Properties

Label 169.3.f.g.150.12
Level $169$
Weight $3$
Character 169.150
Analytic conductor $4.605$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,3,Mod(19,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.19");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 169.f (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.60491646769\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 150.12
Character \(\chi\) \(=\) 169.150
Dual form 169.3.f.g.80.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.11493 - 0.834643i) q^{2} +(1.02304 - 1.77195i) q^{3} +(5.54206 - 3.19971i) q^{4} +(-5.50472 - 5.50472i) q^{5} +(1.70774 - 6.37336i) q^{6} +(3.16050 + 0.846854i) q^{7} +(5.47136 - 5.47136i) q^{8} +(2.40680 + 4.16870i) q^{9} +(-21.7413 - 12.5523i) q^{10} +(1.31331 + 4.90135i) q^{11} -13.0937i q^{12} +10.5516 q^{14} +(-15.3856 + 4.12256i) q^{15} +(-0.322570 + 0.558708i) q^{16} +(8.72503 - 5.03740i) q^{17} +(10.9764 + 10.9764i) q^{18} +(3.07725 - 11.4845i) q^{19} +(-48.1209 - 12.8940i) q^{20} +(4.73388 - 4.73388i) q^{21} +(8.18176 + 14.1712i) q^{22} +(27.5785 + 15.9225i) q^{23} +(-4.09757 - 15.2924i) q^{24} +35.6038i q^{25} +28.2636 q^{27} +(20.2254 - 5.41937i) q^{28} +(-16.3339 + 28.2912i) q^{29} +(-44.4842 + 25.6830i) q^{30} +(-8.05564 - 8.05564i) q^{31} +(-8.54908 + 31.9056i) q^{32} +(10.0285 + 2.68713i) q^{33} +(22.9734 - 22.9734i) q^{34} +(-12.7360 - 22.0593i) q^{35} +(26.6772 + 15.4021i) q^{36} +(-11.4664 - 42.7934i) q^{37} -38.3417i q^{38} -60.2365 q^{40} +(-45.6623 + 12.2352i) q^{41} +(10.7946 - 18.6968i) q^{42} +(20.1558 - 11.6370i) q^{43} +(22.9614 + 22.9614i) q^{44} +(9.69875 - 36.1962i) q^{45} +(99.1947 + 26.5792i) q^{46} +(-64.6057 + 64.6057i) q^{47} +(0.660002 + 1.14316i) q^{48} +(-33.1636 - 19.1470i) q^{49} +(29.7165 + 110.903i) q^{50} -20.6138i q^{51} -48.7831 q^{53} +(88.0391 - 23.5900i) q^{54} +(19.7511 - 34.2100i) q^{55} +(21.9257 - 12.6588i) q^{56} +(-17.2018 - 17.2018i) q^{57} +(-27.2660 + 101.758i) q^{58} +(23.5644 + 6.31406i) q^{59} +(-72.0768 + 72.0768i) q^{60} +(-6.30335 - 10.9177i) q^{61} +(-31.8163 - 18.3692i) q^{62} +(4.07641 + 15.2134i) q^{63} +103.939i q^{64} +33.4809 q^{66} +(-16.7314 + 4.48316i) q^{67} +(32.2364 - 55.8351i) q^{68} +(56.4276 - 32.5785i) q^{69} +(-58.0833 - 58.0833i) q^{70} +(10.4073 - 38.8404i) q^{71} +(35.9769 + 9.63998i) q^{72} +(76.5080 - 76.5080i) q^{73} +(-71.4344 - 123.728i) q^{74} +(63.0881 + 36.4239i) q^{75} +(-19.6926 - 73.4939i) q^{76} +16.6029i q^{77} -94.0887 q^{79} +(4.85119 - 1.29987i) q^{80} +(7.25346 - 12.5634i) q^{81} +(-132.023 + 76.2235i) q^{82} +(33.6177 + 33.6177i) q^{83} +(11.0884 - 41.3825i) q^{84} +(-75.7583 - 20.2994i) q^{85} +(53.0713 - 53.0713i) q^{86} +(33.4204 + 57.8858i) q^{87} +(34.0027 + 19.6314i) q^{88} +(9.39084 + 35.0471i) q^{89} -120.844i q^{90} +203.789 q^{92} +(-22.5154 + 6.03298i) q^{93} +(-147.319 + 255.165i) q^{94} +(-80.1582 + 46.2793i) q^{95} +(47.7891 + 47.7891i) q^{96} +(-10.7486 + 40.1144i) q^{97} +(-119.283 - 31.9619i) q^{98} +(-17.2714 + 17.2714i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 12 q^{3} - 84 q^{9} + 376 q^{14} - 188 q^{16} + 136 q^{22} + 120 q^{27} - 84 q^{29} - 176 q^{35} - 1048 q^{40} + 368 q^{42} + 368 q^{48} - 88 q^{53} + 704 q^{55} + 8 q^{61} - 1480 q^{66} + 168 q^{68}+ \cdots - 1132 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.11493 0.834643i 1.55746 0.417321i 0.625605 0.780140i \(-0.284852\pi\)
0.931860 + 0.362819i \(0.118186\pi\)
\(3\) 1.02304 1.77195i 0.341012 0.590650i −0.643609 0.765354i \(-0.722564\pi\)
0.984621 + 0.174705i \(0.0558971\pi\)
\(4\) 5.54206 3.19971i 1.38551 0.799927i
\(5\) −5.50472 5.50472i −1.10094 1.10094i −0.994297 0.106646i \(-0.965989\pi\)
−0.106646 0.994297i \(-0.534011\pi\)
\(6\) 1.70774 6.37336i 0.284623 1.06223i
\(7\) 3.16050 + 0.846854i 0.451500 + 0.120979i 0.477401 0.878685i \(-0.341579\pi\)
−0.0259011 + 0.999665i \(0.508246\pi\)
\(8\) 5.47136 5.47136i 0.683920 0.683920i
\(9\) 2.40680 + 4.16870i 0.267422 + 0.463189i
\(10\) −21.7413 12.5523i −2.17413 1.25523i
\(11\) 1.31331 + 4.90135i 0.119392 + 0.445578i 0.999578 0.0290518i \(-0.00924876\pi\)
−0.880186 + 0.474629i \(0.842582\pi\)
\(12\) 13.0937i 1.09114i
\(13\) 0 0
\(14\) 10.5516 0.753683
\(15\) −15.3856 + 4.12256i −1.02571 + 0.274837i
\(16\) −0.322570 + 0.558708i −0.0201607 + 0.0349193i
\(17\) 8.72503 5.03740i 0.513237 0.296318i −0.220926 0.975291i \(-0.570908\pi\)
0.734163 + 0.678973i \(0.237575\pi\)
\(18\) 10.9764 + 10.9764i 0.609799 + 0.609799i
\(19\) 3.07725 11.4845i 0.161961 0.604446i −0.836448 0.548047i \(-0.815371\pi\)
0.998408 0.0563988i \(-0.0179618\pi\)
\(20\) −48.1209 12.8940i −2.40605 0.644698i
\(21\) 4.73388 4.73388i 0.225423 0.225423i
\(22\) 8.18176 + 14.1712i 0.371898 + 0.644147i
\(23\) 27.5785 + 15.9225i 1.19907 + 0.692281i 0.960347 0.278807i \(-0.0899391\pi\)
0.238719 + 0.971089i \(0.423272\pi\)
\(24\) −4.09757 15.2924i −0.170732 0.637181i
\(25\) 35.6038i 1.42415i
\(26\) 0 0
\(27\) 28.2636 1.04680
\(28\) 20.2254 5.41937i 0.722334 0.193549i
\(29\) −16.3339 + 28.2912i −0.563239 + 0.975559i 0.433972 + 0.900927i \(0.357112\pi\)
−0.997211 + 0.0746329i \(0.976222\pi\)
\(30\) −44.4842 + 25.6830i −1.48281 + 0.856098i
\(31\) −8.05564 8.05564i −0.259859 0.259859i 0.565137 0.824997i \(-0.308823\pi\)
−0.824997 + 0.565137i \(0.808823\pi\)
\(32\) −8.54908 + 31.9056i −0.267159 + 0.997050i
\(33\) 10.0285 + 2.68713i 0.303894 + 0.0814283i
\(34\) 22.9734 22.9734i 0.675689 0.675689i
\(35\) −12.7360 22.0593i −0.363885 0.630267i
\(36\) 26.6772 + 15.4021i 0.741034 + 0.427836i
\(37\) −11.4664 42.7934i −0.309904 1.15658i −0.928641 0.370979i \(-0.879022\pi\)
0.618737 0.785598i \(-0.287645\pi\)
\(38\) 38.3417i 1.00899i
\(39\) 0 0
\(40\) −60.2365 −1.50591
\(41\) −45.6623 + 12.2352i −1.11372 + 0.298419i −0.768338 0.640045i \(-0.778916\pi\)
−0.345378 + 0.938464i \(0.612249\pi\)
\(42\) 10.7946 18.6968i 0.257015 0.445162i
\(43\) 20.1558 11.6370i 0.468740 0.270627i −0.246972 0.969023i \(-0.579436\pi\)
0.715712 + 0.698395i \(0.246102\pi\)
\(44\) 22.9614 + 22.9614i 0.521849 + 0.521849i
\(45\) 9.69875 36.1962i 0.215528 0.804361i
\(46\) 99.1947 + 26.5792i 2.15641 + 0.577808i
\(47\) −64.6057 + 64.6057i −1.37459 + 1.37459i −0.521082 + 0.853506i \(0.674472\pi\)
−0.853506 + 0.521082i \(0.825528\pi\)
\(48\) 0.660002 + 1.14316i 0.0137500 + 0.0238158i
\(49\) −33.1636 19.1470i −0.676809 0.390756i
\(50\) 29.7165 + 110.903i 0.594329 + 2.21807i
\(51\) 20.6138i 0.404191i
\(52\) 0 0
\(53\) −48.7831 −0.920436 −0.460218 0.887806i \(-0.652229\pi\)
−0.460218 + 0.887806i \(0.652229\pi\)
\(54\) 88.0391 23.5900i 1.63035 0.436852i
\(55\) 19.7511 34.2100i 0.359112 0.622000i
\(56\) 21.9257 12.6588i 0.391530 0.226050i
\(57\) −17.2018 17.2018i −0.301785 0.301785i
\(58\) −27.2660 + 101.758i −0.470104 + 1.75445i
\(59\) 23.5644 + 6.31406i 0.399397 + 0.107018i 0.452926 0.891548i \(-0.350380\pi\)
−0.0535290 + 0.998566i \(0.517047\pi\)
\(60\) −72.0768 + 72.0768i −1.20128 + 1.20128i
\(61\) −6.30335 10.9177i −0.103334 0.178979i 0.809723 0.586813i \(-0.199618\pi\)
−0.913056 + 0.407834i \(0.866284\pi\)
\(62\) −31.8163 18.3692i −0.513167 0.296277i
\(63\) 4.07641 + 15.2134i 0.0647049 + 0.241482i
\(64\) 103.939i 1.62404i
\(65\) 0 0
\(66\) 33.4809 0.507287
\(67\) −16.7314 + 4.48316i −0.249722 + 0.0669128i −0.381508 0.924365i \(-0.624595\pi\)
0.131787 + 0.991278i \(0.457929\pi\)
\(68\) 32.2364 55.8351i 0.474065 0.821105i
\(69\) 56.4276 32.5785i 0.817791 0.472152i
\(70\) −58.0833 58.0833i −0.829762 0.829762i
\(71\) 10.4073 38.8404i 0.146581 0.547048i −0.853099 0.521749i \(-0.825280\pi\)
0.999680 0.0252987i \(-0.00805370\pi\)
\(72\) 35.9769 + 9.63998i 0.499679 + 0.133889i
\(73\) 76.5080 76.5080i 1.04806 1.04806i 0.0492695 0.998786i \(-0.484311\pi\)
0.998786 0.0492695i \(-0.0156893\pi\)
\(74\) −71.4344 123.728i −0.965329 1.67200i
\(75\) 63.0881 + 36.4239i 0.841175 + 0.485653i
\(76\) −19.6926 73.4939i −0.259114 0.967025i
\(77\) 16.6029i 0.215622i
\(78\) 0 0
\(79\) −94.0887 −1.19100 −0.595498 0.803357i \(-0.703045\pi\)
−0.595498 + 0.803357i \(0.703045\pi\)
\(80\) 4.85119 1.29987i 0.0606399 0.0162484i
\(81\) 7.25346 12.5634i 0.0895489 0.155103i
\(82\) −132.023 + 76.2235i −1.61004 + 0.929555i
\(83\) 33.6177 + 33.6177i 0.405032 + 0.405032i 0.880002 0.474970i \(-0.157541\pi\)
−0.474970 + 0.880002i \(0.657541\pi\)
\(84\) 11.0884 41.3825i 0.132005 0.492649i
\(85\) −75.7583 20.2994i −0.891274 0.238816i
\(86\) 53.0713 53.0713i 0.617108 0.617108i
\(87\) 33.4204 + 57.8858i 0.384143 + 0.665354i
\(88\) 34.0027 + 19.6314i 0.386394 + 0.223085i
\(89\) 9.39084 + 35.0471i 0.105515 + 0.393788i 0.998403 0.0564911i \(-0.0179913\pi\)
−0.892888 + 0.450279i \(0.851325\pi\)
\(90\) 120.844i 1.34271i
\(91\) 0 0
\(92\) 203.789 2.21510
\(93\) −22.5154 + 6.03298i −0.242101 + 0.0648708i
\(94\) −147.319 + 255.165i −1.56723 + 2.71452i
\(95\) −80.1582 + 46.2793i −0.843770 + 0.487151i
\(96\) 47.7891 + 47.7891i 0.497803 + 0.497803i
\(97\) −10.7486 + 40.1144i −0.110810 + 0.413550i −0.998939 0.0460441i \(-0.985339\pi\)
0.888129 + 0.459594i \(0.152005\pi\)
\(98\) −119.283 31.9619i −1.21718 0.326142i
\(99\) −17.2714 + 17.2714i −0.174458 + 0.174458i
\(100\) 113.922 + 197.318i 1.13922 + 1.97318i
\(101\) 20.6108 + 11.8997i 0.204067 + 0.117818i 0.598551 0.801085i \(-0.295743\pi\)
−0.394484 + 0.918903i \(0.629077\pi\)
\(102\) −17.2051 64.2104i −0.168678 0.629514i
\(103\) 99.0034i 0.961198i −0.876940 0.480599i \(-0.840419\pi\)
0.876940 0.480599i \(-0.159581\pi\)
\(104\) 0 0
\(105\) −52.1174 −0.496356
\(106\) −151.956 + 40.7165i −1.43355 + 0.384118i
\(107\) 72.7606 126.025i 0.680006 1.17780i −0.294972 0.955506i \(-0.595310\pi\)
0.974978 0.222299i \(-0.0713562\pi\)
\(108\) 156.638 90.4352i 1.45036 0.837363i
\(109\) 104.897 + 104.897i 0.962359 + 0.962359i 0.999317 0.0369580i \(-0.0117668\pi\)
−0.0369580 + 0.999317i \(0.511767\pi\)
\(110\) 32.9703 123.047i 0.299730 1.11861i
\(111\) −87.5582 23.4612i −0.788813 0.211362i
\(112\) −1.49263 + 1.49263i −0.0133270 + 0.0133270i
\(113\) 20.4781 + 35.4690i 0.181222 + 0.313885i 0.942297 0.334778i \(-0.108661\pi\)
−0.761075 + 0.648664i \(0.775328\pi\)
\(114\) −67.9396 39.2249i −0.595961 0.344078i
\(115\) −64.1633 239.461i −0.557942 2.08227i
\(116\) 209.055i 1.80220i
\(117\) 0 0
\(118\) 78.6714 0.666707
\(119\) 31.8414 8.53188i 0.267575 0.0716965i
\(120\) −61.6241 + 106.736i −0.513534 + 0.889467i
\(121\) 82.4906 47.6260i 0.681740 0.393603i
\(122\) −28.7469 28.7469i −0.235630 0.235630i
\(123\) −25.0340 + 93.4283i −0.203529 + 0.759580i
\(124\) −70.4205 18.8691i −0.567907 0.152170i
\(125\) 58.3709 58.3709i 0.466967 0.466967i
\(126\) 25.3955 + 43.9862i 0.201551 + 0.349097i
\(127\) −100.148 57.8204i −0.788566 0.455279i 0.0508914 0.998704i \(-0.483794\pi\)
−0.839457 + 0.543425i \(0.817127\pi\)
\(128\) 52.5553 + 196.139i 0.410588 + 1.53234i
\(129\) 47.6201i 0.369148i
\(130\) 0 0
\(131\) 55.6501 0.424810 0.212405 0.977182i \(-0.431870\pi\)
0.212405 + 0.977182i \(0.431870\pi\)
\(132\) 64.1766 17.1961i 0.486187 0.130273i
\(133\) 19.4513 33.6907i 0.146251 0.253313i
\(134\) −48.3752 + 27.9294i −0.361009 + 0.208429i
\(135\) −155.583 155.583i −1.15247 1.15247i
\(136\) 20.1764 75.2992i 0.148356 0.553670i
\(137\) −30.5160 8.17673i −0.222744 0.0596841i 0.145721 0.989326i \(-0.453450\pi\)
−0.368465 + 0.929642i \(0.620117\pi\)
\(138\) 148.577 148.577i 1.07664 1.07664i
\(139\) −116.947 202.558i −0.841343 1.45725i −0.888759 0.458374i \(-0.848432\pi\)
0.0474162 0.998875i \(-0.484901\pi\)
\(140\) −141.167 81.5028i −1.00834 0.582163i
\(141\) 48.3841 + 180.572i 0.343149 + 1.28065i
\(142\) 129.671i 0.913180i
\(143\) 0 0
\(144\) −3.10545 −0.0215656
\(145\) 245.649 65.8214i 1.69413 0.453941i
\(146\) 174.460 302.174i 1.19493 2.06968i
\(147\) −67.8551 + 39.1762i −0.461600 + 0.266505i
\(148\) −200.474 200.474i −1.35455 1.35455i
\(149\) 46.0054 171.694i 0.308761 1.15231i −0.620899 0.783891i \(-0.713232\pi\)
0.929659 0.368420i \(-0.120101\pi\)
\(150\) 226.916 + 60.8020i 1.51277 + 0.405346i
\(151\) −32.9910 + 32.9910i −0.218484 + 0.218484i −0.807859 0.589376i \(-0.799374\pi\)
0.589376 + 0.807859i \(0.299374\pi\)
\(152\) −45.9989 79.6724i −0.302624 0.524160i
\(153\) 41.9988 + 24.2480i 0.274502 + 0.158484i
\(154\) 13.8575 + 51.7169i 0.0899838 + 0.335824i
\(155\) 88.6880i 0.572181i
\(156\) 0 0
\(157\) 61.3344 0.390665 0.195332 0.980737i \(-0.437421\pi\)
0.195332 + 0.980737i \(0.437421\pi\)
\(158\) −293.080 + 78.5305i −1.85494 + 0.497028i
\(159\) −49.9068 + 86.4411i −0.313879 + 0.543655i
\(160\) 222.692 128.571i 1.39182 0.803569i
\(161\) 73.6779 + 73.6779i 0.457627 + 0.457627i
\(162\) 12.1081 45.1880i 0.0747413 0.278938i
\(163\) 155.296 + 41.6113i 0.952734 + 0.255284i 0.701522 0.712648i \(-0.252504\pi\)
0.251212 + 0.967932i \(0.419171\pi\)
\(164\) −213.914 + 213.914i −1.30435 + 1.30435i
\(165\) −40.4122 69.9960i −0.244923 0.424218i
\(166\) 132.775 + 76.6580i 0.799852 + 0.461795i
\(167\) 4.34745 + 16.2249i 0.0260326 + 0.0971551i 0.977720 0.209914i \(-0.0673184\pi\)
−0.951687 + 0.307069i \(0.900652\pi\)
\(168\) 51.8015i 0.308342i
\(169\) 0 0
\(170\) −252.925 −1.48779
\(171\) 55.2816 14.8127i 0.323284 0.0866238i
\(172\) 74.4699 128.986i 0.432964 0.749916i
\(173\) 33.5017 19.3422i 0.193651 0.111805i −0.400039 0.916498i \(-0.631004\pi\)
0.593691 + 0.804693i \(0.297670\pi\)
\(174\) 152.416 + 152.416i 0.875955 + 0.875955i
\(175\) −30.1512 + 112.526i −0.172293 + 0.643005i
\(176\) −3.16206 0.847272i −0.0179663 0.00481405i
\(177\) 35.2954 35.2954i 0.199409 0.199409i
\(178\) 58.5036 + 101.331i 0.328672 + 0.569277i
\(179\) −240.631 138.929i −1.34431 0.776137i −0.356873 0.934153i \(-0.616157\pi\)
−0.987437 + 0.158016i \(0.949490\pi\)
\(180\) −62.0663 231.635i −0.344813 1.28686i
\(181\) 13.3679i 0.0738556i −0.999318 0.0369278i \(-0.988243\pi\)
0.999318 0.0369278i \(-0.0117572\pi\)
\(182\) 0 0
\(183\) −25.7942 −0.140952
\(184\) 238.009 63.7744i 1.29353 0.346600i
\(185\) −172.446 + 298.685i −0.932140 + 1.61451i
\(186\) −65.0985 + 37.5846i −0.349992 + 0.202068i
\(187\) 36.1488 + 36.1488i 0.193309 + 0.193309i
\(188\) −151.329 + 564.768i −0.804942 + 3.00408i
\(189\) 89.3271 + 23.9351i 0.472630 + 0.126641i
\(190\) −211.060 + 211.060i −1.11084 + 1.11084i
\(191\) 163.781 + 283.678i 0.857494 + 1.48522i 0.874312 + 0.485365i \(0.161313\pi\)
−0.0168172 + 0.999859i \(0.505353\pi\)
\(192\) 184.174 + 106.333i 0.959239 + 0.553817i
\(193\) 60.6375 + 226.302i 0.314184 + 1.17255i 0.924747 + 0.380583i \(0.124277\pi\)
−0.610563 + 0.791968i \(0.709057\pi\)
\(194\) 133.925i 0.690333i
\(195\) 0 0
\(196\) −245.060 −1.25030
\(197\) −93.9516 + 25.1743i −0.476912 + 0.127788i −0.489264 0.872136i \(-0.662735\pi\)
0.0123525 + 0.999924i \(0.496068\pi\)
\(198\) −39.3837 + 68.2146i −0.198908 + 0.344518i
\(199\) −231.474 + 133.641i −1.16318 + 0.671564i −0.952065 0.305896i \(-0.901044\pi\)
−0.211119 + 0.977460i \(0.567711\pi\)
\(200\) 194.801 + 194.801i 0.974005 + 0.974005i
\(201\) −9.17285 + 34.2335i −0.0456361 + 0.170316i
\(202\) 74.1332 + 19.8639i 0.366996 + 0.0983362i
\(203\) −75.5820 + 75.5820i −0.372325 + 0.372325i
\(204\) −65.9580 114.243i −0.323323 0.560013i
\(205\) 318.709 + 184.007i 1.55468 + 0.897595i
\(206\) −82.6325 308.389i −0.401129 1.49703i
\(207\) 153.289i 0.740525i
\(208\) 0 0
\(209\) 60.3309 0.288664
\(210\) −162.342 + 43.4994i −0.773057 + 0.207140i
\(211\) 79.7306 138.097i 0.377870 0.654490i −0.612882 0.790174i \(-0.709990\pi\)
0.990752 + 0.135684i \(0.0433233\pi\)
\(212\) −270.359 + 156.092i −1.27528 + 0.736281i
\(213\) −58.1762 58.1762i −0.273128 0.273128i
\(214\) 121.458 453.289i 0.567562 2.11817i
\(215\) −175.010 46.8939i −0.814002 0.218111i
\(216\) 154.640 154.640i 0.715927 0.715927i
\(217\) −18.6379 32.2818i −0.0858890 0.148764i
\(218\) 414.299 + 239.195i 1.90045 + 1.09723i
\(219\) −57.2979 213.839i −0.261634 0.976432i
\(220\) 252.792i 1.14905i
\(221\) 0 0
\(222\) −292.319 −1.31675
\(223\) −178.197 + 47.7476i −0.799088 + 0.214115i −0.635183 0.772361i \(-0.719075\pi\)
−0.163904 + 0.986476i \(0.552409\pi\)
\(224\) −54.0388 + 93.5979i −0.241244 + 0.417848i
\(225\) −148.421 + 85.6912i −0.659651 + 0.380850i
\(226\) 93.3917 + 93.3917i 0.413238 + 0.413238i
\(227\) −57.8250 + 215.806i −0.254736 + 0.950687i 0.713502 + 0.700654i \(0.247108\pi\)
−0.968237 + 0.250033i \(0.919559\pi\)
\(228\) −150.374 40.2925i −0.659534 0.176722i
\(229\) −7.86632 + 7.86632i −0.0343508 + 0.0343508i −0.724074 0.689723i \(-0.757732\pi\)
0.689723 + 0.724074i \(0.257732\pi\)
\(230\) −399.728 692.350i −1.73795 3.01022i
\(231\) 29.4195 + 16.9854i 0.127357 + 0.0735297i
\(232\) 65.4225 + 244.160i 0.281994 + 1.05241i
\(233\) 39.1708i 0.168115i 0.996461 + 0.0840575i \(0.0267879\pi\)
−0.996461 + 0.0840575i \(0.973212\pi\)
\(234\) 0 0
\(235\) 711.272 3.02669
\(236\) 150.798 40.4063i 0.638976 0.171213i
\(237\) −96.2561 + 166.720i −0.406144 + 0.703462i
\(238\) 92.0627 53.1524i 0.386818 0.223330i
\(239\) −274.654 274.654i −1.14918 1.14918i −0.986714 0.162466i \(-0.948055\pi\)
−0.162466 0.986714i \(-0.551945\pi\)
\(240\) 2.65963 9.92588i 0.0110818 0.0413578i
\(241\) 331.779 + 88.8999i 1.37668 + 0.368879i 0.869913 0.493205i \(-0.164175\pi\)
0.506764 + 0.862085i \(0.330842\pi\)
\(242\) 217.202 217.202i 0.897528 0.897528i
\(243\) 112.345 + 194.587i 0.462325 + 0.800771i
\(244\) −69.8671 40.3378i −0.286340 0.165319i
\(245\) 77.1574 + 287.955i 0.314928 + 1.17533i
\(246\) 311.917i 1.26796i
\(247\) 0 0
\(248\) −88.1506 −0.355446
\(249\) 93.9609 25.1767i 0.377353 0.101111i
\(250\) 133.102 230.540i 0.532410 0.922161i
\(251\) −15.1070 + 8.72206i −0.0601874 + 0.0347492i −0.529792 0.848128i \(-0.677730\pi\)
0.469604 + 0.882877i \(0.344397\pi\)
\(252\) 71.2701 + 71.2701i 0.282818 + 0.282818i
\(253\) −41.8224 + 156.083i −0.165306 + 0.616930i
\(254\) −360.213 96.5188i −1.41816 0.379995i
\(255\) −113.473 + 113.473i −0.444992 + 0.444992i
\(256\) 119.535 + 207.040i 0.466933 + 0.808752i
\(257\) −232.356 134.151i −0.904107 0.521986i −0.0255766 0.999673i \(-0.508142\pi\)
−0.878530 + 0.477686i \(0.841476\pi\)
\(258\) −39.7458 148.333i −0.154054 0.574936i
\(259\) 144.959i 0.559687i
\(260\) 0 0
\(261\) −157.250 −0.602491
\(262\) 173.346 46.4480i 0.661626 0.177282i
\(263\) 6.06253 10.5006i 0.0230515 0.0399263i −0.854270 0.519830i \(-0.825995\pi\)
0.877321 + 0.479904i \(0.159329\pi\)
\(264\) 69.5718 40.1673i 0.263530 0.152149i
\(265\) 268.537 + 268.537i 1.01335 + 1.01335i
\(266\) 32.4698 121.179i 0.122067 0.455560i
\(267\) 71.7088 + 19.2143i 0.268572 + 0.0719638i
\(268\) −78.3814 + 78.3814i −0.292468 + 0.292468i
\(269\) 59.2202 + 102.572i 0.220150 + 0.381310i 0.954853 0.297078i \(-0.0960121\pi\)
−0.734704 + 0.678388i \(0.762679\pi\)
\(270\) −614.486 354.774i −2.27588 1.31398i
\(271\) 36.3626 + 135.707i 0.134179 + 0.500764i 1.00000 0.000409306i \(0.000130286\pi\)
−0.865821 + 0.500354i \(0.833203\pi\)
\(272\) 6.49967i 0.0238958i
\(273\) 0 0
\(274\) −101.880 −0.371824
\(275\) −174.507 + 46.7590i −0.634570 + 0.170033i
\(276\) 208.483 361.104i 0.755374 1.30835i
\(277\) 469.067 270.816i 1.69338 0.977676i 0.741632 0.670807i \(-0.234052\pi\)
0.951752 0.306869i \(-0.0992812\pi\)
\(278\) −533.344 533.344i −1.91850 1.91850i
\(279\) 14.1932 52.9698i 0.0508718 0.189856i
\(280\) −190.378 51.0115i −0.679920 0.182184i
\(281\) 57.5732 57.5732i 0.204887 0.204887i −0.597203 0.802090i \(-0.703721\pi\)
0.802090 + 0.597203i \(0.203721\pi\)
\(282\) 301.426 + 522.085i 1.06889 + 1.85137i
\(283\) −132.682 76.6042i −0.468842 0.270686i 0.246913 0.969038i \(-0.420584\pi\)
−0.715755 + 0.698352i \(0.753917\pi\)
\(284\) −66.6004 248.556i −0.234508 0.875197i
\(285\) 189.382i 0.664497i
\(286\) 0 0
\(287\) −154.677 −0.538945
\(288\) −153.581 + 41.1518i −0.533267 + 0.142888i
\(289\) −93.7492 + 162.378i −0.324392 + 0.561863i
\(290\) 710.242 410.058i 2.44911 1.41399i
\(291\) 60.0844 + 60.0844i 0.206476 + 0.206476i
\(292\) 179.208 668.815i 0.613728 2.29046i
\(293\) 225.815 + 60.5070i 0.770700 + 0.206509i 0.622681 0.782476i \(-0.286043\pi\)
0.148020 + 0.988984i \(0.452710\pi\)
\(294\) −178.666 + 178.666i −0.607707 + 0.607707i
\(295\) −94.9582 164.472i −0.321892 0.557534i
\(296\) −296.875 171.401i −1.00296 0.579057i
\(297\) 37.1190 + 138.530i 0.124980 + 0.466430i
\(298\) 573.214i 1.92354i
\(299\) 0 0
\(300\) 466.184 1.55395
\(301\) 73.5573 19.7096i 0.244377 0.0654805i
\(302\) −75.2290 + 130.300i −0.249103 + 0.431458i
\(303\) 42.1711 24.3475i 0.139179 0.0803549i
\(304\) 5.42384 + 5.42384i 0.0178416 + 0.0178416i
\(305\) −25.4008 + 94.7972i −0.0832814 + 0.310810i
\(306\) 151.062 + 40.4769i 0.493666 + 0.132277i
\(307\) 115.257 115.257i 0.375429 0.375429i −0.494021 0.869450i \(-0.664473\pi\)
0.869450 + 0.494021i \(0.164473\pi\)
\(308\) 53.1245 + 92.0143i 0.172482 + 0.298748i
\(309\) −175.429 101.284i −0.567731 0.327780i
\(310\) 74.0228 + 276.257i 0.238783 + 0.891152i
\(311\) 511.349i 1.64421i −0.569336 0.822105i \(-0.692799\pi\)
0.569336 0.822105i \(-0.307201\pi\)
\(312\) 0 0
\(313\) 59.4173 0.189832 0.0949158 0.995485i \(-0.469742\pi\)
0.0949158 + 0.995485i \(0.469742\pi\)
\(314\) 191.052 51.1923i 0.608447 0.163033i
\(315\) 61.3058 106.185i 0.194622 0.337095i
\(316\) −521.445 + 301.056i −1.65014 + 0.952710i
\(317\) 115.961 + 115.961i 0.365808 + 0.365808i 0.865946 0.500138i \(-0.166717\pi\)
−0.500138 + 0.865946i \(0.666717\pi\)
\(318\) −83.3087 + 310.912i −0.261977 + 0.977712i
\(319\) −160.117 42.9032i −0.501934 0.134493i
\(320\) 572.153 572.153i 1.78798 1.78798i
\(321\) −148.873 257.856i −0.463780 0.803291i
\(322\) 290.996 + 168.007i 0.903715 + 0.521760i
\(323\) −31.0027 115.704i −0.0959837 0.358216i
\(324\) 92.8358i 0.286530i
\(325\) 0 0
\(326\) 518.466 1.59039
\(327\) 293.186 78.5589i 0.896592 0.240241i
\(328\) −182.892 + 316.778i −0.557597 + 0.965786i
\(329\) −258.898 + 149.475i −0.786923 + 0.454330i
\(330\) −184.303 184.303i −0.558494 0.558494i
\(331\) 141.631 528.576i 0.427890 1.59691i −0.329641 0.944106i \(-0.606928\pi\)
0.757531 0.652800i \(-0.226406\pi\)
\(332\) 293.878 + 78.7443i 0.885174 + 0.237182i
\(333\) 150.795 150.795i 0.452838 0.452838i
\(334\) 27.0840 + 46.9109i 0.0810898 + 0.140452i
\(335\) 116.780 + 67.4229i 0.348597 + 0.201262i
\(336\) 1.11785 + 4.17187i 0.00332693 + 0.0124163i
\(337\) 514.522i 1.52677i 0.645942 + 0.763386i \(0.276465\pi\)
−0.645942 + 0.763386i \(0.723535\pi\)
\(338\) 0 0
\(339\) 83.7991 0.247195
\(340\) −484.809 + 129.904i −1.42591 + 0.382071i
\(341\) 28.9040 50.0631i 0.0847624 0.146813i
\(342\) 159.835 92.2808i 0.467354 0.269827i
\(343\) −201.968 201.968i −0.588827 0.588827i
\(344\) 46.6097 173.950i 0.135493 0.505668i
\(345\) −489.953 131.283i −1.42015 0.380529i
\(346\) 88.2116 88.2116i 0.254947 0.254947i
\(347\) 86.2782 + 149.438i 0.248640 + 0.430658i 0.963149 0.268969i \(-0.0866829\pi\)
−0.714508 + 0.699627i \(0.753350\pi\)
\(348\) 370.435 + 213.871i 1.06447 + 0.614572i
\(349\) −170.035 634.579i −0.487206 1.81828i −0.569916 0.821703i \(-0.693024\pi\)
0.0827101 0.996574i \(-0.473642\pi\)
\(350\) 375.676i 1.07336i
\(351\) 0 0
\(352\) −167.608 −0.476160
\(353\) 69.8740 18.7227i 0.197943 0.0530388i −0.158485 0.987361i \(-0.550661\pi\)
0.356429 + 0.934323i \(0.383994\pi\)
\(354\) 80.4836 139.402i 0.227355 0.393790i
\(355\) −271.094 + 156.516i −0.763646 + 0.440891i
\(356\) 164.185 + 164.185i 0.461194 + 0.461194i
\(357\) 17.4568 65.1498i 0.0488987 0.182492i
\(358\) −865.506 231.912i −2.41761 0.647798i
\(359\) −336.848 + 336.848i −0.938295 + 0.938295i −0.998204 0.0599089i \(-0.980919\pi\)
0.0599089 + 0.998204i \(0.480919\pi\)
\(360\) −144.977 251.108i −0.402714 0.697522i
\(361\) 190.212 + 109.819i 0.526902 + 0.304207i
\(362\) −11.1574 41.6399i −0.0308215 0.115027i
\(363\) 194.892i 0.536893i
\(364\) 0 0
\(365\) −842.310 −2.30770
\(366\) −80.3471 + 21.5289i −0.219528 + 0.0588223i
\(367\) 24.9938 43.2905i 0.0681030 0.117958i −0.829963 0.557818i \(-0.811639\pi\)
0.898066 + 0.439860i \(0.144972\pi\)
\(368\) −17.7920 + 10.2722i −0.0483479 + 0.0279137i
\(369\) −160.905 160.905i −0.436056 0.436056i
\(370\) −287.861 + 1074.31i −0.778004 + 2.90355i
\(371\) −154.179 41.3121i −0.415577 0.111353i
\(372\) −105.478 + 105.478i −0.283542 + 0.283542i
\(373\) −113.491 196.572i −0.304265 0.527003i 0.672832 0.739795i \(-0.265078\pi\)
−0.977097 + 0.212792i \(0.931744\pi\)
\(374\) 142.772 + 82.4296i 0.381744 + 0.220400i
\(375\) −43.7148 163.146i −0.116573 0.435055i
\(376\) 706.961i 1.88022i
\(377\) 0 0
\(378\) 298.225 0.788955
\(379\) −9.15147 + 2.45213i −0.0241464 + 0.00647000i −0.270872 0.962615i \(-0.587312\pi\)
0.246726 + 0.969085i \(0.420645\pi\)
\(380\) −296.161 + 512.965i −0.779370 + 1.34991i
\(381\) −204.910 + 118.305i −0.537820 + 0.310511i
\(382\) 746.937 + 746.937i 1.95533 + 1.95533i
\(383\) −22.2644 + 83.0919i −0.0581316 + 0.216950i −0.988881 0.148707i \(-0.952489\pi\)
0.930750 + 0.365657i \(0.119156\pi\)
\(384\) 401.314 + 107.532i 1.04509 + 0.280031i
\(385\) 91.3943 91.3943i 0.237388 0.237388i
\(386\) 377.763 + 654.305i 0.978661 + 1.69509i
\(387\) 97.0221 + 56.0157i 0.250703 + 0.144743i
\(388\) 68.7848 + 256.709i 0.177281 + 0.661620i
\(389\) 34.7670i 0.0893754i −0.999001 0.0446877i \(-0.985771\pi\)
0.999001 0.0446877i \(-0.0142293\pi\)
\(390\) 0 0
\(391\) 320.831 0.820541
\(392\) −286.210 + 76.6898i −0.730128 + 0.195637i
\(393\) 56.9320 98.6091i 0.144865 0.250914i
\(394\) −271.641 + 156.832i −0.689445 + 0.398051i
\(395\) 517.932 + 517.932i 1.31122 + 1.31122i
\(396\) −40.4556 + 150.982i −0.102161 + 0.381268i
\(397\) −182.929 49.0156i −0.460778 0.123465i 0.0209602 0.999780i \(-0.493328\pi\)
−0.481738 + 0.876315i \(0.659994\pi\)
\(398\) −609.481 + 609.481i −1.53136 + 1.53136i
\(399\) −39.7988 68.9335i −0.0997463 0.172766i
\(400\) −19.8921 11.4847i −0.0497304 0.0287118i
\(401\) 62.6022 + 233.635i 0.156115 + 0.582630i 0.999007 + 0.0445472i \(0.0141845\pi\)
−0.842892 + 0.538083i \(0.819149\pi\)
\(402\) 114.291i 0.284306i
\(403\) 0 0
\(404\) 152.302 0.376984
\(405\) −109.086 + 29.2295i −0.269348 + 0.0721716i
\(406\) −172.349 + 298.516i −0.424504 + 0.735262i
\(407\) 194.686 112.402i 0.478345 0.276173i
\(408\) −112.785 112.785i −0.276434 0.276434i
\(409\) −120.602 + 450.091i −0.294869 + 1.10047i 0.646452 + 0.762955i \(0.276252\pi\)
−0.941321 + 0.337513i \(0.890414\pi\)
\(410\) 1146.34 + 307.160i 2.79594 + 0.749171i
\(411\) −45.7076 + 45.7076i −0.111211 + 0.111211i
\(412\) −316.782 548.683i −0.768888 1.33175i
\(413\) 69.1282 + 39.9112i 0.167381 + 0.0966373i
\(414\) 127.941 + 477.483i 0.309037 + 1.15334i
\(415\) 370.112i 0.891835i
\(416\) 0 0
\(417\) −478.562 −1.14763
\(418\) 187.926 50.3547i 0.449585 0.120466i
\(419\) 347.147 601.277i 0.828514 1.43503i −0.0706893 0.997498i \(-0.522520\pi\)
0.899204 0.437531i \(-0.144147\pi\)
\(420\) −288.837 + 166.760i −0.687708 + 0.397049i
\(421\) −138.088 138.088i −0.328000 0.328000i 0.523825 0.851826i \(-0.324504\pi\)
−0.851826 + 0.523825i \(0.824504\pi\)
\(422\) 133.093 496.710i 0.315386 1.17704i
\(423\) −424.814 113.829i −1.00429 0.269098i
\(424\) −266.910 + 266.910i −0.629504 + 0.629504i
\(425\) 179.351 + 310.644i 0.422001 + 0.730928i
\(426\) −229.771 132.658i −0.539369 0.311405i
\(427\) −10.6760 39.8435i −0.0250024 0.0933103i
\(428\) 931.251i 2.17582i
\(429\) 0 0
\(430\) −584.285 −1.35880
\(431\) 163.677 43.8570i 0.379760 0.101756i −0.0638890 0.997957i \(-0.520350\pi\)
0.443649 + 0.896201i \(0.353684\pi\)
\(432\) −9.11700 + 15.7911i −0.0211042 + 0.0365535i
\(433\) 561.144 323.977i 1.29594 0.748214i 0.316244 0.948678i \(-0.397578\pi\)
0.979701 + 0.200464i \(0.0642450\pi\)
\(434\) −84.9996 84.9996i −0.195852 0.195852i
\(435\) 134.675 502.615i 0.309598 1.15544i
\(436\) 916.986 + 245.706i 2.10318 + 0.563545i
\(437\) 267.727 267.727i 0.612648 0.612648i
\(438\) −356.958 618.269i −0.814972 1.41157i
\(439\) 203.421 + 117.445i 0.463374 + 0.267529i 0.713462 0.700694i \(-0.247126\pi\)
−0.250088 + 0.968223i \(0.580459\pi\)
\(440\) −79.1095 295.241i −0.179794 0.671001i
\(441\) 184.332i 0.417987i
\(442\) 0 0
\(443\) −601.057 −1.35679 −0.678394 0.734698i \(-0.737324\pi\)
−0.678394 + 0.734698i \(0.737324\pi\)
\(444\) −560.322 + 150.138i −1.26199 + 0.338148i
\(445\) 141.230 244.618i 0.317372 0.549704i
\(446\) −515.217 + 297.461i −1.15520 + 0.666953i
\(447\) −257.168 257.168i −0.575321 0.575321i
\(448\) −88.0208 + 328.498i −0.196475 + 0.733255i
\(449\) 500.022 + 133.980i 1.11363 + 0.298397i 0.768305 0.640084i \(-0.221101\pi\)
0.345329 + 0.938482i \(0.387767\pi\)
\(450\) −390.801 + 390.801i −0.868446 + 0.868446i
\(451\) −119.938 207.739i −0.265938 0.460618i
\(452\) 226.981 + 131.048i 0.502171 + 0.289928i
\(453\) 24.7074 + 92.2094i 0.0545418 + 0.203553i
\(454\) 720.483i 1.58697i
\(455\) 0 0
\(456\) −188.234 −0.412794
\(457\) −124.688 + 33.4099i −0.272839 + 0.0731071i −0.392644 0.919690i \(-0.628440\pi\)
0.119805 + 0.992797i \(0.461773\pi\)
\(458\) −17.9375 + 31.0686i −0.0391648 + 0.0678354i
\(459\) 246.601 142.375i 0.537257 0.310185i
\(460\) −1121.80 1121.80i −2.43870 2.43870i
\(461\) 117.072 436.918i 0.253952 0.947762i −0.714719 0.699412i \(-0.753445\pi\)
0.968671 0.248349i \(-0.0798881\pi\)
\(462\) 105.816 + 28.3534i 0.229040 + 0.0613711i
\(463\) 315.336 315.336i 0.681072 0.681072i −0.279170 0.960242i \(-0.590059\pi\)
0.960242 + 0.279170i \(0.0900592\pi\)
\(464\) −10.5377 18.2518i −0.0227106 0.0393358i
\(465\) 157.151 + 90.7310i 0.337958 + 0.195120i
\(466\) 32.6936 + 122.014i 0.0701580 + 0.261833i
\(467\) 578.767i 1.23933i 0.784866 + 0.619665i \(0.212732\pi\)
−0.784866 + 0.619665i \(0.787268\pi\)
\(468\) 0 0
\(469\) −56.6761 −0.120844
\(470\) 2215.56 593.658i 4.71396 1.26310i
\(471\) 62.7472 108.681i 0.133221 0.230746i
\(472\) 163.476 94.3827i 0.346347 0.199963i
\(473\) 83.5079 + 83.5079i 0.176549 + 0.176549i
\(474\) −160.679 + 599.662i −0.338985 + 1.26511i
\(475\) 408.891 + 109.562i 0.860823 + 0.230657i
\(476\) 149.167 149.167i 0.313377 0.313377i
\(477\) −117.411 203.362i −0.246145 0.426335i
\(478\) −1084.77 626.290i −2.26939 1.31023i
\(479\) −50.6111 188.883i −0.105660 0.394328i 0.892759 0.450534i \(-0.148766\pi\)
−0.998419 + 0.0562058i \(0.982100\pi\)
\(480\) 526.131i 1.09611i
\(481\) 0 0
\(482\) 1107.67 2.29807
\(483\) 205.929 55.1784i 0.426353 0.114241i
\(484\) 304.778 527.892i 0.629707 1.09069i
\(485\) 279.986 161.650i 0.577291 0.333299i
\(486\) 512.358 + 512.358i 1.05423 + 1.05423i
\(487\) −172.350 + 643.217i −0.353901 + 1.32077i 0.527962 + 0.849268i \(0.322956\pi\)
−0.881862 + 0.471507i \(0.843710\pi\)
\(488\) −94.2227 25.2469i −0.193079 0.0517354i
\(489\) 232.606 232.606i 0.475677 0.475677i
\(490\) 480.680 + 832.562i 0.980979 + 1.69911i
\(491\) 168.907 + 97.5186i 0.344006 + 0.198612i 0.662042 0.749466i \(-0.269690\pi\)
−0.318036 + 0.948079i \(0.603023\pi\)
\(492\) 160.203 + 597.887i 0.325616 + 1.21522i
\(493\) 329.123i 0.667591i
\(494\) 0 0
\(495\) 190.148 0.384138
\(496\) 7.09927 1.90224i 0.0143130 0.00383517i
\(497\) 65.7843 113.942i 0.132363 0.229259i
\(498\) 271.668 156.848i 0.545518 0.314955i
\(499\) −160.747 160.747i −0.322139 0.322139i 0.527448 0.849587i \(-0.323149\pi\)
−0.849587 + 0.527448i \(0.823149\pi\)
\(500\) 136.725 510.265i 0.273450 1.02053i
\(501\) 33.1973 + 8.89519i 0.0662621 + 0.0177549i
\(502\) −39.7776 + 39.7776i −0.0792382 + 0.0792382i
\(503\) −247.660 428.960i −0.492366 0.852803i 0.507595 0.861596i \(-0.330534\pi\)
−0.999961 + 0.00879272i \(0.997201\pi\)
\(504\) 105.541 + 60.9343i 0.209407 + 0.120901i
\(505\) −47.9524 178.961i −0.0949553 0.354378i
\(506\) 521.095i 1.02983i
\(507\) 0 0
\(508\) −740.034 −1.45676
\(509\) −622.252 + 166.732i −1.22250 + 0.327568i −0.811655 0.584138i \(-0.801433\pi\)
−0.410845 + 0.911705i \(0.634766\pi\)
\(510\) −258.751 + 448.169i −0.507354 + 0.878763i
\(511\) 306.595 177.013i 0.599990 0.346404i
\(512\) −29.1874 29.1874i −0.0570067 0.0570067i
\(513\) 86.9743 324.592i 0.169540 0.632734i
\(514\) −835.739 223.936i −1.62595 0.435672i
\(515\) −544.986 + 544.986i −1.05822 + 1.05822i
\(516\) −152.371 263.914i −0.295292 0.511460i
\(517\) −401.503 231.808i −0.776601 0.448371i
\(518\) −120.989 451.537i −0.233569 0.871692i
\(519\) 79.1511i 0.152507i
\(520\) 0 0
\(521\) 807.372 1.54966 0.774830 0.632170i \(-0.217836\pi\)
0.774830 + 0.632170i \(0.217836\pi\)
\(522\) −489.823 + 131.248i −0.938358 + 0.251432i
\(523\) −168.756 + 292.295i −0.322670 + 0.558881i −0.981038 0.193815i \(-0.937914\pi\)
0.658368 + 0.752696i \(0.271247\pi\)
\(524\) 308.416 178.064i 0.588580 0.339817i
\(525\) 168.544 + 168.544i 0.321037 + 0.321037i
\(526\) 10.1201 37.7687i 0.0192397 0.0718036i
\(527\) −110.865 29.7063i −0.210370 0.0563686i
\(528\) −4.73623 + 4.73623i −0.00897012 + 0.00897012i
\(529\) 242.550 + 420.109i 0.458507 + 0.794157i
\(530\) 1060.61 + 612.342i 2.00114 + 1.15536i
\(531\) 30.3933 + 113.430i 0.0572379 + 0.213615i
\(532\) 248.954i 0.467959i
\(533\) 0 0
\(534\) 239.405 0.448324
\(535\) −1094.26 + 293.206i −2.04534 + 0.548048i
\(536\) −67.0143 + 116.072i −0.125027 + 0.216553i
\(537\) −492.349 + 284.258i −0.916850 + 0.529344i
\(538\) 270.078 + 270.078i 0.502004 + 0.502004i
\(539\) 50.2921 187.693i 0.0933064 0.348224i
\(540\) −1360.07 364.430i −2.51865 0.674870i
\(541\) −532.661 + 532.661i −0.984586 + 0.984586i −0.999883 0.0152973i \(-0.995131\pi\)
0.0152973 + 0.999883i \(0.495131\pi\)
\(542\) 226.534 + 392.368i 0.417959 + 0.723926i
\(543\) −23.6872 13.6758i −0.0436228 0.0251856i
\(544\) 86.1303 + 321.443i 0.158328 + 0.590887i
\(545\) 1154.86i 2.11900i
\(546\) 0 0
\(547\) −508.494 −0.929606 −0.464803 0.885414i \(-0.653875\pi\)
−0.464803 + 0.885414i \(0.653875\pi\)
\(548\) −195.284 + 52.3263i −0.356358 + 0.0954859i
\(549\) 30.3418 52.5535i 0.0552674 0.0957259i
\(550\) −504.549 + 291.302i −0.917363 + 0.529640i
\(551\) 274.646 + 274.646i 0.498450 + 0.498450i
\(552\) 130.487 486.984i 0.236389 0.882217i
\(553\) −297.367 79.6794i −0.537735 0.144086i
\(554\) 1235.08 1235.08i 2.22938 2.22938i
\(555\) 352.836 + 611.130i 0.635741 + 1.10114i
\(556\) −1296.25 748.391i −2.33139 1.34603i
\(557\) −139.614 521.046i −0.250653 0.935450i −0.970457 0.241273i \(-0.922435\pi\)
0.719804 0.694177i \(-0.244232\pi\)
\(558\) 176.844i 0.316924i
\(559\) 0 0
\(560\) 16.4330 0.0293446
\(561\) 101.035 27.0723i 0.180099 0.0482573i
\(562\) 131.283 227.389i 0.233600 0.404608i
\(563\) −612.760 + 353.777i −1.08838 + 0.628379i −0.933146 0.359498i \(-0.882948\pi\)
−0.155238 + 0.987877i \(0.549614\pi\)
\(564\) 845.924 + 845.924i 1.49987 + 1.49987i
\(565\) 82.5211 307.973i 0.146055 0.545085i
\(566\) −477.233 127.874i −0.843168 0.225926i
\(567\) 33.5639 33.5639i 0.0591956 0.0591956i
\(568\) −155.568 269.452i −0.273887 0.474386i
\(569\) 75.1164 + 43.3685i 0.132015 + 0.0762188i 0.564553 0.825397i \(-0.309049\pi\)
−0.432538 + 0.901616i \(0.642382\pi\)
\(570\) 158.066 + 589.910i 0.277309 + 1.03493i
\(571\) 819.215i 1.43470i 0.696712 + 0.717351i \(0.254646\pi\)
−0.696712 + 0.717351i \(0.745354\pi\)
\(572\) 0 0
\(573\) 670.217 1.16966
\(574\) −481.809 + 129.100i −0.839388 + 0.224913i
\(575\) −566.900 + 981.900i −0.985914 + 1.70765i
\(576\) −433.289 + 250.159i −0.752237 + 0.434304i
\(577\) −280.814 280.814i −0.486679 0.486679i 0.420578 0.907256i \(-0.361827\pi\)
−0.907256 + 0.420578i \(0.861827\pi\)
\(578\) −156.494 + 584.044i −0.270751 + 1.01046i
\(579\) 463.030 + 124.069i 0.799707 + 0.214281i
\(580\) 1150.79 1150.79i 1.98412 1.98412i
\(581\) 77.7794 + 134.718i 0.133872 + 0.231873i
\(582\) 237.308 + 137.010i 0.407745 + 0.235412i
\(583\) −64.0675 239.103i −0.109893 0.410126i
\(584\) 837.205i 1.43357i
\(585\) 0 0
\(586\) 753.900 1.28652
\(587\) −418.790 + 112.215i −0.713442 + 0.191166i −0.597244 0.802060i \(-0.703737\pi\)
−0.116198 + 0.993226i \(0.537071\pi\)
\(588\) −250.705 + 434.233i −0.426369 + 0.738492i
\(589\) −117.304 + 67.7255i −0.199158 + 0.114984i
\(590\) −433.064 433.064i −0.734007 0.734007i
\(591\) −51.5083 + 192.232i −0.0871545 + 0.325265i
\(592\) 27.6078 + 7.39748i 0.0466347 + 0.0124957i
\(593\) −390.547 + 390.547i −0.658596 + 0.658596i −0.955048 0.296452i \(-0.904197\pi\)
0.296452 + 0.955048i \(0.404197\pi\)
\(594\) 231.246 + 400.530i 0.389303 + 0.674292i
\(595\) −222.244 128.312i −0.373519 0.215651i
\(596\) −294.407 1098.74i −0.493972 1.84353i
\(597\) 546.879i 0.916045i
\(598\) 0 0
\(599\) −315.242 −0.526281 −0.263140 0.964758i \(-0.584758\pi\)
−0.263140 + 0.964758i \(0.584758\pi\)
\(600\) 544.466 145.889i 0.907443 0.243149i
\(601\) −229.868 + 398.143i −0.382476 + 0.662468i −0.991416 0.130749i \(-0.958262\pi\)
0.608940 + 0.793217i \(0.291595\pi\)
\(602\) 212.675 122.788i 0.353281 0.203967i
\(603\) −58.9579 58.9579i −0.0977743 0.0977743i
\(604\) −77.2765 + 288.400i −0.127941 + 0.477483i
\(605\) −716.255 191.920i −1.18389 0.317223i
\(606\) 111.039 111.039i 0.183232 0.183232i
\(607\) −448.920 777.551i −0.739571 1.28097i −0.952689 0.303948i \(-0.901695\pi\)
0.213118 0.977027i \(-0.431638\pi\)
\(608\) 340.111 + 196.363i 0.559394 + 0.322966i
\(609\) 56.6044 + 211.250i 0.0929464 + 0.346881i
\(610\) 316.487i 0.518831i
\(611\) 0 0
\(612\) 310.346 0.507102
\(613\) 615.481 164.918i 1.00405 0.269033i 0.280907 0.959735i \(-0.409365\pi\)
0.723140 + 0.690702i \(0.242698\pi\)
\(614\) 262.819 455.215i 0.428043 0.741393i
\(615\) 652.102 376.491i 1.06033 0.612181i
\(616\) 90.8405 + 90.8405i 0.147468 + 0.147468i
\(617\) 103.566 386.513i 0.167854 0.626439i −0.829805 0.558053i \(-0.811549\pi\)
0.997659 0.0683856i \(-0.0217848\pi\)
\(618\) −630.985 169.072i −1.02101 0.273579i
\(619\) 524.800 524.800i 0.847819 0.847819i −0.142041 0.989861i \(-0.545367\pi\)
0.989861 + 0.142041i \(0.0453666\pi\)
\(620\) 283.776 + 491.514i 0.457703 + 0.792765i
\(621\) 779.468 + 450.026i 1.25518 + 0.724680i
\(622\) −426.794 1592.82i −0.686164 2.56080i
\(623\) 118.719i 0.190560i
\(624\) 0 0
\(625\) 247.464 0.395943
\(626\) 185.081 49.5922i 0.295656 0.0792208i
\(627\) 61.7206 106.903i 0.0984379 0.170500i
\(628\) 339.919 196.252i 0.541272 0.312503i
\(629\) −315.613 315.613i −0.501769 0.501769i
\(630\) 102.337 381.927i 0.162440 0.606233i
\(631\) 292.622 + 78.4079i 0.463744 + 0.124260i 0.483123 0.875552i \(-0.339502\pi\)
−0.0193793 + 0.999812i \(0.506169\pi\)
\(632\) −514.793 + 514.793i −0.814546 + 0.814546i
\(633\) −163.134 282.557i −0.257716 0.446377i
\(634\) 457.997 + 264.424i 0.722392 + 0.417073i
\(635\) 233.001 + 869.571i 0.366930 + 1.36940i
\(636\) 638.749i 1.00432i
\(637\) 0 0
\(638\) −534.562 −0.837871
\(639\) 186.962 50.0963i 0.292585 0.0783980i
\(640\) 790.388 1368.99i 1.23498 2.13905i
\(641\) 802.665 463.419i 1.25221 0.722962i 0.280660 0.959807i \(-0.409447\pi\)
0.971547 + 0.236845i \(0.0761134\pi\)
\(642\) −678.948 678.948i −1.05755 1.05755i
\(643\) 205.192 765.787i 0.319117 1.19096i −0.600978 0.799265i \(-0.705222\pi\)
0.920095 0.391695i \(-0.128111\pi\)
\(644\) 644.075 + 172.579i 1.00012 + 0.267980i
\(645\) −262.135 + 262.135i −0.406411 + 0.406411i
\(646\) −193.143 334.533i −0.298982 0.517853i
\(647\) −565.632 326.568i −0.874238 0.504742i −0.00548379 0.999985i \(-0.501746\pi\)
−0.868754 + 0.495243i \(0.835079\pi\)
\(648\) −29.0524 108.425i −0.0448339 0.167322i
\(649\) 123.790i 0.190739i
\(650\) 0 0
\(651\) −76.2689 −0.117157
\(652\) 993.801 266.288i 1.52423 0.408418i
\(653\) −497.150 + 861.089i −0.761333 + 1.31867i 0.180831 + 0.983514i \(0.442121\pi\)
−0.942164 + 0.335152i \(0.891212\pi\)
\(654\) 847.684 489.411i 1.29615 0.748335i
\(655\) −306.338 306.338i −0.467692 0.467692i
\(656\) 7.89342 29.4586i 0.0120326 0.0449065i
\(657\) 503.078 + 134.799i 0.765720 + 0.205174i
\(658\) −681.690 + 681.690i −1.03600 + 1.03600i
\(659\) 554.342 + 960.149i 0.841187 + 1.45698i 0.888892 + 0.458118i \(0.151476\pi\)
−0.0477042 + 0.998862i \(0.515190\pi\)
\(660\) −447.934 258.615i −0.678687 0.391840i
\(661\) 186.899 + 697.517i 0.282752 + 1.05525i 0.950466 + 0.310828i \(0.100606\pi\)
−0.667714 + 0.744418i \(0.732727\pi\)
\(662\) 1764.69i 2.66569i
\(663\) 0 0
\(664\) 367.869 0.554019
\(665\) −292.532 + 78.3836i −0.439897 + 0.117870i
\(666\) 343.856 595.576i 0.516301 0.894259i
\(667\) −900.932 + 520.153i −1.35072 + 0.779840i
\(668\) 76.0088 + 76.0088i 0.113786 + 0.113786i
\(669\) −97.6950 + 364.603i −0.146031 + 0.544996i
\(670\) 420.035 + 112.548i 0.626918 + 0.167982i
\(671\) 45.2334 45.2334i 0.0674119 0.0674119i
\(672\) 110.567 + 191.508i 0.164534 + 0.284982i
\(673\) −201.737 116.473i −0.299757 0.173065i 0.342577 0.939490i \(-0.388700\pi\)
−0.642334 + 0.766425i \(0.722034\pi\)
\(674\) 429.442 + 1602.70i 0.637155 + 2.37789i
\(675\) 1006.29i 1.49080i
\(676\) 0 0
\(677\) 759.119 1.12130 0.560649 0.828053i \(-0.310552\pi\)
0.560649 + 0.828053i \(0.310552\pi\)
\(678\) 261.028 69.9423i 0.384998 0.103160i
\(679\) −67.9420 + 117.679i −0.100062 + 0.173312i
\(680\) −525.566 + 303.436i −0.772891 + 0.446229i
\(681\) 323.240 + 323.240i 0.474655 + 0.474655i
\(682\) 48.2490 180.068i 0.0707463 0.264029i
\(683\) 766.309 + 205.332i 1.12197 + 0.300632i 0.771682 0.636008i \(-0.219416\pi\)
0.350293 + 0.936640i \(0.386082\pi\)
\(684\) 258.978 258.978i 0.378622 0.378622i
\(685\) 122.971 + 212.992i 0.179520 + 0.310938i
\(686\) −797.686 460.544i −1.16281 0.671347i
\(687\) 5.89120 + 21.9862i 0.00857525 + 0.0320033i
\(688\) 15.0150i 0.0218241i
\(689\) 0 0
\(690\) −1635.74 −2.37064
\(691\) 889.748 238.407i 1.28762 0.345018i 0.450866 0.892592i \(-0.351115\pi\)
0.836757 + 0.547574i \(0.184448\pi\)
\(692\) 123.779 214.391i 0.178871 0.309814i
\(693\) −69.2125 + 39.9599i −0.0998738 + 0.0576622i
\(694\) 393.478 + 393.478i 0.566971 + 0.566971i
\(695\) −471.264 + 1758.78i −0.678078 + 2.53062i
\(696\) 499.569 + 133.859i 0.717771 + 0.192326i
\(697\) −336.772 + 336.772i −0.483173 + 0.483173i
\(698\) −1059.29 1834.75i −1.51761 2.62858i
\(699\) 69.4087 + 40.0731i 0.0992971 + 0.0573292i
\(700\) 192.950 + 720.100i 0.275643 + 1.02871i
\(701\) 1256.17i 1.79197i −0.444079 0.895987i \(-0.646469\pi\)
0.444079 0.895987i \(-0.353531\pi\)
\(702\) 0 0
\(703\) −526.744 −0.749281
\(704\) −509.440 + 136.504i −0.723636 + 0.193898i
\(705\) 727.656 1260.34i 1.03214 1.78771i
\(706\) 202.026 116.640i 0.286156 0.165212i
\(707\) 55.0632 + 55.0632i 0.0778829 + 0.0778829i
\(708\) 82.6741 308.544i 0.116771 0.435797i
\(709\) 188.175 + 50.4214i 0.265409 + 0.0711162i 0.389070 0.921208i \(-0.372797\pi\)
−0.123660 + 0.992325i \(0.539463\pi\)
\(710\) −713.805 + 713.805i −1.00536 + 1.00536i
\(711\) −226.453 392.227i −0.318499 0.551656i
\(712\) 243.136 + 140.375i 0.341483 + 0.197155i
\(713\) −93.8970 350.428i −0.131693 0.491484i
\(714\) 217.507i 0.304632i
\(715\) 0 0
\(716\) −1778.12 −2.48341
\(717\) −767.654 + 205.692i −1.07065 + 0.286879i
\(718\) −768.110 + 1330.41i −1.06979 + 1.85293i
\(719\) 847.432 489.265i 1.17863 0.680480i 0.222929 0.974835i \(-0.428438\pi\)
0.955696 + 0.294355i \(0.0951048\pi\)
\(720\) 17.0946 + 17.0946i 0.0237425 + 0.0237425i
\(721\) 83.8414 312.900i 0.116285 0.433981i
\(722\) 684.155 + 183.319i 0.947583 + 0.253904i
\(723\) 496.948 496.948i 0.687341 0.687341i
\(724\) −42.7732 74.0854i −0.0590791 0.102328i
\(725\) −1007.28 581.551i −1.38934 0.802139i
\(726\) −162.665 607.075i −0.224057 0.836192i
\(727\) 470.571i 0.647278i −0.946181 0.323639i \(-0.895094\pi\)
0.946181 0.323639i \(-0.104906\pi\)
\(728\) 0 0
\(729\) 590.294 0.809731
\(730\) −2623.74 + 703.028i −3.59416 + 0.963052i
\(731\) 117.240 203.066i 0.160383 0.277792i
\(732\) −142.953 + 82.5339i −0.195291 + 0.112751i
\(733\) −113.014 113.014i −0.154181 0.154181i 0.625802 0.779982i \(-0.284772\pi\)
−0.779982 + 0.625802i \(0.784772\pi\)
\(734\) 41.7218 155.708i 0.0568417 0.212136i
\(735\) 589.177 + 157.870i 0.801601 + 0.214788i
\(736\) −743.787 + 743.787i −1.01058 + 1.01058i
\(737\) −43.9471 76.1185i −0.0596297 0.103282i
\(738\) −635.505 366.909i −0.861118 0.497167i
\(739\) 62.5256 + 233.349i 0.0846084 + 0.315763i 0.995240 0.0974569i \(-0.0310708\pi\)
−0.910631 + 0.413220i \(0.864404\pi\)
\(740\) 2207.10i 2.98257i
\(741\) 0 0
\(742\) −514.738 −0.693716
\(743\) 149.489 40.0554i 0.201196 0.0539103i −0.156814 0.987628i \(-0.550122\pi\)
0.358010 + 0.933718i \(0.383455\pi\)
\(744\) −90.1811 + 156.198i −0.121211 + 0.209944i
\(745\) −1198.38 + 691.882i −1.60856 + 0.928701i
\(746\) −517.583 517.583i −0.693812 0.693812i
\(747\) −59.2309 + 221.053i −0.0792918 + 0.295921i
\(748\) 316.004 + 84.6731i 0.422466 + 0.113199i
\(749\) 336.685 336.685i 0.449513 0.449513i
\(750\) −272.337 471.701i −0.363116 0.628935i
\(751\) 1009.94 + 583.090i 1.34480 + 0.776419i 0.987507 0.157575i \(-0.0503677\pi\)
0.357289 + 0.933994i \(0.383701\pi\)
\(752\) −15.2559 56.9356i −0.0202870 0.0757123i
\(753\) 35.6919i 0.0473996i
\(754\) 0 0
\(755\) 363.212 0.481076
\(756\) 571.641 153.171i 0.756139 0.202607i
\(757\) 597.091 1034.19i 0.788759 1.36617i −0.137968 0.990437i \(-0.544057\pi\)
0.926727 0.375734i \(-0.122609\pi\)
\(758\) −26.4595 + 15.2764i −0.0349071 + 0.0201536i
\(759\) 233.786 + 233.786i 0.308018 + 0.308018i
\(760\) −185.363 + 691.785i −0.243899 + 0.910243i
\(761\) −927.170 248.434i −1.21836 0.326458i −0.408321 0.912838i \(-0.633886\pi\)
−0.810036 + 0.586381i \(0.800552\pi\)
\(762\) −539.537 + 539.537i −0.708054 + 0.708054i
\(763\) 242.695 + 420.360i 0.318080 + 0.550930i
\(764\) 1815.37 + 1048.11i 2.37614 + 1.37187i
\(765\) −97.7130 364.670i −0.127729 0.476693i
\(766\) 277.408i 0.362152i
\(767\) 0 0
\(768\) 489.153 0.636918
\(769\) 1092.58 292.755i 1.42077 0.380695i 0.535016 0.844842i \(-0.320306\pi\)
0.885758 + 0.464147i \(0.153639\pi\)
\(770\) 208.405 360.969i 0.270656 0.468790i
\(771\) −475.416 + 274.481i −0.616622 + 0.356007i
\(772\) 1060.16 + 1060.16i 1.37326 + 1.37326i
\(773\) −107.050 + 399.515i −0.138486 + 0.516837i 0.861473 + 0.507803i \(0.169542\pi\)
−0.999959 + 0.00903396i \(0.997124\pi\)
\(774\) 348.970 + 93.5062i 0.450866 + 0.120809i
\(775\) 286.811 286.811i 0.370079 0.370079i
\(776\) 160.670 + 278.289i 0.207050 + 0.358620i
\(777\) −256.860 148.298i −0.330579 0.190860i
\(778\) −29.0181 108.297i −0.0372983 0.139199i
\(779\) 562.058i 0.721513i
\(780\) 0 0
\(781\) 204.039 0.261253
\(782\) 999.367 267.780i 1.27796 0.342429i
\(783\) −461.656 + 799.611i −0.589599 + 1.02122i
\(784\) 21.3952 12.3525i 0.0272898 0.0157558i
\(785\) −337.628 337.628i −0.430100 0.430100i
\(786\) 95.0358 354.678i 0.120911 0.451245i
\(787\) −1295.20 347.048i −1.64574 0.440975i −0.687326 0.726349i \(-0.741216\pi\)
−0.958416 + 0.285373i \(0.907882\pi\)
\(788\) −440.135 + 440.135i −0.558547 + 0.558547i
\(789\) −12.4044 21.4850i −0.0157216 0.0272307i
\(790\) 2045.61 + 1181.03i 2.58938 + 1.49498i
\(791\) 34.6838 + 129.442i 0.0438481 + 0.163643i
\(792\) 188.996i 0.238631i
\(793\) 0 0
\(794\) −610.721 −0.769170
\(795\) 750.557 201.111i 0.944097 0.252970i
\(796\) −855.226 + 1481.30i −1.07440 + 1.86092i
\(797\) −1133.61 + 654.489i −1.42234 + 0.821191i −0.996499 0.0836053i \(-0.973357\pi\)
−0.425845 + 0.904796i \(0.640023\pi\)
\(798\) −181.505 181.505i −0.227450 0.227450i
\(799\) −238.242 + 889.131i −0.298175 + 1.11281i
\(800\) −1135.96 304.380i −1.41995 0.380475i
\(801\) −123.499 + 123.499i −0.154181 + 0.154181i
\(802\) 390.003 + 675.505i 0.486288 + 0.842275i
\(803\) 475.472 + 274.514i 0.592119 + 0.341860i
\(804\) 58.7009 + 219.075i 0.0730110 + 0.272481i
\(805\) 811.152i 1.00764i
\(806\) 0 0
\(807\) 242.337 0.300294
\(808\) 177.876 47.6618i 0.220144 0.0589874i
\(809\) 12.0403 20.8545i 0.0148830 0.0257781i −0.858488 0.512834i \(-0.828596\pi\)
0.873371 + 0.487056i \(0.161929\pi\)
\(810\) −315.399 + 182.096i −0.389381 + 0.224809i
\(811\) 685.757 + 685.757i 0.845570 + 0.845570i 0.989577 0.144007i \(-0.0459987\pi\)
−0.144007 + 0.989577i \(0.545999\pi\)
\(812\) −177.039 + 660.720i −0.218029 + 0.813694i
\(813\) 277.666 + 74.4004i 0.341533 + 0.0915134i
\(814\) 512.619 512.619i 0.629753 0.629753i
\(815\) −625.800 1083.92i −0.767852 1.32996i
\(816\) 11.5171 + 6.64939i 0.0141141 + 0.00814876i
\(817\) −71.6199 267.289i −0.0876620 0.327159i
\(818\) 1502.66i 1.83700i
\(819\) 0 0
\(820\) 2355.07 2.87204
\(821\) 342.513 91.7762i 0.417191 0.111786i −0.0441166 0.999026i \(-0.514047\pi\)
0.461307 + 0.887241i \(0.347381\pi\)
\(822\) −104.227 + 180.526i −0.126796 + 0.219618i
\(823\) 761.836 439.846i 0.925681 0.534442i 0.0402381 0.999190i \(-0.487188\pi\)
0.885443 + 0.464748i \(0.153855\pi\)
\(824\) −541.683 541.683i −0.657382 0.657382i
\(825\) −95.6721 + 357.053i −0.115966 + 0.432792i
\(826\) 248.641 + 66.6232i 0.301018 + 0.0806576i
\(827\) 496.734 496.734i 0.600645 0.600645i −0.339838 0.940484i \(-0.610372\pi\)
0.940484 + 0.339838i \(0.110372\pi\)
\(828\) 490.479 + 849.535i 0.592366 + 1.02601i
\(829\) 841.504 + 485.843i 1.01508 + 0.586059i 0.912676 0.408684i \(-0.134012\pi\)
0.102408 + 0.994743i \(0.467345\pi\)
\(830\) −308.911 1152.87i −0.372182 1.38900i
\(831\) 1108.22i 1.33360i
\(832\) 0 0
\(833\) −385.805 −0.463152
\(834\) −1490.69 + 399.429i −1.78740 + 0.478931i
\(835\) 65.3820 113.245i 0.0783018 0.135623i
\(836\) 334.357 193.041i 0.399949 0.230910i
\(837\) −227.681 227.681i −0.272021 0.272021i
\(838\) 579.488 2162.68i 0.691514 2.58076i
\(839\) −61.9530 16.6003i −0.0738415 0.0197858i 0.221709 0.975113i \(-0.428836\pi\)
−0.295551 + 0.955327i \(0.595503\pi\)
\(840\) −285.153 + 285.153i −0.339468 + 0.339468i
\(841\) −113.096 195.887i −0.134477 0.232922i
\(842\) −545.389 314.880i −0.647730 0.373967i
\(843\) −43.1173 160.916i −0.0511475 0.190885i
\(844\) 1020.46i 1.20907i
\(845\) 0 0
\(846\) −1418.27 −1.67645
\(847\) 301.044 80.6644i 0.355424 0.0952355i
\(848\) 15.7360 27.2555i 0.0185566 0.0321409i
\(849\) −271.477 + 156.738i −0.319761 + 0.184614i
\(850\) 817.942 + 817.942i 0.962284 + 0.962284i
\(851\) 365.148 1362.75i 0.429081 1.60135i
\(852\) −508.563 136.269i −0.596905 0.159940i
\(853\) −118.160 + 118.160i −0.138523 + 0.138523i −0.772968 0.634445i \(-0.781229\pi\)
0.634445 + 0.772968i \(0.281229\pi\)
\(854\) −66.5102 115.199i −0.0778808 0.134893i
\(855\) −385.849 222.770i −0.451285 0.260550i
\(856\) −291.429 1087.63i −0.340454 1.27059i
\(857\) 1001.36i 1.16845i 0.811592 + 0.584225i \(0.198601\pi\)
−0.811592 + 0.584225i \(0.801399\pi\)
\(858\) 0 0
\(859\) −1088.25 −1.26688 −0.633438 0.773793i \(-0.718357\pi\)
−0.633438 + 0.773793i \(0.718357\pi\)
\(860\) −1119.96 + 300.094i −1.30228 + 0.348946i
\(861\) −158.240 + 274.080i −0.183787 + 0.318328i
\(862\) 473.236 273.223i 0.548998 0.316964i
\(863\) 1068.95 + 1068.95i 1.23864 + 1.23864i 0.960557 + 0.278082i \(0.0896989\pi\)
0.278082 + 0.960557i \(0.410301\pi\)
\(864\) −241.628 + 901.767i −0.279662 + 1.04371i
\(865\) −290.891 77.9440i −0.336290 0.0901086i
\(866\) 1477.52 1477.52i 1.70614 1.70614i
\(867\) 191.817 + 332.238i 0.221243 + 0.383204i
\(868\) −206.585 119.272i −0.238001 0.137410i
\(869\) −123.568 461.162i −0.142196 0.530681i
\(870\) 1678.02i 1.92875i
\(871\) 0 0
\(872\) 1147.86 1.31635
\(873\) −193.094 + 51.7395i −0.221185 + 0.0592663i
\(874\) 610.495 1057.41i 0.698507 1.20985i
\(875\) 233.913 135.050i 0.267329 0.154343i
\(876\) −1001.77 1001.77i −1.14357 1.14357i
\(877\) −221.600 + 827.023i −0.252680 + 0.943014i 0.716687 + 0.697395i \(0.245658\pi\)
−0.969367 + 0.245618i \(0.921009\pi\)
\(878\) 731.668 + 196.050i 0.833335 + 0.223291i
\(879\) 338.232 338.232i 0.384792 0.384792i
\(880\) 12.7423 + 22.0703i 0.0144799 + 0.0250798i
\(881\) −1223.50 706.388i −1.38876 0.801802i −0.395587 0.918429i \(-0.629459\pi\)
−0.993176 + 0.116626i \(0.962792\pi\)
\(882\) −153.852 574.182i −0.174435 0.651000i
\(883\) 249.675i 0.282757i −0.989956 0.141379i \(-0.954847\pi\)
0.989956 0.141379i \(-0.0451535\pi\)
\(884\) 0 0
\(885\) −388.582 −0.439076
\(886\) −1872.25 + 501.668i −2.11315 + 0.566217i
\(887\) −407.874 + 706.459i −0.459836 + 0.796459i −0.998952 0.0457724i \(-0.985425\pi\)
0.539116 + 0.842232i \(0.318758\pi\)
\(888\) −607.427 + 350.698i −0.684039 + 0.394930i
\(889\) −267.552 267.552i −0.300958 0.300958i
\(890\) 235.754 879.846i 0.264892 0.988591i
\(891\) 71.1035 + 19.0521i 0.0798019 + 0.0213829i
\(892\) −834.797 + 834.797i −0.935871 + 0.935871i
\(893\) 543.154 + 940.770i 0.608235 + 1.05349i
\(894\) −1015.71 586.418i −1.13614 0.655948i
\(895\) 559.845 + 2089.37i 0.625525 + 2.33449i
\(896\) 664.404i 0.741522i
\(897\) 0 0
\(898\) 1669.36 1.85897
\(899\) 359.484 96.3235i 0.399871 0.107145i
\(900\) −548.373 + 949.811i −0.609304 + 1.05535i
\(901\) −425.634 + 245.740i −0.472402 + 0.272741i
\(902\) −546.986 546.986i −0.606414 0.606414i
\(903\) 40.3273 150.503i 0.0446592 0.166671i
\(904\) 306.107 + 82.0210i 0.338613 + 0.0907312i
\(905\) −73.5863 + 73.5863i −0.0813108 + 0.0813108i
\(906\) 153.924 + 266.604i 0.169894 + 0.294265i
\(907\) −1119.16 646.145i −1.23391 0.712398i −0.266067 0.963955i \(-0.585724\pi\)
−0.967843 + 0.251556i \(0.919058\pi\)
\(908\) 370.046 + 1381.03i 0.407540 + 1.52096i
\(909\) 114.560i 0.126029i
\(910\) 0 0
\(911\) −108.954 −0.119598 −0.0597992 0.998210i \(-0.519046\pi\)
−0.0597992 + 0.998210i \(0.519046\pi\)
\(912\) 15.1595 4.06199i 0.0166223 0.00445393i
\(913\) −120.622 + 208.923i −0.132116 + 0.228831i
\(914\) −360.508 + 208.139i −0.394429 + 0.227723i
\(915\) 141.990 + 141.990i 0.155180 + 0.155180i
\(916\) −18.4257 + 68.7655i −0.0201154 + 0.0750715i
\(917\) 175.882 + 47.1275i 0.191802 + 0.0513931i
\(918\) 649.312 649.312i 0.707311 0.707311i
\(919\) 334.516 + 579.399i 0.364000 + 0.630467i 0.988615 0.150466i \(-0.0480774\pi\)
−0.624615 + 0.780933i \(0.714744\pi\)
\(920\) −1661.23 959.114i −1.80569 1.04252i
\(921\) −86.3174 322.141i −0.0937214 0.349773i
\(922\) 1458.68i 1.58209i
\(923\) 0 0
\(924\) 217.393 0.235274
\(925\) 1523.61 408.249i 1.64714 0.441350i
\(926\) 719.057 1245.44i 0.776520 1.34497i
\(927\) 412.715 238.281i 0.445216 0.257046i
\(928\) −763.009 763.009i −0.822208 0.822208i
\(929\) −142.352 + 531.264i −0.153231 + 0.571866i 0.846019 + 0.533152i \(0.178993\pi\)
−0.999250 + 0.0387140i \(0.987674\pi\)
\(930\) 565.241 + 151.456i 0.607786 + 0.162856i
\(931\) −321.947 + 321.947i −0.345807 + 0.345807i
\(932\) 125.335 + 217.087i 0.134480 + 0.232926i
\(933\) −906.085 523.128i −0.971152 0.560695i
\(934\) 483.064 + 1802.82i 0.517199 + 1.93021i
\(935\) 397.978i 0.425645i
\(936\) 0 0
\(937\) −1312.75 −1.40101 −0.700507 0.713646i \(-0.747043\pi\)
−0.700507 + 0.713646i \(0.747043\pi\)
\(938\) −176.542 + 47.3043i −0.188211 + 0.0504310i
\(939\) 60.7860 105.284i 0.0647348 0.112124i
\(940\) 3941.91 2275.86i 4.19352 2.42113i
\(941\) 310.426 + 310.426i 0.329889 + 0.329889i 0.852544 0.522655i \(-0.175058\pi\)
−0.522655 + 0.852544i \(0.675058\pi\)
\(942\) 104.743 390.906i 0.111192 0.414975i
\(943\) −1454.11 389.629i −1.54201 0.413180i
\(944\) −11.1289 + 11.1289i −0.0117891 + 0.0117891i
\(945\) −359.964 623.476i −0.380915 0.659763i
\(946\) 329.820 + 190.422i 0.348647 + 0.201292i
\(947\) 201.095 + 750.497i 0.212350 + 0.792499i 0.987083 + 0.160211i \(0.0512175\pi\)
−0.774733 + 0.632288i \(0.782116\pi\)
\(948\) 1231.97i 1.29954i
\(949\) 0 0
\(950\) 1365.11 1.43696
\(951\) 324.109 86.8448i 0.340809 0.0913195i
\(952\) 127.535 220.897i 0.133965 0.232034i
\(953\) 147.254 85.0174i 0.154517 0.0892102i −0.420748 0.907178i \(-0.638232\pi\)
0.575265 + 0.817967i \(0.304899\pi\)
\(954\) −535.462 535.462i −0.561281 0.561281i
\(955\) 659.995 2463.14i 0.691094 2.57920i
\(956\) −2400.96 643.336i −2.51147 0.672945i
\(957\) −239.827 + 239.827i −0.250603 + 0.250603i
\(958\) −315.300 546.116i −0.329123 0.570058i
\(959\) −89.5212 51.6851i −0.0933485 0.0538948i
\(960\) −428.493 1599.16i −0.446347 1.66579i
\(961\) 831.213i 0.864946i
\(962\) 0 0
\(963\) 700.481 0.727394
\(964\) 2123.19 568.908i 2.20248 0.590153i
\(965\) 911.938 1579.52i 0.945013 1.63681i
\(966\) 595.399 343.754i 0.616355 0.355853i
\(967\) −702.486 702.486i −0.726460 0.726460i 0.243453 0.969913i \(-0.421720\pi\)
−0.969913 + 0.243453i \(0.921720\pi\)
\(968\) 190.757 711.914i 0.197063 0.735448i
\(969\) −236.738 63.4338i −0.244312 0.0654631i
\(970\) 737.217 737.217i 0.760018 0.760018i
\(971\) −521.890 903.939i −0.537476 0.930936i −0.999039 0.0438288i \(-0.986044\pi\)
0.461563 0.887108i \(-0.347289\pi\)
\(972\) 1245.25 + 718.943i 1.28112 + 0.739653i
\(973\) −198.073 739.220i −0.203570 0.759733i
\(974\) 2147.43i 2.20475i
\(975\) 0 0
\(976\) 8.13310 0.00833309
\(977\) −1173.90 + 314.547i −1.20154 + 0.321951i −0.803437 0.595390i \(-0.796998\pi\)
−0.398102 + 0.917341i \(0.630331\pi\)
\(978\) 530.408 918.694i 0.542340 0.939360i
\(979\) −159.445 + 92.0557i −0.162865 + 0.0940303i
\(980\) 1348.98 + 1348.98i 1.37651 + 1.37651i
\(981\) −184.818 + 689.750i −0.188398 + 0.703110i
\(982\) 607.527 + 162.786i 0.618663 + 0.165770i
\(983\) −511.256 + 511.256i −0.520098 + 0.520098i −0.917601 0.397503i \(-0.869877\pi\)
0.397503 + 0.917601i \(0.369877\pi\)
\(984\) 374.209 + 648.150i 0.380294 + 0.658689i
\(985\) 655.754 + 378.600i 0.665740 + 0.384365i
\(986\) 274.700 + 1025.19i 0.278600 + 1.03975i
\(987\) 611.672i 0.619728i
\(988\) 0 0
\(989\) 741.158 0.749401
\(990\) 592.298 158.706i 0.598281 0.160309i
\(991\) 2.60955 4.51988i 0.00263325 0.00456093i −0.864706 0.502279i \(-0.832495\pi\)
0.867339 + 0.497718i \(0.165828\pi\)
\(992\) 325.889 188.152i 0.328517 0.189669i
\(993\) −791.715 791.715i −0.797296 0.797296i
\(994\) 109.813 409.827i 0.110476 0.412301i
\(995\) 2009.85 + 538.539i 2.01995 + 0.541245i
\(996\) 440.178 440.178i 0.441946 0.441946i
\(997\) 136.426 + 236.297i 0.136836 + 0.237008i 0.926298 0.376793i \(-0.122973\pi\)
−0.789461 + 0.613801i \(0.789640\pi\)
\(998\) −634.883 366.550i −0.636156 0.367285i
\(999\) −324.083 1209.49i −0.324407 1.21070i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.3.f.g.150.12 48
13.2 odd 12 inner 169.3.f.g.80.12 48
13.3 even 3 inner 169.3.f.g.89.1 48
13.4 even 6 169.3.d.e.99.12 yes 24
13.5 odd 4 inner 169.3.f.g.19.1 48
13.6 odd 12 169.3.d.e.70.1 24
13.7 odd 12 169.3.d.e.70.12 yes 24
13.8 odd 4 inner 169.3.f.g.19.12 48
13.9 even 3 169.3.d.e.99.1 yes 24
13.10 even 6 inner 169.3.f.g.89.12 48
13.11 odd 12 inner 169.3.f.g.80.1 48
13.12 even 2 inner 169.3.f.g.150.1 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
169.3.d.e.70.1 24 13.6 odd 12
169.3.d.e.70.12 yes 24 13.7 odd 12
169.3.d.e.99.1 yes 24 13.9 even 3
169.3.d.e.99.12 yes 24 13.4 even 6
169.3.f.g.19.1 48 13.5 odd 4 inner
169.3.f.g.19.12 48 13.8 odd 4 inner
169.3.f.g.80.1 48 13.11 odd 12 inner
169.3.f.g.80.12 48 13.2 odd 12 inner
169.3.f.g.89.1 48 13.3 even 3 inner
169.3.f.g.89.12 48 13.10 even 6 inner
169.3.f.g.150.1 48 13.12 even 2 inner
169.3.f.g.150.12 48 1.1 even 1 trivial