Properties

Label 169.3.f.e.150.1
Level $169$
Weight $3$
Character 169.150
Analytic conductor $4.605$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,3,Mod(19,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.19");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 169.f (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.60491646769\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.77720518656.9
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 121x^{4} + 14641 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 150.1
Root \(-3.20361 + 0.858406i\) of defining polynomial
Character \(\chi\) \(=\) 169.150
Dual form 169.3.f.e.80.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.20361 + 0.858406i) q^{2} +(1.50000 - 2.59808i) q^{3} +(6.06218 - 3.50000i) q^{4} +(-2.34521 - 2.34521i) q^{5} +(-2.57522 + 9.61084i) q^{6} +(9.61084 + 2.57522i) q^{7} +(-7.03562 + 7.03562i) q^{8} +(9.52628 + 5.50000i) q^{10} +(-1.71681 - 6.40723i) q^{11} -21.0000i q^{12} -33.0000 q^{14} +(-9.61084 + 2.57522i) q^{15} +(2.50000 - 4.33013i) q^{16} +(2.59808 - 1.50000i) q^{17} +(5.15043 - 19.2217i) q^{19} +(-22.4253 - 6.00884i) q^{20} +(21.1069 - 21.1069i) q^{21} +(11.0000 + 19.0526i) q^{22} +(-10.3923 - 6.00000i) q^{23} +(7.72565 + 28.8325i) q^{24} -14.0000i q^{25} +27.0000 q^{27} +(67.2759 - 18.0265i) q^{28} +(21.0000 - 36.3731i) q^{29} +(28.5788 - 16.5000i) q^{30} +(28.1425 + 28.1425i) q^{31} +(6.00884 - 22.4253i) q^{32} +(-19.2217 - 5.15043i) q^{33} +(-7.03562 + 7.03562i) q^{34} +(-16.5000 - 28.5788i) q^{35} +(-12.8761 - 48.0542i) q^{37} +66.0000i q^{38} +33.0000 q^{40} +(-44.8506 + 12.0177i) q^{41} +(-49.5000 + 85.7365i) q^{42} +(-42.4352 + 24.5000i) q^{43} +(-32.8329 - 32.8329i) q^{44} +(38.4434 + 10.3009i) q^{46} +(2.34521 - 2.34521i) q^{47} +(-7.50000 - 12.9904i) q^{48} +(43.3013 + 25.0000i) q^{49} +(12.0177 + 44.8506i) q^{50} -9.00000i q^{51} -24.0000 q^{53} +(-86.4976 + 23.1770i) q^{54} +(-11.0000 + 19.0526i) q^{55} +(-85.7365 + 49.5000i) q^{56} +(-42.2137 - 42.2137i) q^{57} +(-36.0530 + 134.552i) q^{58} +(51.2578 + 13.7345i) q^{59} +(-49.2494 + 49.2494i) q^{60} +(-15.0000 - 25.9808i) q^{61} +(-114.315 - 66.0000i) q^{62} +97.0000i q^{64} +66.0000 q^{66} +(38.4434 - 10.3009i) q^{67} +(10.5000 - 18.1865i) q^{68} +(-31.1769 + 18.0000i) q^{69} +(77.3919 + 77.3919i) q^{70} +(-6.00884 + 22.4253i) q^{71} +(-28.1425 + 28.1425i) q^{73} +(82.5000 + 142.894i) q^{74} +(-36.3731 - 21.0000i) q^{75} +(-36.0530 - 134.552i) q^{76} -66.0000i q^{77} +54.0000 q^{79} +(-16.0181 + 4.29203i) q^{80} +(40.5000 - 70.1481i) q^{81} +(133.368 - 77.0000i) q^{82} +(-32.8329 - 32.8329i) q^{83} +(54.0796 - 201.828i) q^{84} +(-9.61084 - 2.57522i) q^{85} +(114.915 - 114.915i) q^{86} +(-63.0000 - 109.119i) q^{87} +(57.1577 + 33.0000i) q^{88} +(42.9203 + 160.181i) q^{89} -84.0000 q^{92} +(115.330 - 30.9026i) q^{93} +(-5.50000 + 9.52628i) q^{94} +(-57.1577 + 33.0000i) q^{95} +(-49.2494 - 49.2494i) q^{96} +(5.15043 - 19.2217i) q^{97} +(-160.181 - 42.9203i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{3} - 264 q^{14} + 20 q^{16} + 88 q^{22} + 216 q^{27} + 168 q^{29} - 132 q^{35} + 264 q^{40} - 396 q^{42} - 60 q^{48} - 192 q^{53} - 88 q^{55} - 120 q^{61} + 528 q^{66} + 84 q^{68} + 660 q^{74}+ \cdots - 44 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.20361 + 0.858406i −1.60181 + 0.429203i −0.945588 0.325368i \(-0.894512\pi\)
−0.656219 + 0.754570i \(0.727845\pi\)
\(3\) 1.50000 2.59808i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(4\) 6.06218 3.50000i 1.51554 0.875000i
\(5\) −2.34521 2.34521i −0.469042 0.469042i 0.432562 0.901604i \(-0.357610\pi\)
−0.901604 + 0.432562i \(0.857610\pi\)
\(6\) −2.57522 + 9.61084i −0.429203 + 1.60181i
\(7\) 9.61084 + 2.57522i 1.37298 + 0.367888i 0.868565 0.495575i \(-0.165043\pi\)
0.504412 + 0.863463i \(0.331709\pi\)
\(8\) −7.03562 + 7.03562i −0.879453 + 0.879453i
\(9\) 0 0
\(10\) 9.52628 + 5.50000i 0.952628 + 0.550000i
\(11\) −1.71681 6.40723i −0.156074 0.582475i −0.999011 0.0444633i \(-0.985842\pi\)
0.842937 0.538012i \(-0.180824\pi\)
\(12\) 21.0000i 1.75000i
\(13\) 0 0
\(14\) −33.0000 −2.35714
\(15\) −9.61084 + 2.57522i −0.640723 + 0.171681i
\(16\) 2.50000 4.33013i 0.156250 0.270633i
\(17\) 2.59808 1.50000i 0.152828 0.0882353i −0.421636 0.906765i \(-0.638544\pi\)
0.574464 + 0.818530i \(0.305211\pi\)
\(18\) 0 0
\(19\) 5.15043 19.2217i 0.271075 1.01167i −0.687350 0.726326i \(-0.741226\pi\)
0.958426 0.285341i \(-0.0921070\pi\)
\(20\) −22.4253 6.00884i −1.12126 0.300442i
\(21\) 21.1069 21.1069i 1.00509 1.00509i
\(22\) 11.0000 + 19.0526i 0.500000 + 0.866025i
\(23\) −10.3923 6.00000i −0.451839 0.260870i 0.256767 0.966473i \(-0.417343\pi\)
−0.708607 + 0.705604i \(0.750676\pi\)
\(24\) 7.72565 + 28.8325i 0.321902 + 1.20136i
\(25\) 14.0000i 0.560000i
\(26\) 0 0
\(27\) 27.0000 1.00000
\(28\) 67.2759 18.0265i 2.40271 0.643804i
\(29\) 21.0000 36.3731i 0.724138 1.25424i −0.235190 0.971949i \(-0.575571\pi\)
0.959328 0.282294i \(-0.0910955\pi\)
\(30\) 28.5788 16.5000i 0.952628 0.550000i
\(31\) 28.1425 + 28.1425i 0.907822 + 0.907822i 0.996096 0.0882738i \(-0.0281351\pi\)
−0.0882738 + 0.996096i \(0.528135\pi\)
\(32\) 6.00884 22.4253i 0.187776 0.700790i
\(33\) −19.2217 5.15043i −0.582475 0.156074i
\(34\) −7.03562 + 7.03562i −0.206930 + 0.206930i
\(35\) −16.5000 28.5788i −0.471429 0.816538i
\(36\) 0 0
\(37\) −12.8761 48.0542i −0.348002 1.29876i −0.889065 0.457780i \(-0.848645\pi\)
0.541063 0.840982i \(-0.318022\pi\)
\(38\) 66.0000i 1.73684i
\(39\) 0 0
\(40\) 33.0000 0.825000
\(41\) −44.8506 + 12.0177i −1.09392 + 0.293114i −0.760285 0.649589i \(-0.774941\pi\)
−0.333632 + 0.942704i \(0.608274\pi\)
\(42\) −49.5000 + 85.7365i −1.17857 + 2.04135i
\(43\) −42.4352 + 24.5000i −0.986866 + 0.569767i −0.904336 0.426821i \(-0.859633\pi\)
−0.0825301 + 0.996589i \(0.526300\pi\)
\(44\) −32.8329 32.8329i −0.746203 0.746203i
\(45\) 0 0
\(46\) 38.4434 + 10.3009i 0.835725 + 0.223932i
\(47\) 2.34521 2.34521i 0.0498980 0.0498980i −0.681717 0.731616i \(-0.738767\pi\)
0.731616 + 0.681717i \(0.238767\pi\)
\(48\) −7.50000 12.9904i −0.156250 0.270633i
\(49\) 43.3013 + 25.0000i 0.883699 + 0.510204i
\(50\) 12.0177 + 44.8506i 0.240354 + 0.897012i
\(51\) 9.00000i 0.176471i
\(52\) 0 0
\(53\) −24.0000 −0.452830 −0.226415 0.974031i \(-0.572701\pi\)
−0.226415 + 0.974031i \(0.572701\pi\)
\(54\) −86.4976 + 23.1770i −1.60181 + 0.429203i
\(55\) −11.0000 + 19.0526i −0.200000 + 0.346410i
\(56\) −85.7365 + 49.5000i −1.53101 + 0.883929i
\(57\) −42.2137 42.2137i −0.740592 0.740592i
\(58\) −36.0530 + 134.552i −0.621604 + 2.31986i
\(59\) 51.2578 + 13.7345i 0.868777 + 0.232788i 0.665559 0.746346i \(-0.268193\pi\)
0.203218 + 0.979134i \(0.434860\pi\)
\(60\) −49.2494 + 49.2494i −0.820823 + 0.820823i
\(61\) −15.0000 25.9808i −0.245902 0.425914i 0.716483 0.697604i \(-0.245751\pi\)
−0.962385 + 0.271690i \(0.912417\pi\)
\(62\) −114.315 66.0000i −1.84380 1.06452i
\(63\) 0 0
\(64\) 97.0000i 1.51562i
\(65\) 0 0
\(66\) 66.0000 1.00000
\(67\) 38.4434 10.3009i 0.573782 0.153744i 0.0397512 0.999210i \(-0.487343\pi\)
0.534030 + 0.845465i \(0.320677\pi\)
\(68\) 10.5000 18.1865i 0.154412 0.267449i
\(69\) −31.1769 + 18.0000i −0.451839 + 0.260870i
\(70\) 77.3919 + 77.3919i 1.10560 + 1.10560i
\(71\) −6.00884 + 22.4253i −0.0846315 + 0.315849i −0.995244 0.0974118i \(-0.968944\pi\)
0.910613 + 0.413261i \(0.135610\pi\)
\(72\) 0 0
\(73\) −28.1425 + 28.1425i −0.385514 + 0.385514i −0.873084 0.487570i \(-0.837883\pi\)
0.487570 + 0.873084i \(0.337883\pi\)
\(74\) 82.5000 + 142.894i 1.11486 + 1.93100i
\(75\) −36.3731 21.0000i −0.484974 0.280000i
\(76\) −36.0530 134.552i −0.474382 1.77042i
\(77\) 66.0000i 0.857143i
\(78\) 0 0
\(79\) 54.0000 0.683544 0.341772 0.939783i \(-0.388973\pi\)
0.341772 + 0.939783i \(0.388973\pi\)
\(80\) −16.0181 + 4.29203i −0.200226 + 0.0536504i
\(81\) 40.5000 70.1481i 0.500000 0.866025i
\(82\) 133.368 77.0000i 1.62644 0.939024i
\(83\) −32.8329 32.8329i −0.395577 0.395577i 0.481093 0.876670i \(-0.340240\pi\)
−0.876670 + 0.481093i \(0.840240\pi\)
\(84\) 54.0796 201.828i 0.643804 2.40271i
\(85\) −9.61084 2.57522i −0.113069 0.0302967i
\(86\) 114.915 114.915i 1.33622 1.33622i
\(87\) −63.0000 109.119i −0.724138 1.25424i
\(88\) 57.1577 + 33.0000i 0.649519 + 0.375000i
\(89\) 42.9203 + 160.181i 0.482250 + 1.79978i 0.592135 + 0.805839i \(0.298285\pi\)
−0.109885 + 0.993944i \(0.535048\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −84.0000 −0.913043
\(93\) 115.330 30.9026i 1.24011 0.332286i
\(94\) −5.50000 + 9.52628i −0.0585106 + 0.101343i
\(95\) −57.1577 + 33.0000i −0.601660 + 0.347368i
\(96\) −49.2494 49.2494i −0.513014 0.513014i
\(97\) 5.15043 19.2217i 0.0530973 0.198162i −0.934282 0.356535i \(-0.883958\pi\)
0.987379 + 0.158373i \(0.0506248\pi\)
\(98\) −160.181 42.9203i −1.63450 0.437962i
\(99\) 0 0
\(100\) −49.0000 84.8705i −0.490000 0.848705i
\(101\) 124.708 + 72.0000i 1.23473 + 0.712871i 0.968012 0.250904i \(-0.0807277\pi\)
0.266717 + 0.963775i \(0.414061\pi\)
\(102\) 7.72565 + 28.8325i 0.0757417 + 0.282672i
\(103\) 26.0000i 0.252427i −0.992003 0.126214i \(-0.959718\pi\)
0.992003 0.126214i \(-0.0402825\pi\)
\(104\) 0 0
\(105\) −99.0000 −0.942857
\(106\) 76.8867 20.6017i 0.725346 0.194356i
\(107\) −57.0000 + 98.7269i −0.532710 + 0.922681i 0.466560 + 0.884489i \(0.345493\pi\)
−0.999270 + 0.0381918i \(0.987840\pi\)
\(108\) 163.679 94.5000i 1.51554 0.875000i
\(109\) 119.606 + 119.606i 1.09730 + 1.09730i 0.994725 + 0.102574i \(0.0327077\pi\)
0.102574 + 0.994725i \(0.467292\pi\)
\(110\) 18.8849 70.4795i 0.171681 0.640723i
\(111\) −144.163 38.6283i −1.29876 0.348002i
\(112\) 35.1781 35.1781i 0.314090 0.314090i
\(113\) 63.0000 + 109.119i 0.557522 + 0.965657i 0.997703 + 0.0677473i \(0.0215812\pi\)
−0.440180 + 0.897909i \(0.645086\pi\)
\(114\) 171.473 + 99.0000i 1.50415 + 0.868421i
\(115\) 10.3009 + 38.4434i 0.0895728 + 0.334290i
\(116\) 294.000i 2.53448i
\(117\) 0 0
\(118\) −176.000 −1.49153
\(119\) 28.8325 7.72565i 0.242290 0.0649214i
\(120\) 49.5000 85.7365i 0.412500 0.714471i
\(121\) 66.6840 38.5000i 0.551107 0.318182i
\(122\) 70.3562 + 70.3562i 0.576690 + 0.576690i
\(123\) −36.0530 + 134.552i −0.293114 + 1.09392i
\(124\) 269.104 + 72.1061i 2.17019 + 0.581501i
\(125\) −91.4631 + 91.4631i −0.731705 + 0.731705i
\(126\) 0 0
\(127\) −145.492 84.0000i −1.14561 0.661417i −0.197795 0.980243i \(-0.563378\pi\)
−0.947813 + 0.318826i \(0.896711\pi\)
\(128\) −59.2300 221.049i −0.462734 1.72695i
\(129\) 147.000i 1.13953i
\(130\) 0 0
\(131\) 93.0000 0.709924 0.354962 0.934881i \(-0.384494\pi\)
0.354962 + 0.934881i \(0.384494\pi\)
\(132\) −134.552 + 36.0530i −1.01933 + 0.273129i
\(133\) 99.0000 171.473i 0.744361 1.28927i
\(134\) −114.315 + 66.0000i −0.853100 + 0.492537i
\(135\) −63.3206 63.3206i −0.469042 0.469042i
\(136\) −7.72565 + 28.8325i −0.0568063 + 0.212004i
\(137\) 51.2578 + 13.7345i 0.374145 + 0.100252i 0.440991 0.897512i \(-0.354627\pi\)
−0.0668464 + 0.997763i \(0.521294\pi\)
\(138\) 84.4275 84.4275i 0.611793 0.611793i
\(139\) 17.5000 + 30.3109i 0.125899 + 0.218064i 0.922084 0.386990i \(-0.126485\pi\)
−0.796185 + 0.605053i \(0.793152\pi\)
\(140\) −200.052 115.500i −1.42894 0.825000i
\(141\) −2.57522 9.61084i −0.0182640 0.0681620i
\(142\) 77.0000i 0.542254i
\(143\) 0 0
\(144\) 0 0
\(145\) −134.552 + 36.0530i −0.927943 + 0.248642i
\(146\) 66.0000 114.315i 0.452055 0.782982i
\(147\) 129.904 75.0000i 0.883699 0.510204i
\(148\) −246.247 246.247i −1.66383 1.66383i
\(149\) −17.1681 + 64.0723i −0.115222 + 0.430015i −0.999303 0.0373181i \(-0.988119\pi\)
0.884081 + 0.467333i \(0.154785\pi\)
\(150\) 134.552 + 36.0530i 0.897012 + 0.240354i
\(151\) −119.606 + 119.606i −0.792090 + 0.792090i −0.981834 0.189744i \(-0.939234\pi\)
0.189744 + 0.981834i \(0.439234\pi\)
\(152\) 99.0000 + 171.473i 0.651316 + 1.12811i
\(153\) 0 0
\(154\) 56.6548 + 211.438i 0.367888 + 1.37298i
\(155\) 132.000i 0.851613i
\(156\) 0 0
\(157\) 80.0000 0.509554 0.254777 0.967000i \(-0.417998\pi\)
0.254777 + 0.967000i \(0.417998\pi\)
\(158\) −172.995 + 46.3539i −1.09491 + 0.293379i
\(159\) −36.0000 + 62.3538i −0.226415 + 0.392162i
\(160\) −66.6840 + 38.5000i −0.416775 + 0.240625i
\(161\) −84.4275 84.4275i −0.524394 0.524394i
\(162\) −69.5309 + 259.493i −0.429203 + 1.60181i
\(163\) −115.330 30.9026i −0.707547 0.189587i −0.112938 0.993602i \(-0.536026\pi\)
−0.594608 + 0.804015i \(0.702693\pi\)
\(164\) −229.830 + 229.830i −1.40140 + 1.40140i
\(165\) 33.0000 + 57.1577i 0.200000 + 0.346410i
\(166\) 133.368 + 77.0000i 0.803421 + 0.463855i
\(167\) −24.0354 89.7012i −0.143924 0.537133i −0.999801 0.0199528i \(-0.993648\pi\)
0.855877 0.517180i \(-0.173018\pi\)
\(168\) 297.000i 1.76786i
\(169\) 0 0
\(170\) 33.0000 0.194118
\(171\) 0 0
\(172\) −171.500 + 297.047i −0.997093 + 1.72702i
\(173\) −98.7269 + 57.0000i −0.570676 + 0.329480i −0.757419 0.652929i \(-0.773540\pi\)
0.186743 + 0.982409i \(0.440207\pi\)
\(174\) 295.496 + 295.496i 1.69825 + 1.69825i
\(175\) 36.0530 134.552i 0.206017 0.768867i
\(176\) −32.0361 8.58406i −0.182023 0.0487730i
\(177\) 112.570 112.570i 0.635989 0.635989i
\(178\) −275.000 476.314i −1.54494 2.67592i
\(179\) −111.717 64.5000i −0.624119 0.360335i 0.154352 0.988016i \(-0.450671\pi\)
−0.778471 + 0.627681i \(0.784004\pi\)
\(180\) 0 0
\(181\) 182.000i 1.00552i 0.864425 + 0.502762i \(0.167683\pi\)
−0.864425 + 0.502762i \(0.832317\pi\)
\(182\) 0 0
\(183\) −90.0000 −0.491803
\(184\) 115.330 30.9026i 0.626794 0.167949i
\(185\) −82.5000 + 142.894i −0.445946 + 0.772401i
\(186\) −342.946 + 198.000i −1.84380 + 1.06452i
\(187\) −14.0712 14.0712i −0.0752473 0.0752473i
\(188\) 6.00884 22.4253i 0.0319619 0.119283i
\(189\) 259.493 + 69.5309i 1.37298 + 0.367888i
\(190\) 154.784 154.784i 0.814651 0.814651i
\(191\) −15.0000 25.9808i −0.0785340 0.136025i 0.824084 0.566468i \(-0.191691\pi\)
−0.902618 + 0.430443i \(0.858357\pi\)
\(192\) 252.013 + 145.500i 1.31257 + 0.757812i
\(193\) −46.3539 172.995i −0.240176 0.896348i −0.975747 0.218901i \(-0.929753\pi\)
0.735571 0.677447i \(-0.236914\pi\)
\(194\) 66.0000i 0.340206i
\(195\) 0 0
\(196\) 350.000 1.78571
\(197\) 246.678 66.0972i 1.25217 0.335519i 0.428998 0.903305i \(-0.358867\pi\)
0.823176 + 0.567786i \(0.192200\pi\)
\(198\) 0 0
\(199\) 239.023 138.000i 1.20112 0.693467i 0.240316 0.970695i \(-0.422749\pi\)
0.960804 + 0.277227i \(0.0894155\pi\)
\(200\) 98.4987 + 98.4987i 0.492494 + 0.492494i
\(201\) 30.9026 115.330i 0.153744 0.573782i
\(202\) −461.320 123.610i −2.28376 0.611933i
\(203\) 295.496 295.496i 1.45565 1.45565i
\(204\) −31.5000 54.5596i −0.154412 0.267449i
\(205\) 133.368 + 77.0000i 0.650575 + 0.375610i
\(206\) 22.3185 + 83.2940i 0.108342 + 0.404340i
\(207\) 0 0
\(208\) 0 0
\(209\) −132.000 −0.631579
\(210\) 317.158 84.9822i 1.51027 0.404677i
\(211\) −115.500 + 200.052i −0.547393 + 0.948113i 0.451059 + 0.892494i \(0.351047\pi\)
−0.998452 + 0.0556188i \(0.982287\pi\)
\(212\) −145.492 + 84.0000i −0.686284 + 0.396226i
\(213\) 49.2494 + 49.2494i 0.231218 + 0.231218i
\(214\) 97.8582 365.212i 0.457282 1.70660i
\(215\) 156.977 + 42.0619i 0.730126 + 0.195637i
\(216\) −189.962 + 189.962i −0.879453 + 0.879453i
\(217\) 198.000 + 342.946i 0.912442 + 1.58040i
\(218\) −485.840 280.500i −2.22863 1.28670i
\(219\) 30.9026 + 115.330i 0.141108 + 0.526621i
\(220\) 154.000i 0.700000i
\(221\) 0 0
\(222\) 495.000 2.22973
\(223\) −336.379 + 90.1326i −1.50843 + 0.404182i −0.915913 0.401377i \(-0.868532\pi\)
−0.592515 + 0.805559i \(0.701865\pi\)
\(224\) 115.500 200.052i 0.515625 0.893089i
\(225\) 0 0
\(226\) −295.496 295.496i −1.30751 1.30751i
\(227\) 49.7875 185.810i 0.219328 0.818544i −0.765270 0.643710i \(-0.777394\pi\)
0.984598 0.174834i \(-0.0559390\pi\)
\(228\) −403.655 108.159i −1.77042 0.474382i
\(229\) 63.3206 63.3206i 0.276509 0.276509i −0.555205 0.831714i \(-0.687360\pi\)
0.831714 + 0.555205i \(0.187360\pi\)
\(230\) −66.0000 114.315i −0.286957 0.497023i
\(231\) −171.473 99.0000i −0.742307 0.428571i
\(232\) 108.159 + 403.655i 0.466203 + 1.73989i
\(233\) 429.000i 1.84120i 0.390505 + 0.920601i \(0.372300\pi\)
−0.390505 + 0.920601i \(0.627700\pi\)
\(234\) 0 0
\(235\) −11.0000 −0.0468085
\(236\) 358.805 96.1414i 1.52036 0.407379i
\(237\) 81.0000 140.296i 0.341772 0.591967i
\(238\) −85.7365 + 49.5000i −0.360237 + 0.207983i
\(239\) 180.581 + 180.581i 0.755569 + 0.755569i 0.975513 0.219944i \(-0.0705873\pi\)
−0.219944 + 0.975513i \(0.570587\pi\)
\(240\) −12.8761 + 48.0542i −0.0536504 + 0.200226i
\(241\) −365.212 97.8582i −1.51540 0.406051i −0.597177 0.802109i \(-0.703711\pi\)
−0.918225 + 0.396059i \(0.870378\pi\)
\(242\) −180.581 + 180.581i −0.746203 + 0.746203i
\(243\) 0 0
\(244\) −181.865 105.000i −0.745350 0.430328i
\(245\) −42.9203 160.181i −0.175185 0.653799i
\(246\) 462.000i 1.87805i
\(247\) 0 0
\(248\) −396.000 −1.59677
\(249\) −134.552 + 36.0530i −0.540369 + 0.144791i
\(250\) 214.500 371.525i 0.858000 1.48610i
\(251\) 36.3731 21.0000i 0.144913 0.0836653i −0.425791 0.904822i \(-0.640004\pi\)
0.570703 + 0.821156i \(0.306671\pi\)
\(252\) 0 0
\(253\) −20.6017 + 76.8867i −0.0814298 + 0.303900i
\(254\) 538.207 + 144.212i 2.11893 + 0.567764i
\(255\) −21.1069 + 21.1069i −0.0827720 + 0.0827720i
\(256\) 185.500 + 321.295i 0.724609 + 1.25506i
\(257\) 226.033 + 130.500i 0.879504 + 0.507782i 0.870495 0.492177i \(-0.163799\pi\)
0.00900943 + 0.999959i \(0.497132\pi\)
\(258\) −126.186 470.931i −0.489092 1.82531i
\(259\) 495.000i 1.91120i
\(260\) 0 0
\(261\) 0 0
\(262\) −297.936 + 79.8317i −1.13716 + 0.304701i
\(263\) −135.000 + 233.827i −0.513308 + 0.889076i 0.486573 + 0.873640i \(0.338247\pi\)
−0.999881 + 0.0154355i \(0.995087\pi\)
\(264\) 171.473 99.0000i 0.649519 0.375000i
\(265\) 56.2850 + 56.2850i 0.212396 + 0.212396i
\(266\) −169.964 + 634.315i −0.638964 + 2.38464i
\(267\) 480.542 + 128.761i 1.79978 + 0.482250i
\(268\) 196.997 196.997i 0.735065 0.735065i
\(269\) −93.0000 161.081i −0.345725 0.598813i 0.639760 0.768575i \(-0.279034\pi\)
−0.985485 + 0.169761i \(0.945700\pi\)
\(270\) 257.210 + 148.500i 0.952628 + 0.550000i
\(271\) −12.8761 48.0542i −0.0475132 0.177322i 0.938092 0.346387i \(-0.112592\pi\)
−0.985605 + 0.169066i \(0.945925\pi\)
\(272\) 15.0000i 0.0551471i
\(273\) 0 0
\(274\) −176.000 −0.642336
\(275\) −89.7012 + 24.0354i −0.326186 + 0.0874013i
\(276\) −126.000 + 218.238i −0.456522 + 0.790719i
\(277\) −323.894 + 187.000i −1.16929 + 0.675090i −0.953513 0.301352i \(-0.902562\pi\)
−0.215778 + 0.976443i \(0.569229\pi\)
\(278\) −82.0823 82.0823i −0.295260 0.295260i
\(279\) 0 0
\(280\) 317.158 + 84.9822i 1.13271 + 0.303508i
\(281\) 32.8329 32.8329i 0.116843 0.116843i −0.646268 0.763111i \(-0.723671\pi\)
0.763111 + 0.646268i \(0.223671\pi\)
\(282\) 16.5000 + 28.5788i 0.0585106 + 0.101343i
\(283\) 57.1577 + 33.0000i 0.201971 + 0.116608i 0.597574 0.801814i \(-0.296131\pi\)
−0.395604 + 0.918421i \(0.629465\pi\)
\(284\) 42.0619 + 156.977i 0.148105 + 0.552736i
\(285\) 198.000i 0.694737i
\(286\) 0 0
\(287\) −462.000 −1.60976
\(288\) 0 0
\(289\) −140.000 + 242.487i −0.484429 + 0.839056i
\(290\) 400.104 231.000i 1.37967 0.796552i
\(291\) −42.2137 42.2137i −0.145064 0.145064i
\(292\) −72.1061 + 269.104i −0.246939 + 0.921587i
\(293\) −156.977 42.0619i −0.535758 0.143556i −0.0192121 0.999815i \(-0.506116\pi\)
−0.516546 + 0.856260i \(0.672782\pi\)
\(294\) −351.781 + 351.781i −1.19653 + 1.19653i
\(295\) −88.0000 152.420i −0.298305 0.516680i
\(296\) 428.683 + 247.500i 1.44825 + 0.836149i
\(297\) −46.3539 172.995i −0.156074 0.582475i
\(298\) 220.000i 0.738255i
\(299\) 0 0
\(300\) −294.000 −0.980000
\(301\) −470.931 + 126.186i −1.56456 + 0.419221i
\(302\) 280.500 485.840i 0.928808 1.60874i
\(303\) 374.123 216.000i 1.23473 0.712871i
\(304\) −70.3562 70.3562i −0.231435 0.231435i
\(305\) −25.7522 + 96.1084i −0.0844333 + 0.315110i
\(306\) 0 0
\(307\) −393.995 + 393.995i −1.28337 + 1.28337i −0.344634 + 0.938737i \(0.611997\pi\)
−0.938737 + 0.344634i \(0.888003\pi\)
\(308\) −231.000 400.104i −0.750000 1.29904i
\(309\) −67.5500 39.0000i −0.218608 0.126214i
\(310\) 113.310 + 422.877i 0.365515 + 1.36412i
\(311\) 234.000i 0.752412i −0.926536 0.376206i \(-0.877229\pi\)
0.926536 0.376206i \(-0.122771\pi\)
\(312\) 0 0
\(313\) 93.0000 0.297125 0.148562 0.988903i \(-0.452535\pi\)
0.148562 + 0.988903i \(0.452535\pi\)
\(314\) −256.289 + 68.6725i −0.816207 + 0.218702i
\(315\) 0 0
\(316\) 327.358 189.000i 1.03594 0.598101i
\(317\) −215.759 215.759i −0.680628 0.680628i 0.279514 0.960142i \(-0.409827\pi\)
−0.960142 + 0.279514i \(0.909827\pi\)
\(318\) 61.8052 230.660i 0.194356 0.725346i
\(319\) −269.104 72.1061i −0.843585 0.226038i
\(320\) 227.485 227.485i 0.710891 0.710891i
\(321\) 171.000 + 296.181i 0.532710 + 0.922681i
\(322\) 342.946 + 198.000i 1.06505 + 0.614907i
\(323\) −15.4513 57.6650i −0.0478368 0.178530i
\(324\) 567.000i 1.75000i
\(325\) 0 0
\(326\) 396.000 1.21472
\(327\) 490.153 131.336i 1.49894 0.401639i
\(328\) 231.000 400.104i 0.704268 1.21983i
\(329\) 28.5788 16.5000i 0.0868658 0.0501520i
\(330\) −154.784 154.784i −0.469042 0.469042i
\(331\) 5.15043 19.2217i 0.0155602 0.0580715i −0.957709 0.287738i \(-0.907097\pi\)
0.973269 + 0.229666i \(0.0737635\pi\)
\(332\) −313.954 84.1238i −0.945645 0.253385i
\(333\) 0 0
\(334\) 154.000 + 266.736i 0.461078 + 0.798610i
\(335\) −114.315 66.0000i −0.341240 0.197015i
\(336\) −38.6283 144.163i −0.114965 0.429055i
\(337\) 429.000i 1.27300i 0.771278 + 0.636499i \(0.219618\pi\)
−0.771278 + 0.636499i \(0.780382\pi\)
\(338\) 0 0
\(339\) 378.000 1.11504
\(340\) −67.2759 + 18.0265i −0.197870 + 0.0530192i
\(341\) 132.000 228.631i 0.387097 0.670471i
\(342\) 0 0
\(343\) 7.03562 + 7.03562i 0.0205120 + 0.0205120i
\(344\) 126.186 470.931i 0.366819 1.36899i
\(345\) 115.330 + 30.9026i 0.334290 + 0.0895728i
\(346\) 267.354 267.354i 0.772699 0.772699i
\(347\) 82.5000 + 142.894i 0.237752 + 0.411799i 0.960069 0.279764i \(-0.0902561\pi\)
−0.722317 + 0.691562i \(0.756923\pi\)
\(348\) −763.834 441.000i −2.19493 1.26724i
\(349\) 54.0796 + 201.828i 0.154956 + 0.578303i 0.999109 + 0.0422010i \(0.0134370\pi\)
−0.844153 + 0.536102i \(0.819896\pi\)
\(350\) 462.000i 1.32000i
\(351\) 0 0
\(352\) −154.000 −0.437500
\(353\) 621.501 166.531i 1.76063 0.471758i 0.773785 0.633449i \(-0.218361\pi\)
0.986842 + 0.161690i \(0.0516946\pi\)
\(354\) −264.000 + 457.261i −0.745763 + 1.29170i
\(355\) 66.6840 38.5000i 0.187842 0.108451i
\(356\) 820.823 + 820.823i 2.30568 + 2.30568i
\(357\) 23.1770 86.4976i 0.0649214 0.242290i
\(358\) 413.266 + 110.734i 1.15437 + 0.309314i
\(359\) 215.759 215.759i 0.601000 0.601000i −0.339578 0.940578i \(-0.610284\pi\)
0.940578 + 0.339578i \(0.110284\pi\)
\(360\) 0 0
\(361\) −30.3109 17.5000i −0.0839637 0.0484765i
\(362\) −156.230 583.058i −0.431574 1.61066i
\(363\) 231.000i 0.636364i
\(364\) 0 0
\(365\) 132.000 0.361644
\(366\) 288.325 77.2565i 0.787774 0.211083i
\(367\) 268.000 464.190i 0.730245 1.26482i −0.226533 0.974003i \(-0.572739\pi\)
0.956778 0.290818i \(-0.0939275\pi\)
\(368\) −51.9615 + 30.0000i −0.141200 + 0.0815217i
\(369\) 0 0
\(370\) 141.637 528.596i 0.382803 1.42864i
\(371\) −230.660 61.8052i −0.621726 0.166591i
\(372\) 590.992 590.992i 1.58869 1.58869i
\(373\) −132.000 228.631i −0.353887 0.612951i 0.633039 0.774119i \(-0.281807\pi\)
−0.986927 + 0.161169i \(0.948474\pi\)
\(374\) 57.1577 + 33.0000i 0.152828 + 0.0882353i
\(375\) 100.433 + 374.823i 0.267823 + 0.999527i
\(376\) 33.0000i 0.0877660i
\(377\) 0 0
\(378\) −891.000 −2.35714
\(379\) 538.207 144.212i 1.42007 0.380507i 0.534562 0.845129i \(-0.320476\pi\)
0.885509 + 0.464622i \(0.153810\pi\)
\(380\) −231.000 + 400.104i −0.607895 + 1.05290i
\(381\) −436.477 + 252.000i −1.14561 + 0.661417i
\(382\) 70.3562 + 70.3562i 0.184179 + 0.184179i
\(383\) −72.9645 + 272.307i −0.190508 + 0.710985i 0.802876 + 0.596146i \(0.203302\pi\)
−0.993384 + 0.114839i \(0.963365\pi\)
\(384\) −663.148 177.690i −1.72695 0.462734i
\(385\) −154.784 + 154.784i −0.402036 + 0.402036i
\(386\) 297.000 + 514.419i 0.769430 + 1.33269i
\(387\) 0 0
\(388\) −36.0530 134.552i −0.0929202 0.346783i
\(389\) 312.000i 0.802057i −0.916066 0.401028i \(-0.868653\pi\)
0.916066 0.401028i \(-0.131347\pi\)
\(390\) 0 0
\(391\) −36.0000 −0.0920716
\(392\) −480.542 + 128.761i −1.22587 + 0.328472i
\(393\) 139.500 241.621i 0.354962 0.614812i
\(394\) −733.524 + 423.500i −1.86173 + 1.07487i
\(395\) −126.641 126.641i −0.320611 0.320611i
\(396\) 0 0
\(397\) −115.330 30.9026i −0.290504 0.0778403i 0.110624 0.993862i \(-0.464715\pi\)
−0.401128 + 0.916022i \(0.631382\pi\)
\(398\) −647.277 + 647.277i −1.62633 + 1.62633i
\(399\) −297.000 514.419i −0.744361 1.28927i
\(400\) −60.6218 35.0000i −0.151554 0.0875000i
\(401\) 199.150 + 743.238i 0.496634 + 1.85346i 0.520681 + 0.853751i \(0.325678\pi\)
−0.0240472 + 0.999711i \(0.507655\pi\)
\(402\) 396.000i 0.985075i
\(403\) 0 0
\(404\) 1008.00 2.49505
\(405\) −259.493 + 69.5309i −0.640723 + 0.171681i
\(406\) −693.000 + 1200.31i −1.70690 + 2.95643i
\(407\) −285.788 + 165.000i −0.702183 + 0.405405i
\(408\) 63.3206 + 63.3206i 0.155198 + 0.155198i
\(409\) −61.8052 + 230.660i −0.151113 + 0.563961i 0.848294 + 0.529526i \(0.177630\pi\)
−0.999407 + 0.0344357i \(0.989037\pi\)
\(410\) −493.356 132.194i −1.20331 0.322426i
\(411\) 112.570 112.570i 0.273893 0.273893i
\(412\) −91.0000 157.617i −0.220874 0.382565i
\(413\) 457.261 + 264.000i 1.10717 + 0.639225i
\(414\) 0 0
\(415\) 154.000i 0.371084i
\(416\) 0 0
\(417\) 105.000 0.251799
\(418\) 422.877 113.310i 1.01167 0.271075i
\(419\) −193.500 + 335.152i −0.461814 + 0.799885i −0.999051 0.0435459i \(-0.986135\pi\)
0.537238 + 0.843431i \(0.319468\pi\)
\(420\) −600.156 + 346.500i −1.42894 + 0.825000i
\(421\) −63.3206 63.3206i −0.150405 0.150405i 0.627894 0.778299i \(-0.283917\pi\)
−0.778299 + 0.627894i \(0.783917\pi\)
\(422\) 198.292 740.035i 0.469886 1.75364i
\(423\) 0 0
\(424\) 168.855 168.855i 0.398243 0.398243i
\(425\) −21.0000 36.3731i −0.0494118 0.0855837i
\(426\) −200.052 115.500i −0.469605 0.271127i
\(427\) −77.2565 288.325i −0.180929 0.675235i
\(428\) 798.000i 1.86449i
\(429\) 0 0
\(430\) −539.000 −1.25349
\(431\) −419.673 + 112.451i −0.973720 + 0.260908i −0.710398 0.703800i \(-0.751485\pi\)
−0.263322 + 0.964708i \(0.584818\pi\)
\(432\) 67.5000 116.913i 0.156250 0.270633i
\(433\) 272.798 157.500i 0.630018 0.363741i −0.150741 0.988573i \(-0.548166\pi\)
0.780759 + 0.624832i \(0.214833\pi\)
\(434\) −928.702 928.702i −2.13987 2.13987i
\(435\) −108.159 + 403.655i −0.248642 + 0.927943i
\(436\) 1143.69 + 306.451i 2.62314 + 0.702869i
\(437\) −168.855 + 168.855i −0.386396 + 0.386396i
\(438\) −198.000 342.946i −0.452055 0.782982i
\(439\) −595.825 344.000i −1.35723 0.783599i −0.367983 0.929832i \(-0.619952\pi\)
−0.989250 + 0.146233i \(0.953285\pi\)
\(440\) −56.6548 211.438i −0.128761 0.480542i
\(441\) 0 0
\(442\) 0 0
\(443\) 327.000 0.738149 0.369074 0.929400i \(-0.379675\pi\)
0.369074 + 0.929400i \(0.379675\pi\)
\(444\) −1009.14 + 270.398i −2.27283 + 0.609004i
\(445\) 275.000 476.314i 0.617978 1.07037i
\(446\) 1000.26 577.500i 2.24273 1.29484i
\(447\) 140.712 + 140.712i 0.314793 + 0.314793i
\(448\) −249.796 + 932.252i −0.557580 + 2.08092i
\(449\) 467.728 + 125.327i 1.04171 + 0.279125i 0.738822 0.673901i \(-0.235383\pi\)
0.302888 + 0.953026i \(0.402049\pi\)
\(450\) 0 0
\(451\) 154.000 + 266.736i 0.341463 + 0.591432i
\(452\) 763.834 + 441.000i 1.68990 + 0.975664i
\(453\) 131.336 + 490.153i 0.289925 + 1.08202i
\(454\) 638.000i 1.40529i
\(455\) 0 0
\(456\) 594.000 1.30263
\(457\) 288.325 77.2565i 0.630909 0.169051i 0.0708266 0.997489i \(-0.477436\pi\)
0.560082 + 0.828437i \(0.310770\pi\)
\(458\) −148.500 + 257.210i −0.324236 + 0.561593i
\(459\) 70.1481 40.5000i 0.152828 0.0882353i
\(460\) 196.997 + 196.997i 0.428255 + 0.428255i
\(461\) 60.9468 227.457i 0.132206 0.493398i −0.867788 0.496934i \(-0.834459\pi\)
0.999994 + 0.00353623i \(0.00112562\pi\)
\(462\) 634.315 + 169.964i 1.37298 + 0.367888i
\(463\) −393.995 + 393.995i −0.850961 + 0.850961i −0.990252 0.139291i \(-0.955518\pi\)
0.139291 + 0.990252i \(0.455518\pi\)
\(464\) −105.000 181.865i −0.226293 0.391951i
\(465\) −342.946 198.000i −0.737518 0.425806i
\(466\) −368.256 1374.35i −0.790249 2.94925i
\(467\) 390.000i 0.835118i −0.908650 0.417559i \(-0.862886\pi\)
0.908650 0.417559i \(-0.137114\pi\)
\(468\) 0 0
\(469\) 396.000 0.844350
\(470\) 35.2397 9.44246i 0.0749782 0.0200903i
\(471\) 120.000 207.846i 0.254777 0.441287i
\(472\) −457.261 + 264.000i −0.968774 + 0.559322i
\(473\) 229.830 + 229.830i 0.485899 + 0.485899i
\(474\) −139.062 + 518.985i −0.293379 + 1.09491i
\(475\) −269.104 72.1061i −0.566534 0.151802i
\(476\) 147.748 147.748i 0.310395 0.310395i
\(477\) 0 0
\(478\) −733.524 423.500i −1.53457 0.885983i
\(479\) −124.469 464.524i −0.259851 0.969779i −0.965327 0.261044i \(-0.915933\pi\)
0.705475 0.708734i \(-0.250734\pi\)
\(480\) 231.000i 0.481250i
\(481\) 0 0
\(482\) 1254.00 2.60166
\(483\) −345.990 + 92.7078i −0.716336 + 0.191942i
\(484\) 269.500 466.788i 0.556818 0.964437i
\(485\) −57.1577 + 33.0000i −0.117851 + 0.0680412i
\(486\) 0 0
\(487\) −61.8052 + 230.660i −0.126910 + 0.473635i −0.999901 0.0141024i \(-0.995511\pi\)
0.872990 + 0.487737i \(0.162178\pi\)
\(488\) 288.325 + 77.2565i 0.590830 + 0.158313i
\(489\) −253.282 + 253.282i −0.517960 + 0.517960i
\(490\) 275.000 + 476.314i 0.561224 + 0.972069i
\(491\) 563.783 + 325.500i 1.14823 + 0.662933i 0.948456 0.316909i \(-0.102645\pi\)
0.199777 + 0.979841i \(0.435978\pi\)
\(492\) 252.371 + 941.862i 0.512950 + 1.91435i
\(493\) 126.000i 0.255578i
\(494\) 0 0
\(495\) 0 0
\(496\) 192.217 51.5043i 0.387534 0.103839i
\(497\) −115.500 + 200.052i −0.232394 + 0.402519i
\(498\) 400.104 231.000i 0.803421 0.463855i
\(499\) 211.069 + 211.069i 0.422983 + 0.422983i 0.886230 0.463246i \(-0.153315\pi\)
−0.463246 + 0.886230i \(0.653315\pi\)
\(500\) −234.345 + 874.586i −0.468689 + 1.74917i
\(501\) −269.104 72.1061i −0.537133 0.143924i
\(502\) −98.4987 + 98.4987i −0.196213 + 0.196213i
\(503\) −405.000 701.481i −0.805169 1.39459i −0.916177 0.400774i \(-0.868741\pi\)
0.111008 0.993820i \(-0.464592\pi\)
\(504\) 0 0
\(505\) −123.610 461.320i −0.244773 0.913506i
\(506\) 264.000i 0.521739i
\(507\) 0 0
\(508\) −1176.00 −2.31496
\(509\) −294.732 + 78.9733i −0.579042 + 0.155154i −0.536440 0.843938i \(-0.680231\pi\)
−0.0426018 + 0.999092i \(0.513565\pi\)
\(510\) 49.5000 85.7365i 0.0970588 0.168111i
\(511\) −342.946 + 198.000i −0.671127 + 0.387476i
\(512\) −222.795 222.795i −0.435146 0.435146i
\(513\) 139.062 518.985i 0.271075 1.01167i
\(514\) −836.143 224.044i −1.62674 0.435883i
\(515\) −60.9754 + 60.9754i −0.118399 + 0.118399i
\(516\) 514.500 + 891.140i 0.997093 + 1.72702i
\(517\) −19.0526 11.0000i −0.0368521 0.0212766i
\(518\) 424.911 + 1585.79i 0.820291 + 3.06137i
\(519\) 342.000i 0.658960i
\(520\) 0 0
\(521\) −843.000 −1.61804 −0.809021 0.587780i \(-0.800002\pi\)
−0.809021 + 0.587780i \(0.800002\pi\)
\(522\) 0 0
\(523\) 125.000 216.506i 0.239006 0.413970i −0.721424 0.692494i \(-0.756512\pi\)
0.960429 + 0.278524i \(0.0898452\pi\)
\(524\) 563.783 325.500i 1.07592 0.621183i
\(525\) −295.496 295.496i −0.562850 0.562850i
\(526\) 231.770 864.976i 0.440626 1.64444i
\(527\) 115.330 + 30.9026i 0.218843 + 0.0586387i
\(528\) −70.3562 + 70.3562i −0.133250 + 0.133250i
\(529\) −192.500 333.420i −0.363894 0.630283i
\(530\) −228.631 132.000i −0.431379 0.249057i
\(531\) 0 0
\(532\) 1386.00i 2.60526i
\(533\) 0 0
\(534\) −1650.00 −3.08989
\(535\) 365.212 97.8582i 0.682639 0.182913i
\(536\) −198.000 + 342.946i −0.369403 + 0.639825i
\(537\) −335.152 + 193.500i −0.624119 + 0.360335i
\(538\) 436.209 + 436.209i 0.810797 + 0.810797i
\(539\) 85.8406 320.361i 0.159259 0.594362i
\(540\) −605.483 162.239i −1.12126 0.300442i
\(541\) 429.173 429.173i 0.793296 0.793296i −0.188733 0.982029i \(-0.560438\pi\)
0.982029 + 0.188733i \(0.0604380\pi\)
\(542\) 82.5000 + 142.894i 0.152214 + 0.263642i
\(543\) 472.850 + 273.000i 0.870810 + 0.502762i
\(544\) −18.0265 67.2759i −0.0331370 0.123669i
\(545\) 561.000i 1.02936i
\(546\) 0 0
\(547\) 301.000 0.550274 0.275137 0.961405i \(-0.411277\pi\)
0.275137 + 0.961405i \(0.411277\pi\)
\(548\) 358.805 96.1414i 0.654753 0.175441i
\(549\) 0 0
\(550\) 266.736 154.000i 0.484974 0.280000i
\(551\) −590.992 590.992i −1.07258 1.07258i
\(552\) 92.7078 345.990i 0.167949 0.626794i
\(553\) 518.985 + 139.062i 0.938491 + 0.251468i
\(554\) 877.108 877.108i 1.58323 1.58323i
\(555\) 247.500 + 428.683i 0.445946 + 0.772401i
\(556\) 212.176 + 122.500i 0.381612 + 0.220324i
\(557\) −124.469 464.524i −0.223463 0.833975i −0.983015 0.183528i \(-0.941248\pi\)
0.759552 0.650447i \(-0.225418\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −165.000 −0.294643
\(561\) −57.6650 + 15.4513i −0.102790 + 0.0275424i
\(562\) −77.0000 + 133.368i −0.137011 + 0.237309i
\(563\) −875.552 + 505.500i −1.55515 + 0.897869i −0.557445 + 0.830214i \(0.688218\pi\)
−0.997709 + 0.0676548i \(0.978448\pi\)
\(564\) −49.2494 49.2494i −0.0873216 0.0873216i
\(565\) 108.159 403.655i 0.191432 0.714434i
\(566\) −211.438 56.6548i −0.373566 0.100097i
\(567\) 569.886 569.886i 1.00509 1.00509i
\(568\) −115.500 200.052i −0.203345 0.352204i
\(569\) 428.683 + 247.500i 0.753396 + 0.434974i 0.826920 0.562320i \(-0.190091\pi\)
−0.0735234 + 0.997293i \(0.523424\pi\)
\(570\) −169.964 634.315i −0.298183 1.11283i
\(571\) 39.0000i 0.0683012i 0.999417 + 0.0341506i \(0.0108726\pi\)
−0.999417 + 0.0341506i \(0.989127\pi\)
\(572\) 0 0
\(573\) −90.0000 −0.157068
\(574\) 1480.07 396.583i 2.57852 0.690912i
\(575\) −84.0000 + 145.492i −0.146087 + 0.253030i
\(576\) 0 0
\(577\) 759.847 + 759.847i 1.31689 + 1.31689i 0.916222 + 0.400671i \(0.131223\pi\)
0.400671 + 0.916222i \(0.368777\pi\)
\(578\) 240.354 897.012i 0.415837 1.55192i
\(579\) −518.985 139.062i −0.896348 0.240176i
\(580\) −689.491 + 689.491i −1.18878 + 1.18878i
\(581\) −231.000 400.104i −0.397590 0.688647i
\(582\) 171.473 + 99.0000i 0.294627 + 0.170103i
\(583\) 41.2035 + 153.773i 0.0706749 + 0.263762i
\(584\) 396.000i 0.678082i
\(585\) 0 0
\(586\) 539.000 0.919795
\(587\) −294.732 + 78.9733i −0.502100 + 0.134537i −0.500974 0.865462i \(-0.667025\pi\)
−0.00112532 + 0.999999i \(0.500358\pi\)
\(588\) 525.000 909.327i 0.892857 1.54647i
\(589\) 685.892 396.000i 1.16450 0.672326i
\(590\) 412.757 + 412.757i 0.699587 + 0.699587i
\(591\) 198.292 740.035i 0.335519 1.25217i
\(592\) −240.271 64.3804i −0.405863 0.108751i
\(593\) 276.735 276.735i 0.466669 0.466669i −0.434165 0.900833i \(-0.642956\pi\)
0.900833 + 0.434165i \(0.142956\pi\)
\(594\) 297.000 + 514.419i 0.500000 + 0.866025i
\(595\) −85.7365 49.5000i −0.144095 0.0831933i
\(596\) 120.177 + 448.506i 0.201639 + 0.752527i
\(597\) 828.000i 1.38693i
\(598\) 0 0
\(599\) −648.000 −1.08180 −0.540902 0.841086i \(-0.681917\pi\)
−0.540902 + 0.841086i \(0.681917\pi\)
\(600\) 403.655 108.159i 0.672759 0.180265i
\(601\) −37.5000 + 64.9519i −0.0623960 + 0.108073i −0.895536 0.444989i \(-0.853208\pi\)
0.833140 + 0.553062i \(0.186541\pi\)
\(602\) 1400.36 808.500i 2.32618 1.34302i
\(603\) 0 0
\(604\) −306.451 + 1143.69i −0.507369 + 1.89353i
\(605\) −246.678 66.0972i −0.407733 0.109252i
\(606\) −1013.13 + 1013.13i −1.67183 + 1.67183i
\(607\) 50.0000 + 86.6025i 0.0823723 + 0.142673i 0.904268 0.426964i \(-0.140417\pi\)
−0.821896 + 0.569637i \(0.807084\pi\)
\(608\) −400.104 231.000i −0.658065 0.379934i
\(609\) −324.477 1210.97i −0.532804 1.98845i
\(610\) 330.000i 0.540984i
\(611\) 0 0
\(612\) 0 0
\(613\) 38.4434 10.3009i 0.0627135 0.0168040i −0.227326 0.973819i \(-0.572998\pi\)
0.290039 + 0.957015i \(0.406332\pi\)
\(614\) 924.000 1600.41i 1.50489 2.60654i
\(615\) 400.104 231.000i 0.650575 0.375610i
\(616\) 464.351 + 464.351i 0.753817 + 0.753817i
\(617\) −240.354 + 897.012i −0.389552 + 1.45383i 0.441313 + 0.897353i \(0.354513\pi\)
−0.830865 + 0.556474i \(0.812154\pi\)
\(618\) 249.882 + 66.9556i 0.404340 + 0.108342i
\(619\) 520.636 520.636i 0.841092 0.841092i −0.147909 0.989001i \(-0.547254\pi\)
0.989001 + 0.147909i \(0.0472542\pi\)
\(620\) −462.000 800.207i −0.745161 1.29066i
\(621\) −280.592 162.000i −0.451839 0.260870i
\(622\) 200.867 + 749.646i 0.322937 + 1.20522i
\(623\) 1650.00i 2.64848i
\(624\) 0 0
\(625\) 79.0000 0.126400
\(626\) −297.936 + 79.8317i −0.475936 + 0.127527i
\(627\) −198.000 + 342.946i −0.315789 + 0.546963i
\(628\) 484.974 280.000i 0.772252 0.445860i
\(629\) −105.534 105.534i −0.167781 0.167781i
\(630\) 0 0
\(631\) 1009.14 + 270.398i 1.59927 + 0.428523i 0.944822 0.327585i \(-0.106235\pi\)
0.654447 + 0.756108i \(0.272902\pi\)
\(632\) −379.924 + 379.924i −0.601145 + 0.601145i
\(633\) 346.500 + 600.156i 0.547393 + 0.948113i
\(634\) 876.418 + 506.000i 1.38236 + 0.798107i
\(635\) 144.212 + 538.207i 0.227106 + 0.847570i
\(636\) 504.000i 0.792453i
\(637\) 0 0
\(638\) 924.000 1.44828
\(639\) 0 0
\(640\) −379.500 + 657.313i −0.592969 + 1.02705i
\(641\) 711.873 411.000i 1.11057 0.641186i 0.171590 0.985168i \(-0.445110\pi\)
0.938976 + 0.343983i \(0.111776\pi\)
\(642\) −802.061 802.061i −1.24932 1.24932i
\(643\) 72.1061 269.104i 0.112140 0.418512i −0.886917 0.461929i \(-0.847158\pi\)
0.999057 + 0.0434164i \(0.0138242\pi\)
\(644\) −807.311 216.318i −1.25359 0.335898i
\(645\) 344.746 344.746i 0.534489 0.534489i
\(646\) 99.0000 + 171.473i 0.153251 + 0.265438i
\(647\) −820.992 474.000i −1.26892 0.732612i −0.294137 0.955763i \(-0.595032\pi\)
−0.974784 + 0.223151i \(0.928366\pi\)
\(648\) 208.593 + 778.478i 0.321902 + 1.20136i
\(649\) 352.000i 0.542373i
\(650\) 0 0
\(651\) 1188.00 1.82488
\(652\) −807.311 + 216.318i −1.23821 + 0.331776i
\(653\) −174.000 + 301.377i −0.266462 + 0.461527i −0.967946 0.251159i \(-0.919188\pi\)
0.701483 + 0.712686i \(0.252522\pi\)
\(654\) −1457.52 + 841.500i −2.22863 + 1.28670i
\(655\) −218.104 218.104i −0.332984 0.332984i
\(656\) −60.0884 + 224.253i −0.0915982 + 0.341849i
\(657\) 0 0
\(658\) −77.3919 + 77.3919i −0.117617 + 0.117617i
\(659\) 63.0000 + 109.119i 0.0955994 + 0.165583i 0.909859 0.414918i \(-0.136190\pi\)
−0.814259 + 0.580501i \(0.802857\pi\)
\(660\) 400.104 + 231.000i 0.606218 + 0.350000i
\(661\) 154.513 + 576.650i 0.233756 + 0.872391i 0.978705 + 0.205270i \(0.0658071\pi\)
−0.744949 + 0.667121i \(0.767526\pi\)
\(662\) 66.0000i 0.0996979i
\(663\) 0 0
\(664\) 462.000 0.695783
\(665\) −634.315 + 169.964i −0.953858 + 0.255585i
\(666\) 0 0
\(667\) −436.477 + 252.000i −0.654388 + 0.377811i
\(668\) −459.661 459.661i −0.688115 0.688115i
\(669\) −270.398 + 1009.14i −0.404182 + 1.50843i
\(670\) 422.877 + 113.310i 0.631160 + 0.169119i
\(671\) −140.712 + 140.712i −0.209706 + 0.209706i
\(672\) −346.500 600.156i −0.515625 0.893089i
\(673\) −66.6840 38.5000i −0.0990846 0.0572065i 0.449639 0.893210i \(-0.351553\pi\)
−0.548723 + 0.836004i \(0.684886\pi\)
\(674\) −368.256 1374.35i −0.546374 2.03910i
\(675\) 378.000i 0.560000i
\(676\) 0 0
\(677\) −726.000 −1.07238 −0.536189 0.844098i \(-0.680137\pi\)
−0.536189 + 0.844098i \(0.680137\pi\)
\(678\) −1210.97 + 324.477i −1.78609 + 0.478580i
\(679\) 99.0000 171.473i 0.145803 0.252538i
\(680\) 85.7365 49.5000i 0.126083 0.0727941i
\(681\) −408.066 408.066i −0.599216 0.599216i
\(682\) −226.619 + 845.754i −0.332286 + 1.24011i
\(683\) 800.903 + 214.601i 1.17263 + 0.314204i 0.791998 0.610524i \(-0.209041\pi\)
0.380628 + 0.924728i \(0.375708\pi\)
\(684\) 0 0
\(685\) −88.0000 152.420i −0.128467 0.222512i
\(686\) −28.5788 16.5000i −0.0416601 0.0240525i
\(687\) −69.5309 259.493i −0.101209 0.377719i
\(688\) 245.000i 0.356105i
\(689\) 0 0
\(690\) −396.000 −0.573913
\(691\) −961.084 + 257.522i −1.39086 + 0.372680i −0.875054 0.484026i \(-0.839174\pi\)
−0.515806 + 0.856705i \(0.672507\pi\)
\(692\) −399.000 + 691.088i −0.576590 + 0.998682i
\(693\) 0 0
\(694\) −386.959 386.959i −0.557578 0.557578i
\(695\) 30.0442 112.126i 0.0432291 0.161333i
\(696\) 1210.97 + 324.477i 1.73989 + 0.466203i
\(697\) −98.4987 + 98.4987i −0.141318 + 0.141318i
\(698\) −346.500 600.156i −0.496418 0.859822i
\(699\) 1114.57 + 643.500i 1.59453 + 0.920601i
\(700\) −252.371 941.862i −0.360530 1.34552i
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) −990.000 −1.40825
\(704\) 621.501 166.531i 0.882814 0.236549i
\(705\) −16.5000 + 28.5788i −0.0234043 + 0.0405374i
\(706\) −1848.10 + 1067.00i −2.61770 + 1.51133i
\(707\) 1013.13 + 1013.13i 1.43300 + 1.43300i
\(708\) 288.424 1076.41i 0.407379 1.52036i
\(709\) −115.330 30.9026i −0.162666 0.0435862i 0.176567 0.984289i \(-0.443501\pi\)
−0.339233 + 0.940702i \(0.610167\pi\)
\(710\) −180.581 + 180.581i −0.254339 + 0.254339i
\(711\) 0 0
\(712\) −1428.94 825.000i −2.00694 1.15871i
\(713\) −123.610 461.320i −0.173367 0.647013i
\(714\) 297.000i 0.415966i
\(715\) 0 0
\(716\) −903.000 −1.26117
\(717\) 740.035 198.292i 1.03213 0.276557i
\(718\) −506.000 + 876.418i −0.704735 + 1.22064i
\(719\) −301.377 + 174.000i −0.419161 + 0.242003i −0.694718 0.719282i \(-0.744471\pi\)
0.275557 + 0.961285i \(0.411138\pi\)
\(720\) 0 0
\(721\) 66.9556 249.882i 0.0928650 0.346577i
\(722\) 112.126 + 30.0442i 0.155300 + 0.0416125i
\(723\) −802.061 + 802.061i −1.10935 + 1.10935i
\(724\) 637.000 + 1103.32i 0.879834 + 1.52392i
\(725\) −509.223 294.000i −0.702376 0.405517i
\(726\) 198.292 + 740.035i 0.273129 + 1.01933i
\(727\) 702.000i 0.965612i 0.875727 + 0.482806i \(0.160382\pi\)
−0.875727 + 0.482806i \(0.839618\pi\)
\(728\) 0 0
\(729\) 729.000 1.00000
\(730\) −422.877 + 113.310i −0.579284 + 0.155219i
\(731\) −73.5000 + 127.306i −0.100547 + 0.174153i
\(732\) −545.596 + 315.000i −0.745350 + 0.430328i
\(733\) −63.3206 63.3206i −0.0863856 0.0863856i 0.662594 0.748979i \(-0.269456\pi\)
−0.748979 + 0.662594i \(0.769456\pi\)
\(734\) −460.105 + 1717.14i −0.626847 + 2.33942i
\(735\) −480.542 128.761i −0.653799 0.175185i
\(736\) −196.997 + 196.997i −0.267660 + 0.267660i
\(737\) −132.000 228.631i −0.179104 0.310218i
\(738\) 0 0
\(739\) −46.3539 172.995i −0.0627252 0.234094i 0.927445 0.373959i \(-0.122000\pi\)
−0.990171 + 0.139865i \(0.955333\pi\)
\(740\) 1155.00i 1.56081i
\(741\) 0 0
\(742\) 792.000 1.06739
\(743\) −3.20361 + 0.858406i −0.00431173 + 0.00115532i −0.260974 0.965346i \(-0.584044\pi\)
0.256663 + 0.966501i \(0.417377\pi\)
\(744\) −594.000 + 1028.84i −0.798387 + 1.38285i
\(745\) 190.526 110.000i 0.255739 0.147651i
\(746\) 619.135 + 619.135i 0.829940 + 0.829940i
\(747\) 0 0
\(748\) −134.552 36.0530i −0.179882 0.0481992i
\(749\) −802.061 + 802.061i −1.07084 + 1.07084i
\(750\) −643.500 1114.57i −0.858000 1.48610i
\(751\) 147.224 + 85.0000i 0.196038 + 0.113182i 0.594806 0.803869i \(-0.297229\pi\)
−0.398768 + 0.917052i \(0.630562\pi\)
\(752\) −4.29203 16.0181i −0.00570748 0.0213006i
\(753\) 126.000i 0.167331i
\(754\) 0 0
\(755\) 561.000 0.743046
\(756\) 1816.45 486.716i 2.40271 0.643804i
\(757\) −252.000 + 436.477i −0.332893 + 0.576588i −0.983078 0.183189i \(-0.941358\pi\)
0.650185 + 0.759776i \(0.274691\pi\)
\(758\) −1600.41 + 924.000i −2.11137 + 1.21900i
\(759\) 168.855 + 168.855i 0.222470 + 0.222470i
\(760\) 169.964 634.315i 0.223637 0.834626i
\(761\) −781.682 209.451i −1.02718 0.275231i −0.294387 0.955686i \(-0.595116\pi\)
−0.732790 + 0.680455i \(0.761782\pi\)
\(762\) 1181.98 1181.98i 1.55116 1.55116i
\(763\) 841.500 + 1457.52i 1.10288 + 1.91025i
\(764\) −181.865 105.000i −0.238044 0.137435i
\(765\) 0 0
\(766\) 935.000i 1.22063i
\(767\) 0 0
\(768\) 1113.00 1.44922
\(769\) 538.207 144.212i 0.699879 0.187532i 0.108703 0.994074i \(-0.465330\pi\)
0.591176 + 0.806542i \(0.298664\pi\)
\(770\) 363.000 628.734i 0.471429 0.816538i
\(771\) 678.098 391.500i 0.879504 0.507782i
\(772\) −886.489 886.489i −1.14830 1.14830i
\(773\) 328.769 1226.98i 0.425316 1.58730i −0.337916 0.941176i \(-0.609722\pi\)
0.763232 0.646125i \(-0.223612\pi\)
\(774\) 0 0
\(775\) 393.995 393.995i 0.508381 0.508381i
\(776\) 99.0000 + 171.473i 0.127577 + 0.220970i
\(777\) −1286.05 742.500i −1.65515 0.955598i
\(778\) 267.823 + 999.527i 0.344245 + 1.28474i
\(779\) 924.000i 1.18614i
\(780\) 0 0
\(781\) 154.000 0.197183
\(782\) 115.330 30.9026i 0.147481 0.0395174i
\(783\) 567.000 982.073i 0.724138 1.25424i
\(784\) 216.506 125.000i 0.276156 0.159439i
\(785\) −187.617 187.617i −0.239002 0.239002i
\(786\) −239.495 + 893.808i −0.304701 + 1.13716i
\(787\) −365.212 97.8582i −0.464056 0.124343i 0.0192130 0.999815i \(-0.493884\pi\)
−0.483269 + 0.875472i \(0.660551\pi\)
\(788\) 1264.07 1264.07i 1.60415 1.60415i
\(789\) 405.000 + 701.481i 0.513308 + 0.889076i
\(790\) 514.419 + 297.000i 0.651163 + 0.375949i
\(791\) 324.477 + 1210.97i 0.410212 + 1.53093i
\(792\) 0 0
\(793\) 0 0
\(794\) 396.000 0.498741
\(795\) 230.660 61.8052i 0.290139 0.0777424i
\(796\) 966.000 1673.16i 1.21357 2.10196i
\(797\) 982.073 567.000i 1.23221 0.711418i 0.264721 0.964325i \(-0.414720\pi\)
0.967491 + 0.252907i \(0.0813867\pi\)
\(798\) 1393.05 + 1393.05i 1.74568 + 1.74568i
\(799\) 2.57522 9.61084i 0.00322305 0.0120286i
\(800\) −313.954 84.1238i −0.392443 0.105155i
\(801\) 0 0
\(802\) −1276.00 2210.10i −1.59102 2.75573i
\(803\) 228.631 + 132.000i 0.284721 + 0.164384i
\(804\) −216.318 807.311i −0.269053 1.00412i
\(805\) 396.000i 0.491925i
\(806\) 0 0
\(807\) −558.000 −0.691450
\(808\) −1383.96 + 370.831i −1.71282 + 0.458950i
\(809\) −232.500 + 402.702i −0.287392 + 0.497777i −0.973186 0.230018i \(-0.926122\pi\)
0.685795 + 0.727795i \(0.259455\pi\)
\(810\) 771.629 445.500i 0.952628 0.550000i
\(811\) −1069.41 1069.41i −1.31864 1.31864i −0.914855 0.403782i \(-0.867695\pi\)
−0.403782 0.914855i \(-0.632305\pi\)
\(812\) 757.114 2825.59i 0.932406 3.47979i
\(813\) −144.163 38.6283i −0.177322 0.0475132i
\(814\) 773.919 773.919i 0.950760 0.950760i
\(815\) 198.000 + 342.946i 0.242945 + 0.420793i
\(816\) −38.9711 22.5000i −0.0477588 0.0275735i
\(817\) 252.371 + 941.862i 0.308900 + 1.15283i
\(818\) 792.000i 0.968215i
\(819\) 0 0
\(820\) 1078.00 1.31463
\(821\) 496.560 133.053i 0.604824 0.162062i 0.0566044 0.998397i \(-0.481973\pi\)
0.548219 + 0.836335i \(0.315306\pi\)
\(822\) −264.000 + 457.261i −0.321168 + 0.556279i
\(823\) 554.256 320.000i 0.673458 0.388821i −0.123927 0.992291i \(-0.539549\pi\)
0.797386 + 0.603470i \(0.206216\pi\)
\(824\) 182.926 + 182.926i 0.221998 + 0.221998i
\(825\) −72.1061 + 269.104i −0.0874013 + 0.326186i
\(826\) −1691.51 453.238i −2.04783 0.548715i
\(827\) −820.823 + 820.823i −0.992531 + 0.992531i −0.999972 0.00744177i \(-0.997631\pi\)
0.00744177 + 0.999972i \(0.497631\pi\)
\(828\) 0 0
\(829\) −415.692 240.000i −0.501438 0.289505i 0.227869 0.973692i \(-0.426824\pi\)
−0.729307 + 0.684186i \(0.760157\pi\)
\(830\) −132.194 493.356i −0.159270 0.594405i
\(831\) 1122.00i 1.35018i
\(832\) 0 0
\(833\) 150.000 0.180072
\(834\) −336.379 + 90.1326i −0.403333 + 0.108073i
\(835\) −154.000 + 266.736i −0.184431 + 0.319444i
\(836\) −800.207 + 462.000i −0.957186 + 0.552632i
\(837\) 759.847 + 759.847i 0.907822 + 0.907822i
\(838\) 332.203 1239.80i 0.396424 1.47947i
\(839\) −448.506 120.177i −0.534572 0.143238i −0.0185733 0.999828i \(-0.505912\pi\)
−0.515999 + 0.856589i \(0.672579\pi\)
\(840\) 696.527 696.527i 0.829199 0.829199i
\(841\) −461.500 799.341i −0.548751 0.950465i
\(842\) 257.210 + 148.500i 0.305475 + 0.176366i
\(843\) −36.0530 134.552i −0.0427675 0.159611i
\(844\) 1617.00i 1.91588i
\(845\) 0 0
\(846\) 0 0
\(847\) 740.035 198.292i 0.873713 0.234111i
\(848\) −60.0000 + 103.923i −0.0707547 + 0.122551i
\(849\) 171.473 99.0000i 0.201971 0.116608i
\(850\) 98.4987 + 98.4987i 0.115881 + 0.115881i
\(851\) −154.513 + 576.650i −0.181566 + 0.677615i
\(852\) 470.931 + 126.186i 0.552736 + 0.148105i
\(853\) 246.247 246.247i 0.288683 0.288683i −0.547876 0.836559i \(-0.684564\pi\)
0.836559 + 0.547876i \(0.184564\pi\)
\(854\) 495.000 + 857.365i 0.579625 + 1.00394i
\(855\) 0 0
\(856\) −293.575 1095.64i −0.342961 1.27995i
\(857\) 1326.00i 1.54726i −0.633639 0.773629i \(-0.718439\pi\)
0.633639 0.773629i \(-0.281561\pi\)
\(858\) 0 0
\(859\) 54.0000 0.0628638 0.0314319 0.999506i \(-0.489993\pi\)
0.0314319 + 0.999506i \(0.489993\pi\)
\(860\) 1098.84 294.433i 1.27772 0.342364i
\(861\) −693.000 + 1200.31i −0.804878 + 1.39409i
\(862\) 1247.94 720.500i 1.44773 0.835847i
\(863\) 363.507 + 363.507i 0.421213 + 0.421213i 0.885621 0.464408i \(-0.153733\pi\)
−0.464408 + 0.885621i \(0.653733\pi\)
\(864\) 162.239 605.483i 0.187776 0.700790i
\(865\) 365.212 + 97.8582i 0.422210 + 0.113131i
\(866\) −738.740 + 738.740i −0.853049 + 0.853049i
\(867\) 420.000 + 727.461i 0.484429 + 0.839056i
\(868\) 2400.62 + 1386.00i 2.76569 + 1.59677i
\(869\) −92.7078 345.990i −0.106683 0.398148i
\(870\) 1386.00i 1.59310i
\(871\) 0 0
\(872\) −1683.00 −1.93005
\(873\) 0 0
\(874\) 396.000 685.892i 0.453089 0.784774i
\(875\) −1114.57 + 643.500i −1.27380 + 0.735429i
\(876\) 590.992 + 590.992i 0.674649 + 0.674649i
\(877\) −229.194 + 855.365i −0.261339 + 0.975330i 0.703114 + 0.711077i \(0.251792\pi\)
−0.964453 + 0.264254i \(0.914874\pi\)
\(878\) 2204.09 + 590.583i 2.51035 + 0.672646i
\(879\) −344.746 + 344.746i −0.392202 + 0.392202i
\(880\) 55.0000 + 95.2628i 0.0625000 + 0.108253i
\(881\) 563.783 + 325.500i 0.639935 + 0.369467i 0.784589 0.620016i \(-0.212874\pi\)
−0.144655 + 0.989482i \(0.546207\pi\)
\(882\) 0 0
\(883\) 819.000i 0.927520i −0.885961 0.463760i \(-0.846500\pi\)
0.885961 0.463760i \(-0.153500\pi\)
\(884\) 0 0
\(885\) −528.000 −0.596610
\(886\) −1047.58 + 280.699i −1.18237 + 0.316816i
\(887\) 99.0000 171.473i 0.111612 0.193318i −0.804808 0.593535i \(-0.797732\pi\)
0.916420 + 0.400217i \(0.131065\pi\)
\(888\) 1286.05 742.500i 1.44825 0.836149i
\(889\) −1181.98 1181.98i −1.32957 1.32957i
\(890\) −472.123 + 1761.99i −0.530475 + 1.97976i
\(891\) −518.985 139.062i −0.582475 0.156074i
\(892\) −1723.73 + 1723.73i −1.93243 + 1.93243i
\(893\) −33.0000 57.1577i −0.0369541 0.0640064i
\(894\) −571.577 330.000i −0.639348 0.369128i
\(895\) 110.734 + 413.266i 0.123726 + 0.461750i
\(896\) 2277.00i 2.54129i
\(897\) 0 0
\(898\) −1606.00 −1.78842
\(899\) 1614.62 432.636i 1.79602 0.481242i
\(900\) 0 0
\(901\) −62.3538 + 36.0000i −0.0692051 + 0.0399556i
\(902\) −722.324 722.324i −0.800803 0.800803i
\(903\) −378.557 + 1412.79i −0.419221 + 1.56456i
\(904\) −1210.97 324.477i −1.33956 0.358935i
\(905\) 426.828 426.828i 0.471633 0.471633i
\(906\) −841.500 1457.52i −0.928808 1.60874i
\(907\) 766.432 + 442.500i 0.845019 + 0.487872i 0.858967 0.512031i \(-0.171107\pi\)
−0.0139479 + 0.999903i \(0.504440\pi\)
\(908\) −348.513 1300.67i −0.383825 1.43245i
\(909\) 0 0
\(910\) 0 0
\(911\) −882.000 −0.968167 −0.484083 0.875022i \(-0.660847\pi\)
−0.484083 + 0.875022i \(0.660847\pi\)
\(912\) −288.325 + 77.2565i −0.316146 + 0.0847111i
\(913\) −154.000 + 266.736i −0.168675 + 0.292153i
\(914\) −857.365 + 495.000i −0.938036 + 0.541575i
\(915\) 211.069 + 211.069i 0.230676 + 0.230676i
\(916\) 162.239 605.483i 0.177116 0.661008i
\(917\) 893.808 + 239.495i 0.974709 + 0.261172i
\(918\) −189.962 + 189.962i −0.206930 + 0.206930i
\(919\) −678.000 1174.33i −0.737758 1.27784i −0.953502 0.301385i \(-0.902551\pi\)
0.215744 0.976450i \(-0.430782\pi\)
\(920\) −342.946 198.000i −0.372767 0.215217i
\(921\) 432.636 + 1614.62i 0.469746 + 1.75312i
\(922\) 781.000i 0.847072i
\(923\) 0 0
\(924\) −1386.00 −1.50000
\(925\) −672.759 + 180.265i −0.727307 + 0.194881i
\(926\) 924.000 1600.41i 0.997840 1.72831i
\(927\) 0 0
\(928\) −689.491 689.491i −0.742986 0.742986i
\(929\) −17.1681 + 64.0723i −0.0184802 + 0.0689691i −0.974550 0.224170i \(-0.928033\pi\)
0.956070 + 0.293139i \(0.0946997\pi\)
\(930\) 1268.63 + 339.929i 1.36412 + 0.365515i
\(931\) 703.562 703.562i 0.755706 0.755706i
\(932\) 1501.50 + 2600.67i 1.61105 + 2.79042i
\(933\) −607.950 351.000i −0.651608 0.376206i
\(934\) 334.778 + 1249.41i 0.358435 + 1.33770i
\(935\) 66.0000i 0.0705882i
\(936\) 0 0
\(937\) 210.000 0.224120 0.112060 0.993701i \(-0.464255\pi\)
0.112060 + 0.993701i \(0.464255\pi\)
\(938\) −1268.63 + 339.929i −1.35249 + 0.362397i
\(939\) 139.500 241.621i 0.148562 0.257317i
\(940\) −66.6840 + 38.5000i −0.0709404 + 0.0409574i
\(941\) 241.556 + 241.556i 0.256702 + 0.256702i 0.823711 0.567009i \(-0.191900\pi\)
−0.567009 + 0.823711i \(0.691900\pi\)
\(942\) −206.017 + 768.867i −0.218702 + 0.816207i
\(943\) 538.207 + 144.212i 0.570739 + 0.152929i
\(944\) 187.617 187.617i 0.198746 0.198746i
\(945\) −445.500 771.629i −0.471429 0.816538i
\(946\) −933.575 539.000i −0.986866 0.569767i
\(947\) −269.539 1005.93i −0.284624 1.06223i −0.949113 0.314935i \(-0.898017\pi\)
0.664489 0.747298i \(-0.268649\pi\)
\(948\) 1134.00i 1.19620i
\(949\) 0 0
\(950\) 924.000 0.972632
\(951\) −884.197 + 236.920i −0.929755 + 0.249127i
\(952\) −148.500 + 257.210i −0.155987 + 0.270178i
\(953\) −335.152 + 193.500i −0.351681 + 0.203043i −0.665425 0.746464i \(-0.731750\pi\)
0.313744 + 0.949507i \(0.398416\pi\)
\(954\) 0 0
\(955\) −25.7522 + 96.1084i −0.0269656 + 0.100637i
\(956\) 1726.75 + 462.681i 1.80622 + 0.483976i
\(957\) −590.992 + 590.992i −0.617547 + 0.617547i
\(958\) 797.500 + 1381.31i 0.832463 + 1.44187i
\(959\) 457.261 + 264.000i 0.476811 + 0.275287i
\(960\) −249.796 932.252i −0.260204 0.971095i
\(961\) 623.000i 0.648283i
\(962\) 0 0
\(963\) 0 0
\(964\) −2556.48 + 685.008i −2.65195 + 0.710589i
\(965\) −297.000 + 514.419i −0.307772 + 0.533077i
\(966\) 1028.84 594.000i 1.06505 0.614907i
\(967\) −246.247 246.247i −0.254650 0.254650i 0.568224 0.822874i \(-0.307631\pi\)
−0.822874 + 0.568224i \(0.807631\pi\)
\(968\) −198.292 + 740.035i −0.204847 + 0.764499i
\(969\) −172.995 46.3539i −0.178530 0.0478368i
\(970\) 154.784 154.784i 0.159571 0.159571i
\(971\) 823.500 + 1426.34i 0.848095 + 1.46894i 0.882906 + 0.469549i \(0.155584\pi\)
−0.0348115 + 0.999394i \(0.511083\pi\)
\(972\) 0 0
\(973\) 90.1326 + 336.379i 0.0926337 + 0.345714i
\(974\) 792.000i 0.813142i
\(975\) 0 0
\(976\) −150.000 −0.153689
\(977\) −1127.67 + 302.159i −1.15422 + 0.309272i −0.784655 0.619933i \(-0.787160\pi\)
−0.369564 + 0.929205i \(0.620493\pi\)
\(978\) 594.000 1028.84i 0.607362 1.05198i
\(979\) 952.628 550.000i 0.973062 0.561798i
\(980\) −820.823 820.823i −0.837574 0.837574i
\(981\) 0 0
\(982\) −2085.55 558.822i −2.12378 0.569065i
\(983\) 185.271 185.271i 0.188476 0.188476i −0.606561 0.795037i \(-0.707452\pi\)
0.795037 + 0.606561i \(0.207452\pi\)
\(984\) −693.000 1200.31i −0.704268 1.21983i
\(985\) −733.524 423.500i −0.744694 0.429949i
\(986\) 108.159 + 403.655i 0.109695 + 0.409387i
\(987\) 99.0000i 0.100304i
\(988\) 0 0
\(989\) 588.000 0.594540
\(990\) 0 0
\(991\) 775.000 1342.34i 0.782038 1.35453i −0.148714 0.988880i \(-0.547513\pi\)
0.930752 0.365650i \(-0.119153\pi\)
\(992\) 800.207 462.000i 0.806661 0.465726i
\(993\) −42.2137 42.2137i −0.0425113 0.0425113i
\(994\) 198.292 740.035i 0.199489 0.744502i
\(995\) −884.197 236.920i −0.888641 0.238111i
\(996\) −689.491 + 689.491i −0.692260 + 0.692260i
\(997\) 583.000 + 1009.79i 0.584754 + 1.01282i 0.994906 + 0.100807i \(0.0321424\pi\)
−0.410152 + 0.912017i \(0.634524\pi\)
\(998\) −857.365 495.000i −0.859083 0.495992i
\(999\) −347.654 1297.46i −0.348002 1.29876i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.3.f.e.150.1 8
13.2 odd 12 inner 169.3.f.e.80.1 8
13.3 even 3 inner 169.3.f.e.89.2 8
13.4 even 6 169.3.d.b.99.1 yes 4
13.5 odd 4 inner 169.3.f.e.19.2 8
13.6 odd 12 169.3.d.b.70.2 yes 4
13.7 odd 12 169.3.d.b.70.1 4
13.8 odd 4 inner 169.3.f.e.19.1 8
13.9 even 3 169.3.d.b.99.2 yes 4
13.10 even 6 inner 169.3.f.e.89.1 8
13.11 odd 12 inner 169.3.f.e.80.2 8
13.12 even 2 inner 169.3.f.e.150.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
169.3.d.b.70.1 4 13.7 odd 12
169.3.d.b.70.2 yes 4 13.6 odd 12
169.3.d.b.99.1 yes 4 13.4 even 6
169.3.d.b.99.2 yes 4 13.9 even 3
169.3.f.e.19.1 8 13.8 odd 4 inner
169.3.f.e.19.2 8 13.5 odd 4 inner
169.3.f.e.80.1 8 13.2 odd 12 inner
169.3.f.e.80.2 8 13.11 odd 12 inner
169.3.f.e.89.1 8 13.10 even 6 inner
169.3.f.e.89.2 8 13.3 even 3 inner
169.3.f.e.150.1 8 1.1 even 1 trivial
169.3.f.e.150.2 8 13.12 even 2 inner