Properties

Label 169.3.f.e.19.1
Level $169$
Weight $3$
Character 169.19
Analytic conductor $4.605$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,3,Mod(19,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.19");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 169.f (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.60491646769\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.77720518656.9
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 121x^{4} + 14641 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 19.1
Root \(-0.858406 - 3.20361i\) of defining polynomial
Character \(\chi\) \(=\) 169.19
Dual form 169.3.f.e.89.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.858406 - 3.20361i) q^{2} +(1.50000 - 2.59808i) q^{3} +(-6.06218 + 3.50000i) q^{4} +(2.34521 - 2.34521i) q^{5} +(-9.61084 - 2.57522i) q^{6} +(2.57522 - 9.61084i) q^{7} +(7.03562 + 7.03562i) q^{8} +(-9.52628 - 5.50000i) q^{10} +(-6.40723 + 1.71681i) q^{11} +21.0000i q^{12} -33.0000 q^{14} +(-2.57522 - 9.61084i) q^{15} +(2.50000 - 4.33013i) q^{16} +(-2.59808 + 1.50000i) q^{17} +(19.2217 + 5.15043i) q^{19} +(-6.00884 + 22.4253i) q^{20} +(-21.1069 - 21.1069i) q^{21} +(11.0000 + 19.0526i) q^{22} +(10.3923 + 6.00000i) q^{23} +(28.8325 - 7.72565i) q^{24} +14.0000i q^{25} +27.0000 q^{27} +(18.0265 + 67.2759i) q^{28} +(21.0000 - 36.3731i) q^{29} +(-28.5788 + 16.5000i) q^{30} +(-28.1425 + 28.1425i) q^{31} +(22.4253 + 6.00884i) q^{32} +(-5.15043 + 19.2217i) q^{33} +(7.03562 + 7.03562i) q^{34} +(-16.5000 - 28.5788i) q^{35} +(-48.0542 + 12.8761i) q^{37} -66.0000i q^{38} +33.0000 q^{40} +(-12.0177 - 44.8506i) q^{41} +(-49.5000 + 85.7365i) q^{42} +(42.4352 - 24.5000i) q^{43} +(32.8329 - 32.8329i) q^{44} +(10.3009 - 38.4434i) q^{46} +(-2.34521 - 2.34521i) q^{47} +(-7.50000 - 12.9904i) q^{48} +(-43.3013 - 25.0000i) q^{49} +(44.8506 - 12.0177i) q^{50} +9.00000i q^{51} -24.0000 q^{53} +(-23.1770 - 86.4976i) q^{54} +(-11.0000 + 19.0526i) q^{55} +(85.7365 - 49.5000i) q^{56} +(42.2137 - 42.2137i) q^{57} +(-134.552 - 36.0530i) q^{58} +(13.7345 - 51.2578i) q^{59} +(49.2494 + 49.2494i) q^{60} +(-15.0000 - 25.9808i) q^{61} +(114.315 + 66.0000i) q^{62} -97.0000i q^{64} +66.0000 q^{66} +(10.3009 + 38.4434i) q^{67} +(10.5000 - 18.1865i) q^{68} +(31.1769 - 18.0000i) q^{69} +(-77.3919 + 77.3919i) q^{70} +(-22.4253 - 6.00884i) q^{71} +(28.1425 + 28.1425i) q^{73} +(82.5000 + 142.894i) q^{74} +(36.3731 + 21.0000i) q^{75} +(-134.552 + 36.0530i) q^{76} +66.0000i q^{77} +54.0000 q^{79} +(-4.29203 - 16.0181i) q^{80} +(40.5000 - 70.1481i) q^{81} +(-133.368 + 77.0000i) q^{82} +(32.8329 - 32.8329i) q^{83} +(201.828 + 54.0796i) q^{84} +(-2.57522 + 9.61084i) q^{85} +(-114.915 - 114.915i) q^{86} +(-63.0000 - 109.119i) q^{87} +(-57.1577 - 33.0000i) q^{88} +(160.181 - 42.9203i) q^{89} -84.0000 q^{92} +(30.9026 + 115.330i) q^{93} +(-5.50000 + 9.52628i) q^{94} +(57.1577 - 33.0000i) q^{95} +(49.2494 - 49.2494i) q^{96} +(19.2217 + 5.15043i) q^{97} +(-42.9203 + 160.181i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{3} - 264 q^{14} + 20 q^{16} + 88 q^{22} + 216 q^{27} + 168 q^{29} - 132 q^{35} + 264 q^{40} - 396 q^{42} - 60 q^{48} - 192 q^{53} - 88 q^{55} - 120 q^{61} + 528 q^{66} + 84 q^{68} + 660 q^{74}+ \cdots - 44 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.858406 3.20361i −0.429203 1.60181i −0.754570 0.656219i \(-0.772155\pi\)
0.325368 0.945588i \(-0.394512\pi\)
\(3\) 1.50000 2.59808i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(4\) −6.06218 + 3.50000i −1.51554 + 0.875000i
\(5\) 2.34521 2.34521i 0.469042 0.469042i −0.432562 0.901604i \(-0.642390\pi\)
0.901604 + 0.432562i \(0.142390\pi\)
\(6\) −9.61084 2.57522i −1.60181 0.429203i
\(7\) 2.57522 9.61084i 0.367888 1.37298i −0.495575 0.868565i \(-0.665043\pi\)
0.863463 0.504412i \(-0.168291\pi\)
\(8\) 7.03562 + 7.03562i 0.879453 + 0.879453i
\(9\) 0 0
\(10\) −9.52628 5.50000i −0.952628 0.550000i
\(11\) −6.40723 + 1.71681i −0.582475 + 0.156074i −0.538012 0.842937i \(-0.680824\pi\)
−0.0444633 + 0.999011i \(0.514158\pi\)
\(12\) 21.0000i 1.75000i
\(13\) 0 0
\(14\) −33.0000 −2.35714
\(15\) −2.57522 9.61084i −0.171681 0.640723i
\(16\) 2.50000 4.33013i 0.156250 0.270633i
\(17\) −2.59808 + 1.50000i −0.152828 + 0.0882353i −0.574464 0.818530i \(-0.694789\pi\)
0.421636 + 0.906765i \(0.361456\pi\)
\(18\) 0 0
\(19\) 19.2217 + 5.15043i 1.01167 + 0.271075i 0.726326 0.687350i \(-0.241226\pi\)
0.285341 + 0.958426i \(0.407893\pi\)
\(20\) −6.00884 + 22.4253i −0.300442 + 1.12126i
\(21\) −21.1069 21.1069i −1.00509 1.00509i
\(22\) 11.0000 + 19.0526i 0.500000 + 0.866025i
\(23\) 10.3923 + 6.00000i 0.451839 + 0.260870i 0.708607 0.705604i \(-0.249324\pi\)
−0.256767 + 0.966473i \(0.582657\pi\)
\(24\) 28.8325 7.72565i 1.20136 0.321902i
\(25\) 14.0000i 0.560000i
\(26\) 0 0
\(27\) 27.0000 1.00000
\(28\) 18.0265 + 67.2759i 0.643804 + 2.40271i
\(29\) 21.0000 36.3731i 0.724138 1.25424i −0.235190 0.971949i \(-0.575571\pi\)
0.959328 0.282294i \(-0.0910955\pi\)
\(30\) −28.5788 + 16.5000i −0.952628 + 0.550000i
\(31\) −28.1425 + 28.1425i −0.907822 + 0.907822i −0.996096 0.0882738i \(-0.971865\pi\)
0.0882738 + 0.996096i \(0.471865\pi\)
\(32\) 22.4253 + 6.00884i 0.700790 + 0.187776i
\(33\) −5.15043 + 19.2217i −0.156074 + 0.582475i
\(34\) 7.03562 + 7.03562i 0.206930 + 0.206930i
\(35\) −16.5000 28.5788i −0.471429 0.816538i
\(36\) 0 0
\(37\) −48.0542 + 12.8761i −1.29876 + 0.348002i −0.840982 0.541063i \(-0.818022\pi\)
−0.457780 + 0.889065i \(0.651355\pi\)
\(38\) 66.0000i 1.73684i
\(39\) 0 0
\(40\) 33.0000 0.825000
\(41\) −12.0177 44.8506i −0.293114 1.09392i −0.942704 0.333632i \(-0.891726\pi\)
0.649589 0.760285i \(-0.274941\pi\)
\(42\) −49.5000 + 85.7365i −1.17857 + 2.04135i
\(43\) 42.4352 24.5000i 0.986866 0.569767i 0.0825301 0.996589i \(-0.473700\pi\)
0.904336 + 0.426821i \(0.140367\pi\)
\(44\) 32.8329 32.8329i 0.746203 0.746203i
\(45\) 0 0
\(46\) 10.3009 38.4434i 0.223932 0.835725i
\(47\) −2.34521 2.34521i −0.0498980 0.0498980i 0.681717 0.731616i \(-0.261233\pi\)
−0.731616 + 0.681717i \(0.761233\pi\)
\(48\) −7.50000 12.9904i −0.156250 0.270633i
\(49\) −43.3013 25.0000i −0.883699 0.510204i
\(50\) 44.8506 12.0177i 0.897012 0.240354i
\(51\) 9.00000i 0.176471i
\(52\) 0 0
\(53\) −24.0000 −0.452830 −0.226415 0.974031i \(-0.572701\pi\)
−0.226415 + 0.974031i \(0.572701\pi\)
\(54\) −23.1770 86.4976i −0.429203 1.60181i
\(55\) −11.0000 + 19.0526i −0.200000 + 0.346410i
\(56\) 85.7365 49.5000i 1.53101 0.883929i
\(57\) 42.2137 42.2137i 0.740592 0.740592i
\(58\) −134.552 36.0530i −2.31986 0.621604i
\(59\) 13.7345 51.2578i 0.232788 0.868777i −0.746346 0.665559i \(-0.768193\pi\)
0.979134 0.203218i \(-0.0651400\pi\)
\(60\) 49.2494 + 49.2494i 0.820823 + 0.820823i
\(61\) −15.0000 25.9808i −0.245902 0.425914i 0.716483 0.697604i \(-0.245751\pi\)
−0.962385 + 0.271690i \(0.912417\pi\)
\(62\) 114.315 + 66.0000i 1.84380 + 1.06452i
\(63\) 0 0
\(64\) 97.0000i 1.51562i
\(65\) 0 0
\(66\) 66.0000 1.00000
\(67\) 10.3009 + 38.4434i 0.153744 + 0.573782i 0.999210 + 0.0397512i \(0.0126565\pi\)
−0.845465 + 0.534030i \(0.820677\pi\)
\(68\) 10.5000 18.1865i 0.154412 0.267449i
\(69\) 31.1769 18.0000i 0.451839 0.260870i
\(70\) −77.3919 + 77.3919i −1.10560 + 1.10560i
\(71\) −22.4253 6.00884i −0.315849 0.0846315i 0.0974118 0.995244i \(-0.468944\pi\)
−0.413261 + 0.910613i \(0.635610\pi\)
\(72\) 0 0
\(73\) 28.1425 + 28.1425i 0.385514 + 0.385514i 0.873084 0.487570i \(-0.162117\pi\)
−0.487570 + 0.873084i \(0.662117\pi\)
\(74\) 82.5000 + 142.894i 1.11486 + 1.93100i
\(75\) 36.3731 + 21.0000i 0.484974 + 0.280000i
\(76\) −134.552 + 36.0530i −1.77042 + 0.474382i
\(77\) 66.0000i 0.857143i
\(78\) 0 0
\(79\) 54.0000 0.683544 0.341772 0.939783i \(-0.388973\pi\)
0.341772 + 0.939783i \(0.388973\pi\)
\(80\) −4.29203 16.0181i −0.0536504 0.200226i
\(81\) 40.5000 70.1481i 0.500000 0.866025i
\(82\) −133.368 + 77.0000i −1.62644 + 0.939024i
\(83\) 32.8329 32.8329i 0.395577 0.395577i −0.481093 0.876670i \(-0.659760\pi\)
0.876670 + 0.481093i \(0.159760\pi\)
\(84\) 201.828 + 54.0796i 2.40271 + 0.643804i
\(85\) −2.57522 + 9.61084i −0.0302967 + 0.113069i
\(86\) −114.915 114.915i −1.33622 1.33622i
\(87\) −63.0000 109.119i −0.724138 1.25424i
\(88\) −57.1577 33.0000i −0.649519 0.375000i
\(89\) 160.181 42.9203i 1.79978 0.482250i 0.805839 0.592135i \(-0.201715\pi\)
0.993944 + 0.109885i \(0.0350482\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −84.0000 −0.913043
\(93\) 30.9026 + 115.330i 0.332286 + 1.24011i
\(94\) −5.50000 + 9.52628i −0.0585106 + 0.101343i
\(95\) 57.1577 33.0000i 0.601660 0.347368i
\(96\) 49.2494 49.2494i 0.513014 0.513014i
\(97\) 19.2217 + 5.15043i 0.198162 + 0.0530973i 0.356535 0.934282i \(-0.383958\pi\)
−0.158373 + 0.987379i \(0.550625\pi\)
\(98\) −42.9203 + 160.181i −0.437962 + 1.63450i
\(99\) 0 0
\(100\) −49.0000 84.8705i −0.490000 0.848705i
\(101\) −124.708 72.0000i −1.23473 0.712871i −0.266717 0.963775i \(-0.585939\pi\)
−0.968012 + 0.250904i \(0.919272\pi\)
\(102\) 28.8325 7.72565i 0.282672 0.0757417i
\(103\) 26.0000i 0.252427i 0.992003 + 0.126214i \(0.0402825\pi\)
−0.992003 + 0.126214i \(0.959718\pi\)
\(104\) 0 0
\(105\) −99.0000 −0.942857
\(106\) 20.6017 + 76.8867i 0.194356 + 0.725346i
\(107\) −57.0000 + 98.7269i −0.532710 + 0.922681i 0.466560 + 0.884489i \(0.345493\pi\)
−0.999270 + 0.0381918i \(0.987840\pi\)
\(108\) −163.679 + 94.5000i −1.51554 + 0.875000i
\(109\) −119.606 + 119.606i −1.09730 + 1.09730i −0.102574 + 0.994725i \(0.532708\pi\)
−0.994725 + 0.102574i \(0.967292\pi\)
\(110\) 70.4795 + 18.8849i 0.640723 + 0.171681i
\(111\) −38.6283 + 144.163i −0.348002 + 1.29876i
\(112\) −35.1781 35.1781i −0.314090 0.314090i
\(113\) 63.0000 + 109.119i 0.557522 + 0.965657i 0.997703 + 0.0677473i \(0.0215812\pi\)
−0.440180 + 0.897909i \(0.645086\pi\)
\(114\) −171.473 99.0000i −1.50415 0.868421i
\(115\) 38.4434 10.3009i 0.334290 0.0895728i
\(116\) 294.000i 2.53448i
\(117\) 0 0
\(118\) −176.000 −1.49153
\(119\) 7.72565 + 28.8325i 0.0649214 + 0.242290i
\(120\) 49.5000 85.7365i 0.412500 0.714471i
\(121\) −66.6840 + 38.5000i −0.551107 + 0.318182i
\(122\) −70.3562 + 70.3562i −0.576690 + 0.576690i
\(123\) −134.552 36.0530i −1.09392 0.293114i
\(124\) 72.1061 269.104i 0.581501 2.17019i
\(125\) 91.4631 + 91.4631i 0.731705 + 0.731705i
\(126\) 0 0
\(127\) 145.492 + 84.0000i 1.14561 + 0.661417i 0.947813 0.318826i \(-0.103289\pi\)
0.197795 + 0.980243i \(0.436622\pi\)
\(128\) −221.049 + 59.2300i −1.72695 + 0.462734i
\(129\) 147.000i 1.13953i
\(130\) 0 0
\(131\) 93.0000 0.709924 0.354962 0.934881i \(-0.384494\pi\)
0.354962 + 0.934881i \(0.384494\pi\)
\(132\) −36.0530 134.552i −0.273129 1.01933i
\(133\) 99.0000 171.473i 0.744361 1.28927i
\(134\) 114.315 66.0000i 0.853100 0.492537i
\(135\) 63.3206 63.3206i 0.469042 0.469042i
\(136\) −28.8325 7.72565i −0.212004 0.0568063i
\(137\) 13.7345 51.2578i 0.100252 0.374145i −0.897512 0.440991i \(-0.854627\pi\)
0.997763 + 0.0668464i \(0.0212937\pi\)
\(138\) −84.4275 84.4275i −0.611793 0.611793i
\(139\) 17.5000 + 30.3109i 0.125899 + 0.218064i 0.922084 0.386990i \(-0.126485\pi\)
−0.796185 + 0.605053i \(0.793152\pi\)
\(140\) 200.052 + 115.500i 1.42894 + 0.825000i
\(141\) −9.61084 + 2.57522i −0.0681620 + 0.0182640i
\(142\) 77.0000i 0.542254i
\(143\) 0 0
\(144\) 0 0
\(145\) −36.0530 134.552i −0.248642 0.927943i
\(146\) 66.0000 114.315i 0.452055 0.782982i
\(147\) −129.904 + 75.0000i −0.883699 + 0.510204i
\(148\) 246.247 246.247i 1.66383 1.66383i
\(149\) −64.0723 17.1681i −0.430015 0.115222i 0.0373181 0.999303i \(-0.488119\pi\)
−0.467333 + 0.884081i \(0.654785\pi\)
\(150\) 36.0530 134.552i 0.240354 0.897012i
\(151\) 119.606 + 119.606i 0.792090 + 0.792090i 0.981834 0.189744i \(-0.0607657\pi\)
−0.189744 + 0.981834i \(0.560766\pi\)
\(152\) 99.0000 + 171.473i 0.651316 + 1.12811i
\(153\) 0 0
\(154\) 211.438 56.6548i 1.37298 0.367888i
\(155\) 132.000i 0.851613i
\(156\) 0 0
\(157\) 80.0000 0.509554 0.254777 0.967000i \(-0.417998\pi\)
0.254777 + 0.967000i \(0.417998\pi\)
\(158\) −46.3539 172.995i −0.293379 1.09491i
\(159\) −36.0000 + 62.3538i −0.226415 + 0.392162i
\(160\) 66.6840 38.5000i 0.416775 0.240625i
\(161\) 84.4275 84.4275i 0.524394 0.524394i
\(162\) −259.493 69.5309i −1.60181 0.429203i
\(163\) −30.9026 + 115.330i −0.189587 + 0.707547i 0.804015 + 0.594608i \(0.202693\pi\)
−0.993602 + 0.112938i \(0.963974\pi\)
\(164\) 229.830 + 229.830i 1.40140 + 1.40140i
\(165\) 33.0000 + 57.1577i 0.200000 + 0.346410i
\(166\) −133.368 77.0000i −0.803421 0.463855i
\(167\) −89.7012 + 24.0354i −0.537133 + 0.143924i −0.517180 0.855877i \(-0.673018\pi\)
−0.0199528 + 0.999801i \(0.506352\pi\)
\(168\) 297.000i 1.76786i
\(169\) 0 0
\(170\) 33.0000 0.194118
\(171\) 0 0
\(172\) −171.500 + 297.047i −0.997093 + 1.72702i
\(173\) 98.7269 57.0000i 0.570676 0.329480i −0.186743 0.982409i \(-0.559793\pi\)
0.757419 + 0.652929i \(0.226460\pi\)
\(174\) −295.496 + 295.496i −1.69825 + 1.69825i
\(175\) 134.552 + 36.0530i 0.768867 + 0.206017i
\(176\) −8.58406 + 32.0361i −0.0487730 + 0.182023i
\(177\) −112.570 112.570i −0.635989 0.635989i
\(178\) −275.000 476.314i −1.54494 2.67592i
\(179\) 111.717 + 64.5000i 0.624119 + 0.360335i 0.778471 0.627681i \(-0.215996\pi\)
−0.154352 + 0.988016i \(0.549329\pi\)
\(180\) 0 0
\(181\) 182.000i 1.00552i −0.864425 0.502762i \(-0.832317\pi\)
0.864425 0.502762i \(-0.167683\pi\)
\(182\) 0 0
\(183\) −90.0000 −0.491803
\(184\) 30.9026 + 115.330i 0.167949 + 0.626794i
\(185\) −82.5000 + 142.894i −0.445946 + 0.772401i
\(186\) 342.946 198.000i 1.84380 1.06452i
\(187\) 14.0712 14.0712i 0.0752473 0.0752473i
\(188\) 22.4253 + 6.00884i 0.119283 + 0.0319619i
\(189\) 69.5309 259.493i 0.367888 1.37298i
\(190\) −154.784 154.784i −0.814651 0.814651i
\(191\) −15.0000 25.9808i −0.0785340 0.136025i 0.824084 0.566468i \(-0.191691\pi\)
−0.902618 + 0.430443i \(0.858357\pi\)
\(192\) −252.013 145.500i −1.31257 0.757812i
\(193\) −172.995 + 46.3539i −0.896348 + 0.240176i −0.677447 0.735571i \(-0.736914\pi\)
−0.218901 + 0.975747i \(0.570247\pi\)
\(194\) 66.0000i 0.340206i
\(195\) 0 0
\(196\) 350.000 1.78571
\(197\) 66.0972 + 246.678i 0.335519 + 1.25217i 0.903305 + 0.428998i \(0.141133\pi\)
−0.567786 + 0.823176i \(0.692200\pi\)
\(198\) 0 0
\(199\) −239.023 + 138.000i −1.20112 + 0.693467i −0.960804 0.277227i \(-0.910584\pi\)
−0.240316 + 0.970695i \(0.577251\pi\)
\(200\) −98.4987 + 98.4987i −0.492494 + 0.492494i
\(201\) 115.330 + 30.9026i 0.573782 + 0.153744i
\(202\) −123.610 + 461.320i −0.611933 + 2.28376i
\(203\) −295.496 295.496i −1.45565 1.45565i
\(204\) −31.5000 54.5596i −0.154412 0.267449i
\(205\) −133.368 77.0000i −0.650575 0.375610i
\(206\) 83.2940 22.3185i 0.404340 0.108342i
\(207\) 0 0
\(208\) 0 0
\(209\) −132.000 −0.631579
\(210\) 84.9822 + 317.158i 0.404677 + 1.51027i
\(211\) −115.500 + 200.052i −0.547393 + 0.948113i 0.451059 + 0.892494i \(0.351047\pi\)
−0.998452 + 0.0556188i \(0.982287\pi\)
\(212\) 145.492 84.0000i 0.686284 0.396226i
\(213\) −49.2494 + 49.2494i −0.231218 + 0.231218i
\(214\) 365.212 + 97.8582i 1.70660 + 0.457282i
\(215\) 42.0619 156.977i 0.195637 0.730126i
\(216\) 189.962 + 189.962i 0.879453 + 0.879453i
\(217\) 198.000 + 342.946i 0.912442 + 1.58040i
\(218\) 485.840 + 280.500i 2.22863 + 1.28670i
\(219\) 115.330 30.9026i 0.526621 0.141108i
\(220\) 154.000i 0.700000i
\(221\) 0 0
\(222\) 495.000 2.22973
\(223\) −90.1326 336.379i −0.404182 1.50843i −0.805559 0.592515i \(-0.798135\pi\)
0.401377 0.915913i \(-0.368532\pi\)
\(224\) 115.500 200.052i 0.515625 0.893089i
\(225\) 0 0
\(226\) 295.496 295.496i 1.30751 1.30751i
\(227\) 185.810 + 49.7875i 0.818544 + 0.219328i 0.643710 0.765270i \(-0.277394\pi\)
0.174834 + 0.984598i \(0.444061\pi\)
\(228\) −108.159 + 403.655i −0.474382 + 1.77042i
\(229\) −63.3206 63.3206i −0.276509 0.276509i 0.555205 0.831714i \(-0.312640\pi\)
−0.831714 + 0.555205i \(0.812640\pi\)
\(230\) −66.0000 114.315i −0.286957 0.497023i
\(231\) 171.473 + 99.0000i 0.742307 + 0.428571i
\(232\) 403.655 108.159i 1.73989 0.466203i
\(233\) 429.000i 1.84120i −0.390505 0.920601i \(-0.627700\pi\)
0.390505 0.920601i \(-0.372300\pi\)
\(234\) 0 0
\(235\) −11.0000 −0.0468085
\(236\) 96.1414 + 358.805i 0.407379 + 1.52036i
\(237\) 81.0000 140.296i 0.341772 0.591967i
\(238\) 85.7365 49.5000i 0.360237 0.207983i
\(239\) −180.581 + 180.581i −0.755569 + 0.755569i −0.975513 0.219944i \(-0.929413\pi\)
0.219944 + 0.975513i \(0.429413\pi\)
\(240\) −48.0542 12.8761i −0.200226 0.0536504i
\(241\) −97.8582 + 365.212i −0.406051 + 1.51540i 0.396059 + 0.918225i \(0.370378\pi\)
−0.802109 + 0.597177i \(0.796289\pi\)
\(242\) 180.581 + 180.581i 0.746203 + 0.746203i
\(243\) 0 0
\(244\) 181.865 + 105.000i 0.745350 + 0.430328i
\(245\) −160.181 + 42.9203i −0.653799 + 0.175185i
\(246\) 462.000i 1.87805i
\(247\) 0 0
\(248\) −396.000 −1.59677
\(249\) −36.0530 134.552i −0.144791 0.540369i
\(250\) 214.500 371.525i 0.858000 1.48610i
\(251\) −36.3731 + 21.0000i −0.144913 + 0.0836653i −0.570703 0.821156i \(-0.693329\pi\)
0.425791 + 0.904822i \(0.359996\pi\)
\(252\) 0 0
\(253\) −76.8867 20.6017i −0.303900 0.0814298i
\(254\) 144.212 538.207i 0.567764 2.11893i
\(255\) 21.1069 + 21.1069i 0.0827720 + 0.0827720i
\(256\) 185.500 + 321.295i 0.724609 + 1.25506i
\(257\) −226.033 130.500i −0.879504 0.507782i −0.00900943 0.999959i \(-0.502868\pi\)
−0.870495 + 0.492177i \(0.836201\pi\)
\(258\) −470.931 + 126.186i −1.82531 + 0.489092i
\(259\) 495.000i 1.91120i
\(260\) 0 0
\(261\) 0 0
\(262\) −79.8317 297.936i −0.304701 1.13716i
\(263\) −135.000 + 233.827i −0.513308 + 0.889076i 0.486573 + 0.873640i \(0.338247\pi\)
−0.999881 + 0.0154355i \(0.995087\pi\)
\(264\) −171.473 + 99.0000i −0.649519 + 0.375000i
\(265\) −56.2850 + 56.2850i −0.212396 + 0.212396i
\(266\) −634.315 169.964i −2.38464 0.638964i
\(267\) 128.761 480.542i 0.482250 1.79978i
\(268\) −196.997 196.997i −0.735065 0.735065i
\(269\) −93.0000 161.081i −0.345725 0.598813i 0.639760 0.768575i \(-0.279034\pi\)
−0.985485 + 0.169761i \(0.945700\pi\)
\(270\) −257.210 148.500i −0.952628 0.550000i
\(271\) −48.0542 + 12.8761i −0.177322 + 0.0475132i −0.346387 0.938092i \(-0.612592\pi\)
0.169066 + 0.985605i \(0.445925\pi\)
\(272\) 15.0000i 0.0551471i
\(273\) 0 0
\(274\) −176.000 −0.642336
\(275\) −24.0354 89.7012i −0.0874013 0.326186i
\(276\) −126.000 + 218.238i −0.456522 + 0.790719i
\(277\) 323.894 187.000i 1.16929 0.675090i 0.215778 0.976443i \(-0.430771\pi\)
0.953513 + 0.301352i \(0.0974380\pi\)
\(278\) 82.0823 82.0823i 0.295260 0.295260i
\(279\) 0 0
\(280\) 84.9822 317.158i 0.303508 1.13271i
\(281\) −32.8329 32.8329i −0.116843 0.116843i 0.646268 0.763111i \(-0.276329\pi\)
−0.763111 + 0.646268i \(0.776329\pi\)
\(282\) 16.5000 + 28.5788i 0.0585106 + 0.101343i
\(283\) −57.1577 33.0000i −0.201971 0.116608i 0.395604 0.918421i \(-0.370535\pi\)
−0.597574 + 0.801814i \(0.703869\pi\)
\(284\) 156.977 42.0619i 0.552736 0.148105i
\(285\) 198.000i 0.694737i
\(286\) 0 0
\(287\) −462.000 −1.60976
\(288\) 0 0
\(289\) −140.000 + 242.487i −0.484429 + 0.839056i
\(290\) −400.104 + 231.000i −1.37967 + 0.796552i
\(291\) 42.2137 42.2137i 0.145064 0.145064i
\(292\) −269.104 72.1061i −0.921587 0.246939i
\(293\) −42.0619 + 156.977i −0.143556 + 0.535758i 0.856260 + 0.516546i \(0.172782\pi\)
−0.999815 + 0.0192121i \(0.993884\pi\)
\(294\) 351.781 + 351.781i 1.19653 + 1.19653i
\(295\) −88.0000 152.420i −0.298305 0.516680i
\(296\) −428.683 247.500i −1.44825 0.836149i
\(297\) −172.995 + 46.3539i −0.582475 + 0.156074i
\(298\) 220.000i 0.738255i
\(299\) 0 0
\(300\) −294.000 −0.980000
\(301\) −126.186 470.931i −0.419221 1.56456i
\(302\) 280.500 485.840i 0.928808 1.60874i
\(303\) −374.123 + 216.000i −1.23473 + 0.712871i
\(304\) 70.3562 70.3562i 0.231435 0.231435i
\(305\) −96.1084 25.7522i −0.315110 0.0844333i
\(306\) 0 0
\(307\) 393.995 + 393.995i 1.28337 + 1.28337i 0.938737 + 0.344634i \(0.111997\pi\)
0.344634 + 0.938737i \(0.388003\pi\)
\(308\) −231.000 400.104i −0.750000 1.29904i
\(309\) 67.5500 + 39.0000i 0.218608 + 0.126214i
\(310\) 422.877 113.310i 1.36412 0.365515i
\(311\) 234.000i 0.752412i 0.926536 + 0.376206i \(0.122771\pi\)
−0.926536 + 0.376206i \(0.877229\pi\)
\(312\) 0 0
\(313\) 93.0000 0.297125 0.148562 0.988903i \(-0.452535\pi\)
0.148562 + 0.988903i \(0.452535\pi\)
\(314\) −68.6725 256.289i −0.218702 0.816207i
\(315\) 0 0
\(316\) −327.358 + 189.000i −1.03594 + 0.598101i
\(317\) 215.759 215.759i 0.680628 0.680628i −0.279514 0.960142i \(-0.590173\pi\)
0.960142 + 0.279514i \(0.0901732\pi\)
\(318\) 230.660 + 61.8052i 0.725346 + 0.194356i
\(319\) −72.1061 + 269.104i −0.226038 + 0.843585i
\(320\) −227.485 227.485i −0.710891 0.710891i
\(321\) 171.000 + 296.181i 0.532710 + 0.922681i
\(322\) −342.946 198.000i −1.06505 0.614907i
\(323\) −57.6650 + 15.4513i −0.178530 + 0.0478368i
\(324\) 567.000i 1.75000i
\(325\) 0 0
\(326\) 396.000 1.21472
\(327\) 131.336 + 490.153i 0.401639 + 1.49894i
\(328\) 231.000 400.104i 0.704268 1.21983i
\(329\) −28.5788 + 16.5000i −0.0868658 + 0.0501520i
\(330\) 154.784 154.784i 0.469042 0.469042i
\(331\) 19.2217 + 5.15043i 0.0580715 + 0.0155602i 0.287738 0.957709i \(-0.407097\pi\)
−0.229666 + 0.973269i \(0.573763\pi\)
\(332\) −84.1238 + 313.954i −0.253385 + 0.945645i
\(333\) 0 0
\(334\) 154.000 + 266.736i 0.461078 + 0.798610i
\(335\) 114.315 + 66.0000i 0.341240 + 0.197015i
\(336\) −144.163 + 38.6283i −0.429055 + 0.114965i
\(337\) 429.000i 1.27300i −0.771278 0.636499i \(-0.780382\pi\)
0.771278 0.636499i \(-0.219618\pi\)
\(338\) 0 0
\(339\) 378.000 1.11504
\(340\) −18.0265 67.2759i −0.0530192 0.197870i
\(341\) 132.000 228.631i 0.387097 0.670471i
\(342\) 0 0
\(343\) −7.03562 + 7.03562i −0.0205120 + 0.0205120i
\(344\) 470.931 + 126.186i 1.36899 + 0.366819i
\(345\) 30.9026 115.330i 0.0895728 0.334290i
\(346\) −267.354 267.354i −0.772699 0.772699i
\(347\) 82.5000 + 142.894i 0.237752 + 0.411799i 0.960069 0.279764i \(-0.0902561\pi\)
−0.722317 + 0.691562i \(0.756923\pi\)
\(348\) 763.834 + 441.000i 2.19493 + 1.26724i
\(349\) 201.828 54.0796i 0.578303 0.154956i 0.0422010 0.999109i \(-0.486563\pi\)
0.536102 + 0.844153i \(0.319896\pi\)
\(350\) 462.000i 1.32000i
\(351\) 0 0
\(352\) −154.000 −0.437500
\(353\) 166.531 + 621.501i 0.471758 + 1.76063i 0.633449 + 0.773785i \(0.281639\pi\)
−0.161690 + 0.986842i \(0.551695\pi\)
\(354\) −264.000 + 457.261i −0.745763 + 1.29170i
\(355\) −66.6840 + 38.5000i −0.187842 + 0.108451i
\(356\) −820.823 + 820.823i −2.30568 + 2.30568i
\(357\) 86.4976 + 23.1770i 0.242290 + 0.0649214i
\(358\) 110.734 413.266i 0.309314 1.15437i
\(359\) −215.759 215.759i −0.601000 0.601000i 0.339578 0.940578i \(-0.389716\pi\)
−0.940578 + 0.339578i \(0.889716\pi\)
\(360\) 0 0
\(361\) 30.3109 + 17.5000i 0.0839637 + 0.0484765i
\(362\) −583.058 + 156.230i −1.61066 + 0.431574i
\(363\) 231.000i 0.636364i
\(364\) 0 0
\(365\) 132.000 0.361644
\(366\) 77.2565 + 288.325i 0.211083 + 0.787774i
\(367\) 268.000 464.190i 0.730245 1.26482i −0.226533 0.974003i \(-0.572739\pi\)
0.956778 0.290818i \(-0.0939275\pi\)
\(368\) 51.9615 30.0000i 0.141200 0.0815217i
\(369\) 0 0
\(370\) 528.596 + 141.637i 1.42864 + 0.382803i
\(371\) −61.8052 + 230.660i −0.166591 + 0.621726i
\(372\) −590.992 590.992i −1.58869 1.58869i
\(373\) −132.000 228.631i −0.353887 0.612951i 0.633039 0.774119i \(-0.281807\pi\)
−0.986927 + 0.161169i \(0.948474\pi\)
\(374\) −57.1577 33.0000i −0.152828 0.0882353i
\(375\) 374.823 100.433i 0.999527 0.267823i
\(376\) 33.0000i 0.0877660i
\(377\) 0 0
\(378\) −891.000 −2.35714
\(379\) 144.212 + 538.207i 0.380507 + 1.42007i 0.845129 + 0.534562i \(0.179524\pi\)
−0.464622 + 0.885509i \(0.653810\pi\)
\(380\) −231.000 + 400.104i −0.607895 + 1.05290i
\(381\) 436.477 252.000i 1.14561 0.661417i
\(382\) −70.3562 + 70.3562i −0.184179 + 0.184179i
\(383\) −272.307 72.9645i −0.710985 0.190508i −0.114839 0.993384i \(-0.536635\pi\)
−0.596146 + 0.802876i \(0.703302\pi\)
\(384\) −177.690 + 663.148i −0.462734 + 1.72695i
\(385\) 154.784 + 154.784i 0.402036 + 0.402036i
\(386\) 297.000 + 514.419i 0.769430 + 1.33269i
\(387\) 0 0
\(388\) −134.552 + 36.0530i −0.346783 + 0.0929202i
\(389\) 312.000i 0.802057i 0.916066 + 0.401028i \(0.131347\pi\)
−0.916066 + 0.401028i \(0.868653\pi\)
\(390\) 0 0
\(391\) −36.0000 −0.0920716
\(392\) −128.761 480.542i −0.328472 1.22587i
\(393\) 139.500 241.621i 0.354962 0.614812i
\(394\) 733.524 423.500i 1.86173 1.07487i
\(395\) 126.641 126.641i 0.320611 0.320611i
\(396\) 0 0
\(397\) −30.9026 + 115.330i −0.0778403 + 0.290504i −0.993862 0.110624i \(-0.964715\pi\)
0.916022 + 0.401128i \(0.131382\pi\)
\(398\) 647.277 + 647.277i 1.62633 + 1.62633i
\(399\) −297.000 514.419i −0.744361 1.28927i
\(400\) 60.6218 + 35.0000i 0.151554 + 0.0875000i
\(401\) 743.238 199.150i 1.85346 0.496634i 0.853751 0.520681i \(-0.174322\pi\)
0.999711 + 0.0240472i \(0.00765520\pi\)
\(402\) 396.000i 0.985075i
\(403\) 0 0
\(404\) 1008.00 2.49505
\(405\) −69.5309 259.493i −0.171681 0.640723i
\(406\) −693.000 + 1200.31i −1.70690 + 2.95643i
\(407\) 285.788 165.000i 0.702183 0.405405i
\(408\) −63.3206 + 63.3206i −0.155198 + 0.155198i
\(409\) −230.660 61.8052i −0.563961 0.151113i −0.0344357 0.999407i \(-0.510963\pi\)
−0.529526 + 0.848294i \(0.677630\pi\)
\(410\) −132.194 + 493.356i −0.322426 + 1.20331i
\(411\) −112.570 112.570i −0.273893 0.273893i
\(412\) −91.0000 157.617i −0.220874 0.382565i
\(413\) −457.261 264.000i −1.10717 0.639225i
\(414\) 0 0
\(415\) 154.000i 0.371084i
\(416\) 0 0
\(417\) 105.000 0.251799
\(418\) 113.310 + 422.877i 0.271075 + 1.01167i
\(419\) −193.500 + 335.152i −0.461814 + 0.799885i −0.999051 0.0435459i \(-0.986135\pi\)
0.537238 + 0.843431i \(0.319468\pi\)
\(420\) 600.156 346.500i 1.42894 0.825000i
\(421\) 63.3206 63.3206i 0.150405 0.150405i −0.627894 0.778299i \(-0.716083\pi\)
0.778299 + 0.627894i \(0.216083\pi\)
\(422\) 740.035 + 198.292i 1.75364 + 0.469886i
\(423\) 0 0
\(424\) −168.855 168.855i −0.398243 0.398243i
\(425\) −21.0000 36.3731i −0.0494118 0.0855837i
\(426\) 200.052 + 115.500i 0.469605 + 0.271127i
\(427\) −288.325 + 77.2565i −0.675235 + 0.180929i
\(428\) 798.000i 1.86449i
\(429\) 0 0
\(430\) −539.000 −1.25349
\(431\) −112.451 419.673i −0.260908 0.973720i −0.964708 0.263322i \(-0.915182\pi\)
0.703800 0.710398i \(-0.251485\pi\)
\(432\) 67.5000 116.913i 0.156250 0.270633i
\(433\) −272.798 + 157.500i −0.630018 + 0.363741i −0.780759 0.624832i \(-0.785167\pi\)
0.150741 + 0.988573i \(0.451834\pi\)
\(434\) 928.702 928.702i 2.13987 2.13987i
\(435\) −403.655 108.159i −0.927943 0.248642i
\(436\) 306.451 1143.69i 0.702869 2.62314i
\(437\) 168.855 + 168.855i 0.386396 + 0.386396i
\(438\) −198.000 342.946i −0.452055 0.782982i
\(439\) 595.825 + 344.000i 1.35723 + 0.783599i 0.989250 0.146233i \(-0.0467150\pi\)
0.367983 + 0.929832i \(0.380048\pi\)
\(440\) −211.438 + 56.6548i −0.480542 + 0.128761i
\(441\) 0 0
\(442\) 0 0
\(443\) 327.000 0.738149 0.369074 0.929400i \(-0.379675\pi\)
0.369074 + 0.929400i \(0.379675\pi\)
\(444\) −270.398 1009.14i −0.609004 2.27283i
\(445\) 275.000 476.314i 0.617978 1.07037i
\(446\) −1000.26 + 577.500i −2.24273 + 1.29484i
\(447\) −140.712 + 140.712i −0.314793 + 0.314793i
\(448\) −932.252 249.796i −2.08092 0.557580i
\(449\) 125.327 467.728i 0.279125 1.04171i −0.673901 0.738822i \(-0.735383\pi\)
0.953026 0.302888i \(-0.0979508\pi\)
\(450\) 0 0
\(451\) 154.000 + 266.736i 0.341463 + 0.591432i
\(452\) −763.834 441.000i −1.68990 0.975664i
\(453\) 490.153 131.336i 1.08202 0.289925i
\(454\) 638.000i 1.40529i
\(455\) 0 0
\(456\) 594.000 1.30263
\(457\) 77.2565 + 288.325i 0.169051 + 0.630909i 0.997489 + 0.0708266i \(0.0225637\pi\)
−0.828437 + 0.560082i \(0.810770\pi\)
\(458\) −148.500 + 257.210i −0.324236 + 0.561593i
\(459\) −70.1481 + 40.5000i −0.152828 + 0.0882353i
\(460\) −196.997 + 196.997i −0.428255 + 0.428255i
\(461\) 227.457 + 60.9468i 0.493398 + 0.132206i 0.496934 0.867788i \(-0.334459\pi\)
−0.00353623 + 0.999994i \(0.501126\pi\)
\(462\) 169.964 634.315i 0.367888 1.37298i
\(463\) 393.995 + 393.995i 0.850961 + 0.850961i 0.990252 0.139291i \(-0.0444822\pi\)
−0.139291 + 0.990252i \(0.544482\pi\)
\(464\) −105.000 181.865i −0.226293 0.391951i
\(465\) 342.946 + 198.000i 0.737518 + 0.425806i
\(466\) −1374.35 + 368.256i −2.94925 + 0.790249i
\(467\) 390.000i 0.835118i 0.908650 + 0.417559i \(0.137114\pi\)
−0.908650 + 0.417559i \(0.862886\pi\)
\(468\) 0 0
\(469\) 396.000 0.844350
\(470\) 9.44246 + 35.2397i 0.0200903 + 0.0749782i
\(471\) 120.000 207.846i 0.254777 0.441287i
\(472\) 457.261 264.000i 0.968774 0.559322i
\(473\) −229.830 + 229.830i −0.485899 + 0.485899i
\(474\) −518.985 139.062i −1.09491 0.293379i
\(475\) −72.1061 + 269.104i −0.151802 + 0.566534i
\(476\) −147.748 147.748i −0.310395 0.310395i
\(477\) 0 0
\(478\) 733.524 + 423.500i 1.53457 + 0.885983i
\(479\) −464.524 + 124.469i −0.969779 + 0.259851i −0.708734 0.705475i \(-0.750734\pi\)
−0.261044 + 0.965327i \(0.584067\pi\)
\(480\) 231.000i 0.481250i
\(481\) 0 0
\(482\) 1254.00 2.60166
\(483\) −92.7078 345.990i −0.191942 0.716336i
\(484\) 269.500 466.788i 0.556818 0.964437i
\(485\) 57.1577 33.0000i 0.117851 0.0680412i
\(486\) 0 0
\(487\) −230.660 61.8052i −0.473635 0.126910i 0.0141024 0.999901i \(-0.495511\pi\)
−0.487737 + 0.872990i \(0.662178\pi\)
\(488\) 77.2565 288.325i 0.158313 0.590830i
\(489\) 253.282 + 253.282i 0.517960 + 0.517960i
\(490\) 275.000 + 476.314i 0.561224 + 0.972069i
\(491\) −563.783 325.500i −1.14823 0.662933i −0.199777 0.979841i \(-0.564022\pi\)
−0.948456 + 0.316909i \(0.897355\pi\)
\(492\) 941.862 252.371i 1.91435 0.512950i
\(493\) 126.000i 0.255578i
\(494\) 0 0
\(495\) 0 0
\(496\) 51.5043 + 192.217i 0.103839 + 0.387534i
\(497\) −115.500 + 200.052i −0.232394 + 0.402519i
\(498\) −400.104 + 231.000i −0.803421 + 0.463855i
\(499\) −211.069 + 211.069i −0.422983 + 0.422983i −0.886230 0.463246i \(-0.846685\pi\)
0.463246 + 0.886230i \(0.346685\pi\)
\(500\) −874.586 234.345i −1.74917 0.468689i
\(501\) −72.1061 + 269.104i −0.143924 + 0.537133i
\(502\) 98.4987 + 98.4987i 0.196213 + 0.196213i
\(503\) −405.000 701.481i −0.805169 1.39459i −0.916177 0.400774i \(-0.868741\pi\)
0.111008 0.993820i \(-0.464592\pi\)
\(504\) 0 0
\(505\) −461.320 + 123.610i −0.913506 + 0.244773i
\(506\) 264.000i 0.521739i
\(507\) 0 0
\(508\) −1176.00 −2.31496
\(509\) −78.9733 294.732i −0.155154 0.579042i −0.999092 0.0426018i \(-0.986435\pi\)
0.843938 0.536440i \(-0.180231\pi\)
\(510\) 49.5000 85.7365i 0.0970588 0.168111i
\(511\) 342.946 198.000i 0.671127 0.387476i
\(512\) 222.795 222.795i 0.435146 0.435146i
\(513\) 518.985 + 139.062i 1.01167 + 0.271075i
\(514\) −224.044 + 836.143i −0.435883 + 1.62674i
\(515\) 60.9754 + 60.9754i 0.118399 + 0.118399i
\(516\) 514.500 + 891.140i 0.997093 + 1.72702i
\(517\) 19.0526 + 11.0000i 0.0368521 + 0.0212766i
\(518\) 1585.79 424.911i 3.06137 0.820291i
\(519\) 342.000i 0.658960i
\(520\) 0 0
\(521\) −843.000 −1.61804 −0.809021 0.587780i \(-0.800002\pi\)
−0.809021 + 0.587780i \(0.800002\pi\)
\(522\) 0 0
\(523\) 125.000 216.506i 0.239006 0.413970i −0.721424 0.692494i \(-0.756512\pi\)
0.960429 + 0.278524i \(0.0898452\pi\)
\(524\) −563.783 + 325.500i −1.07592 + 0.621183i
\(525\) 295.496 295.496i 0.562850 0.562850i
\(526\) 864.976 + 231.770i 1.64444 + 0.440626i
\(527\) 30.9026 115.330i 0.0586387 0.218843i
\(528\) 70.3562 + 70.3562i 0.133250 + 0.133250i
\(529\) −192.500 333.420i −0.363894 0.630283i
\(530\) 228.631 + 132.000i 0.431379 + 0.249057i
\(531\) 0 0
\(532\) 1386.00i 2.60526i
\(533\) 0 0
\(534\) −1650.00 −3.08989
\(535\) 97.8582 + 365.212i 0.182913 + 0.682639i
\(536\) −198.000 + 342.946i −0.369403 + 0.639825i
\(537\) 335.152 193.500i 0.624119 0.360335i
\(538\) −436.209 + 436.209i −0.810797 + 0.810797i
\(539\) 320.361 + 85.8406i 0.594362 + 0.159259i
\(540\) −162.239 + 605.483i −0.300442 + 1.12126i
\(541\) −429.173 429.173i −0.793296 0.793296i 0.188733 0.982029i \(-0.439562\pi\)
−0.982029 + 0.188733i \(0.939562\pi\)
\(542\) 82.5000 + 142.894i 0.152214 + 0.263642i
\(543\) −472.850 273.000i −0.870810 0.502762i
\(544\) −67.2759 + 18.0265i −0.123669 + 0.0331370i
\(545\) 561.000i 1.02936i
\(546\) 0 0
\(547\) 301.000 0.550274 0.275137 0.961405i \(-0.411277\pi\)
0.275137 + 0.961405i \(0.411277\pi\)
\(548\) 96.1414 + 358.805i 0.175441 + 0.654753i
\(549\) 0 0
\(550\) −266.736 + 154.000i −0.484974 + 0.280000i
\(551\) 590.992 590.992i 1.07258 1.07258i
\(552\) 345.990 + 92.7078i 0.626794 + 0.167949i
\(553\) 139.062 518.985i 0.251468 0.938491i
\(554\) −877.108 877.108i −1.58323 1.58323i
\(555\) 247.500 + 428.683i 0.445946 + 0.772401i
\(556\) −212.176 122.500i −0.381612 0.220324i
\(557\) −464.524 + 124.469i −0.833975 + 0.223463i −0.650447 0.759552i \(-0.725418\pi\)
−0.183528 + 0.983015i \(0.558752\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −165.000 −0.294643
\(561\) −15.4513 57.6650i −0.0275424 0.102790i
\(562\) −77.0000 + 133.368i −0.137011 + 0.237309i
\(563\) 875.552 505.500i 1.55515 0.897869i 0.557445 0.830214i \(-0.311782\pi\)
0.997709 0.0676548i \(-0.0215517\pi\)
\(564\) 49.2494 49.2494i 0.0873216 0.0873216i
\(565\) 403.655 + 108.159i 0.714434 + 0.191432i
\(566\) −56.6548 + 211.438i −0.100097 + 0.373566i
\(567\) −569.886 569.886i −1.00509 1.00509i
\(568\) −115.500 200.052i −0.203345 0.352204i
\(569\) −428.683 247.500i −0.753396 0.434974i 0.0735234 0.997293i \(-0.476576\pi\)
−0.826920 + 0.562320i \(0.809909\pi\)
\(570\) −634.315 + 169.964i −1.11283 + 0.298183i
\(571\) 39.0000i 0.0683012i −0.999417 0.0341506i \(-0.989127\pi\)
0.999417 0.0341506i \(-0.0108726\pi\)
\(572\) 0 0
\(573\) −90.0000 −0.157068
\(574\) 396.583 + 1480.07i 0.690912 + 2.57852i
\(575\) −84.0000 + 145.492i −0.146087 + 0.253030i
\(576\) 0 0
\(577\) −759.847 + 759.847i −1.31689 + 1.31689i −0.400671 + 0.916222i \(0.631223\pi\)
−0.916222 + 0.400671i \(0.868777\pi\)
\(578\) 897.012 + 240.354i 1.55192 + 0.415837i
\(579\) −139.062 + 518.985i −0.240176 + 0.896348i
\(580\) 689.491 + 689.491i 1.18878 + 1.18878i
\(581\) −231.000 400.104i −0.397590 0.688647i
\(582\) −171.473 99.0000i −0.294627 0.170103i
\(583\) 153.773 41.2035i 0.263762 0.0706749i
\(584\) 396.000i 0.678082i
\(585\) 0 0
\(586\) 539.000 0.919795
\(587\) −78.9733 294.732i −0.134537 0.502100i −0.999999 0.00112532i \(-0.999642\pi\)
0.865462 0.500974i \(-0.167025\pi\)
\(588\) 525.000 909.327i 0.892857 1.54647i
\(589\) −685.892 + 396.000i −1.16450 + 0.672326i
\(590\) −412.757 + 412.757i −0.699587 + 0.699587i
\(591\) 740.035 + 198.292i 1.25217 + 0.335519i
\(592\) −64.3804 + 240.271i −0.108751 + 0.405863i
\(593\) −276.735 276.735i −0.466669 0.466669i 0.434165 0.900833i \(-0.357044\pi\)
−0.900833 + 0.434165i \(0.857044\pi\)
\(594\) 297.000 + 514.419i 0.500000 + 0.866025i
\(595\) 85.7365 + 49.5000i 0.144095 + 0.0831933i
\(596\) 448.506 120.177i 0.752527 0.201639i
\(597\) 828.000i 1.38693i
\(598\) 0 0
\(599\) −648.000 −1.08180 −0.540902 0.841086i \(-0.681917\pi\)
−0.540902 + 0.841086i \(0.681917\pi\)
\(600\) 108.159 + 403.655i 0.180265 + 0.672759i
\(601\) −37.5000 + 64.9519i −0.0623960 + 0.108073i −0.895536 0.444989i \(-0.853208\pi\)
0.833140 + 0.553062i \(0.186541\pi\)
\(602\) −1400.36 + 808.500i −2.32618 + 1.34302i
\(603\) 0 0
\(604\) −1143.69 306.451i −1.89353 0.507369i
\(605\) −66.0972 + 246.678i −0.109252 + 0.407733i
\(606\) 1013.13 + 1013.13i 1.67183 + 1.67183i
\(607\) 50.0000 + 86.6025i 0.0823723 + 0.142673i 0.904268 0.426964i \(-0.140417\pi\)
−0.821896 + 0.569637i \(0.807084\pi\)
\(608\) 400.104 + 231.000i 0.658065 + 0.379934i
\(609\) −1210.97 + 324.477i −1.98845 + 0.532804i
\(610\) 330.000i 0.540984i
\(611\) 0 0
\(612\) 0 0
\(613\) 10.3009 + 38.4434i 0.0168040 + 0.0627135i 0.973819 0.227326i \(-0.0729983\pi\)
−0.957015 + 0.290039i \(0.906332\pi\)
\(614\) 924.000 1600.41i 1.50489 2.60654i
\(615\) −400.104 + 231.000i −0.650575 + 0.375610i
\(616\) −464.351 + 464.351i −0.753817 + 0.753817i
\(617\) −897.012 240.354i −1.45383 0.389552i −0.556474 0.830865i \(-0.687846\pi\)
−0.897353 + 0.441313i \(0.854513\pi\)
\(618\) 66.9556 249.882i 0.108342 0.404340i
\(619\) −520.636 520.636i −0.841092 0.841092i 0.147909 0.989001i \(-0.452746\pi\)
−0.989001 + 0.147909i \(0.952746\pi\)
\(620\) −462.000 800.207i −0.745161 1.29066i
\(621\) 280.592 + 162.000i 0.451839 + 0.260870i
\(622\) 749.646 200.867i 1.20522 0.322937i
\(623\) 1650.00i 2.64848i
\(624\) 0 0
\(625\) 79.0000 0.126400
\(626\) −79.8317 297.936i −0.127527 0.475936i
\(627\) −198.000 + 342.946i −0.315789 + 0.546963i
\(628\) −484.974 + 280.000i −0.772252 + 0.445860i
\(629\) 105.534 105.534i 0.167781 0.167781i
\(630\) 0 0
\(631\) 270.398 1009.14i 0.428523 1.59927i −0.327585 0.944822i \(-0.606235\pi\)
0.756108 0.654447i \(-0.227098\pi\)
\(632\) 379.924 + 379.924i 0.601145 + 0.601145i
\(633\) 346.500 + 600.156i 0.547393 + 0.948113i
\(634\) −876.418 506.000i −1.38236 0.798107i
\(635\) 538.207 144.212i 0.847570 0.227106i
\(636\) 504.000i 0.792453i
\(637\) 0 0
\(638\) 924.000 1.44828
\(639\) 0 0
\(640\) −379.500 + 657.313i −0.592969 + 1.02705i
\(641\) −711.873 + 411.000i −1.11057 + 0.641186i −0.938976 0.343983i \(-0.888224\pi\)
−0.171590 + 0.985168i \(0.554890\pi\)
\(642\) 802.061 802.061i 1.24932 1.24932i
\(643\) 269.104 + 72.1061i 0.418512 + 0.112140i 0.461929 0.886917i \(-0.347158\pi\)
−0.0434164 + 0.999057i \(0.513824\pi\)
\(644\) −216.318 + 807.311i −0.335898 + 1.25359i
\(645\) −344.746 344.746i −0.534489 0.534489i
\(646\) 99.0000 + 171.473i 0.153251 + 0.265438i
\(647\) 820.992 + 474.000i 1.26892 + 0.732612i 0.974784 0.223151i \(-0.0716343\pi\)
0.294137 + 0.955763i \(0.404968\pi\)
\(648\) 778.478 208.593i 1.20136 0.321902i
\(649\) 352.000i 0.542373i
\(650\) 0 0
\(651\) 1188.00 1.82488
\(652\) −216.318 807.311i −0.331776 1.23821i
\(653\) −174.000 + 301.377i −0.266462 + 0.461527i −0.967946 0.251159i \(-0.919188\pi\)
0.701483 + 0.712686i \(0.252522\pi\)
\(654\) 1457.52 841.500i 2.22863 1.28670i
\(655\) 218.104 218.104i 0.332984 0.332984i
\(656\) −224.253 60.0884i −0.341849 0.0915982i
\(657\) 0 0
\(658\) 77.3919 + 77.3919i 0.117617 + 0.117617i
\(659\) 63.0000 + 109.119i 0.0955994 + 0.165583i 0.909859 0.414918i \(-0.136190\pi\)
−0.814259 + 0.580501i \(0.802857\pi\)
\(660\) −400.104 231.000i −0.606218 0.350000i
\(661\) 576.650 154.513i 0.872391 0.233756i 0.205270 0.978705i \(-0.434193\pi\)
0.667121 + 0.744949i \(0.267526\pi\)
\(662\) 66.0000i 0.0996979i
\(663\) 0 0
\(664\) 462.000 0.695783
\(665\) −169.964 634.315i −0.255585 0.953858i
\(666\) 0 0
\(667\) 436.477 252.000i 0.654388 0.377811i
\(668\) 459.661 459.661i 0.688115 0.688115i
\(669\) −1009.14 270.398i −1.50843 0.404182i
\(670\) 113.310 422.877i 0.169119 0.631160i
\(671\) 140.712 + 140.712i 0.209706 + 0.209706i
\(672\) −346.500 600.156i −0.515625 0.893089i
\(673\) 66.6840 + 38.5000i 0.0990846 + 0.0572065i 0.548723 0.836004i \(-0.315114\pi\)
−0.449639 + 0.893210i \(0.648447\pi\)
\(674\) −1374.35 + 368.256i −2.03910 + 0.546374i
\(675\) 378.000i 0.560000i
\(676\) 0 0
\(677\) −726.000 −1.07238 −0.536189 0.844098i \(-0.680137\pi\)
−0.536189 + 0.844098i \(0.680137\pi\)
\(678\) −324.477 1210.97i −0.478580 1.78609i
\(679\) 99.0000 171.473i 0.145803 0.252538i
\(680\) −85.7365 + 49.5000i −0.126083 + 0.0727941i
\(681\) 408.066 408.066i 0.599216 0.599216i
\(682\) −845.754 226.619i −1.24011 0.332286i
\(683\) 214.601 800.903i 0.314204 1.17263i −0.610524 0.791998i \(-0.709041\pi\)
0.924728 0.380628i \(-0.124292\pi\)
\(684\) 0 0
\(685\) −88.0000 152.420i −0.128467 0.222512i
\(686\) 28.5788 + 16.5000i 0.0416601 + 0.0240525i
\(687\) −259.493 + 69.5309i −0.377719 + 0.101209i
\(688\) 245.000i 0.356105i
\(689\) 0 0
\(690\) −396.000 −0.573913
\(691\) −257.522 961.084i −0.372680 1.39086i −0.856705 0.515806i \(-0.827493\pi\)
0.484026 0.875054i \(-0.339174\pi\)
\(692\) −399.000 + 691.088i −0.576590 + 0.998682i
\(693\) 0 0
\(694\) 386.959 386.959i 0.557578 0.557578i
\(695\) 112.126 + 30.0442i 0.161333 + 0.0432291i
\(696\) 324.477 1210.97i 0.466203 1.73989i
\(697\) 98.4987 + 98.4987i 0.141318 + 0.141318i
\(698\) −346.500 600.156i −0.496418 0.859822i
\(699\) −1114.57 643.500i −1.59453 0.920601i
\(700\) −941.862 + 252.371i −1.34552 + 0.360530i
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) −990.000 −1.40825
\(704\) 166.531 + 621.501i 0.236549 + 0.882814i
\(705\) −16.5000 + 28.5788i −0.0234043 + 0.0405374i
\(706\) 1848.10 1067.00i 2.61770 1.51133i
\(707\) −1013.13 + 1013.13i −1.43300 + 1.43300i
\(708\) 1076.41 + 288.424i 1.52036 + 0.407379i
\(709\) −30.9026 + 115.330i −0.0435862 + 0.162666i −0.984289 0.176567i \(-0.943501\pi\)
0.940702 + 0.339233i \(0.110167\pi\)
\(710\) 180.581 + 180.581i 0.254339 + 0.254339i
\(711\) 0 0
\(712\) 1428.94 + 825.000i 2.00694 + 1.15871i
\(713\) −461.320 + 123.610i −0.647013 + 0.173367i
\(714\) 297.000i 0.415966i
\(715\) 0 0
\(716\) −903.000 −1.26117
\(717\) 198.292 + 740.035i 0.276557 + 1.03213i
\(718\) −506.000 + 876.418i −0.704735 + 1.22064i
\(719\) 301.377 174.000i 0.419161 0.242003i −0.275557 0.961285i \(-0.588862\pi\)
0.694718 + 0.719282i \(0.255529\pi\)
\(720\) 0 0
\(721\) 249.882 + 66.9556i 0.346577 + 0.0928650i
\(722\) 30.0442 112.126i 0.0416125 0.155300i
\(723\) 802.061 + 802.061i 1.10935 + 1.10935i
\(724\) 637.000 + 1103.32i 0.879834 + 1.52392i
\(725\) 509.223 + 294.000i 0.702376 + 0.405517i
\(726\) 740.035 198.292i 1.01933 0.273129i
\(727\) 702.000i 0.965612i −0.875727 0.482806i \(-0.839618\pi\)
0.875727 0.482806i \(-0.160382\pi\)
\(728\) 0 0
\(729\) 729.000 1.00000
\(730\) −113.310 422.877i −0.155219 0.579284i
\(731\) −73.5000 + 127.306i −0.100547 + 0.174153i
\(732\) 545.596 315.000i 0.745350 0.430328i
\(733\) 63.3206 63.3206i 0.0863856 0.0863856i −0.662594 0.748979i \(-0.730544\pi\)
0.748979 + 0.662594i \(0.230544\pi\)
\(734\) −1717.14 460.105i −2.33942 0.626847i
\(735\) −128.761 + 480.542i −0.175185 + 0.653799i
\(736\) 196.997 + 196.997i 0.267660 + 0.267660i
\(737\) −132.000 228.631i −0.179104 0.310218i
\(738\) 0 0
\(739\) −172.995 + 46.3539i −0.234094 + 0.0627252i −0.373959 0.927445i \(-0.622000\pi\)
0.139865 + 0.990171i \(0.455333\pi\)
\(740\) 1155.00i 1.56081i
\(741\) 0 0
\(742\) 792.000 1.06739
\(743\) −0.858406 3.20361i −0.00115532 0.00431173i 0.965346 0.260974i \(-0.0840438\pi\)
−0.966501 + 0.256663i \(0.917377\pi\)
\(744\) −594.000 + 1028.84i −0.798387 + 1.38285i
\(745\) −190.526 + 110.000i −0.255739 + 0.147651i
\(746\) −619.135 + 619.135i −0.829940 + 0.829940i
\(747\) 0 0
\(748\) −36.0530 + 134.552i −0.0481992 + 0.179882i
\(749\) 802.061 + 802.061i 1.07084 + 1.07084i
\(750\) −643.500 1114.57i −0.858000 1.48610i
\(751\) −147.224 85.0000i −0.196038 0.113182i 0.398768 0.917052i \(-0.369438\pi\)
−0.594806 + 0.803869i \(0.702771\pi\)
\(752\) −16.0181 + 4.29203i −0.0213006 + 0.00570748i
\(753\) 126.000i 0.167331i
\(754\) 0 0
\(755\) 561.000 0.743046
\(756\) 486.716 + 1816.45i 0.643804 + 2.40271i
\(757\) −252.000 + 436.477i −0.332893 + 0.576588i −0.983078 0.183189i \(-0.941358\pi\)
0.650185 + 0.759776i \(0.274691\pi\)
\(758\) 1600.41 924.000i 2.11137 1.21900i
\(759\) −168.855 + 168.855i −0.222470 + 0.222470i
\(760\) 634.315 + 169.964i 0.834626 + 0.223637i
\(761\) −209.451 + 781.682i −0.275231 + 1.02718i 0.680455 + 0.732790i \(0.261782\pi\)
−0.955686 + 0.294387i \(0.904884\pi\)
\(762\) −1181.98 1181.98i −1.55116 1.55116i
\(763\) 841.500 + 1457.52i 1.10288 + 1.91025i
\(764\) 181.865 + 105.000i 0.238044 + 0.137435i
\(765\) 0 0
\(766\) 935.000i 1.22063i
\(767\) 0 0
\(768\) 1113.00 1.44922
\(769\) 144.212 + 538.207i 0.187532 + 0.699879i 0.994074 + 0.108703i \(0.0346697\pi\)
−0.806542 + 0.591176i \(0.798664\pi\)
\(770\) 363.000 628.734i 0.471429 0.816538i
\(771\) −678.098 + 391.500i −0.879504 + 0.507782i
\(772\) 886.489 886.489i 1.14830 1.14830i
\(773\) 1226.98 + 328.769i 1.58730 + 0.425316i 0.941176 0.337916i \(-0.109722\pi\)
0.646125 + 0.763232i \(0.276388\pi\)
\(774\) 0 0
\(775\) −393.995 393.995i −0.508381 0.508381i
\(776\) 99.0000 + 171.473i 0.127577 + 0.220970i
\(777\) 1286.05 + 742.500i 1.65515 + 0.955598i
\(778\) 999.527 267.823i 1.28474 0.344245i
\(779\) 924.000i 1.18614i
\(780\) 0 0
\(781\) 154.000 0.197183
\(782\) 30.9026 + 115.330i 0.0395174 + 0.147481i
\(783\) 567.000 982.073i 0.724138 1.25424i
\(784\) −216.506 + 125.000i −0.276156 + 0.159439i
\(785\) 187.617 187.617i 0.239002 0.239002i
\(786\) −893.808 239.495i −1.13716 0.304701i
\(787\) −97.8582 + 365.212i −0.124343 + 0.464056i −0.999815 0.0192130i \(-0.993884\pi\)
0.875472 + 0.483269i \(0.160551\pi\)
\(788\) −1264.07 1264.07i −1.60415 1.60415i
\(789\) 405.000 + 701.481i 0.513308 + 0.889076i
\(790\) −514.419 297.000i −0.651163 0.375949i
\(791\) 1210.97 324.477i 1.53093 0.410212i
\(792\) 0 0
\(793\) 0 0
\(794\) 396.000 0.498741
\(795\) 61.8052 + 230.660i 0.0777424 + 0.290139i
\(796\) 966.000 1673.16i 1.21357 2.10196i
\(797\) −982.073 + 567.000i −1.23221 + 0.711418i −0.967491 0.252907i \(-0.918613\pi\)
−0.264721 + 0.964325i \(0.585280\pi\)
\(798\) −1393.05 + 1393.05i −1.74568 + 1.74568i
\(799\) 9.61084 + 2.57522i 0.0120286 + 0.00322305i
\(800\) −84.1238 + 313.954i −0.105155 + 0.392443i
\(801\) 0 0
\(802\) −1276.00 2210.10i −1.59102 2.75573i
\(803\) −228.631 132.000i −0.284721 0.164384i
\(804\) −807.311 + 216.318i −1.00412 + 0.269053i
\(805\) 396.000i 0.491925i
\(806\) 0 0
\(807\) −558.000 −0.691450
\(808\) −370.831 1383.96i −0.458950 1.71282i
\(809\) −232.500 + 402.702i −0.287392 + 0.497777i −0.973186 0.230018i \(-0.926122\pi\)
0.685795 + 0.727795i \(0.259455\pi\)
\(810\) −771.629 + 445.500i −0.952628 + 0.550000i
\(811\) 1069.41 1069.41i 1.31864 1.31864i 0.403782 0.914855i \(-0.367695\pi\)
0.914855 0.403782i \(-0.132305\pi\)
\(812\) 2825.59 + 757.114i 3.47979 + 0.932406i
\(813\) −38.6283 + 144.163i −0.0475132 + 0.177322i
\(814\) −773.919 773.919i −0.950760 0.950760i
\(815\) 198.000 + 342.946i 0.242945 + 0.420793i
\(816\) 38.9711 + 22.5000i 0.0477588 + 0.0275735i
\(817\) 941.862 252.371i 1.15283 0.308900i
\(818\) 792.000i 0.968215i
\(819\) 0 0
\(820\) 1078.00 1.31463
\(821\) 133.053 + 496.560i 0.162062 + 0.604824i 0.998397 + 0.0566044i \(0.0180274\pi\)
−0.836335 + 0.548219i \(0.815306\pi\)
\(822\) −264.000 + 457.261i −0.321168 + 0.556279i
\(823\) −554.256 + 320.000i −0.673458 + 0.388821i −0.797386 0.603470i \(-0.793784\pi\)
0.123927 + 0.992291i \(0.460451\pi\)
\(824\) −182.926 + 182.926i −0.221998 + 0.221998i
\(825\) −269.104 72.1061i −0.326186 0.0874013i
\(826\) −453.238 + 1691.51i −0.548715 + 2.04783i
\(827\) 820.823 + 820.823i 0.992531 + 0.992531i 0.999972 0.00744177i \(-0.00236881\pi\)
−0.00744177 + 0.999972i \(0.502369\pi\)
\(828\) 0 0
\(829\) 415.692 + 240.000i 0.501438 + 0.289505i 0.729307 0.684186i \(-0.239843\pi\)
−0.227869 + 0.973692i \(0.573176\pi\)
\(830\) −493.356 + 132.194i −0.594405 + 0.159270i
\(831\) 1122.00i 1.35018i
\(832\) 0 0
\(833\) 150.000 0.180072
\(834\) −90.1326 336.379i −0.108073 0.403333i
\(835\) −154.000 + 266.736i −0.184431 + 0.319444i
\(836\) 800.207 462.000i 0.957186 0.552632i
\(837\) −759.847 + 759.847i −0.907822 + 0.907822i
\(838\) 1239.80 + 332.203i 1.47947 + 0.396424i
\(839\) −120.177 + 448.506i −0.143238 + 0.534572i 0.856589 + 0.515999i \(0.172579\pi\)
−0.999828 + 0.0185733i \(0.994088\pi\)
\(840\) −696.527 696.527i −0.829199 0.829199i
\(841\) −461.500 799.341i −0.548751 0.950465i
\(842\) −257.210 148.500i −0.305475 0.176366i
\(843\) −134.552 + 36.0530i −0.159611 + 0.0427675i
\(844\) 1617.00i 1.91588i
\(845\) 0 0
\(846\) 0 0
\(847\) 198.292 + 740.035i 0.234111 + 0.873713i
\(848\) −60.0000 + 103.923i −0.0707547 + 0.122551i
\(849\) −171.473 + 99.0000i −0.201971 + 0.116608i
\(850\) −98.4987 + 98.4987i −0.115881 + 0.115881i
\(851\) −576.650 154.513i −0.677615 0.181566i
\(852\) 126.186 470.931i 0.148105 0.552736i
\(853\) −246.247 246.247i −0.288683 0.288683i 0.547876 0.836559i \(-0.315436\pi\)
−0.836559 + 0.547876i \(0.815436\pi\)
\(854\) 495.000 + 857.365i 0.579625 + 1.00394i
\(855\) 0 0
\(856\) −1095.64 + 293.575i −1.27995 + 0.342961i
\(857\) 1326.00i 1.54726i 0.633639 + 0.773629i \(0.281561\pi\)
−0.633639 + 0.773629i \(0.718439\pi\)
\(858\) 0 0
\(859\) 54.0000 0.0628638 0.0314319 0.999506i \(-0.489993\pi\)
0.0314319 + 0.999506i \(0.489993\pi\)
\(860\) 294.433 + 1098.84i 0.342364 + 1.27772i
\(861\) −693.000 + 1200.31i −0.804878 + 1.39409i
\(862\) −1247.94 + 720.500i −1.44773 + 0.835847i
\(863\) −363.507 + 363.507i −0.421213 + 0.421213i −0.885621 0.464408i \(-0.846267\pi\)
0.464408 + 0.885621i \(0.346267\pi\)
\(864\) 605.483 + 162.239i 0.700790 + 0.187776i
\(865\) 97.8582 365.212i 0.113131 0.422210i
\(866\) 738.740 + 738.740i 0.853049 + 0.853049i
\(867\) 420.000 + 727.461i 0.484429 + 0.839056i
\(868\) −2400.62 1386.00i −2.76569 1.59677i
\(869\) −345.990 + 92.7078i −0.398148 + 0.106683i
\(870\) 1386.00i 1.59310i
\(871\) 0 0
\(872\) −1683.00 −1.93005
\(873\) 0 0
\(874\) 396.000 685.892i 0.453089 0.784774i
\(875\) 1114.57 643.500i 1.27380 0.735429i
\(876\) −590.992 + 590.992i −0.674649 + 0.674649i
\(877\) −855.365 229.194i −0.975330 0.261339i −0.264254 0.964453i \(-0.585126\pi\)
−0.711077 + 0.703114i \(0.751792\pi\)
\(878\) 590.583 2204.09i 0.672646 2.51035i
\(879\) 344.746 + 344.746i 0.392202 + 0.392202i
\(880\) 55.0000 + 95.2628i 0.0625000 + 0.108253i
\(881\) −563.783 325.500i −0.639935 0.369467i 0.144655 0.989482i \(-0.453793\pi\)
−0.784589 + 0.620016i \(0.787126\pi\)
\(882\) 0 0
\(883\) 819.000i 0.927520i 0.885961 + 0.463760i \(0.153500\pi\)
−0.885961 + 0.463760i \(0.846500\pi\)
\(884\) 0 0
\(885\) −528.000 −0.596610
\(886\) −280.699 1047.58i −0.316816 1.18237i
\(887\) 99.0000 171.473i 0.111612 0.193318i −0.804808 0.593535i \(-0.797732\pi\)
0.916420 + 0.400217i \(0.131065\pi\)
\(888\) −1286.05 + 742.500i −1.44825 + 0.836149i
\(889\) 1181.98 1181.98i 1.32957 1.32957i
\(890\) −1761.99 472.123i −1.97976 0.530475i
\(891\) −139.062 + 518.985i −0.156074 + 0.582475i
\(892\) 1723.73 + 1723.73i 1.93243 + 1.93243i
\(893\) −33.0000 57.1577i −0.0369541 0.0640064i
\(894\) 571.577 + 330.000i 0.639348 + 0.369128i
\(895\) 413.266 110.734i 0.461750 0.123726i
\(896\) 2277.00i 2.54129i
\(897\) 0 0
\(898\) −1606.00 −1.78842
\(899\) 432.636 + 1614.62i 0.481242 + 1.79602i
\(900\) 0 0
\(901\) 62.3538 36.0000i 0.0692051 0.0399556i
\(902\) 722.324 722.324i 0.800803 0.800803i
\(903\) −1412.79 378.557i −1.56456 0.419221i
\(904\) −324.477 + 1210.97i −0.358935 + 1.33956i
\(905\) −426.828 426.828i −0.471633 0.471633i
\(906\) −841.500 1457.52i −0.928808 1.60874i
\(907\) −766.432 442.500i −0.845019 0.487872i 0.0139479 0.999903i \(-0.495560\pi\)
−0.858967 + 0.512031i \(0.828893\pi\)
\(908\) −1300.67 + 348.513i −1.43245 + 0.383825i
\(909\) 0 0
\(910\) 0 0
\(911\) −882.000 −0.968167 −0.484083 0.875022i \(-0.660847\pi\)
−0.484083 + 0.875022i \(0.660847\pi\)
\(912\) −77.2565 288.325i −0.0847111 0.316146i
\(913\) −154.000 + 266.736i −0.168675 + 0.292153i
\(914\) 857.365 495.000i 0.938036 0.541575i
\(915\) −211.069 + 211.069i −0.230676 + 0.230676i
\(916\) 605.483 + 162.239i 0.661008 + 0.177116i
\(917\) 239.495 893.808i 0.261172 0.974709i
\(918\) 189.962 + 189.962i 0.206930 + 0.206930i
\(919\) −678.000 1174.33i −0.737758 1.27784i −0.953502 0.301385i \(-0.902551\pi\)
0.215744 0.976450i \(-0.430782\pi\)
\(920\) 342.946 + 198.000i 0.372767 + 0.215217i
\(921\) 1614.62 432.636i 1.75312 0.469746i
\(922\) 781.000i 0.847072i
\(923\) 0 0
\(924\) −1386.00 −1.50000
\(925\) −180.265 672.759i −0.194881 0.727307i
\(926\) 924.000 1600.41i 0.997840 1.72831i
\(927\) 0 0
\(928\) 689.491 689.491i 0.742986 0.742986i
\(929\) −64.0723 17.1681i −0.0689691 0.0184802i 0.224170 0.974550i \(-0.428033\pi\)
−0.293139 + 0.956070i \(0.594700\pi\)
\(930\) 339.929 1268.63i 0.365515 1.36412i
\(931\) −703.562 703.562i −0.755706 0.755706i
\(932\) 1501.50 + 2600.67i 1.61105 + 2.79042i
\(933\) 607.950 + 351.000i 0.651608 + 0.376206i
\(934\) 1249.41 334.778i 1.33770 0.358435i
\(935\) 66.0000i 0.0705882i
\(936\) 0 0
\(937\) 210.000 0.224120 0.112060 0.993701i \(-0.464255\pi\)
0.112060 + 0.993701i \(0.464255\pi\)
\(938\) −339.929 1268.63i −0.362397 1.35249i
\(939\) 139.500 241.621i 0.148562 0.257317i
\(940\) 66.6840 38.5000i 0.0709404 0.0409574i
\(941\) −241.556 + 241.556i −0.256702 + 0.256702i −0.823711 0.567009i \(-0.808100\pi\)
0.567009 + 0.823711i \(0.308100\pi\)
\(942\) −768.867 206.017i −0.816207 0.218702i
\(943\) 144.212 538.207i 0.152929 0.570739i
\(944\) −187.617 187.617i −0.198746 0.198746i
\(945\) −445.500 771.629i −0.471429 0.816538i
\(946\) 933.575 + 539.000i 0.986866 + 0.569767i
\(947\) −1005.93 + 269.539i −1.06223 + 0.284624i −0.747298 0.664489i \(-0.768649\pi\)
−0.314935 + 0.949113i \(0.601983\pi\)
\(948\) 1134.00i 1.19620i
\(949\) 0 0
\(950\) 924.000 0.972632
\(951\) −236.920 884.197i −0.249127 0.929755i
\(952\) −148.500 + 257.210i −0.155987 + 0.270178i
\(953\) 335.152 193.500i 0.351681 0.203043i −0.313744 0.949507i \(-0.601584\pi\)
0.665425 + 0.746464i \(0.268250\pi\)
\(954\) 0 0
\(955\) −96.1084 25.7522i −0.100637 0.0269656i
\(956\) 462.681 1726.75i 0.483976 1.80622i
\(957\) 590.992 + 590.992i 0.617547 + 0.617547i
\(958\) 797.500 + 1381.31i 0.832463 + 1.44187i
\(959\) −457.261 264.000i −0.476811 0.275287i
\(960\) −932.252 + 249.796i −0.971095 + 0.260204i
\(961\) 623.000i 0.648283i
\(962\) 0 0
\(963\) 0 0
\(964\) −685.008 2556.48i −0.710589 2.65195i
\(965\) −297.000 + 514.419i −0.307772 + 0.533077i
\(966\) −1028.84 + 594.000i −1.06505 + 0.614907i
\(967\) 246.247 246.247i 0.254650 0.254650i −0.568224 0.822874i \(-0.692369\pi\)
0.822874 + 0.568224i \(0.192369\pi\)
\(968\) −740.035 198.292i −0.764499 0.204847i
\(969\) −46.3539 + 172.995i −0.0478368 + 0.178530i
\(970\) −154.784 154.784i −0.159571 0.159571i
\(971\) 823.500 + 1426.34i 0.848095 + 1.46894i 0.882906 + 0.469549i \(0.155584\pi\)
−0.0348115 + 0.999394i \(0.511083\pi\)
\(972\) 0 0
\(973\) 336.379 90.1326i 0.345714 0.0926337i
\(974\) 792.000i 0.813142i
\(975\) 0 0
\(976\) −150.000 −0.153689
\(977\) −302.159 1127.67i −0.309272 1.15422i −0.929205 0.369564i \(-0.879507\pi\)
0.619933 0.784655i \(-0.287160\pi\)
\(978\) 594.000 1028.84i 0.607362 1.05198i
\(979\) −952.628 + 550.000i −0.973062 + 0.561798i
\(980\) 820.823 820.823i 0.837574 0.837574i
\(981\) 0 0
\(982\) −558.822 + 2085.55i −0.569065 + 2.12378i
\(983\) −185.271 185.271i −0.188476 0.188476i 0.606561 0.795037i \(-0.292548\pi\)
−0.795037 + 0.606561i \(0.792548\pi\)
\(984\) −693.000 1200.31i −0.704268 1.21983i
\(985\) 733.524 + 423.500i 0.744694 + 0.429949i
\(986\) 403.655 108.159i 0.409387 0.109695i
\(987\) 99.0000i 0.100304i
\(988\) 0 0
\(989\) 588.000 0.594540
\(990\) 0 0
\(991\) 775.000 1342.34i 0.782038 1.35453i −0.148714 0.988880i \(-0.547513\pi\)
0.930752 0.365650i \(-0.119153\pi\)
\(992\) −800.207 + 462.000i −0.806661 + 0.465726i
\(993\) 42.2137 42.2137i 0.0425113 0.0425113i
\(994\) 740.035 + 198.292i 0.744502 + 0.199489i
\(995\) −236.920 + 884.197i −0.238111 + 0.888641i
\(996\) 689.491 + 689.491i 0.692260 + 0.692260i
\(997\) 583.000 + 1009.79i 0.584754 + 1.01282i 0.994906 + 0.100807i \(0.0321424\pi\)
−0.410152 + 0.912017i \(0.634524\pi\)
\(998\) 857.365 + 495.000i 0.859083 + 0.495992i
\(999\) −1297.46 + 347.654i −1.29876 + 0.348002i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.3.f.e.19.1 8
13.2 odd 12 inner 169.3.f.e.89.2 8
13.3 even 3 inner 169.3.f.e.80.2 8
13.4 even 6 169.3.d.b.70.2 yes 4
13.5 odd 4 inner 169.3.f.e.150.1 8
13.6 odd 12 169.3.d.b.99.2 yes 4
13.7 odd 12 169.3.d.b.99.1 yes 4
13.8 odd 4 inner 169.3.f.e.150.2 8
13.9 even 3 169.3.d.b.70.1 4
13.10 even 6 inner 169.3.f.e.80.1 8
13.11 odd 12 inner 169.3.f.e.89.1 8
13.12 even 2 inner 169.3.f.e.19.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
169.3.d.b.70.1 4 13.9 even 3
169.3.d.b.70.2 yes 4 13.4 even 6
169.3.d.b.99.1 yes 4 13.7 odd 12
169.3.d.b.99.2 yes 4 13.6 odd 12
169.3.f.e.19.1 8 1.1 even 1 trivial
169.3.f.e.19.2 8 13.12 even 2 inner
169.3.f.e.80.1 8 13.10 even 6 inner
169.3.f.e.80.2 8 13.3 even 3 inner
169.3.f.e.89.1 8 13.11 odd 12 inner
169.3.f.e.89.2 8 13.2 odd 12 inner
169.3.f.e.150.1 8 13.5 odd 4 inner
169.3.f.e.150.2 8 13.8 odd 4 inner