Properties

Label 169.3.f.g.19.1
Level $169$
Weight $3$
Character 169.19
Analytic conductor $4.605$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,3,Mod(19,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.19");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 169.f (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.60491646769\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 19.1
Character \(\chi\) \(=\) 169.19
Dual form 169.3.f.g.89.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.834643 - 3.11493i) q^{2} +(1.02304 - 1.77195i) q^{3} +(-5.54206 + 3.19971i) q^{4} +(-5.50472 + 5.50472i) q^{5} +(-6.37336 - 1.70774i) q^{6} +(-0.846854 + 3.16050i) q^{7} +(5.47136 + 5.47136i) q^{8} +(2.40680 + 4.16870i) q^{9} +(21.7413 + 12.5523i) q^{10} +(-4.90135 + 1.31331i) q^{11} +13.0937i q^{12} +10.5516 q^{14} +(4.12256 + 15.3856i) q^{15} +(-0.322570 + 0.558708i) q^{16} +(-8.72503 + 5.03740i) q^{17} +(10.9764 - 10.9764i) q^{18} +(-11.4845 - 3.07725i) q^{19} +(12.8940 - 48.1209i) q^{20} +(4.73388 + 4.73388i) q^{21} +(8.18176 + 14.1712i) q^{22} +(-27.5785 - 15.9225i) q^{23} +(15.2924 - 4.09757i) q^{24} -35.6038i q^{25} +28.2636 q^{27} +(-5.41937 - 20.2254i) q^{28} +(-16.3339 + 28.2912i) q^{29} +(44.4842 - 25.6830i) q^{30} +(-8.05564 + 8.05564i) q^{31} +(31.9056 + 8.54908i) q^{32} +(-2.68713 + 10.0285i) q^{33} +(22.9734 + 22.9734i) q^{34} +(-12.7360 - 22.0593i) q^{35} +(-26.6772 - 15.4021i) q^{36} +(42.7934 - 11.4664i) q^{37} +38.3417i q^{38} -60.2365 q^{40} +(12.2352 + 45.6623i) q^{41} +(10.7946 - 18.6968i) q^{42} +(-20.1558 + 11.6370i) q^{43} +(22.9614 - 22.9614i) q^{44} +(-36.1962 - 9.69875i) q^{45} +(-26.5792 + 99.1947i) q^{46} +(-64.6057 - 64.6057i) q^{47} +(0.660002 + 1.14316i) q^{48} +(33.1636 + 19.1470i) q^{49} +(-110.903 + 29.7165i) q^{50} +20.6138i q^{51} -48.7831 q^{53} +(-23.5900 - 88.0391i) q^{54} +(19.7511 - 34.2100i) q^{55} +(-21.9257 + 12.6588i) q^{56} +(-17.2018 + 17.2018i) q^{57} +(101.758 + 27.2660i) q^{58} +(-6.31406 + 23.5644i) q^{59} +(-72.0768 - 72.0768i) q^{60} +(-6.30335 - 10.9177i) q^{61} +(31.8163 + 18.3692i) q^{62} +(-15.2134 + 4.07641i) q^{63} -103.939i q^{64} +33.4809 q^{66} +(4.48316 + 16.7314i) q^{67} +(32.2364 - 55.8351i) q^{68} +(-56.4276 + 32.5785i) q^{69} +(-58.0833 + 58.0833i) q^{70} +(-38.8404 - 10.4073i) q^{71} +(-9.63998 + 35.9769i) q^{72} +(76.5080 + 76.5080i) q^{73} +(-71.4344 - 123.728i) q^{74} +(-63.0881 - 36.4239i) q^{75} +(73.4939 - 19.6926i) q^{76} -16.6029i q^{77} -94.0887 q^{79} +(-1.29987 - 4.85119i) q^{80} +(7.25346 - 12.5634i) q^{81} +(132.023 - 76.2235i) q^{82} +(33.6177 - 33.6177i) q^{83} +(-41.3825 - 11.0884i) q^{84} +(20.2994 - 75.7583i) q^{85} +(53.0713 + 53.0713i) q^{86} +(33.4204 + 57.8858i) q^{87} +(-34.0027 - 19.6314i) q^{88} +(-35.0471 + 9.39084i) q^{89} +120.844i q^{90} +203.789 q^{92} +(6.03298 + 22.5154i) q^{93} +(-147.319 + 255.165i) q^{94} +(80.1582 - 46.2793i) q^{95} +(47.7891 - 47.7891i) q^{96} +(40.1144 + 10.7486i) q^{97} +(31.9619 - 119.283i) q^{98} +(-17.2714 - 17.2714i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 12 q^{3} - 84 q^{9} + 376 q^{14} - 188 q^{16} + 136 q^{22} + 120 q^{27} - 84 q^{29} - 176 q^{35} - 1048 q^{40} + 368 q^{42} + 368 q^{48} - 88 q^{53} + 704 q^{55} + 8 q^{61} - 1480 q^{66} + 168 q^{68}+ \cdots - 1132 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.834643 3.11493i −0.417321 1.55746i −0.780140 0.625605i \(-0.784852\pi\)
0.362819 0.931860i \(-0.381814\pi\)
\(3\) 1.02304 1.77195i 0.341012 0.590650i −0.643609 0.765354i \(-0.722564\pi\)
0.984621 + 0.174705i \(0.0558971\pi\)
\(4\) −5.54206 + 3.19971i −1.38551 + 0.799927i
\(5\) −5.50472 + 5.50472i −1.10094 + 1.10094i −0.106646 + 0.994297i \(0.534011\pi\)
−0.994297 + 0.106646i \(0.965989\pi\)
\(6\) −6.37336 1.70774i −1.06223 0.284623i
\(7\) −0.846854 + 3.16050i −0.120979 + 0.451500i −0.999665 0.0259011i \(-0.991754\pi\)
0.878685 + 0.477401i \(0.158421\pi\)
\(8\) 5.47136 + 5.47136i 0.683920 + 0.683920i
\(9\) 2.40680 + 4.16870i 0.267422 + 0.463189i
\(10\) 21.7413 + 12.5523i 2.17413 + 1.25523i
\(11\) −4.90135 + 1.31331i −0.445578 + 0.119392i −0.474629 0.880186i \(-0.657418\pi\)
0.0290518 + 0.999578i \(0.490751\pi\)
\(12\) 13.0937i 1.09114i
\(13\) 0 0
\(14\) 10.5516 0.753683
\(15\) 4.12256 + 15.3856i 0.274837 + 1.02571i
\(16\) −0.322570 + 0.558708i −0.0201607 + 0.0349193i
\(17\) −8.72503 + 5.03740i −0.513237 + 0.296318i −0.734163 0.678973i \(-0.762425\pi\)
0.220926 + 0.975291i \(0.429092\pi\)
\(18\) 10.9764 10.9764i 0.609799 0.609799i
\(19\) −11.4845 3.07725i −0.604446 0.161961i −0.0563988 0.998408i \(-0.517962\pi\)
−0.548047 + 0.836448i \(0.684629\pi\)
\(20\) 12.8940 48.1209i 0.644698 2.40605i
\(21\) 4.73388 + 4.73388i 0.225423 + 0.225423i
\(22\) 8.18176 + 14.1712i 0.371898 + 0.644147i
\(23\) −27.5785 15.9225i −1.19907 0.692281i −0.238719 0.971089i \(-0.576728\pi\)
−0.960347 + 0.278807i \(0.910061\pi\)
\(24\) 15.2924 4.09757i 0.637181 0.170732i
\(25\) 35.6038i 1.42415i
\(26\) 0 0
\(27\) 28.2636 1.04680
\(28\) −5.41937 20.2254i −0.193549 0.722334i
\(29\) −16.3339 + 28.2912i −0.563239 + 0.975559i 0.433972 + 0.900927i \(0.357112\pi\)
−0.997211 + 0.0746329i \(0.976222\pi\)
\(30\) 44.4842 25.6830i 1.48281 0.856098i
\(31\) −8.05564 + 8.05564i −0.259859 + 0.259859i −0.824997 0.565137i \(-0.808823\pi\)
0.565137 + 0.824997i \(0.308823\pi\)
\(32\) 31.9056 + 8.54908i 0.997050 + 0.267159i
\(33\) −2.68713 + 10.0285i −0.0814283 + 0.303894i
\(34\) 22.9734 + 22.9734i 0.675689 + 0.675689i
\(35\) −12.7360 22.0593i −0.363885 0.630267i
\(36\) −26.6772 15.4021i −0.741034 0.427836i
\(37\) 42.7934 11.4664i 1.15658 0.309904i 0.370979 0.928641i \(-0.379022\pi\)
0.785598 + 0.618737i \(0.212355\pi\)
\(38\) 38.3417i 1.00899i
\(39\) 0 0
\(40\) −60.2365 −1.50591
\(41\) 12.2352 + 45.6623i 0.298419 + 1.11372i 0.938464 + 0.345378i \(0.112249\pi\)
−0.640045 + 0.768338i \(0.721084\pi\)
\(42\) 10.7946 18.6968i 0.257015 0.445162i
\(43\) −20.1558 + 11.6370i −0.468740 + 0.270627i −0.715712 0.698395i \(-0.753898\pi\)
0.246972 + 0.969023i \(0.420564\pi\)
\(44\) 22.9614 22.9614i 0.521849 0.521849i
\(45\) −36.1962 9.69875i −0.804361 0.215528i
\(46\) −26.5792 + 99.1947i −0.577808 + 2.15641i
\(47\) −64.6057 64.6057i −1.37459 1.37459i −0.853506 0.521082i \(-0.825528\pi\)
−0.521082 0.853506i \(-0.674472\pi\)
\(48\) 0.660002 + 1.14316i 0.0137500 + 0.0238158i
\(49\) 33.1636 + 19.1470i 0.676809 + 0.390756i
\(50\) −110.903 + 29.7165i −2.21807 + 0.594329i
\(51\) 20.6138i 0.404191i
\(52\) 0 0
\(53\) −48.7831 −0.920436 −0.460218 0.887806i \(-0.652229\pi\)
−0.460218 + 0.887806i \(0.652229\pi\)
\(54\) −23.5900 88.0391i −0.436852 1.63035i
\(55\) 19.7511 34.2100i 0.359112 0.622000i
\(56\) −21.9257 + 12.6588i −0.391530 + 0.226050i
\(57\) −17.2018 + 17.2018i −0.301785 + 0.301785i
\(58\) 101.758 + 27.2660i 1.75445 + 0.470104i
\(59\) −6.31406 + 23.5644i −0.107018 + 0.399397i −0.998566 0.0535290i \(-0.982953\pi\)
0.891548 + 0.452926i \(0.149620\pi\)
\(60\) −72.0768 72.0768i −1.20128 1.20128i
\(61\) −6.30335 10.9177i −0.103334 0.178979i 0.809723 0.586813i \(-0.199618\pi\)
−0.913056 + 0.407834i \(0.866284\pi\)
\(62\) 31.8163 + 18.3692i 0.513167 + 0.296277i
\(63\) −15.2134 + 4.07641i −0.241482 + 0.0647049i
\(64\) 103.939i 1.62404i
\(65\) 0 0
\(66\) 33.4809 0.507287
\(67\) 4.48316 + 16.7314i 0.0669128 + 0.249722i 0.991278 0.131787i \(-0.0420714\pi\)
−0.924365 + 0.381508i \(0.875405\pi\)
\(68\) 32.2364 55.8351i 0.474065 0.821105i
\(69\) −56.4276 + 32.5785i −0.817791 + 0.472152i
\(70\) −58.0833 + 58.0833i −0.829762 + 0.829762i
\(71\) −38.8404 10.4073i −0.547048 0.146581i −0.0252987 0.999680i \(-0.508054\pi\)
−0.521749 + 0.853099i \(0.674720\pi\)
\(72\) −9.63998 + 35.9769i −0.133889 + 0.499679i
\(73\) 76.5080 + 76.5080i 1.04806 + 1.04806i 0.998786 + 0.0492695i \(0.0156893\pi\)
0.0492695 + 0.998786i \(0.484311\pi\)
\(74\) −71.4344 123.728i −0.965329 1.67200i
\(75\) −63.0881 36.4239i −0.841175 0.485653i
\(76\) 73.4939 19.6926i 0.967025 0.259114i
\(77\) 16.6029i 0.215622i
\(78\) 0 0
\(79\) −94.0887 −1.19100 −0.595498 0.803357i \(-0.703045\pi\)
−0.595498 + 0.803357i \(0.703045\pi\)
\(80\) −1.29987 4.85119i −0.0162484 0.0606399i
\(81\) 7.25346 12.5634i 0.0895489 0.155103i
\(82\) 132.023 76.2235i 1.61004 0.929555i
\(83\) 33.6177 33.6177i 0.405032 0.405032i −0.474970 0.880002i \(-0.657541\pi\)
0.880002 + 0.474970i \(0.157541\pi\)
\(84\) −41.3825 11.0884i −0.492649 0.132005i
\(85\) 20.2994 75.7583i 0.238816 0.891274i
\(86\) 53.0713 + 53.0713i 0.617108 + 0.617108i
\(87\) 33.4204 + 57.8858i 0.384143 + 0.665354i
\(88\) −34.0027 19.6314i −0.386394 0.223085i
\(89\) −35.0471 + 9.39084i −0.393788 + 0.105515i −0.450279 0.892888i \(-0.648675\pi\)
0.0564911 + 0.998403i \(0.482009\pi\)
\(90\) 120.844i 1.34271i
\(91\) 0 0
\(92\) 203.789 2.21510
\(93\) 6.03298 + 22.5154i 0.0648708 + 0.242101i
\(94\) −147.319 + 255.165i −1.56723 + 2.71452i
\(95\) 80.1582 46.2793i 0.843770 0.487151i
\(96\) 47.7891 47.7891i 0.497803 0.497803i
\(97\) 40.1144 + 10.7486i 0.413550 + 0.110810i 0.459594 0.888129i \(-0.347995\pi\)
−0.0460441 + 0.998939i \(0.514661\pi\)
\(98\) 31.9619 119.283i 0.326142 1.21718i
\(99\) −17.2714 17.2714i −0.174458 0.174458i
\(100\) 113.922 + 197.318i 1.13922 + 1.97318i
\(101\) −20.6108 11.8997i −0.204067 0.117818i 0.394484 0.918903i \(-0.370923\pi\)
−0.598551 + 0.801085i \(0.704257\pi\)
\(102\) 64.2104 17.2051i 0.629514 0.168678i
\(103\) 99.0034i 0.961198i 0.876940 + 0.480599i \(0.159581\pi\)
−0.876940 + 0.480599i \(0.840419\pi\)
\(104\) 0 0
\(105\) −52.1174 −0.496356
\(106\) 40.7165 + 151.956i 0.384118 + 1.43355i
\(107\) 72.7606 126.025i 0.680006 1.17780i −0.294972 0.955506i \(-0.595310\pi\)
0.974978 0.222299i \(-0.0713562\pi\)
\(108\) −156.638 + 90.4352i −1.45036 + 0.837363i
\(109\) 104.897 104.897i 0.962359 0.962359i −0.0369580 0.999317i \(-0.511767\pi\)
0.999317 + 0.0369580i \(0.0117668\pi\)
\(110\) −123.047 32.9703i −1.11861 0.299730i
\(111\) 23.4612 87.5582i 0.211362 0.788813i
\(112\) −1.49263 1.49263i −0.0133270 0.0133270i
\(113\) 20.4781 + 35.4690i 0.181222 + 0.313885i 0.942297 0.334778i \(-0.108661\pi\)
−0.761075 + 0.648664i \(0.775328\pi\)
\(114\) 67.9396 + 39.2249i 0.595961 + 0.344078i
\(115\) 239.461 64.1633i 2.08227 0.557942i
\(116\) 209.055i 1.80220i
\(117\) 0 0
\(118\) 78.6714 0.666707
\(119\) −8.53188 31.8414i −0.0716965 0.267575i
\(120\) −61.6241 + 106.736i −0.513534 + 0.889467i
\(121\) −82.4906 + 47.6260i −0.681740 + 0.393603i
\(122\) −28.7469 + 28.7469i −0.235630 + 0.235630i
\(123\) 93.4283 + 25.0340i 0.759580 + 0.203529i
\(124\) 18.8691 70.4205i 0.152170 0.567907i
\(125\) 58.3709 + 58.3709i 0.466967 + 0.466967i
\(126\) 25.3955 + 43.9862i 0.201551 + 0.349097i
\(127\) 100.148 + 57.8204i 0.788566 + 0.455279i 0.839457 0.543425i \(-0.182873\pi\)
−0.0508914 + 0.998704i \(0.516206\pi\)
\(128\) −196.139 + 52.5553i −1.53234 + 0.410588i
\(129\) 47.6201i 0.369148i
\(130\) 0 0
\(131\) 55.6501 0.424810 0.212405 0.977182i \(-0.431870\pi\)
0.212405 + 0.977182i \(0.431870\pi\)
\(132\) −17.1961 64.1766i −0.130273 0.486187i
\(133\) 19.4513 33.6907i 0.146251 0.253313i
\(134\) 48.3752 27.9294i 0.361009 0.208429i
\(135\) −155.583 + 155.583i −1.15247 + 1.15247i
\(136\) −75.2992 20.1764i −0.553670 0.148356i
\(137\) 8.17673 30.5160i 0.0596841 0.222744i −0.929642 0.368465i \(-0.879883\pi\)
0.989326 + 0.145721i \(0.0465501\pi\)
\(138\) 148.577 + 148.577i 1.07664 + 1.07664i
\(139\) −116.947 202.558i −0.841343 1.45725i −0.888759 0.458374i \(-0.848432\pi\)
0.0474162 0.998875i \(-0.484901\pi\)
\(140\) 141.167 + 81.5028i 1.00834 + 0.582163i
\(141\) −180.572 + 48.3841i −1.28065 + 0.343149i
\(142\) 129.671i 0.913180i
\(143\) 0 0
\(144\) −3.10545 −0.0215656
\(145\) −65.8214 245.649i −0.453941 1.69413i
\(146\) 174.460 302.174i 1.19493 2.06968i
\(147\) 67.8551 39.1762i 0.461600 0.266505i
\(148\) −200.474 + 200.474i −1.35455 + 1.35455i
\(149\) −171.694 46.0054i −1.15231 0.308761i −0.368420 0.929659i \(-0.620101\pi\)
−0.783891 + 0.620899i \(0.786768\pi\)
\(150\) −60.8020 + 226.916i −0.405346 + 1.51277i
\(151\) −32.9910 32.9910i −0.218484 0.218484i 0.589376 0.807859i \(-0.299374\pi\)
−0.807859 + 0.589376i \(0.799374\pi\)
\(152\) −45.9989 79.6724i −0.302624 0.524160i
\(153\) −41.9988 24.2480i −0.274502 0.158484i
\(154\) −51.7169 + 13.8575i −0.335824 + 0.0899838i
\(155\) 88.6880i 0.572181i
\(156\) 0 0
\(157\) 61.3344 0.390665 0.195332 0.980737i \(-0.437421\pi\)
0.195332 + 0.980737i \(0.437421\pi\)
\(158\) 78.5305 + 293.080i 0.497028 + 1.85494i
\(159\) −49.9068 + 86.4411i −0.313879 + 0.543655i
\(160\) −222.692 + 128.571i −1.39182 + 0.803569i
\(161\) 73.6779 73.6779i 0.457627 0.457627i
\(162\) −45.1880 12.1081i −0.278938 0.0747413i
\(163\) −41.6113 + 155.296i −0.255284 + 0.952734i 0.712648 + 0.701522i \(0.247496\pi\)
−0.967932 + 0.251212i \(0.919171\pi\)
\(164\) −213.914 213.914i −1.30435 1.30435i
\(165\) −40.4122 69.9960i −0.244923 0.424218i
\(166\) −132.775 76.6580i −0.799852 0.461795i
\(167\) −16.2249 + 4.34745i −0.0971551 + 0.0260326i −0.307069 0.951687i \(-0.599348\pi\)
0.209914 + 0.977720i \(0.432682\pi\)
\(168\) 51.8015i 0.308342i
\(169\) 0 0
\(170\) −252.925 −1.48779
\(171\) −14.8127 55.2816i −0.0866238 0.323284i
\(172\) 74.4699 128.986i 0.432964 0.749916i
\(173\) −33.5017 + 19.3422i −0.193651 + 0.111805i −0.593691 0.804693i \(-0.702330\pi\)
0.400039 + 0.916498i \(0.368996\pi\)
\(174\) 152.416 152.416i 0.875955 0.875955i
\(175\) 112.526 + 30.1512i 0.643005 + 0.172293i
\(176\) 0.847272 3.16206i 0.00481405 0.0179663i
\(177\) 35.2954 + 35.2954i 0.199409 + 0.199409i
\(178\) 58.5036 + 101.331i 0.328672 + 0.569277i
\(179\) 240.631 + 138.929i 1.34431 + 0.776137i 0.987437 0.158016i \(-0.0505096\pi\)
0.356873 + 0.934153i \(0.383843\pi\)
\(180\) 231.635 62.0663i 1.28686 0.344813i
\(181\) 13.3679i 0.0738556i 0.999318 + 0.0369278i \(0.0117572\pi\)
−0.999318 + 0.0369278i \(0.988243\pi\)
\(182\) 0 0
\(183\) −25.7942 −0.140952
\(184\) −63.7744 238.009i −0.346600 1.29353i
\(185\) −172.446 + 298.685i −0.932140 + 1.61451i
\(186\) 65.0985 37.5846i 0.349992 0.202068i
\(187\) 36.1488 36.1488i 0.193309 0.193309i
\(188\) 564.768 + 151.329i 3.00408 + 0.804942i
\(189\) −23.9351 + 89.3271i −0.126641 + 0.472630i
\(190\) −211.060 211.060i −1.11084 1.11084i
\(191\) 163.781 + 283.678i 0.857494 + 1.48522i 0.874312 + 0.485365i \(0.161313\pi\)
−0.0168172 + 0.999859i \(0.505353\pi\)
\(192\) −184.174 106.333i −0.959239 0.553817i
\(193\) −226.302 + 60.6375i −1.17255 + 0.314184i −0.791968 0.610563i \(-0.790943\pi\)
−0.380583 + 0.924747i \(0.624277\pi\)
\(194\) 133.925i 0.690333i
\(195\) 0 0
\(196\) −245.060 −1.25030
\(197\) 25.1743 + 93.9516i 0.127788 + 0.476912i 0.999924 0.0123525i \(-0.00393201\pi\)
−0.872136 + 0.489264i \(0.837265\pi\)
\(198\) −39.3837 + 68.2146i −0.198908 + 0.344518i
\(199\) 231.474 133.641i 1.16318 0.671564i 0.211119 0.977460i \(-0.432289\pi\)
0.952065 + 0.305896i \(0.0989560\pi\)
\(200\) 194.801 194.801i 0.974005 0.974005i
\(201\) 34.2335 + 9.17285i 0.170316 + 0.0456361i
\(202\) −19.8639 + 74.1332i −0.0983362 + 0.366996i
\(203\) −75.5820 75.5820i −0.372325 0.372325i
\(204\) −65.9580 114.243i −0.323323 0.560013i
\(205\) −318.709 184.007i −1.55468 0.897595i
\(206\) 308.389 82.6325i 1.49703 0.401129i
\(207\) 153.289i 0.740525i
\(208\) 0 0
\(209\) 60.3309 0.288664
\(210\) 43.4994 + 162.342i 0.207140 + 0.773057i
\(211\) 79.7306 138.097i 0.377870 0.654490i −0.612882 0.790174i \(-0.709990\pi\)
0.990752 + 0.135684i \(0.0433233\pi\)
\(212\) 270.359 156.092i 1.27528 0.736281i
\(213\) −58.1762 + 58.1762i −0.273128 + 0.273128i
\(214\) −453.289 121.458i −2.11817 0.567562i
\(215\) 46.8939 175.010i 0.218111 0.814002i
\(216\) 154.640 + 154.640i 0.715927 + 0.715927i
\(217\) −18.6379 32.2818i −0.0858890 0.148764i
\(218\) −414.299 239.195i −1.90045 1.09723i
\(219\) 213.839 57.2979i 0.976432 0.261634i
\(220\) 252.792i 1.14905i
\(221\) 0 0
\(222\) −292.319 −1.31675
\(223\) 47.7476 + 178.197i 0.214115 + 0.799088i 0.986476 + 0.163904i \(0.0524088\pi\)
−0.772361 + 0.635183i \(0.780925\pi\)
\(224\) −54.0388 + 93.5979i −0.241244 + 0.417848i
\(225\) 148.421 85.6912i 0.659651 0.380850i
\(226\) 93.3917 93.3917i 0.413238 0.413238i
\(227\) 215.806 + 57.8250i 0.950687 + 0.254736i 0.700654 0.713502i \(-0.252892\pi\)
0.250033 + 0.968237i \(0.419559\pi\)
\(228\) 40.2925 150.374i 0.176722 0.659534i
\(229\) −7.86632 7.86632i −0.0343508 0.0343508i 0.689723 0.724074i \(-0.257732\pi\)
−0.724074 + 0.689723i \(0.757732\pi\)
\(230\) −399.728 692.350i −1.73795 3.01022i
\(231\) −29.4195 16.9854i −0.127357 0.0735297i
\(232\) −244.160 + 65.4225i −1.05241 + 0.281994i
\(233\) 39.1708i 0.168115i −0.996461 0.0840575i \(-0.973212\pi\)
0.996461 0.0840575i \(-0.0267879\pi\)
\(234\) 0 0
\(235\) 711.272 3.02669
\(236\) −40.4063 150.798i −0.171213 0.638976i
\(237\) −96.2561 + 166.720i −0.406144 + 0.703462i
\(238\) −92.0627 + 53.1524i −0.386818 + 0.223330i
\(239\) −274.654 + 274.654i −1.14918 + 1.14918i −0.162466 + 0.986714i \(0.551945\pi\)
−0.986714 + 0.162466i \(0.948055\pi\)
\(240\) −9.92588 2.65963i −0.0413578 0.0110818i
\(241\) −88.8999 + 331.779i −0.368879 + 1.37668i 0.493205 + 0.869913i \(0.335825\pi\)
−0.862085 + 0.506764i \(0.830842\pi\)
\(242\) 217.202 + 217.202i 0.897528 + 0.897528i
\(243\) 112.345 + 194.587i 0.462325 + 0.800771i
\(244\) 69.8671 + 40.3378i 0.286340 + 0.165319i
\(245\) −287.955 + 77.1574i −1.17533 + 0.314928i
\(246\) 311.917i 1.26796i
\(247\) 0 0
\(248\) −88.1506 −0.355446
\(249\) −25.1767 93.9609i −0.101111 0.377353i
\(250\) 133.102 230.540i 0.532410 0.922161i
\(251\) 15.1070 8.72206i 0.0601874 0.0347492i −0.469604 0.882877i \(-0.655603\pi\)
0.529792 + 0.848128i \(0.322270\pi\)
\(252\) 71.2701 71.2701i 0.282818 0.282818i
\(253\) 156.083 + 41.8224i 0.616930 + 0.165306i
\(254\) 96.5188 360.213i 0.379995 1.41816i
\(255\) −113.473 113.473i −0.444992 0.444992i
\(256\) 119.535 + 207.040i 0.466933 + 0.808752i
\(257\) 232.356 + 134.151i 0.904107 + 0.521986i 0.878530 0.477686i \(-0.158524\pi\)
0.0255766 + 0.999673i \(0.491858\pi\)
\(258\) 148.333 39.7458i 0.574936 0.154054i
\(259\) 144.959i 0.559687i
\(260\) 0 0
\(261\) −157.250 −0.602491
\(262\) −46.4480 173.346i −0.177282 0.661626i
\(263\) 6.06253 10.5006i 0.0230515 0.0399263i −0.854270 0.519830i \(-0.825995\pi\)
0.877321 + 0.479904i \(0.159329\pi\)
\(264\) −69.5718 + 40.1673i −0.263530 + 0.152149i
\(265\) 268.537 268.537i 1.01335 1.01335i
\(266\) −121.179 32.4698i −0.455560 0.122067i
\(267\) −19.2143 + 71.7088i −0.0719638 + 0.268572i
\(268\) −78.3814 78.3814i −0.292468 0.292468i
\(269\) 59.2202 + 102.572i 0.220150 + 0.381310i 0.954853 0.297078i \(-0.0960121\pi\)
−0.734704 + 0.678388i \(0.762679\pi\)
\(270\) 614.486 + 354.774i 2.27588 + 1.31398i
\(271\) −135.707 + 36.3626i −0.500764 + 0.134179i −0.500354 0.865821i \(-0.666797\pi\)
−0.000409306 1.00000i \(0.500130\pi\)
\(272\) 6.49967i 0.0238958i
\(273\) 0 0
\(274\) −101.880 −0.371824
\(275\) 46.7590 + 174.507i 0.170033 + 0.634570i
\(276\) 208.483 361.104i 0.755374 1.30835i
\(277\) −469.067 + 270.816i −1.69338 + 0.977676i −0.741632 + 0.670807i \(0.765948\pi\)
−0.951752 + 0.306869i \(0.900719\pi\)
\(278\) −533.344 + 533.344i −1.91850 + 1.91850i
\(279\) −52.9698 14.1932i −0.189856 0.0508718i
\(280\) 51.0115 190.378i 0.182184 0.679920i
\(281\) 57.5732 + 57.5732i 0.204887 + 0.204887i 0.802090 0.597203i \(-0.203721\pi\)
−0.597203 + 0.802090i \(0.703721\pi\)
\(282\) 301.426 + 522.085i 1.06889 + 1.85137i
\(283\) 132.682 + 76.6042i 0.468842 + 0.270686i 0.715755 0.698352i \(-0.246083\pi\)
−0.246913 + 0.969038i \(0.579416\pi\)
\(284\) 248.556 66.6004i 0.875197 0.234508i
\(285\) 189.382i 0.664497i
\(286\) 0 0
\(287\) −154.677 −0.538945
\(288\) 41.1518 + 153.581i 0.142888 + 0.533267i
\(289\) −93.7492 + 162.378i −0.324392 + 0.561863i
\(290\) −710.242 + 410.058i −2.44911 + 1.41399i
\(291\) 60.0844 60.0844i 0.206476 0.206476i
\(292\) −668.815 179.208i −2.29046 0.613728i
\(293\) −60.5070 + 225.815i −0.206509 + 0.770700i 0.782476 + 0.622681i \(0.213957\pi\)
−0.988984 + 0.148020i \(0.952710\pi\)
\(294\) −178.666 178.666i −0.607707 0.607707i
\(295\) −94.9582 164.472i −0.321892 0.557534i
\(296\) 296.875 + 171.401i 1.00296 + 0.579057i
\(297\) −138.530 + 37.1190i −0.466430 + 0.124980i
\(298\) 573.214i 1.92354i
\(299\) 0 0
\(300\) 466.184 1.55395
\(301\) −19.7096 73.5573i −0.0654805 0.244377i
\(302\) −75.2290 + 130.300i −0.249103 + 0.431458i
\(303\) −42.1711 + 24.3475i −0.139179 + 0.0803549i
\(304\) 5.42384 5.42384i 0.0178416 0.0178416i
\(305\) 94.7972 + 25.4008i 0.310810 + 0.0832814i
\(306\) −40.4769 + 151.062i −0.132277 + 0.493666i
\(307\) 115.257 + 115.257i 0.375429 + 0.375429i 0.869450 0.494021i \(-0.164473\pi\)
−0.494021 + 0.869450i \(0.664473\pi\)
\(308\) 53.1245 + 92.0143i 0.172482 + 0.298748i
\(309\) 175.429 + 101.284i 0.567731 + 0.327780i
\(310\) −276.257 + 74.0228i −0.891152 + 0.238783i
\(311\) 511.349i 1.64421i 0.569336 + 0.822105i \(0.307201\pi\)
−0.569336 + 0.822105i \(0.692799\pi\)
\(312\) 0 0
\(313\) 59.4173 0.189832 0.0949158 0.995485i \(-0.469742\pi\)
0.0949158 + 0.995485i \(0.469742\pi\)
\(314\) −51.1923 191.052i −0.163033 0.608447i
\(315\) 61.3058 106.185i 0.194622 0.337095i
\(316\) 521.445 301.056i 1.65014 0.952710i
\(317\) 115.961 115.961i 0.365808 0.365808i −0.500138 0.865946i \(-0.666717\pi\)
0.865946 + 0.500138i \(0.166717\pi\)
\(318\) 310.912 + 83.3087i 0.977712 + 0.261977i
\(319\) 42.9032 160.117i 0.134493 0.501934i
\(320\) 572.153 + 572.153i 1.78798 + 1.78798i
\(321\) −148.873 257.856i −0.463780 0.803291i
\(322\) −290.996 168.007i −0.903715 0.521760i
\(323\) 115.704 31.0027i 0.358216 0.0959837i
\(324\) 92.8358i 0.286530i
\(325\) 0 0
\(326\) 518.466 1.59039
\(327\) −78.5589 293.186i −0.240241 0.896592i
\(328\) −182.892 + 316.778i −0.557597 + 0.965786i
\(329\) 258.898 149.475i 0.786923 0.454330i
\(330\) −184.303 + 184.303i −0.558494 + 0.558494i
\(331\) −528.576 141.631i −1.59691 0.427890i −0.652800 0.757531i \(-0.726406\pi\)
−0.944106 + 0.329641i \(0.893072\pi\)
\(332\) −78.7443 + 293.878i −0.237182 + 0.885174i
\(333\) 150.795 + 150.795i 0.452838 + 0.452838i
\(334\) 27.0840 + 46.9109i 0.0810898 + 0.140452i
\(335\) −116.780 67.4229i −0.348597 0.201262i
\(336\) −4.17187 + 1.11785i −0.0124163 + 0.00332693i
\(337\) 514.522i 1.52677i −0.645942 0.763386i \(-0.723535\pi\)
0.645942 0.763386i \(-0.276465\pi\)
\(338\) 0 0
\(339\) 83.7991 0.247195
\(340\) 129.904 + 484.809i 0.382071 + 1.42591i
\(341\) 28.9040 50.0631i 0.0847624 0.146813i
\(342\) −159.835 + 92.2808i −0.467354 + 0.269827i
\(343\) −201.968 + 201.968i −0.588827 + 0.588827i
\(344\) −173.950 46.6097i −0.505668 0.135493i
\(345\) 131.283 489.953i 0.380529 1.42015i
\(346\) 88.2116 + 88.2116i 0.254947 + 0.254947i
\(347\) 86.2782 + 149.438i 0.248640 + 0.430658i 0.963149 0.268969i \(-0.0866829\pi\)
−0.714508 + 0.699627i \(0.753350\pi\)
\(348\) −370.435 213.871i −1.06447 0.614572i
\(349\) 634.579 170.035i 1.81828 0.487206i 0.821703 0.569916i \(-0.193024\pi\)
0.996574 + 0.0827101i \(0.0263576\pi\)
\(350\) 375.676i 1.07336i
\(351\) 0 0
\(352\) −167.608 −0.476160
\(353\) −18.7227 69.8740i −0.0530388 0.197943i 0.934323 0.356429i \(-0.116006\pi\)
−0.987361 + 0.158485i \(0.949339\pi\)
\(354\) 80.4836 139.402i 0.227355 0.393790i
\(355\) 271.094 156.516i 0.763646 0.440891i
\(356\) 164.185 164.185i 0.461194 0.461194i
\(357\) −65.1498 17.4568i −0.182492 0.0488987i
\(358\) 231.912 865.506i 0.647798 2.41761i
\(359\) −336.848 336.848i −0.938295 0.938295i 0.0599089 0.998204i \(-0.480919\pi\)
−0.998204 + 0.0599089i \(0.980919\pi\)
\(360\) −144.977 251.108i −0.402714 0.697522i
\(361\) −190.212 109.819i −0.526902 0.304207i
\(362\) 41.6399 11.1574i 0.115027 0.0308215i
\(363\) 194.892i 0.536893i
\(364\) 0 0
\(365\) −842.310 −2.30770
\(366\) 21.5289 + 80.3471i 0.0588223 + 0.219528i
\(367\) 24.9938 43.2905i 0.0681030 0.117958i −0.829963 0.557818i \(-0.811639\pi\)
0.898066 + 0.439860i \(0.144972\pi\)
\(368\) 17.7920 10.2722i 0.0483479 0.0279137i
\(369\) −160.905 + 160.905i −0.436056 + 0.436056i
\(370\) 1074.31 + 287.861i 2.90355 + 0.778004i
\(371\) 41.3121 154.179i 0.111353 0.415577i
\(372\) −105.478 105.478i −0.283542 0.283542i
\(373\) −113.491 196.572i −0.304265 0.527003i 0.672832 0.739795i \(-0.265078\pi\)
−0.977097 + 0.212792i \(0.931744\pi\)
\(374\) −142.772 82.4296i −0.381744 0.220400i
\(375\) 163.146 43.7148i 0.435055 0.116573i
\(376\) 706.961i 1.88022i
\(377\) 0 0
\(378\) 298.225 0.788955
\(379\) 2.45213 + 9.15147i 0.00647000 + 0.0241464i 0.969085 0.246726i \(-0.0793546\pi\)
−0.962615 + 0.270872i \(0.912688\pi\)
\(380\) −296.161 + 512.965i −0.779370 + 1.34991i
\(381\) 204.910 118.305i 0.537820 0.310511i
\(382\) 746.937 746.937i 1.95533 1.95533i
\(383\) 83.0919 + 22.2644i 0.216950 + 0.0581316i 0.365657 0.930750i \(-0.380844\pi\)
−0.148707 + 0.988881i \(0.547511\pi\)
\(384\) −107.532 + 401.314i −0.280031 + 1.04509i
\(385\) 91.3943 + 91.3943i 0.237388 + 0.237388i
\(386\) 377.763 + 654.305i 0.978661 + 1.69509i
\(387\) −97.0221 56.0157i −0.250703 0.144743i
\(388\) −256.709 + 68.7848i −0.661620 + 0.177281i
\(389\) 34.7670i 0.0893754i 0.999001 + 0.0446877i \(0.0142293\pi\)
−0.999001 + 0.0446877i \(0.985771\pi\)
\(390\) 0 0
\(391\) 320.831 0.820541
\(392\) 76.6898 + 286.210i 0.195637 + 0.730128i
\(393\) 56.9320 98.6091i 0.144865 0.250914i
\(394\) 271.641 156.832i 0.689445 0.398051i
\(395\) 517.932 517.932i 1.31122 1.31122i
\(396\) 150.982 + 40.4556i 0.381268 + 0.102161i
\(397\) 49.0156 182.929i 0.123465 0.460778i −0.876315 0.481738i \(-0.840006\pi\)
0.999780 + 0.0209602i \(0.00667233\pi\)
\(398\) −609.481 609.481i −1.53136 1.53136i
\(399\) −39.7988 68.9335i −0.0997463 0.172766i
\(400\) 19.8921 + 11.4847i 0.0497304 + 0.0287118i
\(401\) −233.635 + 62.6022i −0.582630 + 0.156115i −0.538083 0.842892i \(-0.680851\pi\)
−0.0445472 + 0.999007i \(0.514185\pi\)
\(402\) 114.291i 0.284306i
\(403\) 0 0
\(404\) 152.302 0.376984
\(405\) 29.2295 + 109.086i 0.0721716 + 0.269348i
\(406\) −172.349 + 298.516i −0.424504 + 0.735262i
\(407\) −194.686 + 112.402i −0.478345 + 0.276173i
\(408\) −112.785 + 112.785i −0.276434 + 0.276434i
\(409\) 450.091 + 120.602i 1.10047 + 0.294869i 0.762955 0.646452i \(-0.223748\pi\)
0.337513 + 0.941321i \(0.390414\pi\)
\(410\) −307.160 + 1146.34i −0.749171 + 2.79594i
\(411\) −45.7076 45.7076i −0.111211 0.111211i
\(412\) −316.782 548.683i −0.768888 1.33175i
\(413\) −69.1282 39.9112i −0.167381 0.0966373i
\(414\) −477.483 + 127.941i −1.15334 + 0.309037i
\(415\) 370.112i 0.891835i
\(416\) 0 0
\(417\) −478.562 −1.14763
\(418\) −50.3547 187.926i −0.120466 0.449585i
\(419\) 347.147 601.277i 0.828514 1.43503i −0.0706893 0.997498i \(-0.522520\pi\)
0.899204 0.437531i \(-0.144147\pi\)
\(420\) 288.837 166.760i 0.687708 0.397049i
\(421\) −138.088 + 138.088i −0.328000 + 0.328000i −0.851826 0.523825i \(-0.824504\pi\)
0.523825 + 0.851826i \(0.324504\pi\)
\(422\) −496.710 133.093i −1.17704 0.315386i
\(423\) 113.829 424.814i 0.269098 1.00429i
\(424\) −266.910 266.910i −0.629504 0.629504i
\(425\) 179.351 + 310.644i 0.422001 + 0.730928i
\(426\) 229.771 + 132.658i 0.539369 + 0.311405i
\(427\) 39.8435 10.6760i 0.0933103 0.0250024i
\(428\) 931.251i 2.17582i
\(429\) 0 0
\(430\) −584.285 −1.35880
\(431\) −43.8570 163.677i −0.101756 0.379760i 0.896201 0.443649i \(-0.146316\pi\)
−0.997957 + 0.0638890i \(0.979650\pi\)
\(432\) −9.11700 + 15.7911i −0.0211042 + 0.0365535i
\(433\) −561.144 + 323.977i −1.29594 + 0.748214i −0.979701 0.200464i \(-0.935755\pi\)
−0.316244 + 0.948678i \(0.602422\pi\)
\(434\) −84.9996 + 84.9996i −0.195852 + 0.195852i
\(435\) −502.615 134.675i −1.15544 0.309598i
\(436\) −245.706 + 916.986i −0.563545 + 2.10318i
\(437\) 267.727 + 267.727i 0.612648 + 0.612648i
\(438\) −356.958 618.269i −0.814972 1.41157i
\(439\) −203.421 117.445i −0.463374 0.267529i 0.250088 0.968223i \(-0.419541\pi\)
−0.713462 + 0.700694i \(0.752874\pi\)
\(440\) 295.241 79.1095i 0.671001 0.179794i
\(441\) 184.332i 0.417987i
\(442\) 0 0
\(443\) −601.057 −1.35679 −0.678394 0.734698i \(-0.737324\pi\)
−0.678394 + 0.734698i \(0.737324\pi\)
\(444\) 150.138 + 560.322i 0.338148 + 1.26199i
\(445\) 141.230 244.618i 0.317372 0.549704i
\(446\) 515.217 297.461i 1.15520 0.666953i
\(447\) −257.168 + 257.168i −0.575321 + 0.575321i
\(448\) 328.498 + 88.0208i 0.733255 + 0.196475i
\(449\) −133.980 + 500.022i −0.298397 + 1.11363i 0.640084 + 0.768305i \(0.278899\pi\)
−0.938482 + 0.345329i \(0.887767\pi\)
\(450\) −390.801 390.801i −0.868446 0.868446i
\(451\) −119.938 207.739i −0.265938 0.460618i
\(452\) −226.981 131.048i −0.502171 0.289928i
\(453\) −92.2094 + 24.7074i −0.203553 + 0.0545418i
\(454\) 720.483i 1.58697i
\(455\) 0 0
\(456\) −188.234 −0.412794
\(457\) 33.4099 + 124.688i 0.0731071 + 0.272839i 0.992797 0.119805i \(-0.0382270\pi\)
−0.919690 + 0.392644i \(0.871560\pi\)
\(458\) −17.9375 + 31.0686i −0.0391648 + 0.0678354i
\(459\) −246.601 + 142.375i −0.537257 + 0.310185i
\(460\) −1121.80 + 1121.80i −2.43870 + 2.43870i
\(461\) −436.918 117.072i −0.947762 0.253952i −0.248349 0.968671i \(-0.579888\pi\)
−0.699412 + 0.714719i \(0.746555\pi\)
\(462\) −28.3534 + 105.816i −0.0613711 + 0.229040i
\(463\) 315.336 + 315.336i 0.681072 + 0.681072i 0.960242 0.279170i \(-0.0900592\pi\)
−0.279170 + 0.960242i \(0.590059\pi\)
\(464\) −10.5377 18.2518i −0.0227106 0.0393358i
\(465\) −157.151 90.7310i −0.337958 0.195120i
\(466\) −122.014 + 32.6936i −0.261833 + 0.0701580i
\(467\) 578.767i 1.23933i −0.784866 0.619665i \(-0.787268\pi\)
0.784866 0.619665i \(-0.212732\pi\)
\(468\) 0 0
\(469\) −56.6761 −0.120844
\(470\) −593.658 2215.56i −1.26310 4.71396i
\(471\) 62.7472 108.681i 0.133221 0.230746i
\(472\) −163.476 + 94.3827i −0.346347 + 0.199963i
\(473\) 83.5079 83.5079i 0.176549 0.176549i
\(474\) 599.662 + 160.679i 1.26511 + 0.338985i
\(475\) −109.562 + 408.891i −0.230657 + 0.860823i
\(476\) 149.167 + 149.167i 0.313377 + 0.313377i
\(477\) −117.411 203.362i −0.246145 0.426335i
\(478\) 1084.77 + 626.290i 2.26939 + 1.31023i
\(479\) 188.883 50.6111i 0.394328 0.105660i −0.0562058 0.998419i \(-0.517900\pi\)
0.450534 + 0.892759i \(0.351234\pi\)
\(480\) 526.131i 1.09611i
\(481\) 0 0
\(482\) 1107.67 2.29807
\(483\) −55.1784 205.929i −0.114241 0.426353i
\(484\) 304.778 527.892i 0.629707 1.09069i
\(485\) −279.986 + 161.650i −0.577291 + 0.333299i
\(486\) 512.358 512.358i 1.05423 1.05423i
\(487\) 643.217 + 172.350i 1.32077 + 0.353901i 0.849268 0.527962i \(-0.177044\pi\)
0.471507 + 0.881862i \(0.343710\pi\)
\(488\) 25.2469 94.2227i 0.0517354 0.193079i
\(489\) 232.606 + 232.606i 0.475677 + 0.475677i
\(490\) 480.680 + 832.562i 0.980979 + 1.69911i
\(491\) −168.907 97.5186i −0.344006 0.198612i 0.318036 0.948079i \(-0.396977\pi\)
−0.662042 + 0.749466i \(0.730310\pi\)
\(492\) −597.887 + 160.203i −1.21522 + 0.325616i
\(493\) 329.123i 0.667591i
\(494\) 0 0
\(495\) 190.148 0.384138
\(496\) −1.90224 7.09927i −0.00383517 0.0143130i
\(497\) 65.7843 113.942i 0.132363 0.229259i
\(498\) −271.668 + 156.848i −0.545518 + 0.314955i
\(499\) −160.747 + 160.747i −0.322139 + 0.322139i −0.849587 0.527448i \(-0.823149\pi\)
0.527448 + 0.849587i \(0.323149\pi\)
\(500\) −510.265 136.725i −1.02053 0.273450i
\(501\) −8.89519 + 33.1973i −0.0177549 + 0.0662621i
\(502\) −39.7776 39.7776i −0.0792382 0.0792382i
\(503\) −247.660 428.960i −0.492366 0.852803i 0.507595 0.861596i \(-0.330534\pi\)
−0.999961 + 0.00879272i \(0.997201\pi\)
\(504\) −105.541 60.9343i −0.209407 0.120901i
\(505\) 178.961 47.9524i 0.354378 0.0949553i
\(506\) 521.095i 1.02983i
\(507\) 0 0
\(508\) −740.034 −1.45676
\(509\) 166.732 + 622.252i 0.327568 + 1.22250i 0.911705 + 0.410845i \(0.134766\pi\)
−0.584138 + 0.811655i \(0.698567\pi\)
\(510\) −258.751 + 448.169i −0.507354 + 0.878763i
\(511\) −306.595 + 177.013i −0.599990 + 0.346404i
\(512\) −29.1874 + 29.1874i −0.0570067 + 0.0570067i
\(513\) −324.592 86.9743i −0.632734 0.169540i
\(514\) 223.936 835.739i 0.435672 1.62595i
\(515\) −544.986 544.986i −1.05822 1.05822i
\(516\) −152.371 263.914i −0.295292 0.511460i
\(517\) 401.503 + 231.808i 0.776601 + 0.448371i
\(518\) 451.537 120.989i 0.871692 0.233569i
\(519\) 79.1511i 0.152507i
\(520\) 0 0
\(521\) 807.372 1.54966 0.774830 0.632170i \(-0.217836\pi\)
0.774830 + 0.632170i \(0.217836\pi\)
\(522\) 131.248 + 489.823i 0.251432 + 0.938358i
\(523\) −168.756 + 292.295i −0.322670 + 0.558881i −0.981038 0.193815i \(-0.937914\pi\)
0.658368 + 0.752696i \(0.271247\pi\)
\(524\) −308.416 + 178.064i −0.588580 + 0.339817i
\(525\) 168.544 168.544i 0.321037 0.321037i
\(526\) −37.7687 10.1201i −0.0718036 0.0192397i
\(527\) 29.7063 110.865i 0.0563686 0.210370i
\(528\) −4.73623 4.73623i −0.00897012 0.00897012i
\(529\) 242.550 + 420.109i 0.458507 + 0.794157i
\(530\) −1060.61 612.342i −2.00114 1.15536i
\(531\) −113.430 + 30.3933i −0.213615 + 0.0572379i
\(532\) 248.954i 0.467959i
\(533\) 0 0
\(534\) 239.405 0.448324
\(535\) 293.206 + 1094.26i 0.548048 + 2.04534i
\(536\) −67.0143 + 116.072i −0.125027 + 0.216553i
\(537\) 492.349 284.258i 0.916850 0.529344i
\(538\) 270.078 270.078i 0.502004 0.502004i
\(539\) −187.693 50.2921i −0.348224 0.0933064i
\(540\) 364.430 1360.07i 0.674870 2.51865i
\(541\) −532.661 532.661i −0.984586 0.984586i 0.0152973 0.999883i \(-0.495131\pi\)
−0.999883 + 0.0152973i \(0.995131\pi\)
\(542\) 226.534 + 392.368i 0.417959 + 0.723926i
\(543\) 23.6872 + 13.6758i 0.0436228 + 0.0251856i
\(544\) −321.443 + 86.1303i −0.590887 + 0.158328i
\(545\) 1154.86i 2.11900i
\(546\) 0 0
\(547\) −508.494 −0.929606 −0.464803 0.885414i \(-0.653875\pi\)
−0.464803 + 0.885414i \(0.653875\pi\)
\(548\) 52.3263 + 195.284i 0.0954859 + 0.356358i
\(549\) 30.3418 52.5535i 0.0552674 0.0957259i
\(550\) 504.549 291.302i 0.917363 0.529640i
\(551\) 274.646 274.646i 0.498450 0.498450i
\(552\) −486.984 130.487i −0.882217 0.236389i
\(553\) 79.6794 297.367i 0.144086 0.537735i
\(554\) 1235.08 + 1235.08i 2.22938 + 2.22938i
\(555\) 352.836 + 611.130i 0.635741 + 1.10114i
\(556\) 1296.25 + 748.391i 2.33139 + 1.34603i
\(557\) 521.046 139.614i 0.935450 0.250653i 0.241273 0.970457i \(-0.422435\pi\)
0.694177 + 0.719804i \(0.255768\pi\)
\(558\) 176.844i 0.316924i
\(559\) 0 0
\(560\) 16.4330 0.0293446
\(561\) −27.0723 101.035i −0.0482573 0.180099i
\(562\) 131.283 227.389i 0.233600 0.404608i
\(563\) 612.760 353.777i 1.08838 0.628379i 0.155238 0.987877i \(-0.450386\pi\)
0.933146 + 0.359498i \(0.117052\pi\)
\(564\) 845.924 845.924i 1.49987 1.49987i
\(565\) −307.973 82.5211i −0.545085 0.146055i
\(566\) 127.874 477.233i 0.225926 0.843168i
\(567\) 33.5639 + 33.5639i 0.0591956 + 0.0591956i
\(568\) −155.568 269.452i −0.273887 0.474386i
\(569\) −75.1164 43.3685i −0.132015 0.0762188i 0.432538 0.901616i \(-0.357618\pi\)
−0.564553 + 0.825397i \(0.690951\pi\)
\(570\) −589.910 + 158.066i −1.03493 + 0.277309i
\(571\) 819.215i 1.43470i −0.696712 0.717351i \(-0.745354\pi\)
0.696712 0.717351i \(-0.254646\pi\)
\(572\) 0 0
\(573\) 670.217 1.16966
\(574\) 129.100 + 481.809i 0.224913 + 0.839388i
\(575\) −566.900 + 981.900i −0.985914 + 1.70765i
\(576\) 433.289 250.159i 0.752237 0.434304i
\(577\) −280.814 + 280.814i −0.486679 + 0.486679i −0.907256 0.420578i \(-0.861827\pi\)
0.420578 + 0.907256i \(0.361827\pi\)
\(578\) 584.044 + 156.494i 1.01046 + 0.270751i
\(579\) −124.069 + 463.030i −0.214281 + 0.799707i
\(580\) 1150.79 + 1150.79i 1.98412 + 1.98412i
\(581\) 77.7794 + 134.718i 0.133872 + 0.231873i
\(582\) −237.308 137.010i −0.407745 0.235412i
\(583\) 239.103 64.0675i 0.410126 0.109893i
\(584\) 837.205i 1.43357i
\(585\) 0 0
\(586\) 753.900 1.28652
\(587\) 112.215 + 418.790i 0.191166 + 0.713442i 0.993226 + 0.116198i \(0.0370708\pi\)
−0.802060 + 0.597244i \(0.796263\pi\)
\(588\) −250.705 + 434.233i −0.426369 + 0.738492i
\(589\) 117.304 67.7255i 0.199158 0.114984i
\(590\) −433.064 + 433.064i −0.734007 + 0.734007i
\(591\) 192.232 + 51.5083i 0.325265 + 0.0871545i
\(592\) −7.39748 + 27.6078i −0.0124957 + 0.0466347i
\(593\) −390.547 390.547i −0.658596 0.658596i 0.296452 0.955048i \(-0.404197\pi\)
−0.955048 + 0.296452i \(0.904197\pi\)
\(594\) 231.246 + 400.530i 0.389303 + 0.674292i
\(595\) 222.244 + 128.312i 0.373519 + 0.215651i
\(596\) 1098.74 294.407i 1.84353 0.493972i
\(597\) 546.879i 0.916045i
\(598\) 0 0
\(599\) −315.242 −0.526281 −0.263140 0.964758i \(-0.584758\pi\)
−0.263140 + 0.964758i \(0.584758\pi\)
\(600\) −145.889 544.466i −0.243149 0.907443i
\(601\) −229.868 + 398.143i −0.382476 + 0.662468i −0.991416 0.130749i \(-0.958262\pi\)
0.608940 + 0.793217i \(0.291595\pi\)
\(602\) −212.675 + 122.788i −0.353281 + 0.203967i
\(603\) −58.9579 + 58.9579i −0.0977743 + 0.0977743i
\(604\) 288.400 + 77.2765i 0.477483 + 0.127941i
\(605\) 191.920 716.255i 0.317223 1.18389i
\(606\) 111.039 + 111.039i 0.183232 + 0.183232i
\(607\) −448.920 777.551i −0.739571 1.28097i −0.952689 0.303948i \(-0.901695\pi\)
0.213118 0.977027i \(-0.431638\pi\)
\(608\) −340.111 196.363i −0.559394 0.322966i
\(609\) −211.250 + 56.6044i −0.346881 + 0.0929464i
\(610\) 316.487i 0.518831i
\(611\) 0 0
\(612\) 310.346 0.507102
\(613\) −164.918 615.481i −0.269033 1.00405i −0.959735 0.280907i \(-0.909365\pi\)
0.690702 0.723140i \(-0.257302\pi\)
\(614\) 262.819 455.215i 0.428043 0.741393i
\(615\) −652.102 + 376.491i −1.06033 + 0.612181i
\(616\) 90.8405 90.8405i 0.147468 0.147468i
\(617\) −386.513 103.566i −0.626439 0.167854i −0.0683856 0.997659i \(-0.521785\pi\)
−0.558053 + 0.829805i \(0.688451\pi\)
\(618\) 169.072 630.985i 0.273579 1.02101i
\(619\) 524.800 + 524.800i 0.847819 + 0.847819i 0.989861 0.142041i \(-0.0453666\pi\)
−0.142041 + 0.989861i \(0.545367\pi\)
\(620\) 283.776 + 491.514i 0.457703 + 0.792765i
\(621\) −779.468 450.026i −1.25518 0.724680i
\(622\) 1592.82 426.794i 2.56080 0.686164i
\(623\) 118.719i 0.190560i
\(624\) 0 0
\(625\) 247.464 0.395943
\(626\) −49.5922 185.081i −0.0792208 0.295656i
\(627\) 61.7206 106.903i 0.0984379 0.170500i
\(628\) −339.919 + 196.252i −0.541272 + 0.312503i
\(629\) −315.613 + 315.613i −0.501769 + 0.501769i
\(630\) −381.927 102.337i −0.606233 0.162440i
\(631\) −78.4079 + 292.622i −0.124260 + 0.463744i −0.999812 0.0193793i \(-0.993831\pi\)
0.875552 + 0.483123i \(0.160498\pi\)
\(632\) −514.793 514.793i −0.814546 0.814546i
\(633\) −163.134 282.557i −0.257716 0.446377i
\(634\) −457.997 264.424i −0.722392 0.417073i
\(635\) −869.571 + 233.001i −1.36940 + 0.366930i
\(636\) 638.749i 1.00432i
\(637\) 0 0
\(638\) −534.562 −0.837871
\(639\) −50.0963 186.962i −0.0783980 0.292585i
\(640\) 790.388 1368.99i 1.23498 2.13905i
\(641\) −802.665 + 463.419i −1.25221 + 0.722962i −0.971547 0.236845i \(-0.923887\pi\)
−0.280660 + 0.959807i \(0.590553\pi\)
\(642\) −678.948 + 678.948i −1.05755 + 1.05755i
\(643\) −765.787 205.192i −1.19096 0.319117i −0.391695 0.920095i \(-0.628111\pi\)
−0.799265 + 0.600978i \(0.794778\pi\)
\(644\) −172.579 + 644.075i −0.267980 + 1.00012i
\(645\) −262.135 262.135i −0.406411 0.406411i
\(646\) −193.143 334.533i −0.298982 0.517853i
\(647\) 565.632 + 326.568i 0.874238 + 0.504742i 0.868754 0.495243i \(-0.164921\pi\)
0.00548379 + 0.999985i \(0.498254\pi\)
\(648\) 108.425 29.0524i 0.167322 0.0448339i
\(649\) 123.790i 0.190739i
\(650\) 0 0
\(651\) −76.2689 −0.117157
\(652\) −266.288 993.801i −0.408418 1.52423i
\(653\) −497.150 + 861.089i −0.761333 + 1.31867i 0.180831 + 0.983514i \(0.442121\pi\)
−0.942164 + 0.335152i \(0.891212\pi\)
\(654\) −847.684 + 489.411i −1.29615 + 0.748335i
\(655\) −306.338 + 306.338i −0.467692 + 0.467692i
\(656\) −29.4586 7.89342i −0.0449065 0.0120326i
\(657\) −134.799 + 503.078i −0.205174 + 0.765720i
\(658\) −681.690 681.690i −1.03600 1.03600i
\(659\) 554.342 + 960.149i 0.841187 + 1.45698i 0.888892 + 0.458118i \(0.151476\pi\)
−0.0477042 + 0.998862i \(0.515190\pi\)
\(660\) 447.934 + 258.615i 0.678687 + 0.391840i
\(661\) −697.517 + 186.899i −1.05525 + 0.282752i −0.744418 0.667714i \(-0.767273\pi\)
−0.310828 + 0.950466i \(0.600606\pi\)
\(662\) 1764.69i 2.66569i
\(663\) 0 0
\(664\) 367.869 0.554019
\(665\) 78.3836 + 292.532i 0.117870 + 0.439897i
\(666\) 343.856 595.576i 0.516301 0.894259i
\(667\) 900.932 520.153i 1.35072 0.779840i
\(668\) 76.0088 76.0088i 0.113786 0.113786i
\(669\) 364.603 + 97.6950i 0.544996 + 0.146031i
\(670\) −112.548 + 420.035i −0.167982 + 0.626918i
\(671\) 45.2334 + 45.2334i 0.0674119 + 0.0674119i
\(672\) 110.567 + 191.508i 0.164534 + 0.284982i
\(673\) 201.737 + 116.473i 0.299757 + 0.173065i 0.642334 0.766425i \(-0.277966\pi\)
−0.342577 + 0.939490i \(0.611300\pi\)
\(674\) −1602.70 + 429.442i −2.37789 + 0.637155i
\(675\) 1006.29i 1.49080i
\(676\) 0 0
\(677\) 759.119 1.12130 0.560649 0.828053i \(-0.310552\pi\)
0.560649 + 0.828053i \(0.310552\pi\)
\(678\) −69.9423 261.028i −0.103160 0.384998i
\(679\) −67.9420 + 117.679i −0.100062 + 0.173312i
\(680\) 525.566 303.436i 0.772891 0.446229i
\(681\) 323.240 323.240i 0.474655 0.474655i
\(682\) −180.068 48.2490i −0.264029 0.0707463i
\(683\) −205.332 + 766.309i −0.300632 + 1.12197i 0.636008 + 0.771682i \(0.280584\pi\)
−0.936640 + 0.350293i \(0.886082\pi\)
\(684\) 258.978 + 258.978i 0.378622 + 0.378622i
\(685\) 122.971 + 212.992i 0.179520 + 0.310938i
\(686\) 797.686 + 460.544i 1.16281 + 0.671347i
\(687\) −21.9862 + 5.89120i −0.0320033 + 0.00857525i
\(688\) 15.0150i 0.0218241i
\(689\) 0 0
\(690\) −1635.74 −2.37064
\(691\) −238.407 889.748i −0.345018 1.28762i −0.892592 0.450866i \(-0.851115\pi\)
0.547574 0.836757i \(-0.315552\pi\)
\(692\) 123.779 214.391i 0.178871 0.309814i
\(693\) 69.2125 39.9599i 0.0998738 0.0576622i
\(694\) 393.478 393.478i 0.566971 0.566971i
\(695\) 1758.78 + 471.264i 2.53062 + 0.678078i
\(696\) −133.859 + 499.569i −0.192326 + 0.717771i
\(697\) −336.772 336.772i −0.483173 0.483173i
\(698\) −1059.29 1834.75i −1.51761 2.62858i
\(699\) −69.4087 40.0731i −0.0992971 0.0573292i
\(700\) −720.100 + 192.950i −1.02871 + 0.275643i
\(701\) 1256.17i 1.79197i 0.444079 + 0.895987i \(0.353531\pi\)
−0.444079 + 0.895987i \(0.646469\pi\)
\(702\) 0 0
\(703\) −526.744 −0.749281
\(704\) 136.504 + 509.440i 0.193898 + 0.723636i
\(705\) 727.656 1260.34i 1.03214 1.78771i
\(706\) −202.026 + 116.640i −0.286156 + 0.165212i
\(707\) 55.0632 55.0632i 0.0778829 0.0778829i
\(708\) −308.544 82.6741i −0.435797 0.116771i
\(709\) −50.4214 + 188.175i −0.0711162 + 0.265409i −0.992325 0.123660i \(-0.960537\pi\)
0.921208 + 0.389070i \(0.127203\pi\)
\(710\) −713.805 713.805i −1.00536 1.00536i
\(711\) −226.453 392.227i −0.318499 0.551656i
\(712\) −243.136 140.375i −0.341483 0.197155i
\(713\) 350.428 93.8970i 0.491484 0.131693i
\(714\) 217.507i 0.304632i
\(715\) 0 0
\(716\) −1778.12 −2.48341
\(717\) 205.692 + 767.654i 0.286879 + 1.07065i
\(718\) −768.110 + 1330.41i −1.06979 + 1.85293i
\(719\) −847.432 + 489.265i −1.17863 + 0.680480i −0.955696 0.294355i \(-0.904895\pi\)
−0.222929 + 0.974835i \(0.571562\pi\)
\(720\) 17.0946 17.0946i 0.0237425 0.0237425i
\(721\) −312.900 83.8414i −0.433981 0.116285i
\(722\) −183.319 + 684.155i −0.253904 + 0.947583i
\(723\) 496.948 + 496.948i 0.687341 + 0.687341i
\(724\) −42.7732 74.0854i −0.0590791 0.102328i
\(725\) 1007.28 + 581.551i 1.38934 + 0.802139i
\(726\) 607.075 162.665i 0.836192 0.224057i
\(727\) 470.571i 0.647278i 0.946181 + 0.323639i \(0.104906\pi\)
−0.946181 + 0.323639i \(0.895094\pi\)
\(728\) 0 0
\(729\) 590.294 0.809731
\(730\) 703.028 + 2623.74i 0.963052 + 3.59416i
\(731\) 117.240 203.066i 0.160383 0.277792i
\(732\) 142.953 82.5339i 0.195291 0.112751i
\(733\) −113.014 + 113.014i −0.154181 + 0.154181i −0.779982 0.625802i \(-0.784772\pi\)
0.625802 + 0.779982i \(0.284772\pi\)
\(734\) −155.708 41.7218i −0.212136 0.0568417i
\(735\) −157.870 + 589.177i −0.214788 + 0.801601i
\(736\) −743.787 743.787i −1.01058 1.01058i
\(737\) −43.9471 76.1185i −0.0596297 0.103282i
\(738\) 635.505 + 366.909i 0.861118 + 0.497167i
\(739\) −233.349 + 62.5256i −0.315763 + 0.0846084i −0.413220 0.910631i \(-0.635596\pi\)
0.0974569 + 0.995240i \(0.468929\pi\)
\(740\) 2207.10i 2.98257i
\(741\) 0 0
\(742\) −514.738 −0.693716
\(743\) −40.0554 149.489i −0.0539103 0.201196i 0.933718 0.358010i \(-0.116545\pi\)
−0.987628 + 0.156814i \(0.949878\pi\)
\(744\) −90.1811 + 156.198i −0.121211 + 0.209944i
\(745\) 1198.38 691.882i 1.60856 0.928701i
\(746\) −517.583 + 517.583i −0.693812 + 0.693812i
\(747\) 221.053 + 59.2309i 0.295921 + 0.0792918i
\(748\) −84.6731 + 316.004i −0.113199 + 0.422466i
\(749\) 336.685 + 336.685i 0.449513 + 0.449513i
\(750\) −272.337 471.701i −0.363116 0.628935i
\(751\) −1009.94 583.090i −1.34480 0.776419i −0.357289 0.933994i \(-0.616299\pi\)
−0.987507 + 0.157575i \(0.949632\pi\)
\(752\) 56.9356 15.2559i 0.0757123 0.0202870i
\(753\) 35.6919i 0.0473996i
\(754\) 0 0
\(755\) 363.212 0.481076
\(756\) −153.171 571.641i −0.202607 0.756139i
\(757\) 597.091 1034.19i 0.788759 1.36617i −0.137968 0.990437i \(-0.544057\pi\)
0.926727 0.375734i \(-0.122609\pi\)
\(758\) 26.4595 15.2764i 0.0349071 0.0201536i
\(759\) 233.786 233.786i 0.308018 0.308018i
\(760\) 691.785 + 185.363i 0.910243 + 0.243899i
\(761\) 248.434 927.170i 0.326458 1.21836i −0.586381 0.810036i \(-0.699448\pi\)
0.912838 0.408321i \(-0.133886\pi\)
\(762\) −539.537 539.537i −0.708054 0.708054i
\(763\) 242.695 + 420.360i 0.318080 + 0.550930i
\(764\) −1815.37 1048.11i −2.37614 1.37187i
\(765\) 364.670 97.7130i 0.476693 0.127729i
\(766\) 277.408i 0.362152i
\(767\) 0 0
\(768\) 489.153 0.636918
\(769\) −292.755 1092.58i −0.380695 1.42077i −0.844842 0.535016i \(-0.820306\pi\)
0.464147 0.885758i \(-0.346361\pi\)
\(770\) 208.405 360.969i 0.270656 0.468790i
\(771\) 475.416 274.481i 0.616622 0.356007i
\(772\) 1060.16 1060.16i 1.37326 1.37326i
\(773\) 399.515 + 107.050i 0.516837 + 0.138486i 0.507803 0.861473i \(-0.330458\pi\)
0.00903396 + 0.999959i \(0.497124\pi\)
\(774\) −93.5062 + 348.970i −0.120809 + 0.450866i
\(775\) 286.811 + 286.811i 0.370079 + 0.370079i
\(776\) 160.670 + 278.289i 0.207050 + 0.358620i
\(777\) 256.860 + 148.298i 0.330579 + 0.190860i
\(778\) 108.297 29.0181i 0.139199 0.0372983i
\(779\) 562.058i 0.721513i
\(780\) 0 0
\(781\) 204.039 0.261253
\(782\) −267.780 999.367i −0.342429 1.27796i
\(783\) −461.656 + 799.611i −0.589599 + 1.02122i
\(784\) −21.3952 + 12.3525i −0.0272898 + 0.0157558i
\(785\) −337.628 + 337.628i −0.430100 + 0.430100i
\(786\) −354.678 95.0358i −0.451245 0.120911i
\(787\) 347.048 1295.20i 0.440975 1.64574i −0.285373 0.958416i \(-0.592118\pi\)
0.726349 0.687326i \(-0.241216\pi\)
\(788\) −440.135 440.135i −0.558547 0.558547i
\(789\) −12.4044 21.4850i −0.0157216 0.0272307i
\(790\) −2045.61 1181.03i −2.58938 1.49498i
\(791\) −129.442 + 34.6838i −0.163643 + 0.0438481i
\(792\) 188.996i 0.238631i
\(793\) 0 0
\(794\) −610.721 −0.769170
\(795\) −201.111 750.557i −0.252970 0.944097i
\(796\) −855.226 + 1481.30i −1.07440 + 1.86092i
\(797\) 1133.61 654.489i 1.42234 0.821191i 0.425845 0.904796i \(-0.359977\pi\)
0.996499 + 0.0836053i \(0.0266435\pi\)
\(798\) −181.505 + 181.505i −0.227450 + 0.227450i
\(799\) 889.131 + 238.242i 1.11281 + 0.298175i
\(800\) 304.380 1135.96i 0.380475 1.41995i
\(801\) −123.499 123.499i −0.154181 0.154181i
\(802\) 390.003 + 675.505i 0.486288 + 0.842275i
\(803\) −475.472 274.514i −0.592119 0.341860i
\(804\) −219.075 + 58.7009i −0.272481 + 0.0730110i
\(805\) 811.152i 1.00764i
\(806\) 0 0
\(807\) 242.337 0.300294
\(808\) −47.6618 177.876i −0.0589874 0.220144i
\(809\) 12.0403 20.8545i 0.0148830 0.0257781i −0.858488 0.512834i \(-0.828596\pi\)
0.873371 + 0.487056i \(0.161929\pi\)
\(810\) 315.399 182.096i 0.389381 0.224809i
\(811\) 685.757 685.757i 0.845570 0.845570i −0.144007 0.989577i \(-0.545999\pi\)
0.989577 + 0.144007i \(0.0459987\pi\)
\(812\) 660.720 + 177.039i 0.813694 + 0.218029i
\(813\) −74.4004 + 277.666i −0.0915134 + 0.341533i
\(814\) 512.619 + 512.619i 0.629753 + 0.629753i
\(815\) −625.800 1083.92i −0.767852 1.32996i
\(816\) −11.5171 6.64939i −0.0141141 0.00814876i
\(817\) 267.289 71.6199i 0.327159 0.0876620i
\(818\) 1502.66i 1.83700i
\(819\) 0 0
\(820\) 2355.07 2.87204
\(821\) −91.7762 342.513i −0.111786 0.417191i 0.887241 0.461307i \(-0.152619\pi\)
−0.999026 + 0.0441166i \(0.985953\pi\)
\(822\) −104.227 + 180.526i −0.126796 + 0.219618i
\(823\) −761.836 + 439.846i −0.925681 + 0.534442i −0.885443 0.464748i \(-0.846145\pi\)
−0.0402381 + 0.999190i \(0.512812\pi\)
\(824\) −541.683 + 541.683i −0.657382 + 0.657382i
\(825\) 357.053 + 95.6721i 0.432792 + 0.115966i
\(826\) −66.6232 + 248.641i −0.0806576 + 0.301018i
\(827\) 496.734 + 496.734i 0.600645 + 0.600645i 0.940484 0.339838i \(-0.110372\pi\)
−0.339838 + 0.940484i \(0.610372\pi\)
\(828\) 490.479 + 849.535i 0.592366 + 1.02601i
\(829\) −841.504 485.843i −1.01508 0.586059i −0.102408 0.994743i \(-0.532655\pi\)
−0.912676 + 0.408684i \(0.865988\pi\)
\(830\) 1152.87 308.911i 1.38900 0.372182i
\(831\) 1108.22i 1.33360i
\(832\) 0 0
\(833\) −385.805 −0.463152
\(834\) 399.429 + 1490.69i 0.478931 + 1.78740i
\(835\) 65.3820 113.245i 0.0783018 0.135623i
\(836\) −334.357 + 193.041i −0.399949 + 0.230910i
\(837\) −227.681 + 227.681i −0.272021 + 0.272021i
\(838\) −2162.68 579.488i −2.58076 0.691514i
\(839\) 16.6003 61.9530i 0.0197858 0.0738415i −0.955327 0.295551i \(-0.904497\pi\)
0.975113 + 0.221709i \(0.0711636\pi\)
\(840\) −285.153 285.153i −0.339468 0.339468i
\(841\) −113.096 195.887i −0.134477 0.232922i
\(842\) 545.389 + 314.880i 0.647730 + 0.373967i
\(843\) 160.916 43.1173i 0.190885 0.0511475i
\(844\) 1020.46i 1.20907i
\(845\) 0 0
\(846\) −1418.27 −1.67645
\(847\) −80.6644 301.044i −0.0952355 0.355424i
\(848\) 15.7360 27.2555i 0.0185566 0.0321409i
\(849\) 271.477 156.738i 0.319761 0.184614i
\(850\) 817.942 817.942i 0.962284 0.962284i
\(851\) −1362.75 365.148i −1.60135 0.429081i
\(852\) 136.269 508.563i 0.159940 0.596905i
\(853\) −118.160 118.160i −0.138523 0.138523i 0.634445 0.772968i \(-0.281229\pi\)
−0.772968 + 0.634445i \(0.781229\pi\)
\(854\) −66.5102 115.199i −0.0778808 0.134893i
\(855\) 385.849 + 222.770i 0.451285 + 0.260550i
\(856\) 1087.63 291.429i 1.27059 0.340454i
\(857\) 1001.36i 1.16845i −0.811592 0.584225i \(-0.801399\pi\)
0.811592 0.584225i \(-0.198601\pi\)
\(858\) 0 0
\(859\) −1088.25 −1.26688 −0.633438 0.773793i \(-0.718357\pi\)
−0.633438 + 0.773793i \(0.718357\pi\)
\(860\) 300.094 + 1119.96i 0.348946 + 1.30228i
\(861\) −158.240 + 274.080i −0.183787 + 0.318328i
\(862\) −473.236 + 273.223i −0.548998 + 0.316964i
\(863\) 1068.95 1068.95i 1.23864 1.23864i 0.278082 0.960557i \(-0.410301\pi\)
0.960557 0.278082i \(-0.0896989\pi\)
\(864\) 901.767 + 241.628i 1.04371 + 0.279662i
\(865\) 77.9440 290.891i 0.0901086 0.336290i
\(866\) 1477.52 + 1477.52i 1.70614 + 1.70614i
\(867\) 191.817 + 332.238i 0.221243 + 0.383204i
\(868\) 206.585 + 119.272i 0.238001 + 0.137410i
\(869\) 461.162 123.568i 0.530681 0.142196i
\(870\) 1678.02i 1.92875i
\(871\) 0 0
\(872\) 1147.86 1.31635
\(873\) 51.7395 + 193.094i 0.0592663 + 0.221185i
\(874\) 610.495 1057.41i 0.698507 1.20985i
\(875\) −233.913 + 135.050i −0.267329 + 0.154343i
\(876\) −1001.77 + 1001.77i −1.14357 + 1.14357i
\(877\) 827.023 + 221.600i 0.943014 + 0.252680i 0.697395 0.716687i \(-0.254342\pi\)
0.245618 + 0.969367i \(0.421009\pi\)
\(878\) −196.050 + 731.668i −0.223291 + 0.833335i
\(879\) 338.232 + 338.232i 0.384792 + 0.384792i
\(880\) 12.7423 + 22.0703i 0.0144799 + 0.0250798i
\(881\) 1223.50 + 706.388i 1.38876 + 0.801802i 0.993176 0.116626i \(-0.0372080\pi\)
0.395587 + 0.918429i \(0.370541\pi\)
\(882\) 574.182 153.852i 0.651000 0.174435i
\(883\) 249.675i 0.282757i 0.989956 + 0.141379i \(0.0451535\pi\)
−0.989956 + 0.141379i \(0.954847\pi\)
\(884\) 0 0
\(885\) −388.582 −0.439076
\(886\) 501.668 + 1872.25i 0.566217 + 2.11315i
\(887\) −407.874 + 706.459i −0.459836 + 0.796459i −0.998952 0.0457724i \(-0.985425\pi\)
0.539116 + 0.842232i \(0.318758\pi\)
\(888\) 607.427 350.698i 0.684039 0.394930i
\(889\) −267.552 + 267.552i −0.300958 + 0.300958i
\(890\) −879.846 235.754i −0.988591 0.264892i
\(891\) −19.0521 + 71.1035i −0.0213829 + 0.0798019i
\(892\) −834.797 834.797i −0.935871 0.935871i
\(893\) 543.154 + 940.770i 0.608235 + 1.05349i
\(894\) 1015.71 + 586.418i 1.13614 + 0.655948i
\(895\) −2089.37 + 559.845i −2.33449 + 0.625525i
\(896\) 664.404i 0.741522i
\(897\) 0 0
\(898\) 1669.36 1.85897
\(899\) −96.3235 359.484i −0.107145 0.399871i
\(900\) −548.373 + 949.811i −0.609304 + 1.05535i
\(901\) 425.634 245.740i 0.472402 0.272741i
\(902\) −546.986 + 546.986i −0.606414 + 0.606414i
\(903\) −150.503 40.3273i −0.166671 0.0446592i
\(904\) −82.0210 + 306.107i −0.0907312 + 0.338613i
\(905\) −73.5863 73.5863i −0.0813108 0.0813108i
\(906\) 153.924 + 266.604i 0.169894 + 0.294265i
\(907\) 1119.16 + 646.145i 1.23391 + 0.712398i 0.967843 0.251556i \(-0.0809424\pi\)
0.266067 + 0.963955i \(0.414276\pi\)
\(908\) −1381.03 + 370.046i −1.52096 + 0.407540i
\(909\) 114.560i 0.126029i
\(910\) 0 0
\(911\) −108.954 −0.119598 −0.0597992 0.998210i \(-0.519046\pi\)
−0.0597992 + 0.998210i \(0.519046\pi\)
\(912\) −4.06199 15.1595i −0.00445393 0.0166223i
\(913\) −120.622 + 208.923i −0.132116 + 0.228831i
\(914\) 360.508 208.139i 0.394429 0.227723i
\(915\) 141.990 141.990i 0.155180 0.155180i
\(916\) 68.7655 + 18.4257i 0.0750715 + 0.0201154i
\(917\) −47.1275 + 175.882i −0.0513931 + 0.191802i
\(918\) 649.312 + 649.312i 0.707311 + 0.707311i
\(919\) 334.516 + 579.399i 0.364000 + 0.630467i 0.988615 0.150466i \(-0.0480774\pi\)
−0.624615 + 0.780933i \(0.714744\pi\)
\(920\) 1661.23 + 959.114i 1.80569 + 1.04252i
\(921\) 322.141 86.3174i 0.349773 0.0937214i
\(922\) 1458.68i 1.58209i
\(923\) 0 0
\(924\) 217.393 0.235274
\(925\) −408.249 1523.61i −0.441350 1.64714i
\(926\) 719.057 1245.44i 0.776520 1.34497i
\(927\) −412.715 + 238.281i −0.445216 + 0.257046i
\(928\) −763.009 + 763.009i −0.822208 + 0.822208i
\(929\) 531.264 + 142.352i 0.571866 + 0.153231i 0.533152 0.846019i \(-0.321007\pi\)
0.0387140 + 0.999250i \(0.487674\pi\)
\(930\) −151.456 + 565.241i −0.162856 + 0.607786i
\(931\) −321.947 321.947i −0.345807 0.345807i
\(932\) 125.335 + 217.087i 0.134480 + 0.232926i
\(933\) 906.085 + 523.128i 0.971152 + 0.560695i
\(934\) −1802.82 + 483.064i −1.93021 + 0.517199i
\(935\) 397.978i 0.425645i
\(936\) 0 0
\(937\) −1312.75 −1.40101 −0.700507 0.713646i \(-0.747043\pi\)
−0.700507 + 0.713646i \(0.747043\pi\)
\(938\) 47.3043 + 176.542i 0.0504310 + 0.188211i
\(939\) 60.7860 105.284i 0.0647348 0.112124i
\(940\) −3941.91 + 2275.86i −4.19352 + 2.42113i
\(941\) 310.426 310.426i 0.329889 0.329889i −0.522655 0.852544i \(-0.675058\pi\)
0.852544 + 0.522655i \(0.175058\pi\)
\(942\) −390.906 104.743i −0.414975 0.111192i
\(943\) 389.629 1454.11i 0.413180 1.54201i
\(944\) −11.1289 11.1289i −0.0117891 0.0117891i
\(945\) −359.964 623.476i −0.380915 0.659763i
\(946\) −329.820 190.422i −0.348647 0.201292i
\(947\) −750.497 + 201.095i −0.792499 + 0.212350i −0.632288 0.774733i \(-0.717884\pi\)
−0.160211 + 0.987083i \(0.551217\pi\)
\(948\) 1231.97i 1.29954i
\(949\) 0 0
\(950\) 1365.11 1.43696
\(951\) −86.8448 324.109i −0.0913195 0.340809i
\(952\) 127.535 220.897i 0.133965 0.232034i
\(953\) −147.254 + 85.0174i −0.154517 + 0.0892102i −0.575265 0.817967i \(-0.695101\pi\)
0.420748 + 0.907178i \(0.361768\pi\)
\(954\) −535.462 + 535.462i −0.561281 + 0.561281i
\(955\) −2463.14 659.995i −2.57920 0.691094i
\(956\) 643.336 2400.96i 0.672945 2.51147i
\(957\) −239.827 239.827i −0.250603 0.250603i
\(958\) −315.300 546.116i −0.329123 0.570058i
\(959\) 89.5212 + 51.6851i 0.0933485 + 0.0538948i
\(960\) 1599.16 428.493i 1.66579 0.446347i
\(961\) 831.213i 0.864946i
\(962\) 0 0
\(963\) 700.481 0.727394
\(964\) −568.908 2123.19i −0.590153 2.20248i
\(965\) 911.938 1579.52i 0.945013 1.63681i
\(966\) −595.399 + 343.754i −0.616355 + 0.355853i
\(967\) −702.486 + 702.486i −0.726460 + 0.726460i −0.969913 0.243453i \(-0.921720\pi\)
0.243453 + 0.969913i \(0.421720\pi\)
\(968\) −711.914 190.757i −0.735448 0.197063i
\(969\) 63.4338 236.738i 0.0654631 0.244312i
\(970\) 737.217 + 737.217i 0.760018 + 0.760018i
\(971\) −521.890 903.939i −0.537476 0.930936i −0.999039 0.0438288i \(-0.986044\pi\)
0.461563 0.887108i \(-0.347289\pi\)
\(972\) −1245.25 718.943i −1.28112 0.739653i
\(973\) 739.220 198.073i 0.759733 0.203570i
\(974\) 2147.43i 2.20475i
\(975\) 0 0
\(976\) 8.13310 0.00833309
\(977\) 314.547 + 1173.90i 0.321951 + 1.20154i 0.917341 + 0.398102i \(0.130331\pi\)
−0.595390 + 0.803437i \(0.703002\pi\)
\(978\) 530.408 918.694i 0.542340 0.939360i
\(979\) 159.445 92.0557i 0.162865 0.0940303i
\(980\) 1348.98 1348.98i 1.37651 1.37651i
\(981\) 689.750 + 184.818i 0.703110 + 0.188398i
\(982\) −162.786 + 607.527i −0.165770 + 0.618663i
\(983\) −511.256 511.256i −0.520098 0.520098i 0.397503 0.917601i \(-0.369877\pi\)
−0.917601 + 0.397503i \(0.869877\pi\)
\(984\) 374.209 + 648.150i 0.380294 + 0.658689i
\(985\) −655.754 378.600i −0.665740 0.384365i
\(986\) −1025.19 + 274.700i −1.03975 + 0.278600i
\(987\) 611.672i 0.619728i
\(988\) 0 0
\(989\) 741.158 0.749401
\(990\) −158.706 592.298i −0.160309 0.598281i
\(991\) 2.60955 4.51988i 0.00263325 0.00456093i −0.864706 0.502279i \(-0.832495\pi\)
0.867339 + 0.497718i \(0.165828\pi\)
\(992\) −325.889 + 188.152i −0.328517 + 0.189669i
\(993\) −791.715 + 791.715i −0.797296 + 0.797296i
\(994\) −409.827 109.813i −0.412301 0.110476i
\(995\) −538.539 + 2009.85i −0.541245 + 2.01995i
\(996\) 440.178 + 440.178i 0.441946 + 0.441946i
\(997\) 136.426 + 236.297i 0.136836 + 0.237008i 0.926298 0.376793i \(-0.122973\pi\)
−0.789461 + 0.613801i \(0.789640\pi\)
\(998\) 634.883 + 366.550i 0.636156 + 0.367285i
\(999\) 1209.49 324.083i 1.21070 0.324407i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.3.f.g.19.1 48
13.2 odd 12 inner 169.3.f.g.89.12 48
13.3 even 3 inner 169.3.f.g.80.12 48
13.4 even 6 169.3.d.e.70.12 yes 24
13.5 odd 4 inner 169.3.f.g.150.1 48
13.6 odd 12 169.3.d.e.99.12 yes 24
13.7 odd 12 169.3.d.e.99.1 yes 24
13.8 odd 4 inner 169.3.f.g.150.12 48
13.9 even 3 169.3.d.e.70.1 24
13.10 even 6 inner 169.3.f.g.80.1 48
13.11 odd 12 inner 169.3.f.g.89.1 48
13.12 even 2 inner 169.3.f.g.19.12 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
169.3.d.e.70.1 24 13.9 even 3
169.3.d.e.70.12 yes 24 13.4 even 6
169.3.d.e.99.1 yes 24 13.7 odd 12
169.3.d.e.99.12 yes 24 13.6 odd 12
169.3.f.g.19.1 48 1.1 even 1 trivial
169.3.f.g.19.12 48 13.12 even 2 inner
169.3.f.g.80.1 48 13.10 even 6 inner
169.3.f.g.80.12 48 13.3 even 3 inner
169.3.f.g.89.1 48 13.11 odd 12 inner
169.3.f.g.89.12 48 13.2 odd 12 inner
169.3.f.g.150.1 48 13.5 odd 4 inner
169.3.f.g.150.12 48 13.8 odd 4 inner