\(406\) −2120.71 + 6552.20i −0.259234 + 0.800937i
\(407\) 1295.16i 0.157737i
\(408\) 11808.9 + 3246.52i 1.43291 + 0.393938i
\(409\) 11741.1i 1.41947i −0.704471 0.709733i \(-0.748816\pi\)
0.704471 0.709733i \(-0.251184\pi\)
\(410\) 4467.37 2023.63i 0.538116 0.243756i
\(411\) 78.9873 + 2978.12i 0.00947969 + 0.357421i
\(412\) −2854.32 2504.13i −0.341316 0.299441i
\(413\) 9005.70 9895.59i 1.07298 1.17901i
\(414\) −7088.65 + 3675.68i −0.841517 + 0.436352i
\(415\) 5725.06 0.677186
\(416\) 1791.97 1113.14i 0.211198 0.131192i
\(417\) −5685.28 + 150.788i −0.667648 + 0.0177077i
\(418\) −136.871 302.157i −0.0160157 0.0353564i
\(419\) 16673.4i 1.94403i −0.234911 0.972017i \(-0.575480\pi\)
0.234911 0.972017i \(-0.424520\pi\)
\(420\) −728.314 5212.64i −0.0846145 0.605597i
\(421\) 2350.61i 0.272118i 0.990701 + 0.136059i \(0.0434436\pi\)
−0.990701 + 0.136059i \(0.956556\pi\)
\(422\) 3186.26 1443.31i 0.367546 0.166491i
\(423\) 8538.03 453.219i 0.981402 0.0520952i
\(424\) −10195.3 3095.90i −1.16776 0.354600i
\(425\) −8151.96 −0.930419
\(426\) 11910.1 5780.35i 1.35457 0.657415i
\(427\) 1937.01 + 1762.82i 0.219528 + 0.199786i
\(428\) 2531.23 2885.21i 0.285868 0.325845i
\(429\) 244.538 6.48577i 0.0275208 0.000729921i
\(430\) 2842.39 + 6274.88i 0.318773 + 0.703724i
\(431\) 6140.09i 0.686213i −0.939297 0.343106i \(-0.888521\pi\)
0.939297 0.343106i \(-0.111479\pi\)
\(432\) −1872.35 8781.56i −0.208526 0.978017i
\(433\) 8753.16i 0.971478i −0.874104 0.485739i \(-0.838551\pi\)
0.874104 0.485739i \(-0.161449\pi\)
\(434\) −5676.08 1837.14i −0.627790 0.203193i
\(435\) 123.825 + 4668.69i 0.0136482 + 0.514590i
\(436\) −7507.21 6586.17i −0.824610 0.723441i
\(437\) 3035.47i 0.332280i
\(438\) −8228.10 + 3993.37i −0.897611 + 0.435640i
\(439\) 4097.50i 0.445474i −0.974879 0.222737i \(-0.928501\pi\)
0.974879 0.222737i \(-0.0714992\pi\)
\(440\) 181.575 597.959i 0.0196733 0.0647877i
\(441\) 1357.62 + 9160.95i 0.146595 + 0.989197i
\(442\) −1416.69 3127.49i −0.152455 0.336561i
\(443\) −7908.50 −0.848181 −0.424091 0.905620i \(-0.639406\pi\)
−0.424091 + 0.905620i \(0.639406\pi\)
\(444\) 10247.9 + 8520.52i 1.09536 + 0.910735i
\(445\) 5860.48i 0.624299i
\(446\) −6615.21 + 2996.55i −0.702330 + 0.318141i
\(447\) 13369.3 354.587i 1.41464 0.0375199i
\(448\) 2279.99 + 9204.18i 0.240446 + 0.970663i
\(449\) 2363.47i 0.248417i 0.992256 + 0.124208i \(0.0396392\pi\)
−0.992256 + 0.124208i \(0.960361\pi\)
\(450\) 2751.20 + 5305.77i 0.288206 + 0.555814i
\(451\) −1024.59 −0.106976
\(452\) −8118.27 7122.27i −0.844804 0.741158i
\(453\) −5813.88 + 154.199i −0.603002 + 0.0159931i
\(454\) −13296.4 + 6022.99i −1.37452 + 0.622627i
\(455\) −993.139 + 1091.28i −0.102328 + 0.112439i
\(456\) 3291.23 + 904.830i 0.337995 + 0.0929222i
\(457\) 5371.11 0.549781 0.274891 0.961476i \(-0.411358\pi\)
0.274891 + 0.961476i \(0.411358\pi\)
\(458\) 2592.16 + 5722.48i 0.264463 + 0.583829i
\(459\) −14567.5 + 1161.28i −1.48137 + 0.118091i
\(460\) 3771.36 4298.77i 0.382263 0.435720i
\(461\) 14246.7i 1.43934i 0.694319 + 0.719668i \(0.255706\pi\)
−0.694319 + 0.719668i \(0.744294\pi\)
\(462\) −310.744 + 1054.76i −0.0312925 + 0.106216i
\(463\) −3194.81 −0.320681 −0.160341 0.987062i \(-0.551259\pi\)
−0.160341 + 0.987062i \(0.551259\pi\)
\(464\) −1095.09 8342.56i −0.109565 0.834684i
\(465\) −4044.43 + 107.268i −0.403346 + 0.0106977i
\(466\) 9562.42 4331.58i 0.950581 0.430594i
\(467\) 3317.47i 0.328724i −0.986400 0.164362i \(-0.947443\pi\)
0.986400 0.164362i \(-0.0525565\pi\)
\(468\) −1557.44 + 1977.56i −0.153830 + 0.195326i
\(469\) −1210.53 + 1330.15i −0.119184 + 0.130961i
\(470\) −5577.75 + 2526.61i −0.547410 + 0.247965i
\(471\) −14386.8 + 381.574i −1.40745 + 0.0373291i
\(472\) −4749.82 + 15642.0i −0.463196 + 1.52538i
\(473\) 1439.14i 0.139898i
\(474\) 1356.60 + 2795.19i 0.131457 + 0.270859i
\(475\) −2272.01 −0.219468
\(476\) 15335.8 1729.58i 1.47671 0.166544i
\(477\) 12696.2 673.942i 1.21869 0.0646912i
\(478\) 8241.52 3733.24i 0.788616 0.357227i
\(479\) 1661.85 0.158522 0.0792608 0.996854i \(-0.474744\pi\)
0.0792608 + 0.996854i \(0.474744\pi\)
\(480\) 3536.77 + 5370.52i 0.336314 + 0.510686i
\(481\) 3736.26i 0.354176i
\(482\) 14905.9 6752.06i 1.40860 0.638066i
\(483\) −6572.88 + 7618.73i −0.619205 + 0.717732i
\(484\) 6936.14 7906.11i 0.651403 0.742498i
\(485\) 7763.80 0.726879
\(486\) 5672.18 + 9089.42i 0.529415 + 0.848363i
\(487\) 6158.69 0.573053 0.286527 0.958072i \(-0.407499\pi\)
0.286527 + 0.958072i \(0.407499\pi\)
\(488\) −3061.84 929.753i −0.284022 0.0862458i
\(489\) −179.893 6782.66i −0.0166361 0.627244i
\(490\) −3292.22 5757.70i −0.303525 0.530830i
\(491\) −7846.32 −0.721180 −0.360590 0.932724i \(-0.617425\pi\)
−0.360590 + 0.932724i \(0.617425\pi\)
\(492\) 6740.50 8106.98i 0.617653 0.742868i
\(493\) −13694.4 −1.25104
\(494\) −394.842 871.657i −0.0359611 0.0793880i
\(495\) 39.5269 + 744.633i 0.00358909 + 0.0676137i
\(496\) 7227.04 948.660i 0.654242 0.0858792i
\(497\) 11228.6 12338.1i 1.01342 1.11356i
\(498\) 11072.4 5373.78i 0.996314 0.483544i
\(499\) 11321.6i 1.01568i 0.861452 + 0.507839i \(0.169556\pi\)
−0.861452 + 0.507839i \(0.830444\pi\)
\(500\) −8356.71 7331.45i −0.747447 0.655745i
\(501\) −6448.17 + 171.022i −0.575016 + 0.0152509i
\(502\) 5401.15 2446.61i 0.480210 0.217525i
\(503\) 21262.4 1.88478 0.942391 0.334513i \(-0.108572\pi\)
0.942391 + 0.334513i \(0.108572\pi\)
\(504\) −6301.37 9397.70i −0.556915 0.830569i
\(505\) −6538.50 −0.576157
\(506\) −1088.26 + 492.960i −0.0956109 + 0.0433098i
\(507\) −10706.5 + 283.963i −0.937854 + 0.0248742i
\(508\) 10360.8 11809.7i 0.904895 1.03144i
\(509\) 6748.42i 0.587659i 0.955858 + 0.293829i \(0.0949298\pi\)
−0.955858 + 0.293829i \(0.905070\pi\)
\(510\) 9415.60 4569.70i 0.817509 0.396764i
\(511\) −7757.28 + 8523.81i −0.671550 + 0.737909i
\(512\) −7341.92 8961.80i −0.633731 0.773554i
\(513\) −4060.06 + 323.656i −0.349427 + 0.0278553i
\(514\) 6891.87 + 15214.5i 0.591415 + 1.30561i
\(515\) −3244.87 −0.277643
\(516\) 11387.1 + 9467.73i 0.971489 + 0.807739i
\(517\) 1279.26 0.108823
\(518\) 15978.3 + 5171.59i 1.35530 + 0.438662i
\(519\) 57.2278 + 2157.71i 0.00484011 + 0.182491i
\(520\) 523.806 1724.98i 0.0441739 0.145472i
\(521\) −1669.33 −0.140374 −0.0701868 0.997534i \(-0.522360\pi\)
−0.0701868 + 0.997534i \(0.522360\pi\)
\(522\) 4621.71 + 8913.09i 0.387522 + 0.747348i
\(523\) −8699.40 −0.727339 −0.363669 0.931528i \(-0.618476\pi\)
−0.363669 + 0.931528i \(0.618476\pi\)
\(524\) 10675.1 + 9365.37i 0.889966 + 0.780779i
\(525\) 5702.53 + 4919.72i 0.474055 + 0.408979i
\(526\) 5523.55 2502.05i 0.457867 0.207404i
\(527\) 11863.3i 0.980592i
\(528\) −210.100 1326.90i −0.0173171 0.109367i
\(529\) 1234.29 0.101446
\(530\) −8294.19 + 3757.10i −0.679767 + 0.307920i
\(531\) −1033.98 19478.8i −0.0845028 1.59192i
\(532\) 4274.20 482.046i 0.348327 0.0392845i
\(533\) −2955.72 −0.240200
\(534\) 5500.88 + 11334.3i 0.445780 + 0.918504i
\(535\) 3279.98i 0.265058i
\(536\) 638.464 2102.57i 0.0514505 0.169435i
\(537\) 608.568 16.1407i 0.0489043 0.00129707i
\(538\) 16102.5 7294.12i 1.29039 0.584520i
\(539\) 130.185 + 1379.50i 0.0104035 + 0.110240i
\(540\) −6151.88 4585.99i −0.490250 0.365462i
\(541\) 6335.93i 0.503517i 0.967790 + 0.251759i \(0.0810089\pi\)
−0.967790 + 0.251759i \(0.918991\pi\)
\(542\) −11911.1 + 5395.47i −0.943956 + 0.427592i
\(543\) −7163.29 + 189.988i −0.566126 + 0.0150151i
\(544\) −16016.9 + 9949.38i −1.26235 + 0.784147i
\(545\) −8534.40 −0.670777
\(546\) −896.430 + 3042.74i −0.0702631 + 0.238493i
\(547\) 25466.5i 1.99062i −0.0967351 0.995310i \(-0.530840\pi\)
0.0967351 0.995310i \(-0.469160\pi\)
\(548\) −3447.91 3024.90i −0.268773 0.235798i
\(549\) 3812.88 202.397i 0.296411 0.0157342i
\(550\) 368.975 + 814.550i 0.0286057 + 0.0631501i
\(551\) −3816.73 −0.295096
\(552\) 3258.88 11853.8i 0.251281 0.914009i
\(553\) 2895.65 + 2635.25i 0.222668 + 0.202644i
\(554\) −728.713 + 330.092i −0.0558846 + 0.0253146i
\(555\) 11385.1 301.962i 0.870760 0.0230947i
\(556\) 5774.58 6582.11i 0.440461 0.502057i
\(557\) 2282.80 0.173654 0.0868269 0.996223i \(-0.472327\pi\)
0.0868269 + 0.996223i \(0.472327\pi\)
\(558\) −7721.29 + 4003.72i −0.585786 + 0.303747i
\(559\) 4151.61i 0.314122i
\(560\) 6651.93 + 4627.74i 0.501956 + 0.349210i
\(561\) −2185.72 + 57.9709i −0.164494 + 0.00436280i
\(562\) −17320.5 + 7845.83i −1.30004 + 0.588890i
\(563\) 5471.40i 0.409577i 0.978806 + 0.204789i \(0.0656507\pi\)
−0.978806 + 0.204789i \(0.934349\pi\)
\(564\) −8415.88 + 10122.0i −0.628320 + 0.755697i
\(565\) −9229.07 −0.687204
\(566\) −8412.42 18571.3i −0.624736 1.37917i
\(567\) 10891.2 + 7979.13i 0.806678 + 0.590991i
\(568\) −5922.23 + 19502.9i −0.437484 + 1.44071i
\(569\) 10659.3i 0.785342i 0.919679 + 0.392671i \(0.128449\pi\)
−0.919679 + 0.392671i \(0.871551\pi\)
\(570\) 2624.20 1273.61i 0.192834 0.0935889i
\(571\) 12002.7i 0.879680i 0.898076 + 0.439840i \(0.144965\pi\)
−0.898076 + 0.439840i \(0.855035\pi\)
\(572\) −248.379 + 283.114i −0.0181561 + 0.0206951i
\(573\) 320.096 + 12068.9i 0.0233372 + 0.879902i
\(574\) 4091.20 12640.3i 0.297497 0.919154i
\(575\) 8182.99i 0.593486i
\(576\) 11881.2 + 7066.91i 0.859458 + 0.511206i
\(577\) 10078.4i 0.727159i 0.931563 + 0.363579i \(0.118445\pi\)
−0.931563 + 0.363579i \(0.881555\pi\)
\(578\) 6928.81 + 15296.1i 0.498617 + 1.10075i
\(579\) 6670.56 176.920i 0.478789 0.0126987i
\(580\) −5405.16 4742.02i −0.386961 0.339486i
\(581\) 10438.8 11470.3i 0.745395 0.819050i
\(582\) 15015.3 7287.43i 1.06942 0.519027i
\(583\) 1902.27 0.135135
\(584\) 4091.38 13473.6i 0.289902 0.954697i
\(585\) 114.026 + 2148.11i 0.00805883 + 0.151817i
\(586\) −8181.52 + 3706.06i −0.576750 + 0.261256i
\(587\) 22343.5i 1.57106i −0.618820 0.785532i \(-0.712389\pi\)
0.618820 0.785532i \(-0.287611\pi\)
\(588\) −11771.6 8045.28i −0.825601 0.564254i
\(589\) 3306.38i 0.231302i
\(590\) 5764.25 + 12725.2i 0.402221 + 0.887945i
\(591\) −25636.6 + 679.946i −1.78434 + 0.0473253i
\(592\) −20344.3 + 2670.49i −1.41241 + 0.185400i
\(593\) −21338.0 −1.47765 −0.738824 0.673898i \(-0.764619\pi\)
−0.738824 + 0.673898i \(0.764619\pi\)
\(594\) 775.389 + 1403.03i 0.0535599 + 0.0969142i
\(595\) 8876.84 9753.99i 0.611621 0.672058i
\(596\) −13579.3 + 15478.3i −0.933270 + 1.06378i
\(597\) −526.933 19867.4i −0.0361238 1.36201i
\(598\) −3139.40 + 1422.08i −0.214682 + 0.0972464i
\(599\) 8738.27i 0.596054i −0.954557 0.298027i \(-0.903671\pi\)
0.954557 0.298027i \(-0.0963285\pi\)
\(600\) −8872.45 2439.23i −0.603694 0.165969i
\(601\) 7481.20i 0.507761i −0.967236 0.253881i \(-0.918293\pi\)
0.967236 0.253881i \(-0.0817070\pi\)
\(602\) 17754.5 + 5746.50i 1.20203 + 0.389053i
\(603\) 138.986 + 2618.31i 0.00938633 + 0.176826i
\(604\) 5905.19 6731.00i 0.397813 0.453444i
\(605\) 8987.88i 0.603982i
\(606\) −12645.6 + 6137.30i −0.847674 + 0.411404i
\(607\) 473.402i 0.0316554i −0.999875 0.0158277i \(-0.994962\pi\)
0.999875 0.0158277i \(-0.00503832\pi\)
\(608\) −4464.03 + 2772.97i −0.297764 + 0.184965i
\(609\) 9579.61 + 8264.57i 0.637414 + 0.549914i
\(610\) −2490.89 + 1128.32i −0.165333 + 0.0748925i
\(611\) 3690.38 0.244348
\(612\) 13920.6 17675.7i 0.919456 1.16748i
\(613\) 7125.38i 0.469480i −0.972058 0.234740i \(-0.924576\pi\)
0.972058 0.234740i \(-0.0754239\pi\)
\(614\) 4364.05 + 9634.11i 0.286838 + 0.633226i
\(615\) −238.879 9006.66i −0.0156627 0.590543i
\(616\) −866.950 1454.08i −0.0567052 0.0951080i
\(617\) 3345.74i 0.218305i −0.994025 0.109153i \(-0.965186\pi\)
0.994025 0.109153i \(-0.0348137\pi\)
\(618\) −6275.63 + 3045.77i −0.408484 + 0.198250i
\(619\) −7950.72 −0.516263 −0.258131 0.966110i \(-0.583107\pi\)
−0.258131 + 0.966110i \(0.583107\pi\)
\(620\) 4107.95 4682.42i 0.266096 0.303307i
\(621\) 1165.70 + 14622.9i 0.0753265 + 0.944923i
\(622\) −10641.1 23491.4i −0.685966 1.51434i
\(623\) 11741.6 + 10685.7i 0.755084 + 0.687181i
\(624\) −606.092 3827.81i −0.0388832 0.245569i
\(625\) 282.564 0.0180841
\(626\) −23456.5 + 10625.3i −1.49762 + 0.678391i
\(627\) −609.178 + 16.1569i −0.0388010 + 0.00102910i
\(628\) 14612.8 16656.3i 0.928525 1.05837i
\(629\) 33395.3i 2.11694i
\(630\) −9344.29 2485.69i −0.590930 0.157194i
\(631\) −9702.61 −0.612131 −0.306066 0.952010i \(-0.599013\pi\)
−0.306066 + 0.952010i \(0.599013\pi\)
\(632\) −4577.16 1389.89i −0.288085 0.0874795i
\(633\) −170.376 6423.81i −0.0106980 0.403355i
\(634\) −11534.3 25463.2i −0.722533 1.59507i
\(635\) 13425.6i 0.839021i
\(636\) −12514.5 + 15051.5i −0.780241 + 0.938416i
\(637\) 375.555 + 3979.55i 0.0233596 + 0.247529i
\(638\) 619.836 + 1368.35i 0.0384632 + 0.0849117i
\(639\) −1289.20 24286.8i −0.0798121 1.50355i
\(640\) −9767.07 1619.23i −0.603246 0.100009i
\(641\) 27464.9i 1.69235i 0.532904 + 0.846176i \(0.321101\pi\)
−0.532904 + 0.846176i \(0.678899\pi\)
\(642\) −3078.73 6343.54i −0.189264 0.389968i
\(643\) 18925.7 1.16074 0.580372 0.814352i \(-0.302907\pi\)
0.580372 + 0.814352i \(0.302907\pi\)
\(644\) −1736.16 15394.2i −0.106233 0.941949i
\(645\) 12650.8 335.530i 0.772285 0.0204829i
\(646\) 3529.17 + 7791.01i 0.214943 + 0.474509i
\(647\) −6973.22 −0.423718 −0.211859 0.977300i \(-0.567952\pi\)
−0.211859 + 0.977300i \(0.567952\pi\)
\(648\) −16202.4 3094.96i −0.982241 0.187626i
\(649\) 2918.52i 0.176521i
\(650\) 1064.41 + 2349.80i 0.0642303 + 0.141795i
\(651\) −7159.49 + 8298.69i −0.431033 + 0.499618i
\(652\) 7852.60 + 6889.19i 0.471674 + 0.413806i
\(653\) 5754.57 0.344860 0.172430 0.985022i \(-0.444838\pi\)
0.172430 + 0.985022i \(0.444838\pi\)
\(654\) −16505.7 + 8010.73i −0.986884 + 0.478967i
\(655\) 12135.7 0.723940
\(656\) 2112.60 + 16094.1i 0.125737 + 0.957882i
\(657\) 890.647 + 16778.6i 0.0528880 + 0.996339i
\(658\) −5108.08 + 15782.0i −0.302635 + 0.935028i
\(659\) −30735.0 −1.81679 −0.908394 0.418115i \(-0.862691\pi\)
−0.908394 + 0.418115i \(0.862691\pi\)
\(660\) −882.777 733.980i −0.0520637 0.0432881i
\(661\) 22592.9 1.32944 0.664721 0.747092i \(-0.268550\pi\)
0.664721 + 0.747092i \(0.268550\pi\)
\(662\) −1165.40 + 527.904i −0.0684210 + 0.0309933i
\(663\) −6305.34 + 167.233i −0.369350 + 0.00979609i
\(664\) −5505.68 + 18131.2i −0.321780 + 1.05968i
\(665\) 2474.04 2718.51i 0.144270 0.158525i
\(666\) 21735.6 11270.5i 1.26462 0.655743i
\(667\) 13746.5i 0.798002i
\(668\) 6549.45 7465.35i 0.379350 0.432400i
\(669\) 353.728 + 13336.9i 0.0204423 + 0.770755i
\(670\) −774.821 1710.50i −0.0446776 0.0986304i
\(671\) 571.285 0.0328677
\(672\) 17208.7 + 2706.34i 0.987859 + 0.155356i
\(673\) −12930.6 −0.740621 −0.370311 0.928908i \(-0.620749\pi\)
−0.370311 + 0.928908i \(0.620749\pi\)
\(674\) 5800.17 + 12804.5i 0.331475 + 0.731766i
\(675\) 10945.1 872.509i 0.624112 0.0497524i
\(676\) 10874.7 12395.4i 0.618722 0.705246i
\(677\) 27874.6i 1.58244i 0.611534 + 0.791218i \(0.290553\pi\)
−0.611534 + 0.791218i \(0.709447\pi\)
\(678\) −17849.2 + 8662.79i −1.01105 + 0.490697i
\(679\) 14156.1 15555.0i 0.800092 0.879153i
\(680\) −4681.86 + 15418.2i −0.264031 + 0.869500i
\(681\) 710.985 + 26806.8i 0.0400073 + 1.50843i
\(682\) −1185.39 + 536.956i −0.0665554 + 0.0301482i
\(683\) 374.516 0.0209816 0.0104908 0.999945i \(-0.496661\pi\)
0.0104908 + 0.999945i \(0.496661\pi\)
\(684\) 3879.78 4926.36i 0.216882 0.275386i
\(685\) −3919.68 −0.218632
\(686\) −17538.6 3902.27i −0.976130 0.217186i
\(687\) 11537.1 305.992i 0.640709 0.0169932i
\(688\) −22605.9 + 2967.37i −1.25268 + 0.164433i
\(689\) 5487.63 0.303428
\(690\) −4587.09 9451.44i −0.253084 0.521464i
\(691\) 15693.7 0.863988 0.431994 0.901877i \(-0.357810\pi\)
0.431994 + 0.901877i \(0.357810\pi\)
\(692\) −2498.08 2191.60i −0.137229 0.120393i
\(693\) 1563.96 + 1278.53i 0.0857287 + 0.0700829i
\(694\) 12853.5 + 28375.6i 0.703046 + 1.55205i
\(695\) 7482.73i 0.408397i
\(696\) −14904.7 4097.63i −0.811727 0.223161i
\(697\) 26418.7 1.43569
\(698\) −5287.87 11673.5i −0.286746 0.633023i
\(699\) −511.322 19278.8i −0.0276681 1.04319i
\(700\) −11522.3 + 1299.49i −0.622148 + 0.0701661i
\(701\) −4484.20 −0.241606 −0.120803 0.992676i \(-0.538547\pi\)
−0.120803 + 0.992676i \(0.538547\pi\)
\(702\) 2236.83 + 4047.44i 0.120262 + 0.217608i
\(703\) 9307.52i 0.499346i
\(704\) 1719.11 + 1150.09i 0.0920331 + 0.0615706i
\(705\) 298.254 + 11245.3i 0.0159332 + 0.600741i
\(706\) 7180.79 + 15852.3i 0.382794 + 0.845058i
\(707\) −11922.0 + 13100.0i −0.634190 + 0.696856i
\(708\) 23092.5 + 19200.2i 1.22581 + 1.01919i
\(709\) 11896.5i 0.630156i 0.949066 + 0.315078i \(0.102031\pi\)
−0.949066 + 0.315078i \(0.897969\pi\)
\(710\) 7187.04 + 15866.2i 0.379894 + 0.838656i
\(711\) 5699.90 302.564i 0.300651 0.0159593i
\(712\) −18560.0 5635.90i −0.976918 0.296649i
\(713\) −11908.4 −0.625489
\(714\) 8012.44 27196.5i 0.419969 1.42550i
\(715\) 321.851i 0.0168343i
\(716\) −618.126 + 704.567i −0.0322632 + 0.0367750i
\(717\) −440.691 16615.7i −0.0229538 0.865447i
\(718\) −7273.07 + 3294.55i −0.378034 + 0.171242i
\(719\) 13003.8 0.674494 0.337247 0.941416i \(-0.390504\pi\)
0.337247 + 0.941416i \(0.390504\pi\)
\(720\) 11615.1 2156.24i 0.601208 0.111609i
\(721\) −5916.54 + 6501.17i −0.305608 + 0.335806i
\(722\) −7021.30 15500.3i −0.361920 0.798976i
\(723\) −797.048 30051.8i −0.0409994 1.54583i
\(724\) 7275.80 8293.28i 0.373485 0.425715i
\(725\) 10289.1 0.527072
\(726\) −8436.40 17382.7i −0.431273 0.888612i
\(727\) 38446.5i 1.96135i 0.195639 + 0.980676i \(0.437322\pi\)
−0.195639 + 0.980676i \(0.562678\pi\)
\(728\) −2500.96 4194.71i −0.127324 0.213552i
\(729\) 19434.4 3118.33i 0.987371 0.158427i
\(730\) −4965.18 10961.2i −0.251739 0.555741i
\(731\) 37107.8i 1.87754i
\(732\) −3758.33 + 4520.24i −0.189770 + 0.228242i
\(733\) 17763.3 0.895092 0.447546 0.894261i \(-0.352298\pi\)
0.447546 + 0.894261i \(0.352298\pi\)
\(734\) 16459.5 7455.81i 0.827699 0.374931i
\(735\) −12096.1 + 1466.02i −0.607038 + 0.0735712i
\(736\) 9987.25 + 16077.9i 0.500183 + 0.805215i
\(737\) 392.303i 0.0196074i
\(738\) −8916.02 17194.8i −0.444720 0.857655i
\(739\) 28211.2i 1.40428i −0.712037 0.702142i \(-0.752227\pi\)
0.712037 0.702142i \(-0.247773\pi\)
\(740\) −11564.0 + 13181.1i −0.574458 + 0.654793i
\(741\) −1757.35 + 46.6092i −0.0871225 + 0.00231071i
\(742\) −7595.78 + 23468.1i −0.375808 + 1.16111i
\(743\) 17970.1i 0.887294i 0.896202 + 0.443647i \(0.146316\pi\)
−0.896202 + 0.443647i \(0.853684\pi\)
\(744\) 3549.73 12911.8i 0.174918 0.636248i
\(745\) 17596.1i 0.865330i
\(746\) −16528.5 + 7487.08i −0.811196 + 0.367455i
\(747\) −1198.52 22578.5i −0.0587037 1.10590i
\(748\) 2220.05 2530.51i 0.108520 0.123696i
\(749\) −6571.52 5980.56i −0.320585 0.291755i
\(750\) −18373.4 + 8917.21i −0.894535 + 0.434147i
\(751\) 28710.6 1.39503 0.697513 0.716572i \(-0.254290\pi\)
0.697513 + 0.716572i \(0.254290\pi\)
\(752\) −2637.70 20094.4i −0.127908 0.974425i
\(753\) −288.811 10889.3i −0.0139772 0.526994i
\(754\) 1788.09 + 3947.40i 0.0863641 + 0.190658i
\(755\) 7651.98i 0.368853i
\(756\) −20405.2 + 3963.58i −0.981652 + 0.190680i
\(757\) 34560.4i 1.65934i −0.558256 0.829669i \(-0.688529\pi\)
0.558256 0.829669i \(-0.311471\pi\)
\(758\) −28334.1 + 12834.8i −1.35771 + 0.615013i
\(759\) 58.1916 + 2194.04i 0.00278290 + 0.104926i
\(760\) −1304.87 + 4297.16i −0.0622798 + 0.205098i
\(761\) 2013.29 0.0959023 0.0479511 0.998850i \(-0.484731\pi\)
0.0479511 + 0.998850i \(0.484731\pi\)
\(762\) −12601.8 25965.3i −0.599102 1.23441i
\(763\) −15561.2 + 17098.9i −0.738339 + 0.811298i
\(764\) −13972.7 12258.4i −0.661668 0.580490i
\(765\) −1019.19 19200.1i −0.0481683 0.907427i
\(766\) −11659.1 25738.7i −0.549947 1.21407i
\(767\) 8419.29i 0.396353i
\(768\) −20409.5 + 6036.15i −0.958940 + 0.283608i
\(769\) 7245.88i 0.339783i 0.985463 + 0.169891i \(0.0543417\pi\)
−0.985463 + 0.169891i \(0.945658\pi\)
\(770\) −1376.41 445.494i −0.0644187 0.0208500i
\(771\) 30674.0 813.551i 1.43281 0.0380017i
\(772\) −6775.33 + 7722.82i −0.315867 + 0.360039i
\(773\) 35166.4i 1.63629i −0.575015 0.818143i \(-0.695004\pi\)
0.575015 0.818143i \(-0.304996\pi\)
\(774\) 24151.9 12523.5i 1.12160 0.581585i
\(775\) 8913.31i 0.413130i
\(776\) −7466.29 + 24587.8i −0.345392 + 1.13744i
\(777\) 20154.1 23361.0i 0.930533 1.07860i
\(778\) 4602.51 + 10160.5i 0.212093 + 0.468217i
\(779\) 7363.09 0.338652
\(780\) −2546.62 2117.37i −0.116902 0.0971976i
\(781\) 3638.90i 0.166722i
\(782\) 28060.5 12710.8i 1.28317 0.581250i
\(783\) 18386.5 1465.72i 0.839182 0.0668972i
\(784\) 21400.6 4889.32i 0.974881 0.222728i
\(785\) 18935.3i 0.860931i
\(786\) 23470.6 11391.1i 1.06510 0.516928i
\(787\) 30974.5 1.40295 0.701475 0.712694i \(-0.252525\pi\)
0.701475 + 0.712694i \(0.252525\pi\)
\(788\) 26039.2 29680.6i 1.17717 1.34179i
\(789\) −295.355 11136.0i −0.0133269 0.502475i
\(790\) −3723.65 + 1686.74i −0.167698 + 0.0759638i
\(791\) −16827.8 + 18490.7i −0.756421 + 0.831166i
\(792\) −2396.25 590.918i −0.107509 0.0265118i
\(793\) 1648.03 0.0737999
\(794\) 16617.1 + 36684.0i 0.742719 + 1.63963i
\(795\) 443.507 + 16721.9i 0.0197856 + 0.745994i
\(796\) 23001.4 + 20179.4i 1.02420 + 0.898544i
\(797\) 8981.62i 0.399178i 0.979880 + 0.199589i \(0.0639608\pi\)
−0.979880 + 0.199589i \(0.936039\pi\)
\(798\) 2233.13 7579.88i 0.0990625 0.336247i
\(799\) −32985.2 −1.46049
\(800\) 12034.1 7475.33i 0.531836 0.330366i
\(801\) 23112.6 1226.87i 1.01953 0.0541190i
\(802\) −2258.20 + 1022.92i −0.0994264 + 0.0450381i
\(803\) 2513.94i 0.110479i
\(804\) −3104.06 2580.85i −0.136159 0.113209i
\(805\) −9791.12 8910.63i −0.428685 0.390135i
\(806\) −3419.58 + 1549.00i −0.149441 + 0.0676938i
\(807\) −861.035 32464.3i −0.0375587 1.41611i
\(808\) 6287.94 20707.3i 0.273774 0.901584i
\(809\) 29145.4i 1.26662i −0.773896 0.633312i \(-0.781695\pi\)
0.773896 0.633312i \(-0.218305\pi\)
\(810\) −12152.6 + 7143.17i −0.527158 + 0.309859i
\(811\) −35758.2 −1.54826 −0.774132 0.633025i \(-0.781813\pi\)
−0.774132 + 0.633025i \(0.781813\pi\)
\(812\) −19356.3 + 2183.00i −0.836541 + 0.0943454i
\(813\) 636.909 + 24013.9i 0.0274752 + 1.03592i
\(814\) 3336.88 1511.54i 0.143683 0.0650853i
\(815\) 8927.04 0.383682
\(816\) 5417.35 + 34213.6i 0.232408 + 1.46779i
\(817\) 10342.2i 0.442874i
\(818\) 30250.1 13702.7i 1.29300 0.585701i
\(819\) 4511.69 + 3688.29i 0.192492 + 0.157362i
\(820\) 10427.4 + 9148.13i 0.444075 + 0.389593i
\(821\) −29573.6 −1.25716 −0.628578 0.777746i \(-0.716363\pi\)
−0.628578 + 0.777746i \(0.716363\pi\)
\(822\) −7580.72 + 3679.17i −0.321664 + 0.156114i
\(823\) −26488.9 −1.12192 −0.560962 0.827841i \(-0.689569\pi\)
−0.560962 + 0.827841i \(0.689569\pi\)
\(824\) 3120.53 10276.4i 0.131928 0.434462i
\(825\) 1642.21 43.5557i 0.0693025 0.00183808i
\(826\) 36005.5 + 11653.7i 1.51670 + 0.490900i
\(827\) −6964.53 −0.292842 −0.146421 0.989222i \(-0.546775\pi\)
−0.146421 + 0.989222i \(0.546775\pi\)
\(828\) −17743.0 13973.6i −0.744701 0.586493i
\(829\) −11031.4 −0.462166 −0.231083 0.972934i \(-0.574227\pi\)
−0.231083 + 0.972934i \(0.574227\pi\)
\(830\) 6681.53 + 14750.2i 0.279421 + 0.616851i
\(831\) 38.9658 + 1469.16i 0.00162660 + 0.0613292i
\(832\) 4959.25 + 3317.76i 0.206648 + 0.138249i
\(833\) −3356.77 35569.9i −0.139622 1.47950i
\(834\) −7023.59 14471.7i −0.291615 0.600856i
\(835\) 8486.81i 0.351734i
\(836\) 618.746 705.274i 0.0255978 0.0291775i
\(837\) 1269.73 + 15928.0i 0.0524353 + 0.657767i
\(838\) 42957.8 19459.0i 1.77083 0.802148i
\(839\) 20561.9 0.846099 0.423049 0.906107i \(-0.360960\pi\)
0.423049 + 0.906107i \(0.360960\pi\)
\(840\) 12580.0 7959.94i 0.516727 0.326957i
\(841\) −7104.47 −0.291298
\(842\) −6056.16 + 2743.32i −0.247873 + 0.112281i
\(843\) 926.162 + 34919.9i 0.0378395 + 1.42669i
\(844\) 7437.14 + 6524.71i 0.303314 + 0.266101i
\(845\) 14091.4i 0.573681i
\(846\) 11132.1 + 21468.6i 0.452400 + 0.872467i
\(847\) −18007.4 16388.1i −0.730511 0.664817i
\(848\) −3922.29 29880.6i −0.158835 1.21003i
\(849\) −37441.6 + 993.046i −1.51354 + 0.0401428i
\(850\) −9513.88 21002.9i −0.383910 0.847522i
\(851\) 33522.4 1.35033
\(852\) 28792.5 + 23939.3i 1.15776 + 0.962615i
\(853\) 9441.72 0.378990 0.189495 0.981882i \(-0.439315\pi\)
0.189495 + 0.981882i \(0.439315\pi\)
\(854\) −2281.15 + 7047.88i −0.0914042 + 0.282405i
\(855\) −284.055 5351.22i −0.0113620 0.214044i
\(856\) 10387.6 + 3154.29i 0.414769 + 0.125948i
\(857\) 17877.9 0.712598 0.356299 0.934372i \(-0.384039\pi\)
0.356299 + 0.934372i \(0.384039\pi\)
\(858\) 302.103 + 622.465i 0.0120205 + 0.0247676i
\(859\) −43955.9 −1.74593 −0.872966 0.487781i \(-0.837807\pi\)
−0.872966 + 0.487781i \(0.837807\pi\)
\(860\) −12849.5 + 14646.4i −0.509493 + 0.580742i
\(861\) −18480.6 15943.7i −0.731496 0.631080i
\(862\) 15819.5 7165.89i 0.625073 0.283145i
\(863\) 42634.4i 1.68168i 0.541282 + 0.840841i \(0.317939\pi\)
−0.541282 + 0.840841i \(0.682061\pi\)
\(864\) 20439.9 15072.6i 0.804836 0.593497i
\(865\) −2839.88 −0.111629
\(866\) 22551.8 10215.5i 0.884922 0.400851i
\(867\) 30838.4 817.912i 1.20799 0.0320389i
\(868\) −1891.11 16768.1i −0.0739498 0.655697i
\(869\) 854.017 0.0333378
\(870\) −11884.0 + 5767.70i −0.463110 + 0.224762i
\(871\) 1131.71i 0.0440258i
\(872\) 8207.36 27028.2i 0.318734 1.04965i
\(873\) −1625.33 30618.9i −0.0630114 1.18705i
\(874\) 7820.66 3542.60i 0.302675 0.137106i
\(875\) −17322.1 + 19033.7i −0.669249 + 0.735380i
\(876\) −19891.3 16538.5i −0.767199 0.637883i
\(877\) 22335.1i 0.859980i 0.902834 + 0.429990i \(0.141483\pi\)
−0.902834 + 0.429990i \(0.858517\pi\)
\(878\) 10556.9 4782.06i 0.405784 0.183812i
\(879\) 437.483 + 16494.8i 0.0167872 + 0.632940i
\(880\) 1752.51 230.043i 0.0671330 0.00881223i
\(881\) −31160.2 −1.19162 −0.595809 0.803126i \(-0.703168\pi\)
−0.595809 + 0.803126i \(0.703168\pi\)
\(882\) −22018.1 + 14189.2i −0.840574 + 0.541696i
\(883\) 29300.5i 1.11669i −0.829607 0.558347i \(-0.811436\pi\)
0.829607 0.558347i \(-0.188564\pi\)
\(884\) 6404.38 7299.99i 0.243668 0.277743i
\(885\) 25655.3 680.442i 0.974454 0.0258450i
\(886\) −9229.75 20375.6i −0.349977 0.772611i
\(887\) 28062.3 1.06228 0.531139 0.847285i \(-0.321764\pi\)
0.531139 + 0.847285i \(0.321764\pi\)
\(888\) −9992.54 + 36346.8i −0.377621 + 1.37356i
\(889\) −26898.5 24479.6i −1.01479 0.923530i
\(890\) −15099.1 + 6839.57i −0.568676 + 0.257599i
\(891\) 2928.41 311.773i 0.110107 0.0117225i
\(892\) −15440.8 13546.4i −0.579591 0.508483i
\(893\) −9193.22 −0.344501
\(894\) 16516.4 + 34031.1i 0.617888 + 1.27312i
\(895\) 800.971i 0.0299145i
\(896\) −21053.0 + 16616.1i −0.784967 + 0.619538i
\(897\) 167.870 + 6329.34i 0.00624863 + 0.235597i
\(898\) −6089.31 + 2758.33i −0.226284 + 0.102502i
\(899\) 14973.4i 0.555494i
\(900\) −10459.1 + 13280.4i −0.387373 + 0.491868i
\(901\) −49049.3 −1.81362
\(902\) −1195.76 2639.78i −0.0441403 0.0974445i
\(903\) 22394.6 25957.9i 0.825298 0.956617i
\(904\) 8875.41 29228.3i 0.326540 1.07535i
\(905\) 9428.02i 0.346296i
\(906\) −7182.46 14799.0i −0.263379 0.542677i
\(907\) 10433.3i 0.381953i 0.981595 + 0.190976i \(0.0611654\pi\)
−0.981595 + 0.190976i \(0.938835\pi\)
\(908\) −31035.5 27227.9i −1.13431 0.995142i
\(909\) 1368.81 + 25786.6i 0.0499457 + 0.940910i
\(910\) −3970.65 1285.16i −0.144644 0.0468159i
\(911\) 12356.5i 0.449384i 0.974430 + 0.224692i \(0.0721376\pi\)
−0.974430 + 0.224692i \(0.927862\pi\)
\(912\) 1509.86 + 9535.59i 0.0548205 + 0.346222i
\(913\) 3382.95i 0.122628i
\(914\) 6268.44 + 13838.3i 0.226851 + 0.500797i
\(915\) 133.193 + 5021.88i 0.00481226 + 0.181441i
\(916\) −11718.3 + 13357.0i −0.422689 + 0.481800i
\(917\) 22127.6 24314.1i 0.796858 0.875598i
\(918\) −19993.1 36176.7i −0.718814 1.30066i
\(919\) −24591.0 −0.882680 −0.441340 0.897340i \(-0.645497\pi\)
−0.441340 + 0.897340i \(0.645497\pi\)
\(920\) 15476.9 + 4699.68i 0.554628 + 0.168417i
\(921\) 19423.3 515.155i 0.694919 0.0184310i
\(922\) −36705.5 + 16626.8i −1.31110 + 0.593899i
\(923\) 10497.4i 0.374352i
\(924\) −3080.16 + 430.362i −0.109664 + 0.0153224i
\(925\) 25091.1i 0.891882i
\(926\) −3728.56 8231.18i −0.132320 0.292110i
\(927\) 679.303 + 12797.1i 0.0240682 + 0.453412i
\(928\) 20215.9 12557.7i 0.715108 0.444211i
\(929\) 15512.5 0.547844 0.273922 0.961752i \(-0.411679\pi\)
0.273922 + 0.961752i \(0.411679\pi\)
\(930\) −4996.48 10295.0i −0.176173 0.362995i
\(931\) −935.558 9913.60i −0.0329341 0.348985i
\(932\) 22320.0 + 19581.6i 0.784458 + 0.688215i
\(933\) −47361.1 + 1256.13i −1.66188 + 0.0440772i
\(934\) 8547.20 3871.71i 0.299436 0.135638i
\(935\) 2876.76i 0.100620i
\(936\) −6912.66 1704.67i −0.241397 0.0595287i
\(937\) 31883.8i 1.11163i 0.831306 + 0.555816i \(0.187594\pi\)
−0.831306 + 0.555816i \(0.812406\pi\)
\(938\) −4839.80 1566.47i −0.168470 0.0545277i
\(939\) 1254.27 + 47290.6i 0.0435904 + 1.64353i
\(940\) −13019.2 11421.9i −0.451745 0.396322i
\(941\) 26463.4i 0.916773i −0.888753 0.458386i \(-0.848428\pi\)
0.888753 0.458386i \(-0.151572\pi\)
\(942\) −17773.5 36621.2i −0.614746 1.26665i
\(943\) 26519.3i 0.915786i
\(944\) −45843.8 + 6017.69i −1.58060 + 0.207478i
\(945\) −10874.3 + 14046.1i −0.374330 + 0.483513i
\(946\) 3707.84 1679.57i 0.127434 0.0577248i
\(947\) −6190.46 −0.212421 −0.106211 0.994344i \(-0.533872\pi\)
−0.106211 + 0.994344i \(0.533872\pi\)
\(948\) −5618.35 + 6757.34i −0.192485 + 0.231507i
\(949\) 7252.17i 0.248067i
\(950\) −2651.59 5853.67i −0.0905568 0.199914i
\(951\) −51336.4 + 1361.57i −1.75047 + 0.0464269i
\(952\) 22354.0 + 37493.0i 0.761027 + 1.27642i
\(953\) 24095.6i 0.819027i −0.912304 0.409513i \(-0.865699\pi\)
0.912304 0.409513i \(-0.134301\pi\)
\(954\) 16553.6 + 31924.1i 0.561785 + 1.08342i
\(955\) −15884.5 −0.538232
\(956\) 19236.8 + 16876.7i 0.650798 + 0.570953i
\(957\) 2758.74 73.1686i 0.0931842 0.00247148i
\(958\) 1939.49 + 4281.63i 0.0654092 + 0.144398i
\(959\) −7146.95 + 7853.17i −0.240654 + 0.264434i
\(960\) −9709.08 + 15380.0i −0.326416 + 0.517069i
\(961\) 16819.8 0.564593
\(962\) 9626.19 4360.47i 0.322620 0.146140i
\(963\) −12935.6 + 686.653i −0.432860 + 0.0229772i
\(964\) 34792.3 + 30523.8i 1.16243 + 1.01982i
\(965\) 8779.51i 0.292873i
\(966\) −27300.1 8042.94i −0.909281 0.267885i
\(967\) 33985.7 1.13020 0.565102 0.825021i \(-0.308837\pi\)
0.565102 + 0.825021i \(0.308837\pi\)
\(968\) 28464.4 + 8643.46i 0.945125 + 0.286995i
\(969\) 15707.4 416.601i 0.520739 0.0138113i
\(970\) 9060.88 + 20002.8i 0.299925 + 0.662116i
\(971\) 17226.4i 0.569331i 0.958627 + 0.284666i \(0.0918826\pi\)
−0.958627 + 0.284666i \(0.908117\pi\)
\(972\) −16798.4 + 25221.9i −0.554330 + 0.832297i
\(973\) −14991.8 13643.6i −0.493952 0.449532i
\(974\) 7187.60 + 15867.4i 0.236453 + 0.521996i
\(975\) 4737.44 125.649i 0.155610 0.00412716i
\(976\) −1177.93 8973.68i −0.0386319 0.294304i
\(977\) 30772.6i 1.00768i 0.863797 + 0.503840i \(0.168080\pi\)
−0.863797 + 0.503840i \(0.831920\pi\)
\(978\) 17265.0 8379.29i 0.564494 0.273967i
\(979\) 3462.96 0.113051
\(980\) 10992.0 15201.8i 0.358294 0.495513i
\(981\) 1786.65 + 33658.0i 0.0581480 + 1.09543i
\(982\) −9157.18 20215.4i −0.297574 0.656925i
\(983\) −22275.6 −0.722769 −0.361384 0.932417i \(-0.617696\pi\)
−0.361384 + 0.932417i \(0.617696\pi\)
\(984\) 28753.6 + 7905.00i 0.931537 + 0.256100i
\(985\) 33741.7i 1.09147i
\(986\) −15982.3 35282.5i −0.516206 1.13958i
\(987\) 23074.1 + 19906.6i 0.744129 + 0.641979i
\(988\) 1784.95 2034.56i 0.0574765 0.0655142i
\(989\) 37249.0 1.19762
\(990\) −1872.36 + 970.874i −0.0601086 + 0.0311681i
\(991\) 107.013 0.00343025 0.00171513 0.999999i \(-0.499454\pi\)
0.00171513 + 0.999999i \(0.499454\pi\)
\(992\) 10878.6 + 17512.8i 0.348181 + 0.560515i
\(993\) 62.3165 + 2349.57i 0.00199150 + 0.0750870i
\(994\) 44892.7 + 14530.1i 1.43250 + 0.463650i
\(995\) 26148.6 0.833132
\(996\) 26767.3 + 22255.5i 0.851561 + 0.708025i
\(997\) 16525.7 0.524950 0.262475 0.964939i \(-0.415461\pi\)
0.262475 + 0.964939i \(0.415461\pi\)
\(998\) −29169.2 + 13213.0i −0.925185 + 0.419090i
\(999\) −3574.32 44837.5i −0.113200 1.42002i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 168.4.i.c.125.48 yes 80
3.2 odd 2 inner 168.4.i.c.125.34 yes 80
4.3 odd 2 672.4.i.c.209.3 80
7.6 odd 2 inner 168.4.i.c.125.47 yes 80
8.3 odd 2 672.4.i.c.209.78 80
8.5 even 2 inner 168.4.i.c.125.35 yes 80
12.11 even 2 672.4.i.c.209.2 80
21.20 even 2 inner 168.4.i.c.125.33 80
24.5 odd 2 inner 168.4.i.c.125.45 yes 80
24.11 even 2 672.4.i.c.209.79 80
28.27 even 2 672.4.i.c.209.77 80
56.13 odd 2 inner 168.4.i.c.125.36 yes 80
56.27 even 2 672.4.i.c.209.4 80
84.83 odd 2 672.4.i.c.209.80 80
168.83 odd 2 672.4.i.c.209.1 80
168.125 even 2 inner 168.4.i.c.125.46 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.i.c.125.33 80 21.20 even 2 inner
168.4.i.c.125.34 yes 80 3.2 odd 2 inner
168.4.i.c.125.35 yes 80 8.5 even 2 inner
168.4.i.c.125.36 yes 80 56.13 odd 2 inner
168.4.i.c.125.45 yes 80 24.5 odd 2 inner
168.4.i.c.125.46 yes 80 168.125 even 2 inner
168.4.i.c.125.47 yes 80 7.6 odd 2 inner
168.4.i.c.125.48 yes 80 1.1 even 1 trivial
672.4.i.c.209.1 80 168.83 odd 2
672.4.i.c.209.2 80 12.11 even 2
672.4.i.c.209.3 80 4.3 odd 2
672.4.i.c.209.4 80 56.27 even 2
672.4.i.c.209.77 80 28.27 even 2
672.4.i.c.209.78 80 8.3 odd 2
672.4.i.c.209.79 80 24.11 even 2
672.4.i.c.209.80 80 84.83 odd 2