Properties

Label 169.2.a.b.1.2
Level 169169
Weight 22
Character 169.1
Self dual yes
Analytic conductor 1.3491.349
Analytic rank 11
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(1,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 169=132 169 = 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 169.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.349471794161.34947179416
Analytic rank: 11
Dimension: 33
Coefficient field: Q(ζ14)+\Q(\zeta_{14})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3x22x+1 x^{3} - x^{2} - 2x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.2
Root 1.24698-1.24698 of defining polynomial
Character χ\chi == 169.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q0.554958q2+0.801938q31.69202q42.80194q50.445042q62.69202q7+2.04892q82.35690q9+1.55496q101.19806q111.35690q12+1.49396q142.24698q15+2.24698q16+1.13706q17+1.30798q18+1.93900q19+4.74094q202.15883q21+0.664874q224.60388q23+1.64310q24+2.85086q254.29590q27+4.55496q287.89977q29+1.24698q30+5.89977q315.34481q320.960771q330.631023q34+7.54288q35+3.98792q36+0.951083q371.07606q385.74094q40+3.31767q41+1.19806q42+7.15883q43+2.02715q44+6.60388q45+2.55496q467.69202q47+1.80194q48+0.246980q491.58211q50+0.911854q51+5.87263q53+2.38404q54+3.35690q555.51573q56+1.55496q57+4.38404q580.0120816q59+3.80194q608.03684q613.27413q62+6.34481q631.52781q64+0.533188q669.25667q671.92394q683.69202q694.18598q7013.7409q714.82908q72+12.8170q730.527811q74+2.28621q753.28083q76+3.22521q77+0.807315q796.29590q80+3.62565q811.84117q8216.3327q83+3.65279q843.18598q853.97285q866.33513q872.45473q8814.7289q893.66487q90+7.78986q92+4.73125q93+4.26875q945.43296q954.28621q96+3.13169q970.137063q98+2.82371q99+O(q100)q-0.554958 q^{2} +0.801938 q^{3} -1.69202 q^{4} -2.80194 q^{5} -0.445042 q^{6} -2.69202 q^{7} +2.04892 q^{8} -2.35690 q^{9} +1.55496 q^{10} -1.19806 q^{11} -1.35690 q^{12} +1.49396 q^{14} -2.24698 q^{15} +2.24698 q^{16} +1.13706 q^{17} +1.30798 q^{18} +1.93900 q^{19} +4.74094 q^{20} -2.15883 q^{21} +0.664874 q^{22} -4.60388 q^{23} +1.64310 q^{24} +2.85086 q^{25} -4.29590 q^{27} +4.55496 q^{28} -7.89977 q^{29} +1.24698 q^{30} +5.89977 q^{31} -5.34481 q^{32} -0.960771 q^{33} -0.631023 q^{34} +7.54288 q^{35} +3.98792 q^{36} +0.951083 q^{37} -1.07606 q^{38} -5.74094 q^{40} +3.31767 q^{41} +1.19806 q^{42} +7.15883 q^{43} +2.02715 q^{44} +6.60388 q^{45} +2.55496 q^{46} -7.69202 q^{47} +1.80194 q^{48} +0.246980 q^{49} -1.58211 q^{50} +0.911854 q^{51} +5.87263 q^{53} +2.38404 q^{54} +3.35690 q^{55} -5.51573 q^{56} +1.55496 q^{57} +4.38404 q^{58} -0.0120816 q^{59} +3.80194 q^{60} -8.03684 q^{61} -3.27413 q^{62} +6.34481 q^{63} -1.52781 q^{64} +0.533188 q^{66} -9.25667 q^{67} -1.92394 q^{68} -3.69202 q^{69} -4.18598 q^{70} -13.7409 q^{71} -4.82908 q^{72} +12.8170 q^{73} -0.527811 q^{74} +2.28621 q^{75} -3.28083 q^{76} +3.22521 q^{77} +0.807315 q^{79} -6.29590 q^{80} +3.62565 q^{81} -1.84117 q^{82} -16.3327 q^{83} +3.65279 q^{84} -3.18598 q^{85} -3.97285 q^{86} -6.33513 q^{87} -2.45473 q^{88} -14.7289 q^{89} -3.66487 q^{90} +7.78986 q^{92} +4.73125 q^{93} +4.26875 q^{94} -5.43296 q^{95} -4.28621 q^{96} +3.13169 q^{97} -0.137063 q^{98} +2.82371 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q2q22q34q5q63q73q83q9+5q108q115q142q15+2q162q17+9q184q19+2q21+3q225q23+9q24++q99+O(q100) 3 q - 2 q^{2} - 2 q^{3} - 4 q^{5} - q^{6} - 3 q^{7} - 3 q^{8} - 3 q^{9} + 5 q^{10} - 8 q^{11} - 5 q^{14} - 2 q^{15} + 2 q^{16} - 2 q^{17} + 9 q^{18} - 4 q^{19} + 2 q^{21} + 3 q^{22} - 5 q^{23} + 9 q^{24}+ \cdots + q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.554958 −0.392415 −0.196207 0.980562i 0.562863π-0.562863\pi
−0.196207 + 0.980562i 0.562863π0.562863\pi
33 0.801938 0.462999 0.231499 0.972835i 0.425637π-0.425637\pi
0.231499 + 0.972835i 0.425637π0.425637\pi
44 −1.69202 −0.846011
55 −2.80194 −1.25306 −0.626532 0.779395i 0.715526π-0.715526\pi
−0.626532 + 0.779395i 0.715526π0.715526\pi
66 −0.445042 −0.181688
77 −2.69202 −1.01749 −0.508744 0.860918i 0.669890π-0.669890\pi
−0.508744 + 0.860918i 0.669890π0.669890\pi
88 2.04892 0.724402
99 −2.35690 −0.785632
1010 1.55496 0.491721
1111 −1.19806 −0.361229 −0.180615 0.983554i 0.557809π-0.557809\pi
−0.180615 + 0.983554i 0.557809π0.557809\pi
1212 −1.35690 −0.391702
1313 0 0
1414 1.49396 0.399277
1515 −2.24698 −0.580168
1616 2.24698 0.561745
1717 1.13706 0.275778 0.137889 0.990448i 0.455968π-0.455968\pi
0.137889 + 0.990448i 0.455968π0.455968\pi
1818 1.30798 0.308293
1919 1.93900 0.444837 0.222419 0.974951i 0.428605π-0.428605\pi
0.222419 + 0.974951i 0.428605π0.428605\pi
2020 4.74094 1.06011
2121 −2.15883 −0.471096
2222 0.664874 0.141752
2323 −4.60388 −0.959974 −0.479987 0.877275i 0.659359π-0.659359\pi
−0.479987 + 0.877275i 0.659359π0.659359\pi
2424 1.64310 0.335397
2525 2.85086 0.570171
2626 0 0
2727 −4.29590 −0.826746
2828 4.55496 0.860806
2929 −7.89977 −1.46695 −0.733475 0.679716i 0.762103π-0.762103\pi
−0.733475 + 0.679716i 0.762103π0.762103\pi
3030 1.24698 0.227666
3131 5.89977 1.05963 0.529815 0.848113i 0.322261π-0.322261\pi
0.529815 + 0.848113i 0.322261π0.322261\pi
3232 −5.34481 −0.944839
3333 −0.960771 −0.167249
3434 −0.631023 −0.108219
3535 7.54288 1.27498
3636 3.98792 0.664653
3737 0.951083 0.156357 0.0781785 0.996939i 0.475090π-0.475090\pi
0.0781785 + 0.996939i 0.475090π0.475090\pi
3838 −1.07606 −0.174561
3939 0 0
4040 −5.74094 −0.907722
4141 3.31767 0.518133 0.259066 0.965860i 0.416585π-0.416585\pi
0.259066 + 0.965860i 0.416585π0.416585\pi
4242 1.19806 0.184865
4343 7.15883 1.09171 0.545856 0.837879i 0.316205π-0.316205\pi
0.545856 + 0.837879i 0.316205π0.316205\pi
4444 2.02715 0.305604
4545 6.60388 0.984448
4646 2.55496 0.376708
4747 −7.69202 −1.12200 −0.560998 0.827817i 0.689583π-0.689583\pi
−0.560998 + 0.827817i 0.689583π0.689583\pi
4848 1.80194 0.260087
4949 0.246980 0.0352828
5050 −1.58211 −0.223743
5151 0.911854 0.127685
5252 0 0
5353 5.87263 0.806667 0.403334 0.915053i 0.367851π-0.367851\pi
0.403334 + 0.915053i 0.367851π0.367851\pi
5454 2.38404 0.324427
5555 3.35690 0.452644
5656 −5.51573 −0.737070
5757 1.55496 0.205959
5858 4.38404 0.575653
5959 −0.0120816 −0.00157289 −0.000786444 1.00000i 0.500250π-0.500250\pi
−0.000786444 1.00000i 0.500250π0.500250\pi
6060 3.80194 0.490828
6161 −8.03684 −1.02901 −0.514506 0.857487i 0.672025π-0.672025\pi
−0.514506 + 0.857487i 0.672025π0.672025\pi
6262 −3.27413 −0.415815
6363 6.34481 0.799371
6464 −1.52781 −0.190976
6565 0 0
6666 0.533188 0.0656309
6767 −9.25667 −1.13088 −0.565441 0.824789i 0.691294π-0.691294\pi
−0.565441 + 0.824789i 0.691294π0.691294\pi
6868 −1.92394 −0.233311
6969 −3.69202 −0.444467
7070 −4.18598 −0.500320
7171 −13.7409 −1.63075 −0.815375 0.578934i 0.803469π-0.803469\pi
−0.815375 + 0.578934i 0.803469π0.803469\pi
7272 −4.82908 −0.569113
7373 12.8170 1.50012 0.750058 0.661372i 0.230025π-0.230025\pi
0.750058 + 0.661372i 0.230025π0.230025\pi
7474 −0.527811 −0.0613568
7575 2.28621 0.263989
7676 −3.28083 −0.376337
7777 3.22521 0.367547
7878 0 0
7979 0.807315 0.0908300 0.0454150 0.998968i 0.485539π-0.485539\pi
0.0454150 + 0.998968i 0.485539π0.485539\pi
8080 −6.29590 −0.703903
8181 3.62565 0.402850
8282 −1.84117 −0.203323
8383 −16.3327 −1.79275 −0.896375 0.443296i 0.853809π-0.853809\pi
−0.896375 + 0.443296i 0.853809π0.853809\pi
8484 3.65279 0.398552
8585 −3.18598 −0.345568
8686 −3.97285 −0.428404
8787 −6.33513 −0.679197
8888 −2.45473 −0.261675
8989 −14.7289 −1.56126 −0.780628 0.624996i 0.785101π-0.785101\pi
−0.780628 + 0.624996i 0.785101π0.785101\pi
9090 −3.66487 −0.386312
9191 0 0
9292 7.78986 0.812149
9393 4.73125 0.490608
9494 4.26875 0.440288
9595 −5.43296 −0.557410
9696 −4.28621 −0.437459
9797 3.13169 0.317975 0.158987 0.987281i 0.449177π-0.449177\pi
0.158987 + 0.987281i 0.449177π0.449177\pi
9898 −0.137063 −0.0138455
9999 2.82371 0.283793
100100 −4.82371 −0.482371
101101 5.29052 0.526426 0.263213 0.964738i 0.415218π-0.415218\pi
0.263213 + 0.964738i 0.415218π0.415218\pi
102102 −0.506041 −0.0501055
103103 −13.5308 −1.33323 −0.666614 0.745403i 0.732257π-0.732257\pi
−0.666614 + 0.745403i 0.732257π0.732257\pi
104104 0 0
105105 6.04892 0.590314
106106 −3.25906 −0.316548
107107 5.63102 0.544371 0.272186 0.962245i 0.412253π-0.412253\pi
0.272186 + 0.962245i 0.412253π0.412253\pi
108108 7.26875 0.699436
109109 4.17629 0.400016 0.200008 0.979794i 0.435903π-0.435903\pi
0.200008 + 0.979794i 0.435903π0.435903\pi
110110 −1.86294 −0.177624
111111 0.762709 0.0723931
112112 −6.04892 −0.571569
113113 7.64310 0.719003 0.359501 0.933145i 0.382947π-0.382947\pi
0.359501 + 0.933145i 0.382947π0.382947\pi
114114 −0.862937 −0.0808214
115115 12.8998 1.20291
116116 13.3666 1.24106
117117 0 0
118118 0.00670477 0.000617224 0
119119 −3.06100 −0.280601
120120 −4.60388 −0.420274
121121 −9.56465 −0.869513
122122 4.46011 0.403799
123123 2.66056 0.239895
124124 −9.98254 −0.896459
125125 6.02177 0.538604
126126 −3.52111 −0.313685
127127 6.77777 0.601430 0.300715 0.953714i 0.402775π-0.402775\pi
0.300715 + 0.953714i 0.402775π0.402775\pi
128128 11.5375 1.01978
129129 5.74094 0.505461
130130 0 0
131131 −13.6799 −1.19522 −0.597611 0.801786i 0.703883π-0.703883\pi
−0.597611 + 0.801786i 0.703883π0.703883\pi
132132 1.62565 0.141494
133133 −5.21983 −0.452617
134134 5.13706 0.443775
135135 12.0368 1.03597
136136 2.32975 0.199774
137137 12.9879 1.10963 0.554816 0.831973i 0.312789π-0.312789\pi
0.554816 + 0.831973i 0.312789π0.312789\pi
138138 2.04892 0.174415
139139 12.0465 1.02177 0.510886 0.859648i 0.329317π-0.329317\pi
0.510886 + 0.859648i 0.329317π0.329317\pi
140140 −12.7627 −1.07865
141141 −6.16852 −0.519483
142142 7.62565 0.639930
143143 0 0
144144 −5.29590 −0.441325
145145 22.1347 1.83818
146146 −7.11290 −0.588668
147147 0.198062 0.0163359
148148 −1.60925 −0.132280
149149 −0.740939 −0.0607001 −0.0303500 0.999539i 0.509662π-0.509662\pi
−0.0303500 + 0.999539i 0.509662π0.509662\pi
150150 −1.26875 −0.103593
151151 −19.0737 −1.55219 −0.776097 0.630614i 0.782803π-0.782803\pi
−0.776097 + 0.630614i 0.782803π0.782803\pi
152152 3.97285 0.322241
153153 −2.67994 −0.216660
154154 −1.78986 −0.144231
155155 −16.5308 −1.32779
156156 0 0
157157 −4.02177 −0.320972 −0.160486 0.987038i 0.551306π-0.551306\pi
−0.160486 + 0.987038i 0.551306π0.551306\pi
158158 −0.448026 −0.0356430
159159 4.70948 0.373486
160160 14.9758 1.18394
161161 12.3937 0.976763
162162 −2.01208 −0.158084
163163 15.1371 1.18563 0.592813 0.805340i 0.298017π-0.298017\pi
0.592813 + 0.805340i 0.298017π0.298017\pi
164164 −5.61356 −0.438346
165165 2.69202 0.209574
166166 9.06398 0.703502
167167 −6.26337 −0.484674 −0.242337 0.970192i 0.577914π-0.577914\pi
−0.242337 + 0.970192i 0.577914π0.577914\pi
168168 −4.42327 −0.341263
169169 0 0
170170 1.76809 0.135606
171171 −4.57002 −0.349478
172172 −12.1129 −0.923600
173173 16.3913 1.24621 0.623105 0.782138i 0.285871π-0.285871\pi
0.623105 + 0.782138i 0.285871π0.285871\pi
174174 3.51573 0.266527
175175 −7.67456 −0.580142
176176 −2.69202 −0.202919
177177 −0.00968868 −0.000728246 0
178178 8.17390 0.612660
179179 −2.45473 −0.183475 −0.0917376 0.995783i 0.529242π-0.529242\pi
−0.0917376 + 0.995783i 0.529242π0.529242\pi
180180 −11.1739 −0.832853
181181 11.8073 0.877631 0.438815 0.898577i 0.355398π-0.355398\pi
0.438815 + 0.898577i 0.355398π0.355398\pi
182182 0 0
183183 −6.44504 −0.476431
184184 −9.43296 −0.695407
185185 −2.66487 −0.195925
186186 −2.62565 −0.192522
187187 −1.36227 −0.0996192
188188 13.0151 0.949221
189189 11.5646 0.841204
190190 3.01507 0.218736
191191 −8.99330 −0.650732 −0.325366 0.945588i 0.605488π-0.605488\pi
−0.325366 + 0.945588i 0.605488π0.605488\pi
192192 −1.22521 −0.0884219
193193 13.5254 0.973581 0.486790 0.873519i 0.338168π-0.338168\pi
0.486790 + 0.873519i 0.338168π0.338168\pi
194194 −1.73795 −0.124778
195195 0 0
196196 −0.417895 −0.0298496
197197 12.9758 0.924490 0.462245 0.886752i 0.347044π-0.347044\pi
0.462245 + 0.886752i 0.347044π0.347044\pi
198198 −1.56704 −0.111365
199199 −13.5864 −0.963116 −0.481558 0.876414i 0.659929π-0.659929\pi
−0.481558 + 0.876414i 0.659929π0.659929\pi
200200 5.84117 0.413033
201201 −7.42327 −0.523597
202202 −2.93602 −0.206577
203203 21.2664 1.49261
204204 −1.54288 −0.108023
205205 −9.29590 −0.649254
206206 7.50902 0.523179
207207 10.8509 0.754187
208208 0 0
209209 −2.32304 −0.160688
210210 −3.35690 −0.231648
211211 10.4601 0.720103 0.360052 0.932932i 0.382759π-0.382759\pi
0.360052 + 0.932932i 0.382759π0.382759\pi
212212 −9.93661 −0.682449
213213 −11.0194 −0.755035
214214 −3.12498 −0.213619
215215 −20.0586 −1.36799
216216 −8.80194 −0.598896
217217 −15.8823 −1.07816
218218 −2.31767 −0.156972
219219 10.2784 0.694553
220220 −5.67994 −0.382941
221221 0 0
222222 −0.423272 −0.0284081
223223 −11.4058 −0.763790 −0.381895 0.924206i 0.624728π-0.624728\pi
−0.381895 + 0.924206i 0.624728π0.624728\pi
224224 14.3884 0.961362
225225 −6.71917 −0.447945
226226 −4.24160 −0.282147
227227 10.6407 0.706249 0.353124 0.935576i 0.385119π-0.385119\pi
0.353124 + 0.935576i 0.385119π0.385119\pi
228228 −2.63102 −0.174244
229229 −1.13946 −0.0752974 −0.0376487 0.999291i 0.511987π-0.511987\pi
−0.0376487 + 0.999291i 0.511987π0.511987\pi
230230 −7.15883 −0.472040
231231 2.58642 0.170174
232232 −16.1860 −1.06266
233233 −10.8509 −0.710863 −0.355432 0.934702i 0.615666π-0.615666\pi
−0.355432 + 0.934702i 0.615666π0.615666\pi
234234 0 0
235235 21.5526 1.40593
236236 0.0204423 0.00133068
237237 0.647416 0.0420542
238238 1.69873 0.110112
239239 −11.9293 −0.771643 −0.385822 0.922573i 0.626082π-0.626082\pi
−0.385822 + 0.922573i 0.626082π0.626082\pi
240240 −5.04892 −0.325906
241241 −3.64848 −0.235019 −0.117510 0.993072i 0.537491π-0.537491\pi
−0.117510 + 0.993072i 0.537491π0.537491\pi
242242 5.30798 0.341210
243243 15.7952 1.01326
244244 13.5985 0.870555
245245 −0.692021 −0.0442116
246246 −1.47650 −0.0941383
247247 0 0
248248 12.0881 0.767598
249249 −13.0978 −0.830042
250250 −3.34183 −0.211356
251251 1.37329 0.0866813 0.0433406 0.999060i 0.486200π-0.486200\pi
0.0433406 + 0.999060i 0.486200π0.486200\pi
252252 −10.7356 −0.676277
253253 5.51573 0.346771
254254 −3.76138 −0.236010
255255 −2.55496 −0.159998
256256 −3.34721 −0.209200
257257 29.4359 1.83616 0.918082 0.396391i 0.129737π-0.129737\pi
0.918082 + 0.396391i 0.129737π0.129737\pi
258258 −3.18598 −0.198350
259259 −2.56033 −0.159091
260260 0 0
261261 18.6189 1.15248
262262 7.59179 0.469023
263263 10.6963 0.659564 0.329782 0.944057i 0.393025π-0.393025\pi
0.329782 + 0.944057i 0.393025π0.393025\pi
264264 −1.96854 −0.121155
265265 −16.4547 −1.01081
266266 2.89679 0.177613
267267 −11.8116 −0.722860
268268 15.6625 0.956738
269269 −10.1860 −0.621050 −0.310525 0.950565i 0.600505π-0.600505\pi
−0.310525 + 0.950565i 0.600505π0.600505\pi
270270 −6.67994 −0.406528
271271 −29.4523 −1.78910 −0.894551 0.446966i 0.852505π-0.852505\pi
−0.894551 + 0.446966i 0.852505π0.852505\pi
272272 2.55496 0.154917
273273 0 0
274274 −7.20775 −0.435436
275275 −3.41550 −0.205963
276276 6.24698 0.376024
277277 −10.2446 −0.615538 −0.307769 0.951461i 0.599582π-0.599582\pi
−0.307769 + 0.951461i 0.599582π0.599582\pi
278278 −6.68532 −0.400959
279279 −13.9051 −0.832480
280280 15.4547 0.923597
281281 −11.5646 −0.689889 −0.344944 0.938623i 0.612102π-0.612102\pi
−0.344944 + 0.938623i 0.612102π0.612102\pi
282282 3.42327 0.203853
283283 −30.7090 −1.82546 −0.912730 0.408562i 0.866030π-0.866030\pi
−0.912730 + 0.408562i 0.866030π0.866030\pi
284284 23.2500 1.37963
285285 −4.35690 −0.258080
286286 0 0
287287 −8.93123 −0.527194
288288 12.5972 0.742295
289289 −15.7071 −0.923946
290290 −12.2838 −0.721330
291291 2.51142 0.147222
292292 −21.6866 −1.26911
293293 −18.6082 −1.08710 −0.543551 0.839376i 0.682921π-0.682921\pi
−0.543551 + 0.839376i 0.682921π0.682921\pi
294294 −0.109916 −0.00641045
295295 0.0338518 0.00197093
296296 1.94869 0.113265
297297 5.14675 0.298645
298298 0.411190 0.0238196
299299 0 0
300300 −3.86831 −0.223337
301301 −19.2717 −1.11080
302302 10.5851 0.609103
303303 4.24267 0.243735
304304 4.35690 0.249885
305305 22.5187 1.28942
306306 1.48725 0.0850207
307307 8.94438 0.510483 0.255241 0.966877i 0.417845π-0.417845\pi
0.255241 + 0.966877i 0.417845π0.417845\pi
308308 −5.45712 −0.310948
309309 −10.8509 −0.617284
310310 9.17390 0.521042
311311 21.0398 1.19306 0.596529 0.802591i 0.296546π-0.296546\pi
0.596529 + 0.802591i 0.296546π0.296546\pi
312312 0 0
313313 −7.12737 −0.402863 −0.201432 0.979503i 0.564559π-0.564559\pi
−0.201432 + 0.979503i 0.564559π0.564559\pi
314314 2.23191 0.125954
315315 −17.7778 −1.00166
316316 −1.36599 −0.0768431
317317 23.9651 1.34601 0.673007 0.739636i 0.265003π-0.265003\pi
0.673007 + 0.739636i 0.265003π0.265003\pi
318318 −2.61356 −0.146561
319319 9.46442 0.529906
320320 4.28083 0.239306
321321 4.51573 0.252043
322322 −6.87800 −0.383296
323323 2.20477 0.122677
324324 −6.13467 −0.340815
325325 0 0
326326 −8.40044 −0.465257
327327 3.34913 0.185207
328328 6.79763 0.375336
329329 20.7071 1.14162
330330 −1.49396 −0.0822397
331331 2.89546 0.159149 0.0795745 0.996829i 0.474644π-0.474644\pi
0.0795745 + 0.996829i 0.474644π0.474644\pi
332332 27.6353 1.51669
333333 −2.24160 −0.122839
334334 3.47591 0.190193
335335 25.9366 1.41707
336336 −4.85086 −0.264636
337337 −3.10560 −0.169173 −0.0845865 0.996416i 0.526957π-0.526957\pi
−0.0845865 + 0.996416i 0.526957π0.526957\pi
338338 0 0
339339 6.12929 0.332898
340340 5.39075 0.292354
341341 −7.06829 −0.382770
342342 2.53617 0.137140
343343 18.1793 0.981589
344344 14.6679 0.790838
345345 10.3448 0.556946
346346 −9.09651 −0.489031
347347 −11.3787 −0.610839 −0.305419 0.952218i 0.598797π-0.598797\pi
−0.305419 + 0.952218i 0.598797π0.598797\pi
348348 10.7192 0.574608
349349 −3.34721 −0.179172 −0.0895859 0.995979i 0.528554π-0.528554\pi
−0.0895859 + 0.995979i 0.528554π0.528554\pi
350350 4.25906 0.227656
351351 0 0
352352 6.40342 0.341303
353353 0.637727 0.0339428 0.0169714 0.999856i 0.494598π-0.494598\pi
0.0169714 + 0.999856i 0.494598π0.494598\pi
354354 0.00537681 0.000285774 0
355355 38.5013 2.04343
356356 24.9215 1.32084
357357 −2.45473 −0.129918
358358 1.36227 0.0719983
359359 −21.4590 −1.13256 −0.566282 0.824211i 0.691619π-0.691619\pi
−0.566282 + 0.824211i 0.691619π0.691619\pi
360360 13.5308 0.713136
361361 −15.2403 −0.802120
362362 −6.55257 −0.344395
363363 −7.67025 −0.402584
364364 0 0
365365 −35.9124 −1.87974
366366 3.57673 0.186959
367367 −9.38703 −0.489999 −0.244999 0.969523i 0.578788π-0.578788\pi
−0.244999 + 0.969523i 0.578788π0.578788\pi
368368 −10.3448 −0.539261
369369 −7.81940 −0.407062
370370 1.47889 0.0768840
371371 −15.8092 −0.820775
372372 −8.00538 −0.415059
373373 27.7265 1.43562 0.717811 0.696238i 0.245144π-0.245144\pi
0.717811 + 0.696238i 0.245144π0.245144\pi
374374 0.756004 0.0390921
375375 4.82908 0.249373
376376 −15.7603 −0.812776
377377 0 0
378378 −6.41789 −0.330101
379379 35.8702 1.84253 0.921265 0.388935i 0.127157π-0.127157\pi
0.921265 + 0.388935i 0.127157π0.127157\pi
380380 9.19269 0.471575
381381 5.43535 0.278462
382382 4.99090 0.255357
383383 4.85517 0.248087 0.124044 0.992277i 0.460414π-0.460414\pi
0.124044 + 0.992277i 0.460414π0.460414\pi
384384 9.25236 0.472157
385385 −9.03684 −0.460560
386386 −7.50604 −0.382047
387387 −16.8726 −0.857684
388388 −5.29888 −0.269010
389389 2.38537 0.120943 0.0604716 0.998170i 0.480740π-0.480740\pi
0.0604716 + 0.998170i 0.480740π0.480740\pi
390390 0 0
391391 −5.23490 −0.264740
392392 0.506041 0.0255589
393393 −10.9705 −0.553387
394394 −7.20105 −0.362783
395395 −2.26205 −0.113816
396396 −4.77777 −0.240092
397397 −15.2664 −0.766196 −0.383098 0.923708i 0.625143π-0.625143\pi
−0.383098 + 0.923708i 0.625143π0.625143\pi
398398 7.53989 0.377941
399399 −4.18598 −0.209561
400400 6.40581 0.320291
401401 12.7584 0.637124 0.318562 0.947902i 0.396800π-0.396800\pi
0.318562 + 0.947902i 0.396800π0.396800\pi
402402 4.11960 0.205467
403403 0 0
404404 −8.95167 −0.445362
405405 −10.1588 −0.504797
406406 −11.8019 −0.585720
407407 −1.13946 −0.0564807
408408 1.86831 0.0924953
409409 −25.3588 −1.25391 −0.626956 0.779054i 0.715700π-0.715700\pi
−0.626956 + 0.779054i 0.715700π0.715700\pi
410410 5.15883 0.254777
411411 10.4155 0.513759
412412 22.8944 1.12793
413413 0.0325239 0.00160040
414414 −6.02177 −0.295954
415415 45.7633 2.24643
416416 0 0
417417 9.66056 0.473080
418418 1.28919 0.0630565
419419 −11.6673 −0.569983 −0.284992 0.958530i 0.591991π-0.591991\pi
−0.284992 + 0.958530i 0.591991π0.591991\pi
420420 −10.2349 −0.499412
421421 −8.29291 −0.404172 −0.202086 0.979368i 0.564772π-0.564772\pi
−0.202086 + 0.979368i 0.564772π0.564772\pi
422422 −5.80492 −0.282579
423423 18.1293 0.881476
424424 12.0325 0.584351
425425 3.24160 0.157241
426426 6.11529 0.296287
427427 21.6353 1.04701
428428 −9.52781 −0.460544
429429 0 0
430430 11.1317 0.536818
431431 0.932296 0.0449071 0.0224536 0.999748i 0.492852π-0.492852\pi
0.0224536 + 0.999748i 0.492852π0.492852\pi
432432 −9.65279 −0.464420
433433 −13.3502 −0.641569 −0.320785 0.947152i 0.603947π-0.603947\pi
−0.320785 + 0.947152i 0.603947π0.603947\pi
434434 8.81402 0.423086
435435 17.7506 0.851077
436436 −7.06638 −0.338418
437437 −8.92692 −0.427032
438438 −5.70410 −0.272553
439439 13.9922 0.667813 0.333906 0.942606i 0.391633π-0.391633\pi
0.333906 + 0.942606i 0.391633π0.391633\pi
440440 6.87800 0.327896
441441 −0.582105 −0.0277193
442442 0 0
443443 23.7017 1.12610 0.563051 0.826422i 0.309627π-0.309627\pi
0.563051 + 0.826422i 0.309627π0.309627\pi
444444 −1.29052 −0.0612454
445445 41.2693 1.95635
446446 6.32975 0.299722
447447 −0.594187 −0.0281041
448448 4.11290 0.194316
449449 −12.5864 −0.593990 −0.296995 0.954879i 0.595984π-0.595984\pi
−0.296995 + 0.954879i 0.595984π0.595984\pi
450450 3.72886 0.175780
451451 −3.97477 −0.187165
452452 −12.9323 −0.608284
453453 −15.2959 −0.718664
454454 −5.90515 −0.277142
455455 0 0
456456 3.18598 0.149197
457457 −33.6383 −1.57353 −0.786767 0.617250i 0.788247π-0.788247\pi
−0.786767 + 0.617250i 0.788247π0.788247\pi
458458 0.632351 0.0295478
459459 −4.88471 −0.227999
460460 −21.8267 −1.01767
461461 −1.40283 −0.0653363 −0.0326681 0.999466i 0.510400π-0.510400\pi
−0.0326681 + 0.999466i 0.510400π0.510400\pi
462462 −1.43535 −0.0667787
463463 −15.2010 −0.706453 −0.353226 0.935538i 0.614915π-0.614915\pi
−0.353226 + 0.935538i 0.614915π0.614915\pi
464464 −17.7506 −0.824052
465465 −13.2567 −0.614763
466466 6.02177 0.278953
467467 −39.3414 −1.82050 −0.910250 0.414058i 0.864111π-0.864111\pi
−0.910250 + 0.414058i 0.864111π0.864111\pi
468468 0 0
469469 24.9191 1.15066
470470 −11.9608 −0.551709
471471 −3.22521 −0.148610
472472 −0.0247542 −0.00113940
473473 −8.57673 −0.394358
474474 −0.359289 −0.0165027
475475 5.52781 0.253633
476476 5.17928 0.237392
477477 −13.8412 −0.633743
478478 6.62027 0.302804
479479 −22.3690 −1.02206 −0.511032 0.859561i 0.670737π-0.670737\pi
−0.511032 + 0.859561i 0.670737π0.670737\pi
480480 12.0097 0.548165
481481 0 0
482482 2.02475 0.0922250
483483 9.93900 0.452240
484484 16.1836 0.735618
485485 −8.77479 −0.398443
486486 −8.76569 −0.397620
487487 22.9205 1.03863 0.519313 0.854584i 0.326188π-0.326188\pi
0.519313 + 0.854584i 0.326188π0.326188\pi
488488 −16.4668 −0.745418
489489 12.1390 0.548944
490490 0.384043 0.0173493
491491 1.84356 0.0831987 0.0415993 0.999134i 0.486755π-0.486755\pi
0.0415993 + 0.999134i 0.486755π0.486755\pi
492492 −4.50173 −0.202954
493493 −8.98254 −0.404553
494494 0 0
495495 −7.91185 −0.355611
496496 13.2567 0.595242
497497 36.9909 1.65927
498498 7.26875 0.325720
499499 −12.0344 −0.538736 −0.269368 0.963037i 0.586815π-0.586815\pi
−0.269368 + 0.963037i 0.586815π0.586815\pi
500500 −10.1890 −0.455664
501501 −5.02284 −0.224404
502502 −0.762118 −0.0340150
503503 −30.5056 −1.36018 −0.680088 0.733130i 0.738058π-0.738058\pi
−0.680088 + 0.733130i 0.738058π0.738058\pi
504504 13.0000 0.579066
505505 −14.8237 −0.659646
506506 −3.06100 −0.136078
507507 0 0
508508 −11.4681 −0.508816
509509 −1.51142 −0.0669924 −0.0334962 0.999439i 0.510664π-0.510664\pi
−0.0334962 + 0.999439i 0.510664π0.510664\pi
510510 1.41789 0.0627854
511511 −34.5036 −1.52635
512512 −21.2174 −0.937687
513513 −8.32975 −0.367767
514514 −16.3357 −0.720538
515515 37.9124 1.67062
516516 −9.71379 −0.427626
517517 9.21552 0.405298
518518 1.42088 0.0624298
519519 13.1448 0.576994
520520 0 0
521521 −5.64012 −0.247098 −0.123549 0.992338i 0.539428π-0.539428\pi
−0.123549 + 0.992338i 0.539428π0.539428\pi
522522 −10.3327 −0.452251
523523 −31.7506 −1.38836 −0.694179 0.719802i 0.744232π-0.744232\pi
−0.694179 + 0.719802i 0.744232π0.744232\pi
524524 23.1468 1.01117
525525 −6.15452 −0.268605
526526 −5.93602 −0.258823
527527 6.70841 0.292223
528528 −2.15883 −0.0939512
529529 −1.80433 −0.0784492
530530 9.13169 0.396655
531531 0.0284750 0.00123571
532532 8.83207 0.382919
533533 0 0
534534 6.55496 0.283661
535535 −15.7778 −0.682133
536536 −18.9661 −0.819213
537537 −1.96854 −0.0849488
538538 5.65279 0.243709
539539 −0.295897 −0.0127452
540540 −20.3666 −0.876438
541541 24.3297 1.04602 0.523009 0.852327i 0.324809π-0.324809\pi
0.523009 + 0.852327i 0.324809π0.324809\pi
542542 16.3448 0.702070
543543 9.46873 0.406342
544544 −6.07739 −0.260566
545545 −11.7017 −0.501246
546546 0 0
547547 −8.18896 −0.350135 −0.175067 0.984556i 0.556014π-0.556014\pi
−0.175067 + 0.984556i 0.556014π0.556014\pi
548548 −21.9758 −0.938761
549549 18.9420 0.808424
550550 1.89546 0.0808227
551551 −15.3177 −0.652555
552552 −7.56465 −0.321973
553553 −2.17331 −0.0924185
554554 5.68532 0.241546
555555 −2.13706 −0.0907133
556556 −20.3830 −0.864431
557557 25.3327 1.07338 0.536691 0.843779i 0.319674π-0.319674\pi
0.536691 + 0.843779i 0.319674π0.319674\pi
558558 7.71678 0.326677
559559 0 0
560560 16.9487 0.716213
561561 −1.09246 −0.0461236
562562 6.41789 0.270723
563563 −25.3937 −1.07022 −0.535109 0.844783i 0.679730π-0.679730\pi
−0.535109 + 0.844783i 0.679730π0.679730\pi
564564 10.4373 0.439488
565565 −21.4155 −0.900957
566566 17.0422 0.716338
567567 −9.76032 −0.409895
568568 −28.1540 −1.18132
569569 −31.1347 −1.30523 −0.652617 0.757688i 0.726329π-0.726329\pi
−0.652617 + 0.757688i 0.726329π0.726329\pi
570570 2.41789 0.101274
571571 −20.5090 −0.858276 −0.429138 0.903239i 0.641183π-0.641183\pi
−0.429138 + 0.903239i 0.641183π0.641183\pi
572572 0 0
573573 −7.21206 −0.301288
574574 4.95646 0.206879
575575 −13.1250 −0.547350
576576 3.60089 0.150037
577577 15.6890 0.653143 0.326572 0.945172i 0.394107π-0.394107\pi
0.326572 + 0.945172i 0.394107π0.394107\pi
578578 8.71678 0.362570
579579 10.8465 0.450767
580580 −37.4523 −1.55512
581581 43.9681 1.82410
582582 −1.39373 −0.0577720
583583 −7.03577 −0.291392
584584 26.2610 1.08669
585585 0 0
586586 10.3268 0.426595
587587 30.5687 1.26171 0.630853 0.775903i 0.282705π-0.282705\pi
0.630853 + 0.775903i 0.282705π0.282705\pi
588588 −0.335126 −0.0138203
589589 11.4397 0.471363
590590 −0.0187864 −0.000773422 0
591591 10.4058 0.428038
592592 2.13706 0.0878328
593593 −29.6883 −1.21915 −0.609576 0.792727i 0.708660π-0.708660\pi
−0.609576 + 0.792727i 0.708660π0.708660\pi
594594 −2.85623 −0.117193
595595 8.57673 0.351612
596596 1.25368 0.0513529
597597 −10.8955 −0.445922
598598 0 0
599599 24.2325 0.990113 0.495057 0.868861i 0.335147π-0.335147\pi
0.495057 + 0.868861i 0.335147π0.335147\pi
600600 4.68425 0.191234
601601 16.4819 0.672310 0.336155 0.941807i 0.390873π-0.390873\pi
0.336155 + 0.941807i 0.390873π0.390873\pi
602602 10.6950 0.435896
603603 21.8170 0.888457
604604 32.2731 1.31317
605605 26.7995 1.08956
606606 −2.35450 −0.0956451
607607 1.43190 0.0581188 0.0290594 0.999578i 0.490749π-0.490749\pi
0.0290594 + 0.999578i 0.490749π0.490749\pi
608608 −10.3636 −0.420300
609609 17.0543 0.691075
610610 −12.4969 −0.505986
611611 0 0
612612 4.53452 0.183297
613613 3.84846 0.155438 0.0777190 0.996975i 0.475236π-0.475236\pi
0.0777190 + 0.996975i 0.475236π0.475236\pi
614614 −4.96376 −0.200321
615615 −7.45473 −0.300604
616616 6.60819 0.266251
617617 −15.0388 −0.605437 −0.302719 0.953080i 0.597894π-0.597894\pi
−0.302719 + 0.953080i 0.597894π0.597894\pi
618618 6.02177 0.242231
619619 12.8170 0.515159 0.257579 0.966257i 0.417075π-0.417075\pi
0.257579 + 0.966257i 0.417075π0.417075\pi
620620 27.9705 1.12332
621621 19.7778 0.793655
622622 −11.6762 −0.468174
623623 39.6504 1.58856
624624 0 0
625625 −31.1269 −1.24508
626626 3.95539 0.158089
627627 −1.86294 −0.0743985
628628 6.80492 0.271546
629629 1.08144 0.0431199
630630 9.86592 0.393068
631631 25.7517 1.02516 0.512579 0.858640i 0.328690π-0.328690\pi
0.512579 + 0.858640i 0.328690π0.328690\pi
632632 1.65412 0.0657974
633633 8.38835 0.333407
634634 −13.2996 −0.528195
635635 −18.9909 −0.753631
636636 −7.96854 −0.315973
637637 0 0
638638 −5.25236 −0.207943
639639 32.3860 1.28117
640640 −32.3274 −1.27785
641641 24.4571 0.965998 0.482999 0.875621i 0.339547π-0.339547\pi
0.482999 + 0.875621i 0.339547π0.339547\pi
642642 −2.50604 −0.0989055
643643 −9.97344 −0.393314 −0.196657 0.980472i 0.563009π-0.563009\pi
−0.196657 + 0.980472i 0.563009π0.563009\pi
644644 −20.9705 −0.826352
645645 −16.0858 −0.633376
646646 −1.22355 −0.0481401
647647 11.8431 0.465600 0.232800 0.972525i 0.425211π-0.425211\pi
0.232800 + 0.972525i 0.425211π0.425211\pi
648648 7.42865 0.291825
649649 0.0144745 0.000568173 0
650650 0 0
651651 −12.7366 −0.499188
652652 −25.6122 −1.00305
653653 −7.47411 −0.292484 −0.146242 0.989249i 0.546718π-0.546718\pi
−0.146242 + 0.989249i 0.546718π0.546718\pi
654654 −1.85862 −0.0726780
655655 38.3303 1.49769
656656 7.45473 0.291058
657657 −30.2083 −1.17854
658658 −11.4916 −0.447988
659659 34.1739 1.33123 0.665613 0.746297i 0.268170π-0.268170\pi
0.665613 + 0.746297i 0.268170π0.268170\pi
660660 −4.55496 −0.177302
661661 33.6088 1.30723 0.653615 0.756827i 0.273252π-0.273252\pi
0.653615 + 0.756827i 0.273252π0.273252\pi
662662 −1.60686 −0.0624524
663663 0 0
664664 −33.4644 −1.29867
665665 14.6256 0.567158
666666 1.24400 0.0482039
667667 36.3696 1.40824
668668 10.5978 0.410040
669669 −9.14675 −0.353634
670670 −14.3937 −0.556078
671671 9.62863 0.371709
672672 11.5386 0.445110
673673 48.0320 1.85150 0.925750 0.378137i 0.123435π-0.123435\pi
0.925750 + 0.378137i 0.123435π0.123435\pi
674674 1.72348 0.0663860
675675 −12.2470 −0.471386
676676 0 0
677677 −33.6582 −1.29359 −0.646794 0.762665i 0.723891π-0.723891\pi
−0.646794 + 0.762665i 0.723891π0.723891\pi
678678 −3.40150 −0.130634
679679 −8.43057 −0.323535
680680 −6.52781 −0.250330
681681 8.53319 0.326992
682682 3.92261 0.150204
683683 15.9041 0.608553 0.304276 0.952584i 0.401585π-0.401585\pi
0.304276 + 0.952584i 0.401585π0.401585\pi
684684 7.73258 0.295663
685685 −36.3913 −1.39044
686686 −10.0887 −0.385190
687687 −0.913773 −0.0348626
688688 16.0858 0.613264
689689 0 0
690690 −5.74094 −0.218554
691691 33.1903 1.26262 0.631309 0.775531i 0.282518π-0.282518\pi
0.631309 + 0.775531i 0.282518π0.282518\pi
692692 −27.7345 −1.05431
693693 −7.60148 −0.288756
694694 6.31468 0.239702
695695 −33.7536 −1.28035
696696 −12.9801 −0.492011
697697 3.77240 0.142890
698698 1.85756 0.0703097
699699 −8.70171 −0.329129
700700 12.9855 0.490807
701701 −14.9129 −0.563253 −0.281627 0.959524i 0.590874π-0.590874\pi
−0.281627 + 0.959524i 0.590874π0.590874\pi
702702 0 0
703703 1.84415 0.0695534
704704 1.83041 0.0689863
705705 17.2838 0.650946
706706 −0.353912 −0.0133197
707707 −14.2422 −0.535633
708708 0.0163935 0.000616104 0
709709 38.4312 1.44331 0.721656 0.692252i 0.243381π-0.243381\pi
0.721656 + 0.692252i 0.243381π0.243381\pi
710710 −21.3666 −0.801874
711711 −1.90276 −0.0713589
712712 −30.1782 −1.13098
713713 −27.1618 −1.01722
714714 1.36227 0.0509818
715715 0 0
716716 4.15346 0.155222
717717 −9.56657 −0.357270
718718 11.9089 0.444435
719719 −11.4373 −0.426538 −0.213269 0.976993i 0.568411π-0.568411\pi
−0.213269 + 0.976993i 0.568411π0.568411\pi
720720 14.8388 0.553008
721721 36.4252 1.35654
722722 8.45771 0.314764
723723 −2.92585 −0.108814
724724 −19.9782 −0.742485
725725 −22.5211 −0.836413
726726 4.25667 0.157980
727727 3.63640 0.134867 0.0674333 0.997724i 0.478519π-0.478519\pi
0.0674333 + 0.997724i 0.478519π0.478519\pi
728728 0 0
729729 1.78986 0.0662910
730730 19.9299 0.737639
731731 8.14005 0.301071
732732 10.9051 0.403066
733733 −3.52217 −0.130094 −0.0650472 0.997882i 0.520720π-0.520720\pi
−0.0650472 + 0.997882i 0.520720π0.520720\pi
734734 5.20941 0.192283
735735 −0.554958 −0.0204699
736736 24.6069 0.907021
737737 11.0901 0.408508
738738 4.33944 0.159737
739739 0.420288 0.0154605 0.00773027 0.999970i 0.497539π-0.497539\pi
0.00773027 + 0.999970i 0.497539π0.497539\pi
740740 4.50902 0.165755
741741 0 0
742742 8.77346 0.322084
743743 −25.3623 −0.930452 −0.465226 0.885192i 0.654027π-0.654027\pi
−0.465226 + 0.885192i 0.654027π0.654027\pi
744744 9.69394 0.355397
745745 2.07606 0.0760611
746746 −15.3870 −0.563359
747747 38.4946 1.40844
748748 2.30499 0.0842790
749749 −15.1588 −0.553892
750750 −2.67994 −0.0978576
751751 0.650874 0.0237507 0.0118754 0.999929i 0.496220π-0.496220\pi
0.0118754 + 0.999929i 0.496220π0.496220\pi
752752 −17.2838 −0.630276
753753 1.10129 0.0401333
754754 0 0
755755 53.4432 1.94500
756756 −19.5676 −0.711668
757757 −16.7909 −0.610276 −0.305138 0.952308i 0.598703π-0.598703\pi
−0.305138 + 0.952308i 0.598703π0.598703\pi
758758 −19.9065 −0.723036
759759 4.42327 0.160555
760760 −11.1317 −0.403789
761761 30.9221 1.12093 0.560463 0.828179i 0.310623π-0.310623\pi
0.560463 + 0.828179i 0.310623π0.310623\pi
762762 −3.01639 −0.109272
763763 −11.2427 −0.407012
764764 15.2168 0.550526
765765 7.50902 0.271489
766766 −2.69441 −0.0973531
767767 0 0
768768 −2.68425 −0.0968596
769769 −43.7689 −1.57835 −0.789174 0.614169i 0.789491π-0.789491\pi
−0.789174 + 0.614169i 0.789491π0.789491\pi
770770 5.01507 0.180730
771771 23.6058 0.850142
772772 −22.8853 −0.823660
773773 −42.4209 −1.52577 −0.762886 0.646532i 0.776218π-0.776218\pi
−0.762886 + 0.646532i 0.776218π0.776218\pi
774774 9.36360 0.336568
775775 16.8194 0.604171
776776 6.41657 0.230341
777777 −2.05323 −0.0736592
778778 −1.32378 −0.0474598
779779 6.43296 0.230485
780780 0 0
781781 16.4625 0.589075
782782 2.90515 0.103888
783783 33.9366 1.21280
784784 0.554958 0.0198199
785785 11.2687 0.402199
786786 6.08815 0.217157
787787 −36.0116 −1.28368 −0.641838 0.766841i 0.721828π-0.721828\pi
−0.641838 + 0.766841i 0.721828π0.721828\pi
788788 −21.9554 −0.782129
789789 8.57779 0.305378
790790 1.25534 0.0446630
791791 −20.5754 −0.731577
792792 5.78554 0.205580
793793 0 0
794794 8.47219 0.300667
795795 −13.1957 −0.468002
796796 22.9885 0.814806
797797 −31.7101 −1.12323 −0.561614 0.827399i 0.689819π-0.689819\pi
−0.561614 + 0.827399i 0.689819π0.689819\pi
798798 2.32304 0.0822349
799799 −8.74632 −0.309422
800800 −15.2373 −0.538720
801801 34.7144 1.22657
802802 −7.08038 −0.250017
803803 −15.3556 −0.541886
804804 12.5603 0.442969
805805 −34.7265 −1.22395
806806 0 0
807807 −8.16852 −0.287546
808808 10.8398 0.381344
809809 −45.2814 −1.59201 −0.796005 0.605290i 0.793057π-0.793057\pi
−0.796005 + 0.605290i 0.793057π0.793057\pi
810810 5.63773 0.198090
811811 −42.8635 −1.50514 −0.752571 0.658511i 0.771187π-0.771187\pi
−0.752571 + 0.658511i 0.771187π0.771187\pi
812812 −35.9831 −1.26276
813813 −23.6189 −0.828352
814814 0.632351 0.0221639
815815 −42.4131 −1.48567
816816 2.04892 0.0717265
817817 13.8810 0.485634
818818 14.0731 0.492054
819819 0 0
820820 15.7289 0.549276
821821 −7.82776 −0.273191 −0.136595 0.990627i 0.543616π-0.543616\pi
−0.136595 + 0.990627i 0.543616π0.543616\pi
822822 −5.78017 −0.201606
823823 −36.7754 −1.28191 −0.640955 0.767579i 0.721461π-0.721461\pi
−0.640955 + 0.767579i 0.721461π0.721461\pi
824824 −27.7235 −0.965793
825825 −2.73902 −0.0953604
826826 −0.0180494 −0.000628019 0
827827 47.3293 1.64580 0.822900 0.568186i 0.192355π-0.192355\pi
0.822900 + 0.568186i 0.192355π0.192355\pi
828828 −18.3599 −0.638050
829829 25.2687 0.877620 0.438810 0.898580i 0.355400π-0.355400\pi
0.438810 + 0.898580i 0.355400π0.355400\pi
830830 −25.3967 −0.881533
831831 −8.21552 −0.284993
832832 0 0
833833 0.280831 0.00973023
834834 −5.36121 −0.185643
835835 17.5496 0.607328
836836 3.93064 0.135944
837837 −25.3448 −0.876045
838838 6.47484 0.223670
839839 −37.6883 −1.30114 −0.650572 0.759444i 0.725471π-0.725471\pi
−0.650572 + 0.759444i 0.725471π0.725471\pi
840840 12.3937 0.427624
841841 33.4064 1.15194
842842 4.60222 0.158603
843843 −9.27413 −0.319418
844844 −17.6987 −0.609215
845845 0 0
846846 −10.0610 −0.345904
847847 25.7482 0.884720
848848 13.1957 0.453141
849849 −24.6267 −0.845187
850850 −1.79895 −0.0617036
851851 −4.37867 −0.150099
852852 18.6450 0.638768
853853 −31.0121 −1.06183 −0.530917 0.847424i 0.678152π-0.678152\pi
−0.530917 + 0.847424i 0.678152π0.678152\pi
854854 −12.0067 −0.410861
855855 12.8049 0.437919
856856 11.5375 0.394344
857857 12.4692 0.425940 0.212970 0.977059i 0.431686π-0.431686\pi
0.212970 + 0.977059i 0.431686π0.431686\pi
858858 0 0
859859 −17.3163 −0.590826 −0.295413 0.955370i 0.595457π-0.595457\pi
−0.295413 + 0.955370i 0.595457π0.595457\pi
860860 33.9396 1.15733
861861 −7.16229 −0.244090
862862 −0.517385 −0.0176222
863863 −3.46383 −0.117910 −0.0589550 0.998261i 0.518777π-0.518777\pi
−0.0589550 + 0.998261i 0.518777π0.518777\pi
864864 22.9608 0.781141
865865 −45.9275 −1.56158
866866 7.40880 0.251761
867867 −12.5961 −0.427786
868868 26.8732 0.912136
869869 −0.967213 −0.0328105
870870 −9.85086 −0.333975
871871 0 0
872872 8.55688 0.289772
873873 −7.38106 −0.249811
874874 4.95407 0.167574
875875 −16.2107 −0.548023
876876 −17.3913 −0.587599
877877 57.2549 1.93336 0.966680 0.255989i 0.0824010π-0.0824010\pi
0.966680 + 0.255989i 0.0824010π0.0824010\pi
878878 −7.76510 −0.262059
879879 −14.9226 −0.503327
880880 7.54288 0.254270
881881 −43.1782 −1.45471 −0.727355 0.686261i 0.759251π-0.759251\pi
−0.727355 + 0.686261i 0.759251π0.759251\pi
882882 0.323044 0.0108775
883883 49.9560 1.68115 0.840576 0.541693i 0.182216π-0.182216\pi
0.840576 + 0.541693i 0.182216π0.182216\pi
884884 0 0
885885 0.0271471 0.000912539 0
886886 −13.1535 −0.441899
887887 17.6746 0.593454 0.296727 0.954962i 0.404105π-0.404105\pi
0.296727 + 0.954962i 0.404105π0.404105\pi
888888 1.56273 0.0524417
889889 −18.2459 −0.611948
890890 −22.9028 −0.767702
891891 −4.34375 −0.145521
892892 19.2989 0.646174
893893 −14.9148 −0.499106
894894 0.329749 0.0110284
895895 6.87800 0.229906
896896 −31.0592 −1.03761
897897 0 0
898898 6.98493 0.233090
899899 −46.6069 −1.55443
900900 11.3690 0.378966
901901 6.67755 0.222461
902902 2.20583 0.0734462
903903 −15.4547 −0.514301
904904 15.6601 0.520847
905905 −33.0834 −1.09973
906906 8.48858 0.282014
907907 7.73423 0.256811 0.128406 0.991722i 0.459014π-0.459014\pi
0.128406 + 0.991722i 0.459014π0.459014\pi
908908 −18.0043 −0.597494
909909 −12.4692 −0.413577
910910 0 0
911911 39.6179 1.31260 0.656299 0.754501i 0.272121π-0.272121\pi
0.656299 + 0.754501i 0.272121π0.272121\pi
912912 3.49396 0.115697
913913 19.5676 0.647594
914914 18.6679 0.617478
915915 18.0586 0.596999
916916 1.92798 0.0637024
917917 36.8267 1.21612
918918 2.71081 0.0894700
919919 14.6213 0.482313 0.241157 0.970486i 0.422473π-0.422473\pi
0.241157 + 0.970486i 0.422473π0.422473\pi
920920 26.4306 0.871390
921921 7.17283 0.236353
922922 0.778512 0.0256389
923923 0 0
924924 −4.37627 −0.143969
925925 2.71140 0.0891502
926926 8.43594 0.277222
927927 31.8907 1.04743
928928 42.2228 1.38603
929929 3.55735 0.116713 0.0583565 0.998296i 0.481414π-0.481414\pi
0.0583565 + 0.998296i 0.481414π0.481414\pi
930930 7.35690 0.241242
931931 0.478894 0.0156951
932932 18.3599 0.601398
933933 16.8726 0.552385
934934 21.8328 0.714391
935935 3.81700 0.124829
936936 0 0
937937 34.5526 1.12878 0.564392 0.825507i 0.309111π-0.309111\pi
0.564392 + 0.825507i 0.309111π0.309111\pi
938938 −13.8291 −0.451536
939939 −5.71571 −0.186525
940940 −36.4674 −1.18944
941941 20.6233 0.672299 0.336149 0.941809i 0.390875π-0.390875\pi
0.336149 + 0.941809i 0.390875π0.390875\pi
942942 1.78986 0.0583167
943943 −15.2741 −0.497394
944944 −0.0271471 −0.000883562 0
945945 −32.4034 −1.05408
946946 4.75973 0.154752
947947 29.4999 0.958619 0.479309 0.877646i 0.340887π-0.340887\pi
0.479309 + 0.877646i 0.340887π0.340887\pi
948948 −1.09544 −0.0355783
949949 0 0
950950 −3.06770 −0.0995295
951951 19.2185 0.623203
952952 −6.27173 −0.203268
953953 26.2389 0.849963 0.424981 0.905202i 0.360281π-0.360281\pi
0.424981 + 0.905202i 0.360281π0.360281\pi
954954 7.68127 0.248690
955955 25.1987 0.815409
956956 20.1847 0.652818
957957 7.58987 0.245346
958958 12.4138 0.401073
959959 −34.9638 −1.12904
960960 3.43296 0.110798
961961 3.80731 0.122817
962962 0 0
963963 −13.2717 −0.427676
964964 6.17331 0.198829
965965 −37.8974 −1.21996
966966 −5.51573 −0.177466
967967 17.5176 0.563330 0.281665 0.959513i 0.409113π-0.409113\pi
0.281665 + 0.959513i 0.409113π0.409113\pi
968968 −19.5972 −0.629877
969969 1.76809 0.0567991
970970 4.86964 0.156355
971971 20.5120 0.658262 0.329131 0.944284i 0.393244π-0.393244\pi
0.329131 + 0.944284i 0.393244π0.393244\pi
972972 −26.7259 −0.857233
973973 −32.4295 −1.03964
974974 −12.7199 −0.407572
975975 0 0
976976 −18.0586 −0.578042
977977 25.4450 0.814059 0.407030 0.913415i 0.366565π-0.366565\pi
0.407030 + 0.913415i 0.366565π0.366565\pi
978978 −6.73663 −0.215414
979979 17.6461 0.563971
980980 1.17092 0.0374035
981981 −9.84309 −0.314266
982982 −1.02310 −0.0326484
983983 −39.5244 −1.26063 −0.630316 0.776339i 0.717074π-0.717074\pi
−0.630316 + 0.776339i 0.717074π0.717074\pi
984984 5.45127 0.173780
985985 −36.3575 −1.15845
986986 4.98493 0.158753
987987 16.6058 0.528568
988988 0 0
989989 −32.9584 −1.04802
990990 4.39075 0.139547
991991 −29.8377 −0.947826 −0.473913 0.880572i 0.657159π-0.657159\pi
−0.473913 + 0.880572i 0.657159π0.657159\pi
992992 −31.5332 −1.00118
993993 2.32198 0.0736858
994994 −20.5284 −0.651121
995995 38.0683 1.20685
996996 22.1618 0.702224
997997 −4.93123 −0.156174 −0.0780868 0.996947i 0.524881π-0.524881\pi
−0.0780868 + 0.996947i 0.524881π0.524881\pi
998998 6.67861 0.211408
999999 −4.08575 −0.129268
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.2.a.b.1.2 3
3.2 odd 2 1521.2.a.r.1.2 3
4.3 odd 2 2704.2.a.z.1.1 3
5.4 even 2 4225.2.a.bg.1.2 3
7.6 odd 2 8281.2.a.bf.1.2 3
13.2 odd 12 169.2.e.b.147.3 12
13.3 even 3 169.2.c.c.22.2 6
13.4 even 6 169.2.c.b.146.2 6
13.5 odd 4 169.2.b.b.168.4 6
13.6 odd 12 169.2.e.b.23.4 12
13.7 odd 12 169.2.e.b.23.3 12
13.8 odd 4 169.2.b.b.168.3 6
13.9 even 3 169.2.c.c.146.2 6
13.10 even 6 169.2.c.b.22.2 6
13.11 odd 12 169.2.e.b.147.4 12
13.12 even 2 169.2.a.c.1.2 yes 3
39.5 even 4 1521.2.b.l.1351.3 6
39.8 even 4 1521.2.b.l.1351.4 6
39.38 odd 2 1521.2.a.o.1.2 3
52.31 even 4 2704.2.f.o.337.2 6
52.47 even 4 2704.2.f.o.337.1 6
52.51 odd 2 2704.2.a.ba.1.1 3
65.64 even 2 4225.2.a.bb.1.2 3
91.90 odd 2 8281.2.a.bj.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
169.2.a.b.1.2 3 1.1 even 1 trivial
169.2.a.c.1.2 yes 3 13.12 even 2
169.2.b.b.168.3 6 13.8 odd 4
169.2.b.b.168.4 6 13.5 odd 4
169.2.c.b.22.2 6 13.10 even 6
169.2.c.b.146.2 6 13.4 even 6
169.2.c.c.22.2 6 13.3 even 3
169.2.c.c.146.2 6 13.9 even 3
169.2.e.b.23.3 12 13.7 odd 12
169.2.e.b.23.4 12 13.6 odd 12
169.2.e.b.147.3 12 13.2 odd 12
169.2.e.b.147.4 12 13.11 odd 12
1521.2.a.o.1.2 3 39.38 odd 2
1521.2.a.r.1.2 3 3.2 odd 2
1521.2.b.l.1351.3 6 39.5 even 4
1521.2.b.l.1351.4 6 39.8 even 4
2704.2.a.z.1.1 3 4.3 odd 2
2704.2.a.ba.1.1 3 52.51 odd 2
2704.2.f.o.337.1 6 52.47 even 4
2704.2.f.o.337.2 6 52.31 even 4
4225.2.a.bb.1.2 3 65.64 even 2
4225.2.a.bg.1.2 3 5.4 even 2
8281.2.a.bf.1.2 3 7.6 odd 2
8281.2.a.bj.1.2 3 91.90 odd 2